Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 82 (2007)

Artikel: Kahler-Einstein metrics on orbifolds and Einstein metrics on spheres
Autor: Ghigi, Alessandro / Kollar, Janos

DOl: https://doi.org/10.5169/seals-98904

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-98904
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 82 (2007), 877-902 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Kihler-Einstein metrics on orbifolds and Einstein metrics on
spheres

Alessandro Ghigi and Jdnos Kollar

Abstract. A construction of Kidhler—Einstein metrics using Galois coverings, studied by Arezzo—
Ghigi—Pirola, is generalized to orbifolds. By applying it to certain orbitold covers of CP” which
are trivial set theoretically, one obtains new Einstein metrics on odd-dimensional spheres. The
method also gives Kihler—Einstein metrics on degree 2 Del Pezzo surfaces with A{- or Aj-
singularities.

Mathematics Subject Classification (2000). Primary 53C25; Secondary 32Q20, 57R60.
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1. Introduction

The aim of this paper is (o explain how the methods of Arezzo, Ghigi, and Pirola [1]
can be applied to construct Kihler—Finstein metrics on compact complex orbifolds
with positive first Chern class, and then use the approach of Boyer, Galicki, and Kollér
[10] to obtain new Einstein metrics on odd dimensional spheres.

The somewhat unusual aspect is that we work with orbifolds X that admit a map
7. X — P" which is the identiry map set theoretically. Nonetheless, in the orbifold
category 7 1s a nontrivial Galois cover, although with trivial Galois group.

The existence of Kiihler-Einstein metrics on compact complex manifolds with
positive first Chern class is still a difficult problem. For surfaces and toric manifolds
a complete solution is known, due respectively to Tian [28] and Wang—Zhu [31].
Apart from these cases, there are two large classes of examples. The simplest are
homogeneous spaces, for instance P", quadrics, Grassmannians. In all these cases,
the first Chern class is large, meaning for instance, that it is a large multiple of a
generator of Hp(X, Z). 'The opposite case, when the first Chern class 1s a small
multiple of a generator of H> (X, Z) is also understood in many instances; see [8] for
a good overview.

A blending of these two approaches was developed in Arezzo, Ghigi, and Pirola
[1] to yield Kihler-Einstein metrics on certain manifolds X which can be realized
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as Galois covers of another manifold ¥ with a Kiéhler—Einstein metric. Since the
method relies on finite group actions, it is most successful when symmetries form a
natural part of the complex structure, for instance for double covers of P*.

A construction of Einstein metrics on odd dimensional spheres was studied in
Boyer, Galicki, and Kolldr [10]. The idea is that the quotient of an odd dimensional
sphere by a circle action 1s frequently a complex orbifold, and a result of Kobayashi
[18] allows one to lift a Kihler—Einstein orbifold metric from the quotient to an
Einstein metric on the sphere.

A frequently occurring case, studied by Orlik and Wagreich [24] and Boyer, Ga-
licki, and Kolldr [10], appears when the quotient s2nt+l /sl jg P* as a manifold, and
the orbifold structure is given by a Q-divisor

n+1
A=Y (- 2o
i=0
where
Di:{zi:()} fOI'i:O,...,I”L, Dn+1:{ZO+"'+Zn:O}7

and the my, ..., muy41 are pairwise relatively prime ramification indices. (See Sec-
tion 4 for precise definitions.) The orbifold first Chern class is

n+1 n+1
a® LA =w+D-) (1-2)=> %+ -1,
i=0 i=0

where we have identified H*(P", Q) with Q. Thus ¢1(P", A) is positive iff

n+1

Zmii—1>0. (1)
=0

The existence result [10, Theorem 34] shows that (P*, A) has an orbifold Kihler—
Einstein metric 1if in addition the following inequality 1s also satsfied:

n+1
Y -1 <2 min{l} (2)

i i
i=0

This paper started with the observation that one can apply the method of [1] to the
identity map (P", A) — P" which is a Galois cover (with trivial Galois group). On
the other hand, over the affine chart P \ {D; U D;} the same map can be viewed as
having cyclic Galois group of order [ [, ;. ; k. This approach improves the bound
of [10] by a factor of », and we obtain
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Theorem 1. Let Dy, ..., D,y1 C P* be hyperplanes in general position, and let
Mo, . ... mup1 be pairwise relatively prime natural numbers. Assume® that
n+1
O<§m%—l<(n+l)miin{n%}- 3)

Then there is an orbifold Kdhler—Einstein metric on (P, ZI”I(} (1— L)D,-).

g

Set M = ]_[I- m; and w; = M/m;. As shown in [10] the intersection of the unit
sphere with the Brieskorn—Pham singularity

n+1
L(mo, ..., muy1) := S243 (sz’“ - 0) c Crt2
i=0
is homeomorphic to $2"+! and a Kihler—Einstein metric on the corresponding pro-
jective orbifold

n+1 n+l1

X, A = (Do =0). 30 = btz = 01) < Plwo, . wii)
i=0 i=0

lifts to a positive Ricci curvature Einstein metric on L{my, ..., mu+1). The weighted
projective space P(wg, ..., wy+1) 18 not well formed and it is isomorphic to the
ordinary projective space P"*! by the map

(20, -5 Znt1) > (X = zg“), ceey Xl = Zﬁﬁl)‘
Under this isomorphism we get that
n+1 n+1
(X. Ay) = ((in - 0), - M = 0]) c P
i=0 i=

By eliminating the variable x,4+1 we get that
(X, Ax) = (P", A).

The isometry class of the metric on the sphere determines the complex orbifold
(P", 3725 (1= --) Di), except possibly when (P", Y 7 (1 — 1) D;) has a holomor-
phic contact structure. The latter can happen only when # is odd; see [10, Lemma 17]

IRecent results of Gauntlett, Martelli, Sparks and Yau (Obstructions to the Existence of Sasaki—Einstein
Metrics, Comm. Math. Phys. 273 (3) (2007), 803-827, see esp. (3.23)) show that (3) is also necessary for

the existence of an orbifold Kéhler-Einstein metric with positive Ricei curvature. Equivalently, if the m;’s are
Myl _

pairwise relatively prime, then there is a Sasaki—Einstein metric on the link of the singularity zglo o kg

0, if and only if (3) holds.
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for another necessary condition. (Note that n 4 2 hyperplanes in general position
do not have moduli, so the numbers myg, ..., my41 alone determine the complex
orbifold.)

Even with the improved bounds, the equations (3) are not easy to satisfy. Still, asin
Example 45, we get 12 new Einstein metrics on $° corresponding to the ramification
indices

mo=2,m =3, my=>5m3 e {17,19,23,29,31,37,41,43,47,49, 53, 59},

> 10% new Einstein metrics on S7, > 10° new Einstein metrics on S°, . ...

The above construction can be varied in many ways. For instance, one can take
more than n + 2 hyperplanes and quadrics. In all of these cases one gets an im-
provement by a factor roughly » compared to the bounds in [10], but this gives many
new cases only for n large. (As shown by Orlik and Wagreich [24], taking higher
degree hypersurfaces for the D; yields Einstein metrics on various rational homology
spheres.)

As another application, we consider singular degree 2 Del Pezzo surfaces. These
are all double covers of P> ramified along a quartic curve. In the smooth case the
existence of Kihler—Einstein metrics was proved by Tian [28]. For singular surfaces
we get the following.

Theorem 2. Let S be a degree 2 Del Pezzo surface with only A1- or As-singularities.
Then S has an orbifold Kiihler—Einstein metric.

Remark 3. It is known that for a Fano manifold M the asymptotic Chow stability
of (M, —Kjy) is a necessary condition for the existence of a Kihler—Einstein metric
on M. (This idea goes back to Yau and was proved by Tian, Donaldson, Mabuchi
and others in different settings. See e.g. [29] and [16].) This may also explain
why our method breaks down for a degree 2 Del Pezzo with an A, -singularity for
n > 3. A plane quartic with an As-singularity is not stable as a plane curve (see [22],
p. 80). Mapping a quartic C to the double cover S — P? branched over C yields an
isomorphism between the space of plane quartics and the family of degree 2 Del Pezzo
surfaces. If one chooses the same polarization, C is stable iff S 1s. Thus a degree 2
Del Pezzo surface S with an Az-singularity (which is a double cover branched along
a quartic with an Az-singularity) is not stable. Although one should really consider
asymptotic stability to get an actual obstruction, this suggests that S might not admit
an orbifold Kihler-Einstein metric.

Remark 4. The orbifolds that we consider can not be viewed as limits of smooth
manifolds. The obstruction is in fact completely local. Deforming an orbifold which
is locally C" /G needs deformations of C" together with the G-action. Every such
deformation is, however, locally trivial. Even in the case of A, -singularities we have
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orbifold rigidity. These are givenby Xg = {(x, v, z) : xy — " = 0}, which can be
smoothed as X, = {(x, v, z) : xy — z"T1 = ¢"} for any r. However the link of any 3-
dimensional 1solated hypersurface singularity 1s simply connected, so no contractible
neighborhood of the origin in the threefold X = {(x, y,z,1) : xy — =) can
be written as a nontrivial quotient of anything. Therefore the family X; can not be
viewed as an orbifold deformation of Xg.

Anyone well versed in orbifolds, stacks and in the theory of Monge—-Ampere
equations should have no problem developing the theory of [1] in the orbifold setting.
Nonetheless, since the theory of orbifolds has too many “well-known” but never
proved theorems and not quite correct definitions and proofs, we felt that it makes
sense to write down the arguments in some detail.

2. Analytic coverings

Let X and Y be reduced complex spaces. A map 7w : X — Y is called finite if it 1s
proper and has finite fibres. Since X is locally compact a finite to one map is proper
if and only 1f 1t 1s closed. Therefore a map 1s finite if and only if 1t 1s closed and has
finite fibres. (By contrast note that 7 : C \ {—1} — {y* = x> 4+ x?} ¢ C? given by
t — (1> —1,1> — 1) is a closed map of algebraic varieties with finite fibers but  is
not proper.)

The fundamental theorem on finite maps (see [17, p. 179]) states that when X
and Y are irreducible any finite surjective map = : X — Y is an analytic covering.
This means that there is a thin subset 7 C Y such that

a) =~ Y(T) is thin in X, and
b) the restriction 7~ (¥ \ Ty = Y \ T is locally biholomorphic (étale).

Put Yo = Y\ T and Xg = 7~ 1(¥y). Thennm: Xo — Ypisa topological covering.
We call it a regular subcover of m.

We assume that our spaces are irreducible so that “analytic covering” and “finite
holomorphic surjection” can be regarded as synonyms.

Another important fact is that an analytic covering w: X — Y with X and ¥
normal is an open map (see [17, p. 135]).

Letnow 7 : X — Y be an analytic covering among connected normal complex
spaces. Put Y/ = {y € Yrep : 771() C Xyeo} and X’ = 7 ~1(¥’). Then X’ and ¥’
are open sets with complements of codimension at least 2. Now 7: X' — Y isa
finite surjective map between complex manifolds. Pick local coordinates zq, .. ., z,
on a neighbourhood U of a point in X’ and let wy, ..., w, be coordinates around
its image in Y’. Let w; = m;(z) be the local expression of . The divisors locally
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det( ) — o
c 8ZJ =

glue together yielding a well-defined divisor on X’. Since the complement of X has
codimension at least 2, the Remmert—Stein extension theorem (see e.g. [17, p. 181])
ensures that the topological closure of this divisor is a divisor in X, called the rami-
Jication divisor of r, and denoted by R = R(mr). It satisfies the Hurwitz formula
Kyr = n*Kx + R. Write R = ) ;r;R; with R; distinct prime divisors on X',
The reduced divisor Ryeq = Zj R; 18 called the ramification locus. By the implicit
function theorem R4 N X’ is the set of points x € X’ such that v is not étale at x,
that is the set of critical points of . Since = is finite, the image B = 7 (Rpeq) 15
divisor on Y, called the branch divisor of 7.

Consider now the sets ¥ = Y’ (Bsing U7 (Rsing) ) and X” = 7w ~1(¥”). Bothare
open and have complements of codimension at least 2 in X and Y respectively. We
use this notation often in the sequel. When we want to stress the dependence on 7,
we write X" () and Y” (7). If x € X” either x ¢ Ryoq or x belongs to one and only
one component R;. In the first case we say that 7 is unramified at x, in the latter case
we say that the ramification order of m at x is r; + 1. The ramification order of 7
at x will be denoted by ord; (x). When 7 is unramified at x, we put ord; (x) = 1.
If D C X is an irreducible divisor, then there is an open dense subset D” < D such
that ord, (x) does not depend on x € D”. This common value is denoted by ord, (D)
and 1t is called the ramification order of = along D.

We use some basic properties of analytic coverings and maps between them (see,
for instance, [6, Lemma 16.1]).

defined by the equation

Lemma 5. Letx € X”. If w is unramified at x, then 7 is a local biholomorphism at x.
If it has ramification order m > 1, let R; be the component of Ryeq passing through x.
Then there are local coordinates z1, ..., 7z, on X" and wy, ..., w, on Y" centred
at x and y = m(x) respectively, such that locally R; = {z1 =0}, B = {w1 =0} and
ALy vy B0) = (B] 585 v s B

Since the complement of X” has codimension 2, Ry is the closure of Ryq N X",
that is the closure of the set of points where 7 has ramification order > 1.

The next lemma considers the problem of lifting in the simplest case. Denote
by D(r) the disc of radius r centred at the origin, by D*(r) the complement of {0}
in D(r), and by P(r1, ..., ry) the polydisc centred at the origin with polyradius

(r1, ..., ).

Lemma6. Let Py = P(r1,...,ry), Po = P(p1,...,pn), Q1 = P(rinl,rg, v oy B )y
0, = P(pf”,pz, oo pp). Set P = D*(r1) x P(ra,....ry) and similarly for
P, 01, 05 Letmi: P, — Q; be the maps m1(21, - 2a) = (3] 522, -+ » Zn);
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2(21, s Tn) = (z’lm, 224 ..y 2p). Let o Q1 — Q2 beaholomorphic map such that
F(Q7) C Q3. If ma|my there are exactly my liftings of f (that is maps f:Pl—= P
such that ma f = fr1). Any local lifting of f defined in a neighbourhood of some
point x € Py extends to one of these liftings defined on P.

Lemma 7. Letm1: X1 — Y and m2: X2 — Y be analytic coverings. For U C X1
sel
SU) = {holomorphic maps s . U — X such that my = mp o s}.

Then § is a Hausdor(f sheaf (of sets) over X1. Assume that for any x1 € XY, x, € X7
with w1 (x1) = ma(x2),
ordy, (x2)| ordy (x1).

Then the restriction of § to X Nm[ lYé’ (72) is a finite topological covering. In
particular, if X{ is simply connected, then for every x1 € X|{ Nm 1Y2” (72) and
xy € X7 such that m(x1) = ma(xp) there is an analytic map f: X — X such that
flx1) =xpxandm =m o f.

In fact, the above f extends to X; by the following immediate consequence of
the Riemann Extension Theorem (see e.g. [17, p. 144])

Lemma@8. letm: X1 — Yandny: Xo — Y beanalytic coverings, X1 normal and
T < Xqathinset. Let fO: X1\T — Xy be an analytic map such that my = Jrgofo.
Then f9 extends to f: X1 — Xo such thatw) =m0 f.

3. The Galois group of coverings

Let7: X — Y be an analytic covering of normal complex spaces. Put Gal(r) =
{f € Aut(X) : @ o f = m}. Gal(z) is a finite subgroup of Aut(X). In fact
fix x € X"\ R, y = m(x), and let V be a neighbourhood of y in ¥ such that
(V) = |_|§‘;1 U; with w: U; — V a biholomorphism and x € U;. Then the
stabiliser Gal(r ) is a subgroup of finite index in Gal(7r ). Moreover any f € Gal(7 )
maps Uj to itself. Since 7| Uy is injective, the restriction of f to Uj is the identity.
By the connectedness of X, f = idy, so Gal(mr), = {1} and Gal(x) 1s finite.
Since 7 is Gal(7 )-invariant, the Gal( )-orbitof x € X is containedinzr ~! (7 (x)).
We say that an analytic covering 7 : X — Y is Galois if the converse holds, that is
two points of X lie on the same fibre of 7r only if they belong to the same Gal (7 )-orbit.

Lemma9. Let X and Y be normal complex spaces, m: X — Y an analyfic covering
and Yo C Y an open subset with thin complement. Put Xo = JT_l(Y()) and my =
T\x,: X0 —> Yo. Then the elements of Gal(rg) extend to elements of Gal(x), and if
o is Galois, then 7 is Galois too.
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Proof. The first part follows from Lemma 8. For the second part, let x,x" € X
be such that 7(x) = n(x’) = y. If y € Yy there is some g € Gal(mg) such that
g¢.x = x’. Since we have just proved that Gal(7¢) = Gal(z) the Galois condition is
satisfied for these points. If instead vy € ¥ \ Yo, let n"l(y) = {x1, ..., xr}. Choose
neighbourhoods U; and V of x; and y respectively such that n_l(V) = |_|le U,;.
Assume x = x1 € Uy and x” = xp € U, Let {z,} be a sequence of points in Xo N Uy
converging to x. Then y, = m(z,) converge to y. Since 7 is open, w(Uz) = V.
Therefore there are points z;, € Uz N Xo such that 7 (z,) = y,. By the Galois
condition on Xy, there are g, € Gal(rr) such that z;, = g,,.z,. As Gal(xr) is finite, we
can extract a subsequence with g, = g. Since limz, = x; as 7 Ny = {x),
we get xp = g.x7. (]

If 7: X — Y 1s a Galois covering, then Gal(z) acts freely on any regular
subcover X¢. Therefore if x, x" € Xo and 7 (x) = m(x’), then there is a unique
g € Gal(m) such that g.x = x’. In particular the cardinality of Gal(x) equals that
of the generic fibre. This condition is also sufficient:  is Galois iff | Gal(rr )| equals
the cardinality of the general fibre iff Gal(s7 ) 1s transitive on the general fibre.

For later reference we state the following simple lemma.

Lemma 10. Let X, Y and Z be irreducible complex spaces, and let f: X — Z,
g Y — Z, h: X — Y be analytic coverings such that gh = f. If [ is Galois,
then h is Galois 1oo.

Proof. Thanks to Lemma 9 it is enough to consider the unramified case. Fix x € X
andputy = h(x), z = f(x) = g(y). Weneed to show that A, (X, x) 1S a normal
subgroup of 71 (Y, y). Since g,: m (Y, y) — m(Z, z) is injective it 1s enough to
check that g, h,m (X, x) is a normal subgroup of g,m1(Y, ¥). But f being Galois
Jim (X, x) = gohm (X, x) is normal in 71 (Z, z), hence a fortiori in g, (Y, y).

O

For a general analytic covering 7 : X — Y it is not possible to assign multiplic-
ity to the branching divisor in any reasonable way. In fact, different points in the
preimage of a point y € B have different branching orders. A typical example is
X = {22 — 3yz + 2x = 0} c C? projecting on (Ci’y. Even shrinking the domain
around the origin, one cannot separate the branches with different orders.

On the other hand, when the covering is Galois, for any y € Y” all points in
7~ 1(y) have the same branching order. Therefore we can assign multiplicities to the
branch divisor according to the following rule. Let y € ¥” N B and let x be any
point in 771(y). Then we define the multiplicity of B in y to be 1 — 1/ ord; (x).
We stll denote by B the QQ-divisor given by the branching locus provided with these
multiplicities. Note that with this convention R = 7*B, that is, the ramification
divisor is the pull back of the branch divisor.
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The branching divisor of a Galois cover can be described also in the following
way. Given a prime divisor D in X, set I'(D) = {y € Gal(zr) : D C Fix(y)}. For
each prime divisor D the 1mage = (D) 1s a prime divisor in Y. The prime divisors for
which I'(D) # 0 are exactly the R;. Set B; = 7 (R;). In general different R;’s can
have the same image. Assume that {B;}; </ is the set of all images of the R;’s (that is

B; # Biifi # k). Then
1
B(r) :Z(l — |F(Ri)|>Bi- “4)

iel

4. Orbifolds as pairs

As in [10], we look at orbifolds as a particular type of log pairs. (X, A) 1s a log pair
if X is a normal algebraic variety (or a normal complex space) and A = > . d; D; is
an effective Q-divisor where the D); are distinct, irreducible divisors and d; € Q. The
number 4; is called the multiplicity of A along D;, it is denoted by multp. A. We set
multp A = 0 for every other irreducible divisor D # D; for all ;.

Let X”(A) (or simply X”) be the complement of Xine U Aging. For x € X” the
multiplicity of A at x is a well defined rational number. For orbifolds, we need to
consider only pairs (X, A) such that A has the form

A = Z(l - mii)Di,
i

where the D; are prime divisors and m; € N. If (X, A) is such a pair then for any
divisor D C X we put

1
1 —mulip A
The assumption on the multiplicities of A amounts to saying that the order is always
a nonnegative nteger.

Ol‘dA (D) =

Definition 11. An orbifold chart on X compatible with A 1s a Galois covering
¢: U — @o(U) C X such that

(1) U is a domain in C" and ¢ (U) is open in X;

(2) the branch locus of ¢ is Aeg N @(U);

(3) forany x € U”(¢) such that ¢(x) € D;, ord,(x) = m;.
Conditions (2) and (3) are equivalent to

B(g) = AN o(U). (5)

Definition 12. An orbifold is a log pair (X, A) such that X is covered by orbifold
charts compatible with A.

(For a slightly more general approach, see [13, §14].)
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Let X be a normal complex space and 7: U — X a Galois cover where U is
smooth. As discussed earlier, the branch divisor B(;r) of 7 is defined and we get
a log pair (X, B(m)). If U 1s simply connected, (which we can always assume by
shrinking U suitably) then by Lemma 7 the log pair (X, B(sxr)) determinesz : U — X
up to biholomorhisms. Thus we recover the classical definition of orbifolds (as in [4]
for example).

Example 13. Let X be a complex manifold and D = ), _; D; a divisor with local
normal crossing. By this we mean that for any point x € X there is a holomorphic
coordinate system (V,z1,...,zg)suchthaa DNV ={ze€ V :z1...2 =0} If
D; NV # ¥ then D; N V is the union of some of the hypersurfaces {z; = 0}. (D is
said to be a divisor with global normal crossing if, in addition, each D; 1s smooth.)
Forany i € I, fix an integer m; > 1 and put A = Y (1 — 1/m;)D;. We claim that
(X, A) is an orbifold. Indeed, fix a coordinate system as above and put m ; = m; if
{z;j =0} C D;NV. Set

! /

" m
p:U—V, (p(xl,...,xn):(xl1,...,xkk,xk+1,...,xn). (6)

Then (U, ¢) 1s an orbifold chart on X compatible with A and so (X, A) is an orbifold.

In the same way, the usual definition of orbifold map is equivalent to the following
one.

Definition 14. For a finite holomorphic map f: X — ¥ the map f: (X, Ax) —
(Y, Ay) is an orbifold map it

orday (f(D)) | orday (D) -ordy D (7)

for every divisor D C X.
An orbifold automorphism is an orbifold map that is invertible with inverse an
orbifold map. The group of automorphisms of (X, A) is denoted by Aut(X, A).

Definition 15. An orbifold Galois covering f: (X, Ax) — (¥, Ay) is an orbifold
map such that f: X — Y is a Galois analytic cover and Gal( /) C Aut(X, Ax).

By the degree of an orbifold Galois cover we mean its degree as an analytic cover.

Lemma 16. Let f: (X, Ax) — (Y, Ay) be an orbifold map. Then given x € X
and y = f(x) € Y there are orbifold charts (U, @) and (V, ) around x and y
respectively such that f has a lifting f: U — V. If. in addition, f: X — Y is an
orbifold Galois covering then f: U — Visalso a Galois covering.
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Proof. Choose the chart (U, ¢) such that U is simply connected and f(p(U)) C
(V). If D C U is any divisor then

ordfoy D = ordy (D) - ordy, D = ordy @ (D) - orday, ¢(D).
By the definition of orbifold maps,

orday (f o )(D) |ordy ¢(D) - orday (D),

hence we conclude that orda, (f o ¢)(D) divides ords., D. Thus the assumption
of Lemma 7 is satisfied and so f o ¢ lifts to f: U — V. Assume next that
J (X, Ax) — (¥, Ay) is an orbifold Galois covering. By restricting U we can
assume that for any o € Gal(f) either op(U) = ¢(U) orop(U) Ng(U) = @. Pick
u1, up € U such that fo(u1) = fe(uz). Then there is a Galois automorphism o of
f such that ¢ (1) = o(p(u2)) and o p(U) = @(U). Since Gal( f) C Aut(X, Ay),
orda, D = orda, o (D) for any divisor D. Hence applying Lemma 7 we conclude
that o: (U) — (U) lifts to a biholomorphism & of U such that 6 (1) = uy.
Moreover foo6 = foe = f¢. Therefore 6 € Gal(f¢). This shows that in the
commutative diagram

U———YV

wl lw ®)

p(U) —= (V).

the composite f o ¢ is Galois. But f¢ = ¢ f and by Lemma 10 f is a Galois
cover, O

Example 17. Let (X, A) be any orbifold, and let (X, 0) denote the orbifold structure
on X with trivial branching divisor. It is a nontrivial result that (X, 0) is an orbifold,
that is, X has quotient singularities (see [25]). (We use mainly the case when X 1s
smooth, and then the orbifold charts of (X, 0) are simply the manifold charts of X.)

The identity map idyx: (X, A) — (X, 0) is trivially an orbifold Galois covering.
In fact it is both an orbifold map and a Galois analytic cover, and Gal(idx) = {idx} C
Aut (X, A).

If £:(X,A) — (Y, Ay) is an orbifold Galois covering the orbifold ramification
divisor of f is defined as

R™®(Ax, Ay, f) = R(f) + Ax — [*Ay.
With this definition the logarithmic ramification formula

Kx + Ax = f*(Ky + Ay) + R™®(Ay, Ay, f)
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is automatically satisfied. To understand the geometric meaning of R°™ it is useful
to look at the open set

X"(Ax, Ay, ) = Xeeg N 7 (Yreg \ (Ay U B(f))sing) \ (Ax U R(S)sing.-

This means that x € X” = X”(Ax, Ay, f)if (a) X is smooth at x, (b) Y is smooth at
y = f(x), (c) x belongs to at most one component D of Ay + R( f) and in this case x
is a smooth point of D, (d) y belongs to at most one component D’ of Ay + B(f)
and in this case it is a smooth point of D', As usual the complement of this set has
codimension 2. Let D be any smooth divisor passing through x and D’ a smooth
component passing through y. Assume first that f is unbranched at x and that locally
Ax = (1 —=1/p)D and Ay = (1 — 1/¢)D’. Then there is a local diagram like
(8), with p = degg and ¢ = degyr. Put k& = deg f Since f is unbranched we
can assume that its restriction to ¢(U) is a biholomorphism onto ¢ (V). Therefore
p =gk If p=1,theng = k = 1, and as expected mult, R°® = 0. If p > 1, then
necessarily D' = f(D) because of (7) and f*D’ = D, since f is étale. Therefore
R = (1/g —1/p)D = (k — 1)/p - D. If instead ord,(f) = m > 1, then
again D' = f(D), R(f) = (m — DD, f*D' = mD, pm = gk and R =
(m/g —1/p)D = (k —1)/p - D once more. Roughly the orbifold ramification
divisor is the ramification of the lifting f divided the degree of the local chart ¢.

Let (X, A) be an orbifold and I' C Aut(X, A) a finite subgroup. We want to
define a quotient orbifold (Y, A’). By Cartan’s lemma [11] ¥ = X/T is a normal
analytic space and the canonical projection 7 : X — Y 1s an analytic covering. The
support of the branch divisor A’ is defined to be 77 (A) U B (7 ), while the multiplicities
are specified as follows. Let D be an irreducible componentof w(A)U B(rr). If Disa
component of 7 (A) and not of B(sr ), then we assign to D the multiplicity mult, (A),
where x is any point in X”(A) such that 7 (x) € D is a smooth point of 7 (A) U B(7).
If D is acomponent of B () andnotof 7 (A) then we assign to D the same multiplicity
it has as a component of B(sr), thatis 1 — 1/ ord; (x) for any x € X” () such that
7 (x) € D is a smooth point of 7 (A) U B(rr). Finally, if D is a common component
of m(A) and B(m) then we assign to it the multiplicity

1 — mult, A
ord; (x)

1

forany x € X”(A) N X" () such that 7 (x) € D is a smooth point of 7(A) U B(x).

Proposition 18. Let (X, A) be an orbifold, and I C Aut(X, A) a finite subgroup.
Let Y = X/T be the quotient analytic space, and N’ the Q-divisor defined above.
Then (Y, A") is an orbifold and the canonical projection

7 (X, Ax) — (Y, A) 9)

is an orbifold Galois covering.
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Proof. We need to show that Y is covered by orbifold charts compatible with A’. Fix
yeY,x exl(y)andlet o: U — ¢(U) be an orbifold chart with x € @(U). If
the stabiliser Iy 1s trivial we can assume that yo(U) N @(U) = @ for any y # e.
Then 7 : ¢(U) — Y is a biholomorphism onto its image. Put v = 7me: U — Y.
We claim that v is an orbifold chart on Y compatible with A’. In fact ¢ is Galois
since 7 1S a biholomorphism on ¢(U), and 7*B(yr) = B(g¢) = AN @(U). On the
other hand B(zw) Ny (U) = @ since 7 : (U) — (U) is biholomorphic. Therefore
on Y (U) the divisor A’ coincides with B(y¢). This proves that ¢v: U — Y is an
orbifold chart. If 'y # {e} take a chart ¢: U — @(U) < X such that ¢(U)
be a I['y-invariant neighbourhood of x. Lemma 16 ensures that also in this case
v =me: U — y(U) = ¢U)/ Ty 1s a Galois covering. It is easy to verify that
B(y) = A’ on ¢+ (U). Finally that 7 is an orbifold Galois covering is clear: a lifting
of m: ¢(U) — (U) is given by the identity map U — U, so 7 is an orbifold map,
while Gal(z) = I" C Aut(X, A) by assumption. 0

5. Basic estimates for orbifold Kihler—Einstein metrics

In this section we collect the orbifold versions of some fundamental results due to
Aubin, Bando—Mabuchi and Tian, that are needed in the existence criteria in the next
section. Most of the proofs are the same as in the case of a manifold and we just give
appropriate references. For the basic definitions of differential gecometry on orbifolds
see [4], [3], [9] and [7] . Some information on Sobolev spaces and Laplace operators
on orbifolds can be found e.g. in [12].

Remark 19. Note that if X is a complex manifold and A is a non trivial branch-
ing divisor, then smoothness in the orbifold sense 1s rather different from ordinary
smoothness. For example, f(z) = |z| 1s not smooth in the ordinary sense, but it
belongs to C™(C, A), where A is the divisor concentrated at the origin with multi-
plicity 1/2. In fact the inclusions C*°(X) € C®(X, A) and A¥(X) C AKX, A) are
in general strict.

Definition 20. A Fano orbifold is a compact complex orbifold (X, A) such that
—(Kx + A) is ample.

By the Baily—Kodaira imbedding theorem [3] this is equivalent to the fact that
¢1(X, A) contains an orbifold Kihler metric.

The following is the orbifold analogue of Bonnet—Myers Theorem. [t follows,
for example, from the Bishop volume comparison Theorem for orbifolds, see [7,
Proposition 20, Corollary 21].
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Theorem 21. Let X be an mdimensional orbifold and g a Riemannian orbifold metric
on X with Ric(g) > e(m — 1)g for some & > (. Then diam(X, g) < n/\/e.

Theorem 22 ([23, Theorem B]). Let (X, g) be a Riemannian orbifold of dimension
m > 2 with Ric(g) > —(m — l)ezgfor some & = 0. Then there is a constant C > 0
depending only on m and e - diam(X, g) such that

vol(X, g)1/m
\v >(C %7
|Vullp2 = diam(X, g)

foranyu € WH2(X) with (, udvol, = 0.
X g

22| 720/ 62 (10)

Combining the last two theorems one gets the following uniform Sobolev embed-
ding.

Corollary 23. Let (X, A) be an n-dimensional Fano orbifold. For any ¢ > O there
is a constant C = C(g) > O such that for any metric w in the class 2mwci (X, A) with
Ric(w) > sw and any u € WH2(X, A)

letllp2mn-1y < Cllae]| 12 (11)
If (X, A) is a Kihler orbifold, @ € /\1’1(X , A) is a closed smooth form and

@ € C®(X,A), put w, = @ +iddg. We wrile @, > 0 to mean that it is a Kihler
metric. If o is such that

([o], [X]) = [60” >0

X
and ¢ € C™(X, A), put
a) n o n , 12
(0) = Mﬂ,[ D[@(w ol (12)
1
1,
Tt = f %) 4 (13)
0
FO(¢) = ()—éf o (14)
PP e iy Y
Lemma 24.
n—1
B 1 k+1 —k—1
J (@) = T TET kX_E)nJr flaga/\aga/\a) N , (15)
- M
n—ln &

L) — J,(¢) = ]n ToT X7 2= n 11 f18¢A8¢Akaw —k=1 (16)
k=0
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If o > 0and w, > 0, then 1,(p), J,(¢) and 1,(¢) — J, (@) are nonnegative and
vanish only if ¢ is constant. Moreover J, < I, < (n 4+ 1)J,,.

Proof. Tor (15) see [27, Lemma 2.2] or [1, Lemma 2.1]. For (16) expand " — a)g.
The last statements follow diagonalising simultancously o and i 99¢. O

Lemma 25. If A is a positive constant then
FY,(xp) = LFD(0). (17)

Let wg be a closed (1, 1)-form with {[ag]", [ X]) > 0. Given @o1, 912 € CF(X, A),
put w1 = woy +199¢o1, por = o1 + ¢12. Then

Fo (po2) = Fay (po1) + F, (12). (18)
(Same proof as in [30, pp. 60f].)

Lemma 26 (|30, p. 391). If ¢ is a differentiable family of smooth functions on (X, A)

then
4 ()—;fw”—”) (19)
at wl@r) = <[w]n’[X]>X Prl@ Wy ),
d 0 _ 1 N
P8 =~ Xf ol 20)

Assume now that « 1s a Kihler orbifold metric in the canonical class, that 1s
w € 2rci(X, A). Let f = f(w) € C™(X, A) be the unique function such that

Ric(w) — w =133f (), [ef@”) :fa)”. 21)

X X

Put V = ([w]", [X]) = n!vol(X) and define A, F,,: C®(X, A) = Rby

1
Aw«o):log[v f ef@)-%”}, Folp) = Fo(p) — Au(p). (22)
X

Using the notation of Lemma 25 if @y, @1 and «; are Kihler metrics, then
Foo(wn2) = Fuy(@o1) + Fuy (@12). (23)
For G C Aut(X, A) a subgroup of isometries of (X, A, @) put

Po(X. A, w)={p € C¥(X,A): w, >0, and ¢ is G-invariant}. (24
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If G = {1} we simply write P(X, A, w).

In order to construct a Kiéhler-Einstein metric on (X, A) the continuity method
is applied: fix a Kihler metric » in the canonical class and consider the well-known
equations

(0 +103¢)" = &/ 71 " (%),

for a smooth family of functions in C*(X, A). Yau’s estimates hold for orbifold
metrics, and in particular the Calabi conjecture 1s true, which implies that () admits
a unique solution. Denote by A the negative definite d-Laplacian on functions (that
is A = —3%3) and by —2; its eigenvalues.

Lemma 27 ([2, Theorem 4.20, p. 116]). Let w be a Kéihler metric on the compact
orbifold (X, A). If Ric(w) > & > 0, then A1 > 1.

[t follows that the times ¢ for which (), 1s solvable form an open subset S C [0, 1]
and that solutions ¢; are smooth in ¢, see [30, pp. 63—-66]. Given a C-estimate for
the solutions, Yau’s estimates ensure that S is closed, thus yielding the solution up to
t = 1, which is a Kihler—Einstein metric.

Proposition 28. Let ¢; be a solution to (x); for t € [0, Ty). Then 1,(¢:) — Jou(¢r) is
nondecreasing and ch((ﬂr) <

Proof. Differentiating (), with respect to f one gets

(Ap +0)pr = —¢;. (25)

Therefore
d
_(Ia) (pr) — Ja)((ﬂr))

dt
1 . n 2 1 2 n 1 a2
= Vv Pe(pr + 1)y = (1 —¢ )V Y, + v |0@¢|“ vy
X X X

This gives the first result. For the second use (20) and (25):

d tf, 1 ,
m tF2(g) = F(p;) — v f proof = Fo(pr) + v [(Ar Pt + gy = Jo(pr).
X X

Since J,, > 0, the result follows. O

The following estimates depend on the uniform Sobolev embedding (Lemma 23)
and their proof uses Moser iteration.
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Theorem 29 ([30, p. 671f]). If ¢; is a family of solutions to (x); on the time interval
[0, Ty), then there is a constant C = C(Ty) > 0 such that for any t < Ty

lollos < C(1+ Tulen). 26)
0 % —fut gy < c(l f (—gp)al + C), @7
X 1%
X
Foler) < —Aa(pr) < C(L —1) < C. 28)

Lemma 30 ([5, §6]). Ler (X, A) be a Fano orbifold, ok g a Kihler—Einstein metric
and @ a metric in the canonical class. Then there is ¢ € Aul(X, A) such that
w = g*wg g + 103y with Y orthogonal 10 ker(Ag iy + 1) in L*(X, 0% g)-

Proposition 31 ([29, Proposition 5.3]). Let (X, A) be a Fano orbifold and wg g a
Kdhler-Einstein metric in the canonical class. If ® = wgg + 133y is a Kihler
metric, withyr L ker(Agg+1) and fX e Vowgrp" =0, there is a solution {@e}reron
of (%) with oo = 0 and o1 = —.

Theorem 32 ([15, Theorem 2.2]). Ifa Fano orbifold (X, A) admits a Kdhler-Einstein
melric wg g, then Iy, is bounded from below on P(X, A, w) for any w in the canonical
class.

Proof. Thanks to (23) it is enough to bound F,, ... Given ¢ € P(X, A, wgg) put
w = wgp +100¢ and let ¢ and ¢ be as in Lemma 30. Using again (23) it is
enough to bound Fy« ., (). Take a path as in Lemma 31. Thanks to Proposition 28
Farogs (W) = —Fo(—¥) = —Fuo(p1) = Fo(p1) > 0. O

Remark 33. These estimates are enough to prove one half of Tian’s fundamental
theorem, namely that properness of I, implies the existence of a Kihler—Einstein
metric (see [30, p. 63]).

The following normalisation of potentials is useful:
Forany ¢ € Pg(X, A, w), o+ A,(p) € OQg(X, A, w).

Proposition 34. Let (X, A) be a Fano orbifold, » € 2xci(X, A) a Kdhler metric
and G a compact group of isometries of (X, A, w). If there are constants C1, Cy > 0
such that

Fo(p) = Cisupy — &3 (30)
X

forany ¢ € Qg(X, A, ), then (X, A) admits a Kédhler—Einstein melric.
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Proof. Let ¢; be a solution of (x); on [0, Tp). Since ¢; + A, (@) €Qc (X, A, w)

Folpr) = Fo ((Pr Sk Aa)((pt))

> (1 su + A, - C
= &1 XP(% (Wt)) 2 31)

= Crsupg; + C1AL(¢) — Ca.
X

Using (28)

Crsupoy < Fo(p) — CrAy(e) + Cr < G3 + Gy + C1C3.
X

Hence supy ¢; is uniformly bounded. But F®(g,) < 0,50 J,(¢r) < F (@) + sup ¢
is bounded and (26) yields the required bound of the C® norm. O

Lemma 35 ([1, Lemma 2.3]). Ler (X, A) be a Fano orbifold, and o € 2n¢1(M) a
Kdhler metric. Then for any p > 0 there are constants C1, C2 > 0 such that for any
g€ Q(X, A, )

1

log[—/e_(l"'ﬁ)“”a)”] > Cysupg — Cs. (32)
14 X
X

Corollary 36. If there are constants C1, Cy > 0 and B > 0 such that

1
Foylp) = C log[vfe_(lw)%”] -G (33)

forany ¢ € Qc(X, A, w), then (X, A) admits a Kihler—Einstein metric.

6. Existence theorems

A current on an orbifold (X, A) is a collection of Gal(¢)-invariant currents on any
uniformiser (U, ¢), satisfying the usual compatibility condition with respect to injec-
tions of uniformisers. In case X is smooth, orbifold differential forms on (X, A) are
more than ordinary differential forms on X. By duality orbifold currents on (X, A)
are [ess than ordinary currents on X: they are the continuous functionals on /\k(X )
that can be extended to the larger space /\k(X . A). For positive (p, p)-currents there
is no difference between the two notions, since every positive current has measure
coefficients, and every orbifold differential form has continuous coefficients. If p 1s a
continuous hermitian form on a compact orbifold (X, A), an orbifold Kéhler current
is a closed positive (orbifold) current 7" of bidegree (1,1) such that for some positive
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constant ¢, T > cy in the sense of orbifold currents, that is (' — ¢y, ) = 0 for any
positive € fyf=daii=l (X, A). The definition does not depend on the choice of y,
since X 18 compact.

If (X, A) is a Fano orbifold, G C Aut(X, A) is a compact subgroup and o is a
G-invariant Kéhler form in 27r¢q (X, A), put

PAUX, A, w)={x € CY'(X) : @+ 133y is a Kihler orbifold current}.

Proposition 37. (a) Any x € Pg(X, A, ) is the CO-limit of a sequence @, €
Po(X, A, w).

(b) The functionals 1, J,, Fg and F, can be extended ro Pg(X , A, w) and the
extensions are continuous with respect to the C°-topology.

(See Propositions 2.2 and 2.3 in [1].)

Lemma 38 ([1,Lemma2.6]). If7: (X, Ax) — (¥, Ay) is an orbifold map between
compact orbifolds, the direct image 7, T of a Kdhler current T on (X, A) is a Kdhler
current on (Y, Ay).

Proof. First of all observe that if f: (X, Ayx) — (¥, Ay) is an orbifold map of
degree d and o € A?*(Y, Ay), then fX ffa = d - fY c. Next let yx and yy be
continuous hermitian forms on (X, Ay) and (¥, Ay) respectively. Since 7*yy is
continuous and yx is positive definite, there is ¢; > 0 such that yx > cjm*yy.
If T 1s a Kihler current on (X, A), by definition 7 > coyx for some ¢ > 0, 80
T > cn*yy with ¢ = ¢y > 0. We want to prove that for any positive form
ne A"V =Ny Ay, (T, n) = ¢ -deg 7 - (yy, n). Choose orbifold charts (V, )
on (Y, Ay) and (U;, ¢;) on (X, A) such that 7 =1 ((V)) = |_|; ¢:(U;). Denote by
T;, 7j and py the local representations in the orbifold charts and by 77; : U; — V the
liftings of 7. We can assume supp(n) C ¢ (V). Then

<TL'*T, ;r]) = (T,Jf*n> = Z %

Z ﬂVYa”ﬁ)
= 2 [Gallg)|
:Z:uhuwnj€7WYAm

B deg 7;
—c. ( T ) foyAn»
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Since

degm;  degmw
Z |Gal(gi)| | Gal(y)|

i
we finally get
(a1, m) > c-degm f (vr A1),

¥(V)
and this proves the lemma. O

Lemma 39 ([1, Lemma 2.7]). Letw: (X, A) — (Y, Ay) be an orbifold map between
n-dimensional Kihler orbifolds. Let wy be a Kdihler metric on (Y, Ay) and x €
PO(Y, Ay, wy) a continuous potential such that w*x € C* (X, A). Then

P 6™ y) = F 4% 1 (34)

Theorem 40. Let (X, Ax) and (Y, Ay) be Fano orbifolds, m: (X, A) — (¥, Ay)
an orbifold Galois covering of degree d with G = Gal(x), wy a Kdhler-Einstein
metric on (Y, Ay) and o € 2n¢c1(X, A) a G-invariant Kihler metric. Assume that
numerically RP(7) = —B(Kx + Ax) for some B € Q4. Then there is a constant
C such that for any ¢ € Pg(X, A, w)

1

log[v f e—<1+ﬁ)%*w§] . o (35)
X

Fog) > —
=118
The proof is identical to that of Theorem 2.2 in [1] and depends on the previous

lemmata. Notice that a G-invariant orbifold Kihler metric @ always exists since,
according to Definition 15, G C Aut (X, A).

Theorem 41. Let (X, A), (X1, Ay), ..., (Xg, Ap) be n-dimensional Fano orbifolds.
Assume that each (X;, A;) admits a Kihler—Einstein metric and that w; . (X, A) —
(X;, Ay) are orbifold Galois coverings such that

(1) the groups Gal(m;) are all contained in some compact subgroup of Aut (X, A);
(2) RO™(m;) = —Bi(Kx + A) for some p; € Q.
Define n € C*(X, A) by

k
1
2D T =na, (36)
i=1
put ¢ :=sup{r > 0:n~* € L1(X, 0"} and B := min B;. If
1
- < B, (37)
C

then (X, A) admits a Kdhler—Einstein metric.
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The proof is the same as that of Theorem 2.3 and Proposition 2.4 in [1].

Remark 42. If k = 1, then ¢ is the infimum of the complex singularity exponents
(that is of the log canonical thresholds, see [14] and [19]) of the pairs (U, go*ROfb),
where (U, ¢) runs over all orbifold charts. On the other hand if there are enough
coverings and the intersection of the ramification divisors R (s;) is empty, then
¢ = 400 and (37) is automatically satisfied.

7. Applications

Here we exhibit some concrete examples where Theorem 41 can be used to prove the
existence of Kihler—Einstein metrics on orbifolds.

Theorem 43. Let X be a Fano manifold, vaz 1 Di a divisor with local normal
crossing and o a Kdhler—Einstein metric on X. Given integers m; > 1 put A =

S (1= 1/m)D;. If A = —5Kx with € (0, 1) and

5
N
mi =1 < —— (38)

foranyi =1,..., N, then (X, A) is a Fano orbifold and has an orbifold Kdhler—
Einstein metric.

Proof. (X, A) 1s a Fano orbifold because Ky + A = (1 —§)Ky and § < 1. As
observed in Example 17 the map id: (X, A) — X is an orbifold Galois cover and
we want to apply Proposition 41 to it. The ramification divisor is just R® = A so

ROP(d) = —B(Kx + A)

with g = §/(1 — §). It remains (o check that (38) implies (37). Let x be any point
in X. Choose a system of coordinates (V, 2. ") on X as in Example 13 and let
(U, @) be the corresponding orbifold chart for (X, A) as in (6). Then on ¢(U) =

R™ = A= Z( - —){z, = 0} (39)

m,—1 mk 1

so that in the notation of (36), n(z) = v ()| f(z)[? on U, where f(z) = K4 : «Zg
and y is a smooth positive function. Set ¢, = sup{r > 0 : fU | FI~2* < —|—oo} Since

f|f| —2+ — const - ]_[/| |2 (40)

JlD
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where D is the disk in C, we get that | /|~ € Lj, on U iff A < 1/(m’; — 1). So
cx =min{l/(m; —1):1 < j <k},

1
¢ = inf ¢y, = min (41)
xeX i m; —
and
1 )
—=max(m; — 1) <« —— = B. (42)
é 1-56
O

Example 44. Let some divisors D; € |Opn(d;)|, and some integers m; > 1 be given
fori =1,..., N. Letm be the greatest of the m;’s. Put A = . (1 —1/m;)D; and

> di(l =)
b= = (43)

Assume that

(1) >, D; is local normal crossing;

2y § < 1;

(3) mi(1 —=6) < 1.

Then (P", A) admits an orbifold Kihler—Einstein metric of positive scalar curvature.
Example 45 (Compare [10, Note 36]). Let D; be n+2 hyperplanes in general position
inP*: D; ={z; =0}fori =0,...,n,Dyy1 ={z0+ -+ z, = 0}. Set

n+1

A= Zl——

Then (P", A) has an orbifold Kihler—Einstein metric as soon as

n+1 1 1
1<Z—<1—|—(n—|—1)mm— (44)

U ({4

As in [10], many numerical examples come from Euclid’s or Sylvester’s sequence
(cf. [26, AO0O0058]). This is defined by the recursion relation

Crkr1 =cC1...cp+ 1 :C%—Ck—kl
beginning with ¢; = 2. The sequence grows doubly exponentially, and it starts as

2,3,7,43, 1807, 3263443, 10650056950807, . . ..
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It is easy to see that

1 1 1
Y —=l———=1- .
et’ B v s Eg

cnt1 — 1
We get many new examples by taking
(mo =c1,m1 =c2,...,My = Cpy1 — 2, Myt1).

Then

"1 1
Z e o .
— mi (cny1 — D(epg2 —2)

Thus our conditions are satisfied as long as

Cagl — 2 < mpq1 < nlcpyr — Dicgg2 —2)

and m, 41 1s relatively prime to the other m;.

Another case when Theorem 41 works is for degree 2 Del Pezzo surfaces S. Here
we consider the case when S 1s allowed to have cyclic quotient singularities. These are
necessarily of the form C? /Z,, where the group action is given by (u, v) > (eu, € ~1v)
where ¢ is a primitive n-th root of unity. The Z,-invariant functions are generated by
u", v", uv. This singularity is denoted by A;_1.

For any degree 2 Del Pezzo surface S the anticanonical class is ample and it
gives a degree 2 cover 7: S — P2, If H denotes the hyperplane class on P2,
then —Ks = n*H. The double cover 7 ramifies along a quartic curve C, thus
R =1a*C =n*2H, p = 2 and to apply Theorem 41 we need to ensure that " be
integrable for A < % The singularities of 7 lie over the singularities of C, an A;_1-
singularity of S lies over an A, _1-singularity of C (cf. [6, p. 87]) and we can find local
coordinates (x, y) on P2 such that S is locally isomorphic to some neighbourhood of
the origin in the affine surface {(x, vy, ) € € : 1* = x? + 4y}, the map 7 being
given simply by 7 (x, y, t) = (x, y). An orbifold chart is givenby ¢: U ¢ C> — S
where ¢ (u, v) = (u" —v", uv, u" +v"). Thus p*7*(dx Ady) = n(u"+0v") -durdv
and n(u, v) = const - |u” + v"|%. Itis easy to see by direct integration or by blowing
up (see e.g. [20, Proposition 6.39, p. 168]) that for n > 2, |u” + v™|~2* is integrable
if and only if A < % Thus Theorem 41 applies as long as % < @ = %, that is for
n < 4. This proves Theorem 2.

One can also give a different proof of the following result of Mabuchi and Mukai
[21, Corollary C].

Theorem 46. A diagonalizable singular Del Pezzo surface of degree 4 admits an
orbifold Kiihler-Linstein metric.
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A quartic Del Pezzo surface S is the intersection of two quadrics in P*, § =
01N Q. Ttis said to be diagonalizable if both @1 and (» can be put simultancously
in diagonal form. If § 1s singular then in suitable coordinates it 1s given by equations

ho ::x%—i—x%—i—x%—i—x%—l—x%:() and /q ::Azx%—l—)gx%—l—}qxﬁ =0.

If two of the A; coincide then S is a quotient of P! x P! and so has an orbifold
Kihler—Einstein metric (see [21, p. 136]). Thus assume that the A; are distinct nonzero
complex numbers. For i = 2, 3, 4, the equation A; g — i1 = 0 does not involve x;,
and by dropping the x; variable we get smooth quadrics

Qi = {(hiho — by = 0)} C P,

The map =;: § — @; given by forgetting x; is a double cover ramified over the
hyperplane section SN {x; = 0}. Since the Q; are smooth two-dimensional quadrics,
they are Kidhler—Finstein. On the other hand, the divisors R™®(7;) are disjoint, so 1
is strictly positive on all S, ¢ = o¢ and Theorem 41 yields that S admits an orbifold
Kihler-Einstein metric.
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