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Kähler–Einstein metrics on orbifolds and Einstein metrics on
spheres

Alessandro Ghigi and János Kollár

Abstract. AconstructionofKähler–Einstein metrics usingGaloiscoverings, studiedbyArezzo–
Ghigi–Pirola, is generalized to orbifolds. By applying it to certain orbifold covers of CPn which
are trivial set theoretically, one obtains new Einstein metrics on odd-dimensional spheres. The
method also gives Kähler–Einstein metrics on degree 2 Del Pezzo surfaces with A1- or A2-
singularities.
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1. Introduction

The aim of this paper is to explain how the methods of Arezzo, Ghigi, and Pirola [1]
can be applied to construct Kähler–Einstein metrics on compact complex orbifolds
withpositive firstChern class, and then use the approach of Boyer, Galicki,andKollár
[10] to obtain new Einstein metrics on odd dimensional spheres.

The somewhat unusual aspect is that we work with orbifolds X that admit a map

p : X Pn which is the identity map set theoretically. Nonetheless, in the orbifold
category p is a nontrivial Galois cover, although with trivial Galois group.

The existence of Kähler–Einstein metrics on compact complex manifolds with
positive first Chern class is still a difficult problem. For surfaces and toric manifolds
a complete solution is known, due respectively to Tian [28] and Wang–Zhu [31].
Apart from these cases, there are two large classes of examples. The simplest are

homogeneous spaces, for instance Pn, quadrics, Grassmannians. In all these cases,

the first Chern class is large, meaning for instance, that it is a large multiple of a

generator of H2(X,Z). The opposite case, when the first Chern class is a small
multiple of a generator of H2(X, Z) is also understood in many instances; see [8] for
a good overview.

A blending of these two approaches was developed in Arezzo, Ghigi, and Pirola
[1] to yield Kähler–Einstein metrics on certain manifolds X which can be realized
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as Galois covers of another manifold Y with a Kähler–Einstein metric. Since the
method relies on finite group actions, it is most successful when symmetries form a

natural part of the complex structure, for instance for double covers of Pn.

A construction of Einstein metrics on odd dimensional spheres was studied in
Boyer, Galicki, and Kollár [10]. The idea is that the quotient of an odd dimensional
sphere by a circle action is frequently a complex orbifold, and a result of Kobayashi
[18] allows one to lift a Kähler–Einstein orbifold metric from the quotient to an
Einstein metric on the sphere.

A frequently occurring case, studied by Orlik andWagreich [24] and Boyer,
Galicki, and Kollár [10], appears when the quotient S2n+1/S1 is Pn as a manifold, and

the orbifold structure is given by a Q-divisor

n+1

i=0

1 - 1
mi Di

where

Di {zi 0} for i 0, n, Dn+1 {z0 + · · · + zn 0},

and the m0, mn+1 are pairwise relatively prime ramification indices. See Section

4 for precise definitions.) The orbifold first Chern class is

c1(Pn n + 1)-
n+1

i=0

1 - 1
mi

n+1

i=0

1
mi - 1,

where we have identified H2(Pn,Q) with Q. Thus c1(Pn, is positive iff

n+1

i=0

1
mi - 1 > 0. 1)

The existence result [10, Theorem 34] shows that Pn, has an orbifold Kähler–
Einstein metric if in addition the following inequality is also satisfied:

n+1

i=0

1
mi - 1 < n+1

i
1

n
min

mi
2)

This paper started with the observation that one can apply the method of [1] to the
identity map Pn, Pn which is a Galois cover with trivial Galois group). On
the other hand, over the affine chart Pn \ {Di Dj} the same map can be viewed as

having cyclic Galois group of order k i,j mk. This approach improves the bound

of [10] by a factor of n, and we obtain
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Theorem 1. Let D0, Dn+1 Pn be hyperplanes in general position, and let

m0, mn+1 be pairwise relatively prime natural numbers. Assume1 that

0 <
n+1

i=0 i {
11

mi - 1 < n + 1)min
mi }. 3)

Then there is an orbifold Kähler–Einstein metric on Pn, n+1

i=0 1 - 1
mi Di

Set M i mi and wi M/mi As shown in [10] the intersection of the unit
sphere with the Brieskorn–Pham singularity

L(m0, mn+1) := S2n+3
n

n+1

i=0

zmi
i

0 Cn+2

is homeomorphic to S2n+1 and a Kähler–Einstein metric on the corresponding
projective orbifold

X, X) :=
n+1

i=0

zmi
i 0

n+1

i=0
mi )[zi 0] P(w0, wn+1)1- 1

lifts to a positive Ricci curvature Einstein metric on L(m0, mn+1). The weighted
projective space P(w0, wn+1) is not well formed and it is isomorphic to the
ordinary projective space Pn+1 by the map

z0, zn+1) x0 zm0 mn+1

n+10 xn+1 z

Under this isomorphism we get that

X, X)~=
n+1

i=0

xi 0
n+1

i=0
mi )[xi 0] Pn+11- 1

By eliminating the variable xn+1 we get that

X, X)~= Pn

The isometry class of the metric on the sphere determines the complex orbifold
Pn, n+1

i=0 1-
1
mi Di), except possibly when Pn, n+1

i=0 1-
1

mi Di) has a holomorphic

contact structure. The latter can happen only when n is odd; see [10, Lemma 17]

1Recent results of Gauntlett, Martelli, Sparks and Yau Obstructions to the Existence of Sasaki–Einstein
Metrics, Comm. Math. Phys. 273 3) 2007), 803–827, see esp. 3.23)) show that 3) is also necessary for
the existence of an orbifold Kähler–Einstein metric with positive Ricci curvature. Equivalently, if the mi’s are

pairwise relatively prime, then there is aSasaki–Einstein metricon the link of the singularityzm0
+· · ·+ zmn+1

0 1
0, if and only if 3) holds. n+
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for another necessary condition. Note that n + 2 hyperplanes in general position
do not have moduli, so the numbers m0, mn+1 alone determine the complex
orbifold.)

Even with the improved bounds, theequations 3)are not easy tosatisfy. Still,as in
Example 45, we get 12 new Einstein metrics on S5 corresponding to the ramification
indices

m0 2, m1 3, m2 5, m3 {17, 19,23, 29, 31, 37, 41,43,47, 49, 53, 59},

103 new Einstein metrics on S7, 106 new Einstein metrics on S9, ….
The above construction can be varied in many ways. For instance, one can take

more than n + 2 hyperplanes and quadrics. In all of these cases one gets an
improvement by a factor roughly n compared to the bounds in [10], but this gives many
new cases only for n large. As shown by Orlik and Wagreich [24], taking higher
degree hypersurfaces for theDi yields Einstein metrics on various rational homology
spheres.)

As another application, we consider singular degree 2 Del Pezzo surfaces. These
are all double covers of P2 ramified along a quartic curve. In the smooth case the
existence of Kähler–Einstein metrics was proved by Tian [28]. For singular surfaces

we get the following.

Theorem 2. Let S be a degree 2 Del Pezzo surface with only A1- or A2-singularities.
Then S has an orbifold Kähler–Einstein metric.

Remark 3. It is known that for a Fano manifold M the asymptotic Chow stability
of M,-KM) is a necessary condition for the existence of a Kähler–Einstein metric
on M. This idea goes back to Yau and was proved by Tian, Donaldson, Mabuchi
and others in different settings. See e.g. [29] and [16].) This may also explain
why our method breaks down for a degree 2 Del Pezzo with an An-singularity for
n 3. A plane quartic with an A3-singularity is not stable as a plane curve see [22],
p. 80). Mapping a quartic C to the double cover S P2 branched over C yields an

isomorphism between thespaceof plane quartics and thefamily of degree 2 Del Pezzo

surfaces. If one chooses the same polarization, C is stable iff S is. Thus a degree 2

Del Pezzo surface S with an A3-singularity which is a double cover branched along
a quartic with an A3-singularity) is not stable. Although one should really consider
asymptotic stability to get an actual obstruction, this suggests that S might not admit
an orbifold Kähler–Einstein metric.

Remark 4. The orbifolds that we consider can not be viewed as limits of smooth
manifolds. The obstruction is in fact completely local. Deforming an orbifold which
is locally Cn/G needs deformations of Cn together with the G-action. Every such

deformation is, however, locally trivial. Even in the case of An-singularities we have
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orbifold rigidity. These are given by X0 {(x, y,z) : xy- zn+1
0}, which can be

smoothed as Xt {(x, y, z) : xy - zn+1 tr} for any r. However the link of any 3-
dimensional isolated hypersurface singularity is simply connected, so no contractible
neighborhood of the origin in the threefold X {(x, y, z, t) : xy - zn+1 tr} can
be written as a nontrivial quotient of anything. Therefore the family Xt can not be

viewed as an orbifold deformation of X0.

Anyone well versed in orbifolds, stacks and in the theory of Monge–Ampère
equations should have no problem developing the theory of [1] in the orbifold setting.
Nonetheless, since the theory of orbifolds has too many “well-known” but never
proved theorems and not quite correct definitions and proofs, we felt that it makes
sense to write down the arguments in some detail.

2. Analytic coverings

Let X and Y be reduced complex spaces. A map p : X Y is called finite if it is
proper and has finite fibres. Since X is locally compact a finite to one map is proper

if and only if it is closed. Therefore a map is finite if and only if it is closed and has

finite fibres. By contrast note that p : C \ {-1} {y2 x3 + x2} C2 given by

t t2 - 1, t3 - t) is a closed map of algebraic varieties with finite fibers but p is
not proper.)

The fundamental theorem on finite maps see [17, p. 179]) states that when X
and Y are irreducible any finite surjective map p : X Y is an analytic covering.
This means that there is a thin subset T Y such that

a) p-1(T is thin in X, and

b) the restriction p-1(Y \ T Y \ T is locally biholomorphic étale).

Put Y0 Y \ T and X0 p-1(Y0). Then p : X0 Y0 is a topological covering.
We call it a regular subcover of p.

We assume that our spaces are irreducible so that “analytic covering” and “finite
holomorphic surjection” can be regarded as synonyms.

Another important fact is that an analytic covering p : X Y with X and Y
normal is an open map see [17, p. 135]).

Let now p : X Y be an analytic covering among connected normal complex
spaces. Put Y {y Yreg : p-1(y) Xreg} and X p-1(Y Then X and Y
are open sets with complements of codimension at least 2. Now p : X Y is a

finite surjective map between complex manifolds. Pick local coordinates z1, zn
on a neighbourhood U of a point in X and let w1, wn be coordinates around
its image in Y Let wi pi(z) be the local expression of p. The divisors locally
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defined by the equation

det pi
zj

0

glue together yielding a well-defined divisor on X Since the complement of X has

codimension at least 2, the Remmert–Stein extension theorem see e.g. [17, p. 181])
ensures that the topological closure of this divisor is a divisor in X, called the
ramification divisor of p, and denoted by R R(p). It satisfies the Hurwitz formula

KY p*KX + R. Write R j rjRj with Rj distinct prime divisors on X
The reduced divisor Rred j Rj is called the ramification locus. By the implicit
function theorem Rred n X is the set of points x X such that p is not étale at x,
that is the set of critical points of p. Since p is finite, the image B p(Rred) is a

divisor on Y called the branch divisor of p.
Consider now the sets Y Y \ Bsing p(Rsing) and X p-1(Y Both are

open and have complements of codimension at least 2 in X and Y respectively. We
use this notation often in the sequel. When we want to stress the dependence on p,
we write X p) and Y p). If x X either x /. Rred or x belongs to one and only
one component Rj In the first case we say that p is unramified at x, in the latter case

we say that the ramification order of p at x is rj + 1. The ramification order of p
at x will be denoted by ordp x). When p is unramified at x, we put ordp x) 1.

If D X is an irreducible divisor, then there is an open dense subset D D such
that ordp x) does not depend on x D This common value is denoted by ordp(D)
and it is called the ramification order of p along D.

We use some basic properties of analytic coverings and maps between them see,

for instance, [6, Lemma 16.1]).

Lemma 5. Let x X If p is unramified at x, then p isa localbiholomorphism at x.
If it has ramification orderm> 1, let Rj be the component of Rred passing through x.
Then there are local coordinates z1, zn on X and w1, wn on Y centred
at x and y p(x) respectively, such that locally Rj {z1 0}, B {w1 0} and

p(z1, zn) zm
1 z2, zn).

Since the complement of X has codimension 2, Rred is the closure of Rred nX
that is the closure of the set of points where p has ramification order > 1.

The next lemma considers the problem of lifting in the simplest case. Denote
by D(r) the disc of radius r centred at the origin, by D*(r) the complement of {0}
in D(r), and by P(r1, rn) the polydisc centred at the origin with polyradius

r1, rn).

Lemma 6. Let P1 P(r1, rn),P2 P(.1, .n), Q1 P(rm1
1 r2, rn),

1 .2, .n). Set P*1 D*(r1) × P(r2, rn) and similarly forQ2 P( m2

P*2 Q*1 Q*2 Let pi : Pi Qi be the maps p1(z1, zn) zm1
1 z2, zn),
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p2(z1, zn) z
m2
1 z2, zn). Let f : Q1 Q2 be aholomorphic map such that

f Q*1 Q*2 If m2|m1 there are exactly m2 liftings of f that is maps f̃ : P1 P2
such that p2f̃ fp1). Any local lifting of f defined in a neighbourhood of some

point x P1 extends to one of these liftings defined on P1.

Lemma 7. Let p1 : X1 Y and p2 : X2 Y be analytic coverings. For U X1
set

F(U) {holomorphic maps s: U X2 such that p1 p2 s}.
Then F is a Hausdorff sheaf of sets) over X1. Assume that for any x1 X1 x2 X2
with p1(x1) p2(x2),

ordp2(x2)| ordp1(x1).

Then the restriction of F to X1 n p-1
1 Y2 p2) is a finite topological covering. In

particular, if X1 is simply connected, then for every x1 X1 n p-1
1 Y2 p2) and

x2 X2 such that p1(x1) p2(x2) there is an analytic map f : X1 X2 such that

f x1) x2 and p1 p2 f
In fact, the above f extends to X1 by the following immediate consequence of

the Riemann Extension Theorem see e.g. [17, p. 144])

Lemma 8. Let p1 : X1 Y and p2 : X2 Y be analytic coverings, X1 normal and

T X1 a thin set. Let f 0
: X1 \ T X2 be an analytic map such that p1 p2 f 0.

Then f 0 extends to f : X1 X2 such that p1 p2 f

3. The Galois group of coverings

Let p : X Y be an analytic covering of normal complex spaces. Put Gal(p)
{f Aut(X) : p f p}. Gal(p) is a finite subgroup of Aut(X). In fact
fix x X \ R, y p(x), and let V be a neighbourhood of y in Y such that

p-1(V k
i=1 Ui with p : Ui V a biholomorphism and x U1. Then the

stabiliser Gal(p)x is a subgroup of finite index in Gal(p). Moreover any f Gal(p)x
maps U1 to itself. Since p|U1

is injective, the restriction of f to U1 is the identity.
By the connectedness of X, f idX, so Gal(p)x {1} and Gal(p) is finite.

Since p is Gal(p)-invariant, the Gal(p)-orbit of x X iscontained in p-1 p(x)
We say that an analytic covering p : X Y is Galois if the converse holds, that is
twopoints ofX lie on the same fibre of p only if they belong to the sameGal(p)-orbit.

Lemma 9. Let X and Y be normal complex spaces, p : X Y an analytic covering
and Y0 Y an open subset with thin complement. Put X0 p-1(Y0) and p0

p|X0 : X0 Y0. Then the elements of Gal(p0) extend to elements of Gal(p), and if
p0 is Galois, then p is Galois too.
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Proof. The first part follows from Lemma 8. For the second part, let x,x X
be such that p(x) p(x y. If y Y0 there is some g Gal(p0) such that

g.x x Since we have just proved that Gal(p0) Gal(p) the Galois condition is
satisfied for these points. If instead y Y \ Y0, let p-1(y) {x1, xk}. Choose
neighbourhoods Ui and V of xi and y respectively such that p-1(V k

i=1 Ui
Assume x x1 U1 and x x2 U2. Let {zn} be a sequence of points in X0 n U1
converging to x. Then yn p(zn) converge to y. Since p is open, p(U2) V
Therefore there are points zn U2 n X0 such that p(zn yn. By the Galois
condition on X0, there are gn Gal(p) such that zn gn.zn. As Gal(p) is finite, we
can extract a subsequence with gn g. Since lim zn x2 as p-1(y) n U2 {x2},
we get x2 g.x1.

If p : X Y is a Galois covering, then Gal(p) acts freely on any regular
subcover X0. Therefore if x, x X0 and p(x) p(x then there is a unique
g Gal(p) such that g.x x In particular the cardinality of Gal(p) equals that
of the generic fibre. This condition is also sufficient: p is Galois iff | Gal(p)| equals
the cardinality of the general fibre iff Gal(p) is transitive on the general fibre.

For later reference we state the following simple lemma.

Lemma 10. Let X, Y and Z be irreducible complex spaces, and let f : X Z,
g : Y Z, h: X Y be analytic coverings such that gh f. If f is Galois,
then h is Galois too.

Proof. Thanks to Lemma 9 it is enough to consider the unramified case. Fix x X
and put y h(x), z f x) g(y). We need to show that h*p1(X, x) is a normal
subgroup of p1(Y, y). Since g*: p1(Y, y) p1(Z,z) is injective it is enough to
check that g*h*p1(X, x) is a normal subgroup of g*p1(Y, y). But f being Galois

f*p1(X, x) g*h*p1(X,x) is normal in p1(Z, z), hence a fortiori in g*p1(Y, y).

For a general analytic covering p : X Y it is not possible to assign multiplicity

to the branching divisor in any reasonable way. In fact, different points in the
preimage of a point y B have different branching orders. A typical example is

X {z3 - 3yz + 2x 0} C3 projecting on C2 Even shrinking the domainx,y
around the origin, one cannot separate the branches with different orders.

On the other hand, when the covering is Galois, for any y Y all points in
p-1(y) have the same branching order. Therefore we can assign multiplicities to the
branch divisor according to the following rule. Let y Y n B and let x be any
point in p-1(y). Then we define the multiplicity of B in y to be 1 - 1/ordp x).
We still denote by B the Q-divisor given by the branching locus provided with these

multiplicities. Note that with this convention R p*B, that is, the ramification
divisor is the pull back of the branch divisor.



Vol. 82 2007) Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres 885

The branching divisor of a Galois cover can be described also in the following
way. Given a prime divisor D in X, set D) { Gal(p) : D Fix( )}. For
each prime divisor D the image p(D) is a prime divisor in Y The prime divisors for
which D) 0 are exactly the Rj Set Bj p(Rj In general different Rj ’s can
have the same image. Assume that {Bi}i.I is the set of all images of the Rj ’s that is

Bi Bk if i k). Then

B(p)
i.I

1 -
1

| Ri)|
Bi 4)

4. Orbifolds as pairs

As in [10], we look at orbifolds as a particular type of log pairs. X, is a log pair
if X is a normal algebraic variety or a normal complex space) and i diDi is
an effective Q-divisor where the Di are distinct, irreducible divisors and di Q. The
number di is called the multiplicity of along Di it is denoted by multDi We set

multD 0 for every other irreducible divisor D Di for all i.
Let X or simply X be the complement of Xsing sing. For x X the

multiplicity of at x is a well defined rational number. For orbifolds, we need to
consider only pairs X, such that has the form

i

1 - 1
mi Di

where the Di are prime divisors and mi N. If X, is such a pair then for any
divisor D X we put

ord D)
1

1 -multD
The assumption on the multiplicities of amounts to saying that the order is always
a nonnegative integer.

Definition 11. An orbifold chart on X compatible with is a Galois covering

: U U) X such that

1) U is a domain in Cn and U) is open in X;
2) the branch locus of is red n U);
3) for any x U such that x) Di ord.(x) mi

Conditions 2) and 3) are equivalent to

B( n U). 5)

Definition 12. An orbifold is a log pair X, such that X is covered by orbifold
charts compatible with

For a slightly more general approach, see [13, §14].)
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Let X be a normal complex space and p : U X a Galois cover where U is
smooth. As discussed earlier, the branch divisor B(p) of p is defined and we get
a log pair X, B(p)). If U is simply connected, which we can always assume by
shrinkingU suitably) then byLemma7 the log pair X, B(p)) determines p : U X
up to biholomorhisms. Thus we recover the classical definition of orbifolds as in [4]
for example).

Example 13. Let X be a complex manifold and D i.I Di a divisor with local
normal crossing. By this we mean that for any point x X there is a holomorphic
coordinate system V z1, zn) such that D n V {z V : z1 zk 0}. If
Di n V Ø then Di n V is the union of some of the hypersurfaces {zj 0}. D is
said to be a divisor with global normal crossing if, in addition, each Di is smooth.)
For any i I fix an integer mi > 1 and put i 1 -1/mi)Di We claim that

X, is an orbifold. Indeed, fix a coordinate system as above and put mj mi if
{zj 0} Di n V Set

m1
1 x: U V, x1, xn) x

mk
k xk+1, xn). 6)

Then U, is an orbifold chart onX compatible with and so X, is an orbifold.

In the same way, the usual definition of orbifold map is equivalent to the following
one.

Definition 14. For a finite holomorphic map f : X Y the map f : X, X)
Y, Y is an orbifold map if

ord
Y f D)) || ord

X D) · ordf D 7)

for every divisor D X.
An orbifold automorphism is an orbifold map that is invertible with inverse an

orbifold map. The group of automorphisms of X, is denoted by Aut(X,

Definition 15. An orbifold Galois covering f : X, X) Y, Y is an orbifold
map such that f : X Y is a Galois analytic cover and Gal(f Aut(X, X).

By the degree of an orbifold Galois cover we mean its degree as an analytic cover.

Lemma 16. Let f : X, X) Y, Y be an orbifold map. Then given x X
and y f x) Y there are orbifold charts U, and V around x and y
respectively such that f has a lifting f̃ : U V If, in addition, f : X Y is an
orbifold Galois covering then f̃ : U V is also a Galois covering.
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Proof. Choose the chart U, such that U is simply connected and f U)
V If D U is any divisor then

ordf D ordf D) · ord. D ordf D) · ord X D).

By the definition of orbifold maps,

ord
Y f D) || ordf D) · ord X D),

hence we conclude that ord
Y f D) divides ordf D. Thus the assumption

of Lemma 7 is satisfied and so f lifts to f̃ : U V Assume next that

f : X, X) Y, Y is an orbifold Galois covering. By restricting U we can
assume that for any s Gal(f either s.(U) U) or s.(U) n U) Ø. Pick
u1,u2 U such that f.(u1) f.(u2). Then there is a Galois automorphism s of

f such that u1) s( u2)) and s.(U) U). Since Gal(f Aut(X, X),
ord

X D ord
X s(D) for any divisor D. Hence applying Lemma 7 we conclude

that s : U) U) lifts to a biholomorphism s̃ of U such that s̃(u2) u1.
Moreover f. s̃ fs. f.. Therefore s̃ Gal(f This shows that in the
commutative diagram

U f̃
V

U) f V

8)

the composite f is Galois. But f. .f˜ and by Lemma 10 f̃ is a Galois
cover.

Example 17. Let X, be any orbifold, and let X, 0) denote the orbifold structure
on X with trivial branching divisor. It is a nontrivial result that X,0) is an orbifold,
that is, X has quotient singularities see [25]). We use mainly the case when X is
smooth, and then the orbifold charts of X, 0) are simply the manifold charts of X.)

The identity map idX : X, X, 0) is trivially an orbifold Galois covering.
In fact it is both an orbifold map and a Galois analytic cover, and Gal(idX) {idX}
Aut X,

If f : X, Y, Y is an orbifold Galois covering the orbifold ramification
divisor of f is defined as

Rorb X, Y f R(f + X - f * Y

With this definition the logarithmic ramification formula

KX + X f*(KY + Y + Rorb X, Y f
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is automatically satisfied. To understand the geometric meaning of Rorb it is useful
to look at the open set

X X, Y f Xreg n f -1
Yreg \ Y B(f sing \ X R(f sing.

This means that x X X X, Y f if a) X is smooth at x, b) Y is smooth at

y f x), c) x belongs to at most one componentD of X+R(f and in this case x
is a smooth point of D, d) y belongs to at most one component D of Y + B(f
and in this case it is a smooth point of D As usual the complement of this set has

codimension 2. Let D be any smooth divisor passing through x and D a smooth
component passing through y. Assume first that f is unbranched at x and that locally

X 1 - 1/p)D and Y 1 - 1/q)D Then there is a local diagram like
8), with p deg and q deg.. Put k deg f̃ Since f is unbranched we

can assume that its restriction to U) is a biholomorphism onto V Therefore

p qk. If p 1, then q k 1, and as expected multx Rorb 0. If p > 1, then
necessarily D f D) because of 7) and f*D D, since f is étale. Therefore
Rorb 1/q - 1/p)D k - 1)/p · D. If instead ordx(f m > 1, then
again D f D), R(f m - 1)D, f *D mD, pm qk and Rorb

m/q - 1/p)D k - 1)/p · D once more. Roughly the orbifold ramification
divisor is the ramification of the lifting f̃ divided the degree of the local chart

Let X, be an orbifold and Aut(X, a finite subgroup. We want to
define a quotient orbifold Y, By Cartan’s lemma [11] Y X/ is a normal
analytic space and the canonical projection p : X Y is an analytic covering. The
support of the branch divisor is defined to be p( B(p), while the multiplicities
are specified as follows. LetD be an irreducible component of p( B(p). IfD isa

component of p( and not of B(p), then we assign to D the multiplicity multx(
where x is any point in X such that p(x) D is a smooth point of p( B(p).
IfDis a componentof B(p)andnotof p( then we assign toDthe same multiplicity
it has as a component of B(p), that is 1 - 1/ ordp x) for any x X p) such that

p(x) D is a smooth point of p( B(p). Finally, if D is a common component
of p( and B(p) then we assign to it the multiplicity

1 -
1 - multx

ordp x)
for any x X n X p) such that p(x) D is a smooth point of p( B(p).

Proposition 18. Let X, be an orbifold, and Aut(X, a finite subgroup.
Let Y X/ be the quotient analytic space, and the Q-divisor defined above.
Then Y, is an orbifold and the canonical projection

p : X, X) -. Y, 9)

is an orbifold Galois covering.
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Proof. We need to show that Y is covered by orbifold charts compatible with Fix
y Y x p-1(y) and let : U U) be an orbifold chart with x U). If
the stabiliser x is trivial we can assume that U) n U) Ø for any e.

Then p : U) Y is a biholomorphism onto its image. Put p.: U Y
We claim that is an orbifold chart on Y compatible with In fact is Galois
since p is a biholomorphism on U), and p*B( B( n U). On the
other hand B(p) n U) Ø since p : U) U) is biholomorphic. Therefore
on U) the divisor coincides with B( This proves that : U Y is an

orbifold chart. If x {e} take a chart : U U) X such that U)
be a x-invariant neighbourhood of x. Lemma 16 ensures that also in this case

p.: U U)~= U)/ x is a Galois covering. It is easy to verify that

B( on U). Finally that p is an orbifold Galois covering is clear: a lifting
of p : U) U) is given by the identity map U U, so p is an orbifold map,
while Gal(p) Aut(X, by assumption.

5. Basic estimates for orbifold Kähler–Einstein metrics

In this section we collect the orbifold versions of some fundamental results due to
Aubin, Bando–Mabuchi and Tian, that are needed in the existence criteria in the next
section. Most of the proofs are the same as in the case of a manifold and we just give
appropriate references. For the basic definitions of differential geometry on orbifolds
see [4], [3], [9] and [7] Some information on Sobolev spaces and Laplace operators
on orbifolds can be found e.g. in [12].

Remark 19. Note that if X is a complex manifold and is a non trivial branching

divisor, then smoothness in the orbifold sense is rather different from ordinary
smoothness. For example, f z) |z| is not smooth in the ordinary sense, but it
belongs to C8(C, where is the divisor concentrated at the origin with
multiplicity 1/2. In fact the inclusions C8(X) C8(X, and k X) k X, are

in general strict.

Definition 20. A Fano orbifold is a compact complex orbifold X, such that

-(KX + is ample.

By the Baily–Kodaira imbedding theorem [3] this is equivalent to the fact that
c1(X, contains an orbifold Kähler metric.

The following is the orbifold analogue of Bonnet–Myers Theorem. It follows,
for example, from the Bishop volume comparison Theorem for orbifolds, see [7,
Proposition 20, Corollary 21].
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Theorem 21. LetX be anmdimensional orbifoldand g a Riemannianorbifold metric
on X with Ric(g) e(m - 1)g for some e > 0. Then diam(X, g) p/ve.

Theorem 22 ([23, Theorem B]). Let X, g) be a Riemannian orbifold of dimension

m > 2 with Ric(g) -(m- 1)e2g for some e 0. Then there is a constantC > 0

depending only on m and e · diam(X, g) such that

u L2 C
vol(X, g)1/m

diam(X,g)
u L2m/(m-2) 10)

for any u W1,2(X) with X udvolg 0.

Combining the last two theorems one gets the following uniform Sobolev embedding.

Corollary 23. Let X, be an n-dimensional Fano orbifold. For any e > 0 there
is a constant C C(e) > 0 such that for any metric in the class 2pc1(X, with
Ric( e. and any u W1,2(X,

u L2n/(n-1) C u 2
W1,2 11)

If X, is a Kähler orbifold, 1,1 X, is a closed smooth form and

C8(X, put + i ¯ We write > 0 to mean that it is a Kähler
metric. If is such that

[.]n
[X]

X

n > 0

and C8(X, put

I.(
1

[.]n, [X]
n - n 12)

J.(
1

0

I.(s.)
s

ds, 13)

F 0 J.( -
1

[.]n, [X]
n 14)

Lemma 24.

J.(
1

[.]n,[X]

n-1

k=0

k + 1

n + 1
M

i ¯ k n-k-1 15)

I.( - J.(
1

[.]n, [X]

n-1

k=0

n- k

n + 1
X

i ¯ k n-k-1 16)
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If > 0 and > 0, then I.( J.( and I.( - J.( are nonnegative and
vanish only if is constant. Moreover J. I. n + 1)J..

Proof. For 15) see [27, Lemma 2.2] or [1, Lemma 2.1]. For 16) expand .n - .n
The last statements follow diagonalising simultaneously and i ¯

Lemma 25. If is a positive constant then

F 0 .F 0 17)

Let .0 be a closed 1,1)-form with [.0]n, [X] > 0. Given .01, .12 C8(X,
put .1 .0 + i ¯ .01, .02 .01 + .12. Then

F0
.0 .02) F0

.0 .01) + F0
.1 .12). 18)

Same proof as in [30, pp. 60f].)

Lemma 26 ([30, p. 59]). If .t is a differentiable family of smooth functions on X,
then

d

dt J.(.t
1

[.]n, [X]
X

t( n - n
t 19)

d

dt
F0 .t -

1

[.]n, [X]
X

t.n
t 20)

Assume now that is a Kähler orbifold metric in the canonical class, that is

2pc1(X, Let f f C8(X, be the unique function such that

Ric( - i f̄
X

ef
X

n 21)

Put V [.]n, [X] n! vol(X) and define A.,F. : C8(X, R by

1
A.( log

V
X

ef .)- n F.( F
0 - A.( 22)

Using the notation of Lemma 25 if .0, .1 and .2 are Kähler metrics, then

F.0(.02) F.0(.01) + F.1(.12). 23)

For G Aut(X, a subgroup of isometries of X, put

PG(X, { C8(X, : > 0, and is G-invariant}. 24)
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If G {1} we simply write P(X,
In order to construct a Kähler–Einstein metric on X, the continuity method

is applied: fix a Kähler metric in the canonical class and consider the well-known
equations

+ i ¯.t n ef-t.t.n
(*)t

for a smooth family of functions in C8(X, Yau’s estimates hold for orbifold
metrics, and in particular the Calabi conjecture is true, which implies that (*)0 admits
a unique solution. Denote by the negative definite ¯-Laplacian on functions that
is -¯* ¯ and by -.j its eigenvalues.

Lemma 27 ([2, Theorem 4.20, p. 116]). Let be a Kähler metric on the compact
orbifold X, If Ric( e > 0, then .1 1.

It follows that the times t for which (*)t is solvable form an open subset S [0,1]
and that solutions .t are smooth in t see [30, pp. 63–66]. Given a C0-estimate for
the solutions,Yau’s estimates ensure that S is closed, thus yielding the solution up to

t 1, which is a Kähler–Einstein metric.

Proposition 28. Let .t be a solution to (*)t for t [0, T0). Then I.(.t)-J.(.t is
nondecreasing and F0 .t 0.

Proof. Differentiating (*)t with respect to t one gets

t + t) t -.t 25)

Therefore

d

dt I.(.t - J.(.t
1

V
X

t 1 - t2.t(.t + t.t) n 1
V

X

2
t

n
t +

1

V
X

|.̄ t|
2.t

This gives the first result. For the second use 20) and 25):

d
dt tF0 .t F 0 .t -

t

V
X

t F 0t.n .t +
1

V
X

t t + .t) n
t J.(.t

Since J. 0, the result follows.

The following estimates depend on the uniform Sobolev embedding Lemma 23)
and their proof uses Moser iteration.



Vol. 82 2007) Kähler–Einstein metrics on orbifolds and Einstein metrics on spheres 893

Theorem 29 ([30, p. 67ff]). If .t is a family of solutions to (*)t on the time interval

[0, T0), then there is a constant C C(T0) > 0 such that for any t < T0

.t 8 C 1 + J.(.t 26)

0 - inf
X

1
.t C

V
X

t + C 27)(-.t) n

F.(.t -A.(.t C(1 - t) C. 28)

Lemma 30 ([5, §6]). Let X, be a Fano orbifold, .KE a Kähler–Einstein metric
and a metric in the canonical class. Then there is g Aut(X, such that

g*.KE + i ¯ with orthogonal to ker( g* .KE + 1) in L2(X, .nKE

Proposition 31 ([29, Proposition 5.3]). Let X, be a Fano orbifold and .KE a

Kähler–Einstein metric in the canonical class. If .KE + i ¯ is a Kähler
metric, with ker( KE +1) and X e-..KEn 0, there is a solution {.t }t.[0,1]
of (*)t with .0 0 and .1 -
Theorem32 ([15,Theorem 2.2]). Ifa Fanoorbifold X, admits a Kähler–Einstein
metric .KE, then F. is bounded from below onP(X, for any in thecanonical
class.

Proof. Thanks to 23) it is enough to bound F.KE Given P(X, .KE) put

.KE + i ¯ and let g and be as in Lemma 30. Using again 23) it is
enough to bound Fg*.KE Take a path as in Lemma 31. Thanks to Proposition 28

Fg* .KE -F.(- -F.(.1) F0 .1) 0.

Remark 33. These estimates are enough to prove one half of Tian’s fundamental
theorem, namely that properness of F. implies the existence of a Kähler–Einstein
metric see [30, p. 63]).

The following normalisation of potentials is useful:

QG(X, { PG(X, : A.( 0}. 29)

For any PG(X, + A.( QG(X,

Proposition 34. Let X, be a Fano orbifold, 2pc1(X, a Kähler metric
and G a compact group of isometries of X, If there are constants C1, C2 > 0

such that

F.( C1 sup
X - C2 30)

for any QG(X, then X, admits a Kähler–Einstein metric.
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Proof. Let .t be a solution of (*)t on [0, T0). Since .t +A.(.t QG(X,

F.(.t F. .t + A.(.t
C1 sup

X
.t + A.(.t -C2

C1 sup
X

.t + C1A.(.t - C2.

31)

Using 28)

C1 sup
X

.t F.(.t -C1A.(.t + C2 C3 + C2 + C1C3.

Hence supX .t is uniformly bounded. But F0(.t 0, so J.(.t F0 .t )+sup .t
is bounded and 26) yields the required bound of the C0 norm.

Lemma 35 ([1, Lemma 2.3]). Let X, be a Fano orbifold, and 2pc1(M) a

Kähler metric. Then for anyß > 0 there are constants C1,C2 > 0 such that for any

Q(X,

log
1

V
X

e-(1+ß) n C1 sup
X -C2. 32)

Corollary 36. If there are constants C1,C2 > 0 andß > 0 such that

1
F.( C1 log

V
X

e-(1+ß) n -C2 33)

for any QG(X, then X, admits a Kähler–Einstein metric.

6. Existence theorems

A current on an orbifold X, is a collection of Gal(.)-invariant currents on any
uniformiser U, satisfying the usual compatibility condition with respect to injections

of uniformisers. In case X is smooth, orbifold differential forms on X, are
more than ordinary differential forms on X. By duality orbifold currents on X,
are less than ordinary currents on X: they are the continuous functionals on k X)
that can be extended to the larger space k X, For positive p,p)-currents there
is no difference between the two notions, since every positive current has measure
coefficients, and every orbifold differential form has continuous coefficients. If is a

continuous hermitian form on a compact orbifold X, an orbifold Kähler current
is a closed positive orbifold) current T of bidegree 1,1) such that for some positive
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constant c, T c. in the sense of orbifold currents, that is T -c., 0 for any
positive n-1,n-1 X, The definition does not depend on the choice of
since X is compact.

If X, is a Fano orbifold, G Aut(X, is a compact subgroup and is a

G-invariant Kähler form in 2pc1(X, put

P 0
G(X, { C0 X) : + i ¯ is a Kähler orbifold current}.

Proposition 37. a) Any P0
G X, is the C0-limit of a sequence .n

PG(X,
and F. can be extended to P0b) The functionals I., J., F0

G X, and the
extensions are continuous with respect to the C0-topology.

See Propositions 2.2 and 2.3 in [1].)

Lemma 38 ([1, Lemma 2.6] Ifp : X, X) Y, Y is an orbifoldmap between
compact orbifolds, the direct image p*T of a Kähler current T on X, is a Kähler
current on Y, Y

Proof. First of all observe that if f : X, X) Y, Y is an orbifold map of
degree 2n

d and a Y, Y then f*aX d · a. Next let .X and .Y be
Y

continuous hermitian forms on X, X) and Y, Y respectively. Since p* .Y is
continuous and .X is positive definite, there is c1 > 0 such that .X c1p*.Y
If T is a Kähler current on X, by definition T c2.X for some c2 > 0, so

T cp*.Y with c c1c2 > 0. We want to prove that for any positive form
n-1,n-1 Y, Y p*T, c · deg p · .Y Choose orbifold charts V

on Y, Y and Ui, .i) on X, such that p-1 V i .i(Ui). Denote by

T̃i ˜ and Ỹ the local representations in the orbifold charts and by p̃i : Ui V the
liftings of p. We can assume supp( V Then

p*T, T, p*
i

T̃i p̃*i ˜
| Gal(.i)|

i

c · p̃*i ˜Y p̃*i ˜

| Gal(.i)|

i

c

| Gal(.i)|Ui

p̃*i ˜Y ˜

c ·

i

deg p̃i

| Gal(.i)|
·

V

˜Y ˜
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Since

i

deg p̃i
| Gal(.i)|

deg p

| Gal(.)|
we finally get

p*T, c · degp
V

.Y

and this proves the lemma.

Lemma 39 ([1,Lemma 2.7]). Let p : X, Y, Y bean orbifold map between
n-dimensional Kähler orbifolds. Let .Y be a Kähler metric on Y, Y and
P0(Y, Y, .Y a continuous potential such that p* C8(X, Then

F0
p*.Y p* F0

.Y 34)

Theorem 40. Let X, X) and Y, Y be Fano orbifolds, p : X, Y, Y
an orbifold Galois covering of degree d with G Gal(p), .Y a Kähler–Einstein
metric on Y, Y and 2pc1(X, a G-invariant Kähler metric. Assume that
numerically Rorb(p) -ß(KX + X) for some ß Q+. Then there is a constant
C such that for any PG(X,

F0 1

1 + ß
log

1

V
X

e-(1+ß) p* n
Y -C. 35)

The proof is identical to that of Theorem 2.2 in [1] and depends on the previous
lemmata. Notice that a G-invariant orbifold Kähler metric always exists since,
according to Definition 15, G Aut X,

Theorem 41. Let X, X1, 1), Xk, k) be n-dimensional Fano orbifolds.
Assume that each Xi, i) admits a Kähler–Einstein metric and that pi : X,
Xi, i) are orbifold Galois coverings such that

1) the groups Gal(pi) are all contained in some compact subgroup of Aut X, ;

2) Rorb(pi) -ßi(KX + for some ßi Q+.
Define C8(X, by

1

k

k

i=1

p*i
n
i

n 36)

put c := sup{ 0 : .- L1(X, .n)} and ß := minßi. If
1

c
< ß, 37)

then X, admits a Kähler–Einstein metric.
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The proof is the same as that of Theorem 2.3 and Proposition 2.4 in [1].

Remark 42. If k 1, then c is the infimum of the complex singularity exponents

that is of the log canonical thresholds, see [14] and [19]) of the pairs U,.*Rorb),

where U, runs over all orbifold charts. On the other hand if there are enough
coverings and the intersection of the ramification divisors Rorb(pi) is empty, then

c +8 and 37) is automatically satisfied.

7. Applications

Here we exhibit some concrete examples where Theorem 41 can be used to prove the
existence of Kähler–Einstein metrics on orbifolds.

Theorem 43. Let X be a Fano manifold, N
i=1 Di a divisor with local normal

crossing and a Kähler–Einstein metric on X. Given integers mi > 1 put

i 1-1/mi)Di. If -dKX with d 0, 1) and

mi - 1 <
d

1- d
38)

for any i 1, N, then X, is a Fano orbifold and has an orbifold Kähler–
Einstein metric.

Proof. X, is a Fano orbifold because KX + 1 - d)KX and d < 1. As
observed in Example 17 the map id : X, X is an orbifold Galois cover and

we want to apply Proposition 41 to it. The ramification divisor is just Rorb so

Rorb id) -ß(KX +
with ß d/(1- d). It remains to check that 38) implies 37). Let x be any point
in X. Choose a system of coordinates V z1, zn) on X as in Example 13 and let

U, be the corresponding orbifold chart for X, as in 6). Then on U) V

Rorb
k

j=1

1-
1

mj
{zj 0} 39)

m1-1
1 zso that in thenotationof 36), z) z)|f z)|

2 onU, wheref z) z
mk-1

k

and is a smooth positive function. Set cx sup{ 0 : U |f |-2. < +8}. Since

U

|f|-2. const ·

k

j=1
D

|z|-
2.(mj -1) 40)
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loc on U iff < 1/(mjwhere D is the disk in C, we get that |f |-2. L1 - 1). So

cx min{1/(mj - 1) : 1 j k},

c inf
x.X

cx min
i

1

mi - 1
41)

and
1

c
max(mi - 1) <

d

1- d
ß. 42)

Example 44. Let some divisors Di |OPn(di)|, and some integers mi > 1 be given
for i 1, N. Let m1 be the greatest of the mi’s. Put i 1- 1/mi)Di and

d i di 1- 1
mi

n + 1
43)

Assume that

1) i Di is local normal crossing;

2) d < 1;

3) m1(1- d) < 1.

Then Pn, admits an orbifold Kähler–Einstein metric of positive scalar curvature.

Example45 Compare[10, Note36]). LetDi ben+2 hyperplanes ingeneral position
in Pn: Di {zi 0} for i 0, n, Dn+1 {z0 + · · · + zn 0}. Set

n+1

i=0

1- 1
mi Di

Then Pn, has an orbifold Kähler–Einstein metric as soon as

1 <
n+1

i=0

1

mi
< 1 + n + 1) min

i

1

mi
44)

As in [10], many numerical examples come from Euclid’s or Sylvester’s sequence

cf. [26, A000058]). This is defined by the recursion relation

ck+1 c1 ck + 1 c2
k - ck + 1

beginning with c1 2. The sequence grows doubly exponentially, and it starts as

2,3, 7, 43,1807, 3263443, 10650056950807,
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It is easy to see that

n

i=1

1
ci

1-
1

cn+1 - 1
1 -

1

c1 cn

We get many new examples by taking

m0 c1, m1 c2, mn cn+1 - 2, mn+1).

Then
n

i=0

1

mi
1 +

1

cn+1 - 1)(cn+2 - 2)

Thus our conditions are satisfied as long as

cn+1- 2 < mn+1 < n(cn+1 - 1)(cn+2 - 2)

and mn+1 is relatively prime to the other mi

Another case when Theorem 41 works is for degree 2 Del Pezzo surfaces S. Here
we consider the case when S isallowed to have cyclicquotient singularities. Theseare
necessarilyof the formC2/Zn where thegroupaction isgiven by u, v) u, -1v)
where is a primitive n-th root of unity. The Zn-invariant functions are generated by
un, vn, uv. This singularity is denoted by An-1.

For any degree 2 Del Pezzo surface S the anticanonical class is ample and it
gives a degree 2 cover p : S P2. If H denotes the hyperplane class on P2,

then -KS p*H. The double cover p ramifies along a quartic curve C, thus

R
12p*C p*2H, ß 2 and to apply Theorem 41 we need to ensure that .- be

integrable for 1
2 The singularities of p lie over the singularities of C, an An-1-

singularity of S lies over anAn-1-singularity of C cf. [6, p. 87])and we can find local
coordinates x, y) on P2 such that S is locally isomorphic to some neighbourhood of
the origin in the affine surface {(x, y, t) C3 : t2 x2 + 4yn}, the map p being
given simply by p(x,y, t) x, y). An orbifold chart is given by : U C2 S

where u, v) un-vn, uv, un+vn). Thus .*p*(dx.dy) n(un+vn) ·du.dv
and u,v) const · |un + vn |2. It is easy to see by direct integration or by blowing
up see e.g. [20, Proposition 6.39, p. 168]) that for n 2, |un + vn|-2. is integrable

if and only if < 2
n

Thus Theorem 41 applies as long as 1
2 < c 2

n
that is for

n < 4. This proves Theorem 2.
One can also give a different proof of the following result of Mabuchi and Mukai

[21, Corollary C].

Theorem 46. A diagonalizable singular Del Pezzo surface of degree 4 admits an

orbifold Kähler–Einstein metric.
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A quartic Del Pezzo surface S is the intersection of two quadrics in P4, S

Q1 nQ2. It is said to be diagonalizable if bothQ1 andQ2 can be put simultaneously
in diagonal form. If S is singular then in suitable coordinates it is given by equations

h0 := x
2
0 + x

2
1 + x

2
2 + x

2
3 + x2

4 0 and h1 := .2x
2
2 + .3x

2
3 + .4x

2
4 0.

If two of the .i coincide then S is a quotient of P1 × P1 and so has an orbifold
Kähler–Einstein metric see[21, p.136]). Thus assume that the .i aredistinct nonzero
complex numbers. For i 2,3, 4, the equation .ih0 - h1 0 does not involve xi
and by dropping the xi variable we get smooth quadrics

Qi {(.ih0 - hi 0)} P3

The map pi : S Qi given by forgetting xi is a double cover ramified over the
hyperplane section S n{xi 0}. Since theQi are smooth two-dimensional quadrics,
they are Kähler–Einstein. On the other hand, the divisors Rorb(pi) are disjoint, so
is strictly positive on all S, c =8 and Theorem 41 yields that S admits an orbifold
Kähler–Einstein metric.
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