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On symplectic 4-manifolds with prescribed fundamental group

Scott Baldridge and Paul Kirk*

Abstract. In this article we study the problem of minimizing ¢y + bo on the class of all
symplectic 4-manifolds with prescribed fundamental group G (x is the Euler characteristic, o is
the signature, and @, b € R), focusing on the important cases x, x + o and 2y + 3¢. In certain
situations we can derive lower bounds for these functions and describe symplectic 4-manifolds
which are minimizers. We derive an upper bound for the minimum of ¥ and ¥ + o in terms of
the presentation of G.

Mathematics Subject Classification (2000). Primary 57R17; Secondary 57M035, 54D05.

Keywords. Symplectic topology, fundamental group, symmetric products.

1. Introduction

Pick a finitely presented group G and let 91((G) denote the class of closed symplectic
4-manifolds M which have 71 (M) isomorphic to &. The existence of a symplectic
M with given fundamental group & was demonstrated by Gompf [6].

In this article we study the problem of finding minimizers in 91(G) where min-
imizing is taken with regard to the Euler characteristic y, following the approach
introduced by Hausmann and Weinberger in [8] for smooth 4-manifolds. There are
two aspects to this problem. Finding lower bounds to x (M) for M € 9(G) ad-
dresses the question “How large must a symplectic manifold with fundamental group
G be?” The other aspect of the problem is finding efficient and explicit constructions
of symplectic manifolds with a given fundamental group.

Our main general result concerning upper bounds is Theorem 6, which states:

Theorem 6. Ler G have a presentation with g generators xi1, ..., xg and r relations
w1, ..., Wy Then there exists a closed symplectic 4-manifold M with miM = G,
Euler characteristic x (M) = 12(g +r + 1), and signature o (M) = —8(g+r+1).

We also provide a number of examples of small closed symplectic manifolds with
certain fundamental groups. A successful example is the following theorem, which

*The first author gratefully acknowledges support from the NSF grant DMS-0507857. The second author
gratefully acknowledges support from the NSF grant DMS-0202148.
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generalizes to the symplectic setting the results of [11]. (See Corollary 17, for a more
complete statement.)

Theorem. Let I, denote the closed oriented surface of genus g, and suppose that
Se = Sym?(F o), S0 that Sg is a closed symplectic manifold with fundamental group
728 Ifg=0,1, 0r3 (mod 4), then any other closed symplectic 4-manifold N with
71 (N) = Z28 satisfies x (N) = x(S).

The general theme of this article 1s to investigate the simplest symplectic 4-mani-
folds one fundamental group at a time, finding constructions, obstructions, and ex-
amples of minimizers of ayx + bo.

The problem of minimizing x and x 4 o of 4-manifolds with a prescribed funda-
mental group arises in many contexts and has been studied explicitly in a number of in-
teresting articles. Hausmann and Weinberger in [8] used ¢ (G) = ming (p4)=~; x (M)
to establish the existence of a perfect group which can be the fundamental group of a
homology sphere in dimensions greater than 4 but which 1s not the fundamental group
of a homology 4-sphere, and to construct groups which are knot groups in dimensions
greater than 4 but which are not the fundamental group of a knotted 2-sphere in S*,

Kotschick in [13] inserted the signature into the topic by defining the invariant
p(G) = min_, 4y~ x (M) —|o (M)| and in [14] he carries out a systematic study of
p(G)and g (G), including computations and estimates for ¢ (&) and p(G) for various
G. Moreover, Kotschick discusses the problem of defining variants of p and g by
restricting to 4-manifolds with fundamental group G which admit various geometric
structures, €.2. spin structures, almost complex structures, positive scalar curvature,
and symplectic structures, the topic of the present article. He also investigates the
question of what the possible values of p(G) and ¢(G) are for a given group G, a
question that we generalize and recast in Section 3.

Other related work includes the articles of Eckmann [3] and Liick [21] who derive
bounds on p(G) and ¢(G) for various G using ¢2-cohomology and the #2-signature
theorem, as well as the articles [2], [9], [11]. The general problem of calculating
q(G) appears as Problem 4.59 of Kirby’s problem list [10].

The article is organized as follows. In Section 2 we establish some simple bounds
and describe Gompf’s construction for producing a symplectic 4-manifold with a
given fundamental group. The function f = ayx + bo for a,b € R is studied
in Section 3 and some reasons are given for restricting to the cases x and y + o.
In Section 4 we describe new constructions that give upper bounds for min y and
min y + o based upon the group presentation of . In Section 5 we focus on
examples for specific classes of groups, namely free groups, cyclic groups, and free
abelian groups and describe minimizers of x for many free abelian groups. In the
last section, we speculate about when or whether there are conditions for which the
minimizers of y or y + o are unique.



Vol. 82 (2007) On symplectic 4-manifolds with prescribed fundamental group 847

The authors would like to thank R. Gompf, D. Kotschick, and C. Livingston for
making helpful and insightful comments which improved this article.

2. Some bounds

The fundamental numerical invariants of a 4-manifold are its Euler characteristic y
and 1ts signature o. We will focus on the problem of minimizing x and sometimes
x + o over the collection of symplectic manifolds with fundamental group G. Sec-
tion 3 gives partial justification for our restricting to these cases. We remind the
reader of some coarse bounds on the Euler characteristic of smooth closed orientable
4-manifolds introduced in [8]. First recall that if & is finitely generated and M is a
connected oriented 4-dimensional Poincaré complex then the second Betti number of
M, br(M), 1s at least as large as the second Betti number of K (G, 1) (with any field
coefficients). Since b1(M) = b3(M) = b1 ((), this implies

2 =201(G) + ba(G) < x(M). (D

By taking the double of the 2-handlebody defined by a presentation of G, one
obtains a smooth manifold M with 71 (M) = G and y (M) = 2 — 2d where d denotes
the deficiency of the presentation (i.e. the number of generators minus the number of
relations). Thus one has the following bound for smooth manifolds, where def(G)
denotes the minimum of the deficiency over all presentations:

mr}r‘/lngGX(M) < 2 — 2def(G).
This construction does not give a symplectic manifold in general. Thus this upper
bound need not hold when one minimizes over symplectic manifolds with fundamen-
tal group G. To obtain a similarly general upper bound requires an examination of
the construction of symplectic manifolds with prescribed fundamental group.

In the symplectic setting, Gompf has given a construction [6] by taking appropriate
symplectic sums of ' x T? with many copies of the elliptic fibration E(1). By
examining Gompf’s argument one can formalize an upper bound.

Note that any finitely presented group is the quotient of an oriented surface group,
since (for example) the free group on g generators is a quotient of the fundamental
group of a genus g surface. Call a system of immersed curves in general position
vi: 8! — F, i =1,...,r onan orientable surface F a geometric surface presen-
tation of G provided the fundamental group of the 2-complex obtained by attaching
2-cells to F along the y; 1s isomorphic to G.

Given a geometric surface presentation of G, the union of the y; form a graph
1" (where one allows a graph to have some isolated circle components). Gompt’s
construction yields the following general bound.
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Theorem 1 (Gompf). Given any geometric surface presentation for G with r curves
V1. .-, ¥ If the associated graph I" has n edges, there exists a closed symplectic
A-manifold M withmi (M) =2 G, (M) =12(r+2n+ 1) and o = —8(r +2n+1).
Moreover, there exists a spin symplectic 4-manifold with mi(M) = G, x(M) =
2d(r +2n+ 1) and o (M) = —16(r +2n + 1). O

Simple experiments show that the number » in Theorem 1 can be quite large for
even simple group presentations. As an example we compute the Buler characteristic
of a manifold which has G = Z*. In this situation, start with a genus 4 surface
with a standard collection of oriented circles

o1, az, a3, a4, P1, B2, B3, Pa

in I’ representing a symplectic basis of Hy (F). The quotient w1 (F)/{B1, ..., Ba) is
a free group generated by the ¢;’s. Fori = 1,..., 4, lety; = ;. Fori = 1,2, 3,
set ¥i+4 = [oy, «j41] using the configuration of curves on the top of /' shown in
Figure 1.

Figure 1

Finally, set 3 = [a2, aal, yo = &1, @4], Y10 = |1, e3] using the same configuration
as in Figure 1, but now on the bottom of F,i.e. ys, vs, y7 are disjoint from yg, y9, v10.
The union of the immersed curves y1, ..., y10 is an example of a geometric surface
presentation of Z*. After a careful count one finds 148 edges in the graph described
above. Using the theorem above one computes:

Example 2. The construction above produces asymplectic manifold M withz (M) =
Z4 and x (M) = 3, 684.
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Gompf was not trying to minimize the Euler characteristic in his construction; in
fact, it is clear from his writings that he knows ways to reduce this number signifi-
cantly. Sull, our best estimate using this construction as the starting point together
with some tricks (known to us) is x (M) = 516. This is a significant reduction, no
doubt, but the 4-torus 7# has fundamental group Z* and x = 0. Thus constructions
like this one do not give a particularly effective upper bound for y (M) for M sym-
plectic, m1 (M) = G. Moreover, from the point of view of the present article the
problem of expressing a bound on the number n of edges of I' in terms of algebraic
invariants of G 1s unwieldy in general.

We end this section by recalling two facts that are useful in increasing the lower
bound of Equation (1) for symplectic manifolds. First, the symplectic form o on
a symplectic 4-manifold M has the property that @ A @ 1s a volume form. Thus
bt (M), the dimension of the largest positive definite subspace of the intersection form
(over R) is always at least 1, and in particular, the second Betti number b2 (M) > 1.
For example, this implies thatif w1 (M) = Z, then 1 < y (M), improving Equation (1)
by one when G = Z.

Secondly, a symplectic manifold admits an almost complex structure. This has
implications on its characteristic classes. The consequence of most use to us 1s that
1 — by(M) + bT (M) (the index of the ASD complex) is even. For example, if M is
symplectic and 71 (M) = Z, then b™ (M) is even. Combined with the observation
of the previous paragraph, we conclude that 5™ (M) > 2, and hence 2 < x(M),
improving Equation (1) by two when G = Z.

Putting these observations together one sees that if M 1s symplectic with funda-
mental group G, then x (M) + o (M) = 2 — 2b1(G) + 2bT (M), and hence

4—2b1(G) ifby(G)is even,
x(M)+oM) = {6 _2b(G)  if by(G) is odd. @)

3. Minimizing ax + bo and the special points x, x + o,and 2 + 3o

In this section we investigate the values of @ and b for which the function ay + bo
has a lower bound on a suitable class of 4-manifolds with a given fundamental group
(smooth, symplectic, etc.). The answers to this question naturally lead to breaking
points at a = b, and 3a = 2b. These are related to important invariants of symplectic
4-manifolds: yx + o 1s 4 tumes the holomorphic Euler characteristic, and 2y + 3o 1s
the square of the canonical class on a symplectic manifold. The approach described
in this section can be viewed as a variant of the geography problem for 4-manifolds.

We first introduce a general notion. Let 20T denote a class of closed oriented
4-manifolds. We will be most interested in the cases, 9T = M(G), the class of
symplectic 4-manifolds with fundamental group G, 9 = 9M™(G), the class of
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smooth manifolds with fundamental group G, and 9t = 9™"(G), the subclass
of M(G) consisting of minimal symplectic 4-manifolds with fundamental group
G (recall that a symplectic 4-manifold M 1s called minimal if it is not a blow up,

ie. M X2 N# TP for N symplectic). But the following result also applies in
greater generality, e.g. the class of 4-dimensional Poincaré complexes with a given
fundamental group, or the class of smooth complex projective surfaces with a given
fundamental group, or the class of smooth 4-manifolds with even intersection form
(for which the results of [2] are relevant), or the class of almost complex 4-manifolds
with given fundamental group (see [12]), or even the class of all topological oriented
4-manifolds (with no fundamental group restriction).
For (a, b) € R?, define fop(a, b) € RU {Zoc} to be the infimum

i, Py =k e piM} BT,

with the understanding that fon(a, b) = oo if M is empty (e.g. if 1 is the class of
Kihler manifolds with fundamental group Z?). Define the domain Day of 91 to be
the set

Dop = {(a, b)| fon(a,b) # —oc}.
Thus Dyy is the set of (a, b) so that ay + bo is bounded below on 9)1. Notice that
Dy is a cone since fon(ra, rb) = rfop(a, b) when r > 0. Furthermore, if 97 C 9V
then foy (a, b) < fop(a, b), and hence Doy O Doy,
Recall that a function f on a convex set S 1s concave if f(tx + (1 —t)y) >
tfix)+ A —-t)f(yyforallx,ye Sand ¢ € [0, 1].

Theorem 3. The domain Dey is a convex cone and fox is a continuous concave
function on Dapy.

Proof. The proof is simple: each M e 90t determines a half space Iy,  R® by
Hy ={(a.b,c) | ¢ <ax(M)+bo(M)}.
The intersection

I = ﬂMeDJI Hy

is a convex set whose projection to R? is Dgy. Thus Dsy is convex. Furthermore,
if (a, b) € Doy, then fon(a, b) 1s the largest number ¢ so that (a, b, c) € [; this 1s
clearly continuous and concave. O

Since Doy 1s a convex cone, it 1s either the entire plane (e.g. if 97T contains finitely
many homotopy types) or else it is a cone with angle less than or equal to 7.
Interestingly, Dgy need not be closed. For example, let 901 = {M;}2 ;, where

M, = 2Kk2CP" # (k? — k)S? x S2.
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Then y (My) = 2+ 4k? — 2k and o (M) = —2k?. Thus ax + bo has a lower bound
if 2a > b orif 2a = b and a < 0. Otherwise, ay + bo is not bounded below. Thus
Dsy has cone angle 7 and contains one of its boundary rays ({(—r, —2r) |r > 0}) but
not the other ({(», 2r) |r > 0}.

We focus now on the class 9™ (G) of smooth 4-manifolds with fundamental

group G. Blowing up (i.e. taking the connected sum with @2) mcreases x by 1
and decreases o by 1 without changing . Thus ay + bo is not bounded below
ifa —b < 0, and so Dayeo(y 1s contained in the half-plane {¢ > b}. Similarly,
taking connected sums with CP? shows that Dopeo(y 1s contained in the half-plane
{a > —b}. Hence Doy (g lies in the cone {a > |b|}.

If @ = |b| then

ax (M)y+bo (M) =2a(1—b1(G)+(a+bYbT (M)+(a—b)b~ (M) > 2a(1—b1(G))
and so (a, b) € Dopeey. Thus we have proven the following.

Proposition 4. Fix a group G and a # 0. Then foneo(Gy has domain
Dapee(gy = {(a, b) | a = [P},

i.e. Dopeo(y is the cone over the closed interval {1} x [—1, 1]. O

Restricting to the class of symplectic manifolds J1(G ) everything follows as above
except for one point: taking connected sum of a symplectic manifold with CP? does
not yield a symplectic manifold. In particular, one cannot conclude that a y 4 bo has
no lower bound on M(G) for b < —a. Theorem 6.3 of [6] shows that there exists
symplectic manifolds with fundamental group G and arbitrarily large signature. Thus
bo does not have a lower bound on 9J1(G) when b < O,

These observations imply that the domain Dyyc) is contained in the intersection
of the half-planes » < g and a > 0, and contains the ray {(r, r) | r = 0} as one the two
boundary edges of the cone Doy (). The other edge 18 a ray {(r cos(0g), r sin(fg) |
r > 0} for some angle 65 in [ — Ty — %] We were unable to determine the “critical”
angle 6. This leads us to pose the question:

Question 1. Does the domain Doy contain any pairs (a, b) with b < —a?

For & = {e}, Stipsicz ([27]) has constructed simply connected symplectic 4-mani-
folds so that a x 4+ bo is not bounded below when b < —3a, so that 0, > tan ! (—3).
Figure 2 explains the notation.

We now look at the class 9T™(G) of minimal symplectic manifolds with funda-
mental group . This time blowing up is not allowed, since by definition minimal
symplectic manifolds are not blowups. Since MMN(G) © M™(G) we know by
Proposition 4 that Dygymin ) contains the cone over the interval {1} x [—1, 1]. The
following proposition implies that Dyymin ) 18 strictly larger than Day(c).
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b a=1
A
b= %a
b=a
»
067 b =—a
BMY
Figure 2

Proposition 5. Fix a group G. Then x + bo has a lower bound on M™™(G) if
—1 <bh < % and does not if b > % In particular, Doy gy (and hence Dopg)) is
contained in the half-plane {(a,b) | b < %a}, and Dopmin i contains the cone over

the interval {1} x [ — 1, %]

Proof. 1et K be the canonical class of M & onmin Gy A theorem of Liu [20]
states that if K% < 0, then M is diffeomorphic to an irrationally ruled surface with
fundamental group a surface group. Assume for a moment that G is not a surface
group. In this case K 2 > 0or, equivalently 2y (M) + 3¢ (M) = 0 for all manifolds
M € M™"(G). The convexity of the cone Dygymis iy and the fact that Dayesgy C
Dgymin () implies that Dgpmin (¢, containg the cone {(a, b) [ b < %a and a > —b}.
The first part of the proposition follows from this inequality for such groups.

The case when G 1s a surface group is similar. (Note that in this case there are
only two manifolds in S0t™(G) up to diffeomorphism with K2 < 0).

To show that x + bo is unbounded if b > %, let M be a spin symplectic manifold
with ;M = G given by Gompf’s construction. Then 2y (M) + 36 (M) = 0. By
construction, M contains embedded symplectic tori with self-intersection zero and the
inclusion of these tori induces the trivial morphism on fundamental groups. So one can
take symplectic sums with arbitrarily many (elliptically fibered) K3 surfaces, without
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changing the fundamental group. Moreover, the symplectic sums continue to be
minimal by a result of Li and Stipsicz [19]. Each such sum increases y by 24 and de-

creases o by 16. Therefore x 4+ bo can be made as small as desired when b > % O

The proof of Proposition 5 shows that except for surface groups (of genus g > 1),
Joqmin (2, 3) = 0. For surface groups of genus g > 1, the only minimal symplectic
manifolds with fopmin( (2, 3) < 0 are diffeomorphic to irrational ruled surfaces, in
which case it is known that foypmin ) (2, 3) = 4(2 — 2g).

Before moving on it is worthwhile to mention the consequence of the conjectured
Bogomolov—Miyaoka—Yau inequality for symplectic manifolds to determining the
shape of Dgymin (. Recall that the BMY conjecture states that x — 30 > 0 for all
minimal symplectic manifolds with K? > 0. This gives a lower bound for x — 30 on
OMIn () whenever that G is not a surface group, and hence implies that in this case
M (G) contains the cone over the interval {1} x [ — 3, 3], improving Proposition 3
for non-surface groups. It is worth noting that all currently known simply-connected
irreducible 4-manifolds satisfy x — 30 > 0.

It 1s perhaps most natural to describe the domains Dgy as cones on an interval
contained in the unit circle and fox as functions on these intervals. For example
Do () corresponds to the interval [ — %, %], and Dgn(G) corresponds to the
interval [Qc;, %] However, we find it more convenient to describe them in terms
of intervals in {1} x R for two reasons. First, ay + bo is not bounded below on
M(G) for a < 0. But for @ > 0 one can divide by @ and minimize the 1-parameter
family x + bo without losing information. Secondly, the function of one variable
b — fom(1, b) can easily be shown to be a piecewise lincar concave function, and
can often be explicitly described.

Thus we restrict to the case a > 0 (and hence to @ = 1 by normalizing) and
consider the intersection of the line {¢ = 1} with the domains Dy (G), Don(G),
and Dgymin (G). Propositions 4 and 5 show that there are natural breaking points
ath =1, and b = %, corresponding t0 ¥ + o and x + %o. The comments after

Proposition 5 completely compute the minimum of x + %a on M™"(G). These
breaking points really do matter, as the next few calculations of the functions fon
over the line a = 1 show.

Consider first G = {e} the trivial group:

2 if |b| <1,
—0o¢ otherwise,

Sy (1, b) = {

with S* the minimizer for all |b| < 1. By contrast,

b+3 if |b| <1,
ey (1, b) = § —o0 ifh < —3orb > 1,
unknown,but <b+3 if —3<b < —1.
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with CP? the minimizer for all |b| < 1, and Stipsicz’s examples [27] treating the
cases b < —3.

For 9™i"(¢) the domain of Sagmingy (1, b) includes 1 < b < % Considering P2,
Dolgachev surfaces, and Stipsicz’s examples yields the following:

<bh+3 ifh < —1,
=bh+3 if [b[ <1,
in lab
Fanmingey (L)Y _ _gp 1o if1<bh<3,
— o0 ifb < —3o0rb >3

3

Altogether, the functions yield the following graphs.

A A A
1 Il S (1, b) 1 Jsmmin gy (1, b)
| ™
N 2O | el
; ; > b i ) 3. » b i ; : > b
—1 1 5 —1 1 5 —1 1 5
Figure 3

Another interesting example is the case of G = Z°. 1In [11] it is shown that
any smooth oriented 4-manifold M with fundamental group 7° has y (M) > 6.
Moreover, bT(M) > 7. To see this, consider the composite (M) = 70 — 73,
where the second map is the projection to the first five coordinates. The induced map
H*(Z%) — H?*(M) is injective, and Theorem 4 of [11] shows that its image has a
7-dimensional isotropic subspace. Hence y (M) + o (M) > 4.

The symplectic manifold S3 described below in Section 5 has fundamental group
78, x(83) = 6, and o (S3) = —2. Thus Jomeozey(1,0) = 6 and fopoo(zey (1, 1) = 4.
This shows

6—2lbl if|b] <1,
‘@WW%LM{—m if [b] > 1. )

In (3) we used the fact that by reversing orientation shows that & — fonee () (1, b)
is an even function. This is not true for N(G), 1.e. for symplectic manifolds, as the
example with G = {e} above shows.

The domains Dagyoeo(y are independent of &, but we do not know the answer to
the question:

Question 2. Are the domains Dyy(s) and Doymin( ) independent of G?
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The examples given above show that the functions fon(gy do depend on G in
interesting ways.

Motivated by the results of this section we will concentrate on mimimizing x and
x + o for the rest of the paper.

4. Algebraic upper bounds

We next state and prove two theorems which give algebraically determined bounds
in terms of a presentation of G.

Theorem 6. Let G have a presentation with g generators x1, . .., xg and r relations
Wi, ..., Wy Then there exists a symplectic 4-manifold M with m\M = G, Euler
characteristic x (M) = 12(g +r + 1), and signature c (M) = —8(g +r + 1).

Combining this with the bound (1) one obtains:

Corollary 7. For a finitely presented group G with g generators and r relations,

2-201(G)+b(G) = min_ x(M) <12(g+r +1). “)
MeI(G)
and
min_ x(M)+o(M) <4(g+r+1). (5)
Me(G)
a

For specific groups one can (and we will; see below) do better. One general class
of groups for which we can improve the construction of Theorem 6 and hence the
upper bound in (4) is treated in the following theorem. We will show below that this
class includes free groups.

Theorem 8. Let H: ' — I be an orientation-preserving diffeomorphism of an
orientable surface F. Assume H fixes a base point z. Let G be the quotient of
w1 (F, z) by the normal subgroup generated by the words x"VH (x), x € m1(F, 7).

Then there exists a symplectic 4-manifold M with miM = G, Euler characteristic
x (M) =12, and signature —8.

Proof. We prove Theorems 6 and 8 simultaneously. The arguments we give are de-
rived from Gompf’s arguments and follow by combining them with the construction
of symplectic forms on M x S', where M is a fibered 3-manifold. The flexibil-
ity gained by replacing Gompf’s choice of M = F x S! with a fibered manifold
leads to a simplified and ultimately smaller (as measured by the Euler characteristic)
construction.



856 S. Baldridge and P. Kirk CMH

We begin with a discussion of how to put symplectic forms on 4-manifolds of the
form N x S, where N is a surface bundle over S'. This construction has its origins
in Thurston’s article [29].

Let /7 be an oriented surface. Let f1: I — F be a diffeomorphism with at least
one fixed point, and let p: M — S! denote the mapping torus of H , fibered over the
circle with fiber F and monodromy f1.

Let gg be a Riemannian metric on /', and let g; be a path of Riemannian metrics
from gg to g1 = H*(go). Then H : (F, go) — (H, g1) is an isomelry.

Notice that if // 1s an isometry with respect to some metric gp then one can
take g to be the constant path. In this case the volume form of gg on F determines a
closed 2-form g on M whose restriction to each fiber is a volume form (i.e. a closed,
nowhere-zero, top dimensional form).

In general, we find such a 2-form as follows. Let o € Q%, denote the volume
form of the metric g; and the given orientation. Since f1 is an orientation-preserving
diffeomorphism, the cohomology classes [c«g] and [¢q] in H 2(F ; R) = R are equal.
Hence there exists a positive smooth function f: [0, 1] — (0, c0) with £(0) =1 =
J (1) so that the cohomology class [ f(#)«,] is independent of ¢. Denote the closed,
nondegenerate 2-form f(¢)c; on I by B;.

Moser’s stability theorem (see [23]) implies that there is a 1-parameter family of
diffeomorphisms v : F' — F so that v is the identity and ¢ (S8;) = Bo. The trace
(x,1) — (¢ (x), 1) induces a diffeomorphism ¥ : M — M’, where M’ denotes the
mapping torus of yrq o H.

Let 7: F x [0, 1] — F denote the projection to the first factor. The 2-form g
on F' x [0, 1] defined by B = 7 *(By) is closed. Moreover, since (¢r| o H)*(Bg) =
H* (5 (Bo)) = H*(B1) = Po, B descends to a well-defined closed 2-form on M’
whose restriction to each fiber 1s a volume form. Pulling this form back to M via &
determines a closed 2-form on M whose restriction to each fiber is a volume form.
Denote this 2-form by g € QZZW

Let dt denote the volume form on the base of the fibration p: M — S!. Then
p*(dt) is a 1-form on M. Denote by N the 4-manifold M x § I To distinguish it
from the base of the fibration denote the volume 1-form on the second factor by ds.
Letgr: M x ST — Mand gy: M x ST — ST denote the projections to each factor.
Then g5 (ds) is a 1-formon N.

The 2-form

® = g{(B) + p*(d1) A g} (ds) ©6)
is a symplectic form on N. Indeed, since B is closed, dow = 0, and one can check
locally that @ A @ is nowhere zero.

If z 1s a fixed point of /{, then the circle z xgy S 1 = M determines a torus
To= (zxg SY) xS ¢ M x S' = N. The restriction of @ to this torus is a volume
form; with a slight abuse of notation it is just the form d¢ A ds. Thus 7 is a symplectic
torus in N. Note that the self-intersection number Ty - 1o in N is zero.
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The fundamental group of M is the HNN extension of w1 F with respect to the
automorphism induced by #, i.e.

M = (mF, 1| Ho(x) = txt~! for each x € 7| F),

and MmN = mM x Z. Denote by s the generator of the second factor. Note that the
Euler characteristic and signature of N vanish.

Theorem 8 can now be proved, following Gompf’s argument. The group G of
Theorem & 1s obtained by taking the quotient of 71(N) by the normal subgroup
generated by ¢ and s.

Recall from [6] thatif X and Y are symplectic 4-manifolds containing symplectic
tori Ty C X and Ty C Y with trivial normal bundles then the symplectic sum of
X and Y along Tx and Ty, denoted by X #7 Y, is obtained by removing tubular
neighborhoods of Tx and 7y and identifying the resulting boundaries, which are
ST bundles over T, by a fiber-preserving, orientation reversing diffeomorphism. The
symplectic sum admits a symplectic structure so that any symplectic surfacein X — 7'y
or ¥ — Ty remains symplectic in X #7 Y.

Suppose that E is a symplectic 4-manifold which contains a symplectic torus T’
with self-intersection number zero satisfying w1 (E — T) = 1. Then Van Kampen’s
theorem implies that the fundamental group of the symplectic sum N #7 £ along 1g
in N is obtained from the fundamental group of N by killing the image of 71 (1) in
71(N). Taking E to be the elliptic surface £ (1) and 7" a generic fiber gives the desired
symplectic manifold S = N #r E(1) withm S = G, x(5) = 12, and o (S) = —8.

We turn now to the proof of Theorem 6. From the presentation of (- with generators

X1, ..., xg andrelations wi, . .., w,, construct a new presentation with 2g generators
X1, Y1, .. .5 Xg, Yg, and g + r relations: the first g relations are x1yq, ..., xgy, and
the last r relations are wy, ..., w,. Here w; is obtained from w; by replacing every

occurrence of x j_“ for a > 0 with yf for all j. The relevant observation for our
purposes is that in every relation the generators appear with only positive powers.

Let T = S! x S and define f: ST x 81 — Sl by f(e/?, e?) = @D Tet
X =58S"x{1Yand Y = {1} x S, Let D C T be a small 2-disk in the complement
of XUY. Letw: T — T be a smooth map that collapses D to a point and is a
diffeomorphism on the complement of D). Denote by 6 the 1 form on 7" obtained
by pulling back the volume form on S!, & = w*(f*(dt)). This is a 1-form on T
which vanishes on D, and restricts to a volume 1-form on any pesitive monotonic
path in 7" — D, that is, any smooth (oriented) path in 7" — D whose composite with
f o w wraps monotonically (with non-vanishing derivative) around S! in the positive
direction.

Let n; denote the length of the relation w; (e.g. the length of x53 Vi y% is 3). Let

n=1+ (Xr:ni).

i=1
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Consider the (isometric) Z/(ng) action of S2 generated by the rotation R about
the z axis by angle 27 /(ng). Let D’ be a small disc in S? centered on the equator
(say at (1, 0, 0)) such that its translates by R are all pairwise disjoint. Let F be the
orientable surface of genus gn constructed by removing all the translates of D’ by
powers of R and gluing in one copy of 7" — D along each boundary circle. There is a
corresponding isometry R: I© — F which takes each copy of T — D to the next. The
1-form 6 on T defines a smooth 1-form (which we continue to call ) on F which
vanishes outside the union of the T — D and which is invariant under R. Another
description of this entire construction is to consider the ng-fold cyclic branched cover
of T branched over two points in D and to pull back the 1-form & to the branched
covering.

For convenience denote I' = A U B, where A is the complement of the ng discs
R¥(D’) in S? and B is the disjoint union of the ng punctured tori. The region A is
shaded in Figure 4.

Let H = R5: F — F. Thus H is an isometry of order n. We label the
images of the curves X and Y in the various copies of T — D using a double
index, X; ;,Y;;, i = 1,...,g, j = 1,...n labeled lexicographically. Thus
H(X; ;) = X; j41and H(Y; ;) = Y; ;41 (with j taken modulo n). In other words,
the labeling is lifted from the n-fold branched cover ' — F/H.

Join the intersection point of X; ; and Y; ; to the north pole z = (0, 0, 1) along a
great circle to obtain generators x; ; and y; ; of 1 (F, z). Thus the induced action on
mi b is given by Hy(x; ;) = x; j41 and He(yi ;) = yi j+1.

To the ordered set of relations w1}, wj, ..., w, we assign an ordered set of words
wi, ..., wyinthe x; ; and y; ; as follows. Starting with the first letter which appears
in wi replace the corresponding x; or y; by x; 1 or y; 1. For the second letter which
appears in w/, add the second index 2 to its subscript, and continue until all the letters
in w) are replaced by doubly indexed letters in such a way that as the word is read
from left to right, the second indices increase. Then proceed to the second relation
wj, and so forth, Thus when the words w1, ..., W, are read from left to right, the
second index in the subscripts will read “1, 2, ..., n — 17,

For example, this process converts the set of relations

3 2
(wi, wy) = (y2xix5, ¥4y3)
to
(wy, wy) = (yz,lxizxib y4,4y32,5)-

From the i; one can easily construct pairwise disjoint immersed curves y; : S1 —
Ffori =1, ..., r with the properties:

(1) v (connected to the north pole along a great circle) represents the word w; in
(¥, z).
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Figure 4

(2) The double points (if any) of y; are finite, transverse and contained entirely in
B.

(3) y; restricts to a positive monotonic path in each component (i.e. punctured torus)
of B. (This is where we use the fact that the relations involve only positive powers
of the x; and y;.)

(4) The curves y; intersect each component (i.e. circle) of A N B transversely.

The pulled back 1-form y,* (6) is a positive multiple of @t on that part of S I mapped
into the interior of B by y; and is zero on y; N A. One can find a function f; on yl._l (A)
so that f; vanishes on the endpoint of each arc in yl._l (A) and so that y.*(0) 4 df;
is a volume form on S'. Since the intersection of the union of the v; with A 18 a
collection of pairwise disjoint embedded arcs, one can extend each f; to a function
on I which vanishes outside a neighborhood of y; N A and vanishes on B. Adding
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the values of the f; yields a function f: F — R so that y;*(¢ +df) is a volume (i.e.
nowhere vanishing) 1-form on S for each .

We also need g extra curves, corresponding to the relations x;y;, 1 =1,..., g.
Notice that » was the sum of the lengths of the relations, plus one. We use this extra
bit of surface to construct immersions (in fact these can be taken to be embeddings)
Vrok: ST — F, k = 1,..., g corresponding (o the Words X1, Y15, - - -, Xg.nYe.n.
These curves can each be taken to lie entirely in one punctured torus component of
B and be positive and monotonic in this component. (Alternatively, we could have
made » larger and treated these relations exactly as we did with the first type of
relation. We choose this approach since our intention is to find as small a universal
construction as possible.) The 1-form df vanishes on these last g punctured tori by
construction, and so " (6 4+ df) is a volume form fori =r +1,...,r 4+ g as well.

Since the form 6 is invariant under H, the pull back 7{(¢) via the projection
m1: F x[0,1] — Fisaclosed 1-form on £ x [0, 1] which determines uniquely a
well-defined 1-form © on the mapping torus M = I x z; S' of H with the property that
the restriction of & to F' x {0} € M equals 6. The function f: F = F x {0} - R
extends to a function (still called f) on M (say by using a cut-off function in the
interval coordinate). Thus we end up with a closed 1-form ® 4 df on M whose
restriction to the fiber F x {0} pulls back to a volume form for each y;: S' — F.

Let N = M x S'. For small enough &, the form

we = q7(B) + p*(dt) Aqy(ds) +eqi (O +df) A gy (ds)

isasymplectic formon N. Foreachi = 1, ..., r+g the immersed torus 7; = y; x S'
is Lagrangian with respect to g (8) + p*(dt) Aq3(ds). Since g7 (@ +df) Ag; (ds) 1s
a volume formon y; x S!, the 7} are symplectic with respect to o, for small positive &.
The 7; can be regularly homotoped to embeddings by a small regular homotopy by
separating the double points of y; using the parameter transverse to the fibers in the
fibration of M. Pushing the curve y; into a far away fiber can be used to construct a
homotopy of 7; off itself. Thus the 7; have self-intersection zero.

Finally, we saw before that the “vertical torus” Ty = T = z x g S! is symplectic
with respect to @ = ayg; hence it remains symplectic with respect to @, for small
enough .

The fundamental group of N is generated by the x; ;, v; ;, ¢, and s subject to the
relations:

l_[[xz',j, vi,jl =1, l‘xz',jt_l = Xi j+1, tyi,jt_l = ¥i j+1, s is central.
i,J
It follows that the quotient of 71 N obtained by killing the generators s, ¢, the words
w; and x; ,v; , has the presentation with generators x;, i =1, ..., g and relations w;.
Thus to complete the argument we form the symplectic sum of N with g +r + 1
copies of the elliptic surface £ (1) along the symplectic tori Ty, 17, . .., Tr4g. Sum-
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ming along 7y kills ¢ and s. Summing along 7;, i = 1, ..., r kills w;, and summing
along 7,44, .... T4, sets x; ; equal to y; ;. Note that this kills the commutator
[x;, 7, yi,; 1 and hence the surface relation disappears. A simple calculation using the
Mayer—Vietoris sequence and Novikov additivity shows that each sum increases x
by 12 and decreases o by 8, completing the proof. O

Notice that the manifold M constructed in the proof of Theorem 6 1s fibered over
S! with finite order monodromy and with two fixed points. It follows that M is
Seifert-fibered over a surface S of genus g with two singular fibers. If s: M — §
denotes the Seifert fibration, then the composite of the projection M x S! — M and
s: M — Sisasingular fibration with torus fibers. The torus Ty 1s one of the singular
fibers. Nearby smooth fibers form an n fold cover of 7p. The tori 7; are products of
curves y; in a section of the Seifert fibration with the last S! factor.

The proof of Theorem 6 also proves the following, which is useful for certain
classes of groups.

Corollary 9. Let G be the quotient of a surface group (x;, yi | [ [;[xi. ¥i1) by a normal
subgroup generated by n words wy, . .., wy, in which the x; and y; appear with only
positive exponents. Then there is a closed symplectic 4-manifold with fundamental
group G, Euler characteristic 12(n + 1) and signature —8(n + 1). O

A very interesting question 1s whether the number 12 which occurs in Theorems 6
and 8, and Corollaries 7 and 9 can be improved. Suppose that £ is a symplectic
manifold which contains a symplectic torus 7' C £ such that 7" - 7" = 0, and so that
71 (£ —T) =1. Thenif k = x (F), the number 12 in these theorems can be replaced
by k.

We can require even less: suppose that K is a symplectic manifold which contains
a symplectic torus 77 € K suchthat 7 -7 = 0 and so that m) (K — T) = Z. Let
p: T — K —T denote apush off of T into the boundary of its tubular neighborhood.
Suppose that the induced homomorphism p,: 71(7) — 71(K — T) is surjective.
Notice that p, contains a primitive vector inits kernel, and so symplectically summing
with K can be used just as (1) was used in the proof. If x(K) = ¢, then the
12(g + r + 1) which occurs in Theorem 6 can be replaced by £(g +r + 2) or
¢{g +r)+k, with £ as in the previous paragraph. This 1s because the first symplectic
sum used in the proof of Theorem 6 (along 7p) 1s used to kill two generators, ¢ and s,
whereas the subsequent sums only need to kill one generator at a time.

We summarize these observations in the following corollary for completeness.

Corollary 10. Let E be a closed symplectic 4-manifold which contains a symplec-
tically embedded torus T with self-intersection zero such that mi(EE — T) is trivial
and with x (E) = k. Let K be a closed symplectic 4-manifold which contains a sym-
plectically embedded torus T with self-intersection zero such that mi(K — T) = Z,
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Py (1) = m(K —T) surjective, and y (K) = £. Then if G admits a presentation
with g generators and r relations,

min_ (M) <k+£(g+r). (7)
MeM(G)

O

Unfortunately, we do not know of any “small” examples of I or K as above. The
smallest example of such an £ we know 1s £(1). The adjunction inequality ([16])
can be used to show that any such £ must have x (F) > 6. Since our constructions
are based on taking symplectic sums with £(1), the smallest example we know of a
K as in Corollary 10 has x (K) = 12 (see Lemma 18 below).

5. Bounds for specific classes of groups

In this section we derive better bounds for free groups, cyclic groups, and free abelian
groups than those given in Corollary 4. In particular, we determine the lower bound
for certain free abelian groups and provide an example of a minimizer.

5.1. Free groups.

Theorem 11. For any finitely generated free group G there exists a symplectic 4-
manifold M with fundamental group G and x (M) =12, c (M) = —8.

Proof. Let I be a surface of genus g. Let X;, ¥;, 7 = 1,..., g be a collection of
embedded curves forming a standard symplectic basis for H(F). Letx;, v; € m(F)
be the corresponding loops obtained by connecting the X;, Y; to a base point. Take
H: F — F tobethe composite of Dehn twists along the curves Y1, Y2, ..., Y,. Then
Hy(x;) = x;y and H,(y;) = y;. 1t follows that the quotient of 71 (#) by the normal
subgroup generated by x ' H,(x), x € mF is free with generators xp, ..., Xg.
Applying Theorem & finishes the argument. O

Corollary 12. Let G denote the free group on n generators. Let e = 0 if n is even
and e =1 ifnis odd. Then

3—2n+e< min x(M) <12,
MeM(G)

and
4—-2n+2¢e< min x(M)+o(M) <4
MeM(G)
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Proof. Theorem 13 establishes the upper bounds. Let M be symplectic withzr (M) =
G. Notice that y (M) =2 —2n+bT (M) +b~ (M) and y (M) +o(M) =2 —2n +
2bT(M). Since M is symplectic, b+ (M) > 1. Moreover, since 1 — b (M) +bT (M)
is even, bT (M) is even if # is odd, so that for n odd b+ (M) > 2. O

Notice that for G = Z the upper and lower bounds in the second formula of
Corollary 12 coincide. Thus our construction gives a symplectic 4-manifold with
fundamental group Z which minimizes x 4+ o.

Kotschick [15] improves the lower bound for min x in Corollary 12 from3—2n+-¢
to g(l —n) using the fact that 2y + 3o > 0 for minimal symplectic 4-manifolds with
free fundamental groups.

5.2. Cyclic groups. We begin with an estimate for cyclic groups which uses The-
orem 8. The argument we give is identical to the argument given by Gompf in
Proposition 6.4 of [6].

Theorem 13 (Gompf). There exists a symplectic 4-manifold M with fundamental
group G = Z/n satisfving x (M) =12 and 6 (M) = —8.

Proof. Let I be a torus. Take ;. ' — F 1o be diffeomorphism which induces the

matrix
0 1
-1 2—n

onZ? = H{(F) = m1(F). The quotient of 71 (F) by the normal subgroup generated
by x" H (%), x € mF is isomorphic to Z/n, since elementary row and column
operations transforms I, — I to the diagonal matrix with entries » and 1. Applying
Theorem 8 finishes the argument. O

Corollary 14. Let G = Z/n for n # 0. Then

3 < min M) <12,
= in. x (M) <
and

min _ x (M M) =4.
ME%G)X( )+ o (M)

Proof. 1f M is symplectic with 71 (M) = Z/n, then y (M) = 2 + by(M) > 2 +
bt (M) > 3. Moreover, x (M) +o (M) = 2+2bT (M) > 4. The upper bounds come
from Theorem 13. O

Notice that if M denotes the algebraic surface obtained from £(1) by perform-
ing two logarithmic transformations of multiplicity p, ¢ with n = gcd(p, g), then
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(M) =%Z/n, x(M) =12, and o (M) = —8. This shows that Theorem 13 can be
improved: one can replace “symplectic 4-manifold” by “Kéhler surface.”

The examples of Theorem 12 do not always minimize the Fuler characteristic.
For example, there are smooth complex projective surfaces with fundamental group
#/5 (Catanese) and Z/8 (Reid) with y = 10. There are smooth complex projective
surfaces with fundamental group Z/2 (Barlow and Reid) and Z/4 (Godeaux) with
x = 11. These examples have y + o0 =4 [1].

5.3. Freeabelian groups. We turn to some calculations and estimates of the minimal
values of x, ¥ + o on N(G) for G free abelian,

Recall first that smooth 4-manifolds were constructed in [11] which minimize
¥ (M) over the class of smooth manifolds M with 7 (M) = Z". It was shown that
the minimal Euler characteristic for n #= 3, 5 is

2 2n4+Cn,2) + e,

where C(n, 2) denotes the binomial coefficient n(n — 1)/2,and ¢, is 1 if C(n, 2) is
odd and zero otherwise. For n = 3 (resp. n = 5) the minimal Euler characteristic
1s 2 (resp. 6). We will show below that for n even virtually the same result holds if
we minimize over the class of symplectic 4-manifolds. For n odd the situation is less
clear.

We begin by setting up some notation and making some easy observations. Let
G = 7" and let M be a smooth, closed 4-manifold with 71 (M) = G. Choose
amap f: M — T" inducing an isomorphism on fundamental groups. Since
the cohomology ring H*(T™") is an exterior algebra on H'(T™), the induced map
f* HX(T™) — H?*(M) is (split) injective. In particular 2 — 2n 4+ C(n,2) < x (M).
Moreover, x (M) +o(M) =2 —2n +2bT (M) > 2 — 2n.

Note that Z" contains subgroups isomorphic to Z" of arbitrarily large finite index.
Since ¥ and o are multiplicative with respect to finite covers,

0<x(M)+a(M). (8)
We turn now to the search for symplectic examples which minimize y and x +o.
Proposition 15. Any closed symplectic 4-manifold M with m\(M) = Z" satisfies

2-2n4+C(n,2) ifn=1o0ord4modS§,

x (M) > .
3—2n+ C(n,2) otherwise

and
x M)+ o (M) =0 mod 4.
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Proof. The cases n = 0, 1, 2 are easy, so we assume that n > 3. Suppose that M is
a closed symplectic 4-manifold with 71(M) = Z". Then x (M) =2 — 2n + by(M).
Since M is symplectic, 1 — by (M) +b* (M) = 1 — n + b™ (M) is even. Hence
2—2n+2bT(M) = x(M)+ o (M) =0mod 4.

The bound (1) (or see the paragraph preceding Equation 8) implies that b, (M) >
C(n, 2). The theorem will follow if we can show that this bound can be improved (o
by(M) > C(n, 2) 4+ 1 when » is not congruent to 1 or 4 mod 8.

Assume that bo (M) = C(n, 2).

As remarked in [11], if b2(M) = C(n, 2), the injection f*: H*(T") — H*(M)
is an isomorphism. Since H*(T™) is an exterior algebra (over Z)on H'(T™), H*(T")
has a basis for which cach basis vector has cup square zero. This forces the intersection
form of M to be even and hence have even rank. Thus C(n, 2) is even.

This proves that b2 (M) > C(n, 2) + 1 whenever C(n, 2) isodd, i.e.ifn =4k 42
or n = 4k + 3. (Notice that we did yet not use the fact that M was symplectic.)

Continue with the assumption that b2(M) = C(n, 2), so that C(n, 2) is even.
Since we are assuming that b, (M) = C(n, 2), the intersection form of M is even,
and hence its signature is divisible by 8. Thus ¥ (M) = 0 mod 4, i.¢c.

2—2n4+C(n,2)=0mod 4 (9)

A simple calculation establishes that if # = 4k, then Equation (9) forces k to be odd.
Similarly, if n = 4k + 1, then & must be even. Thus we have shown that with the
possible exception of n = 8 + 1 and n = 8k, a symplectic 4-manifold M with
m (M) = Z" musthave by(M) > C(n,2)+1,andso x (M) >2—-2n+C(n,2)+1.

O

In [11] it was shown that there exist smooth closed 4-manifolds X, with 71 (X)) =
Z"and x(X;) =2 —-2n+ C(n,2) forany n > 5 with C(n, 2) even. It follows from
Theorem 15 that X,, cannot admit a symplectic structure whenn = 8korn = 8k+35.
For these examples, b1(X,) iseven, o (X,) =0and 2y (X,) + 30 (X,) = 0.

Asexplainedin [11], the cases 73 and Z° are exceptional. The imtersection form of
any smooth manifold M with fundamental group Z* has a 3-dimensional metabolizer,
hence T (M) > 3and b~ (M) > 3. If M is symplectic then b™ (M) is even, hence at
least 4. Thus y (M) > 3 and y (M) + o (M) > 4. Similarly, the intersection form of
any smooth manifold M with fundamental group Z> has a 7-dimensional metabolizer.
If M is symplectic this implies x (M) =7 and x (M) + o (M) = 8.

We next look at upper bounds. As a first estimate, since Z" has a presentation with
n generators and C(rn, 2) relations, Theorem 6 and Proposition 15 give the estimates

1,2 . 2
s(n"—=5n+4) < min M) <6(n” +n-+2).
5(n n ) < ! (Z")X( ) <6(n”"+n )

Thus we see that minyg ez x (M) grows quadratically in n, with leading coefficient
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between % and 6. It follows from the calculations below that the leading coefficient

is %; in fact minysequezmy {x (M) — %nz} grows at most linearly in n.

For each integer g > 0 let I, denote the surface of genus g. Let S, = Symz(F 2).

Proposition 16. The space S, is a compact Kdihler manifold, and in particular
is symplectic. Moreover, w1(S) = 728, H*(Sy) = ZC282+1 50 that x(S,) =
3—22g)+C(2g,2),anda(Sy)=1-—g.

Sketch of proof. The fact that S, admits a complex structure comes from the fact that
the Z/2 action on Fy x F, defines a branched cover of S,. The fundamental group is
computed using Van Kampen’s theorem, splitting S, along the circle bundle over the
branch set; note that the two sets of generators of 1 (Fy x Fg) = m1(Fy) x m1(Fy)
commute, and are identified in 71 (Sg). Since b1(S,) 18 even, S, 1s Kihler [7].

The Riemann—Hurwitz formula computes x (S) and with the universal coefficient
theorem this implies the computation for H 2(Sg). Computing the signature is a bit
more involved; the most straightforward way to do this is to use the transfer (with R
coefficients) to observe that the induced map H?(S,) — H*(F, x F,) is injective
with image the Z/2-invariant classes, and to compute the intersection form directly
by restricting the intersection form of F, x Fj.

We refer to [22] for details. O

The following corollary computes the minimal Euler characteristic for most Z?8.

Corollary 17. Let G = 728,
(1) If g =0,1 0or3mod 4, then

min My=3-4 C(2g,2),
Mem(G)x( ) g+ C(2g,2)

with minimizer Sg.

(2) If ¢ =2 mod 4, then

0 < min M)—1{2—-4 C(22,2)) < 1.
_Mem(G)x( ) —(2—4g+C(2g.2)) <

3) 0 < mi M M) <4—5¢+C2g,2).
(3) _MQ)JIII(IG)X( )+ o(M) < g +C(2g.2)

Proof. The examples S, of Proposition 16 provide the upper bounds. Proposition 15
shows that when g = 0, 1 or 3 mod 4, the S, give the smallest possible x. When
g = 2 mod 4, the lower bound of Proposition 15 differs by one from y (S;). The
third assertion comes from Equation 8 and Proposition 16. 0
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Corollary 17 does not answer the question of whether S, minimizes x on IM(Z28)

when g = 4m + 2. In fact it does not form = 0: S, = T* #@2. But the 4-torus T4
is symplectic and
0=x(T" < x(S) =1.

We do not know whether S4,,42 minimizes yx : D(Z¥ ) — Z for m > 0.

Note that S> does minimize y + o. In fact, Sg, S1, S2, and S3 minimize y + o
for symplectic manifolds and G = 0, Z?, Z* and Z°. The first unknown case is Sy,
with x (S4) 4+ o (S4) = 12. Hence either S4 minimizes x + o among symplectic
4-manifolds with fundamental group Z® or else (since ¥ + o = 0 mod 4) there is a
symplectic 4-manifold X with 71 (X) = Z8 and b+ (X) = 7,9 or 11.

Free abelian groups of odd rank pose a greater challenge. For G = Z, we know
that any symplectic 4-manifold M with 71(M) = Z has b (M) even and greater
than zero, thus y (M) = ba(M) > 2. On the other hand, Theorem 13 constructs a
symplectic 4-manifold with 71 (M) = Z with x (M) = 12 and o (M) = —8. At the
moment this is the smallest example known to the authors of a symplectic 4-manifold
with fundamental group Z (see Theorem 13). Thus

2< min x(M)<12. 10
_Meim(Z)X( ) < (10)

This example does minimize y + o. Indeed, since b* (M) is even and greater
than zero for a symplectic 4-manifold with fundamental group Z, it follows that
x (M) 4+ o (M) =2bT(M) > 4. The example of Theorem 13 with 7y (M) = Z has
x(M)+o(M)=4,s0

Mrelgtrzz)x(M)+0(M)=4- (1D

We turn to the case G = Z°,

Consider the four-torus X = 7% x 7% with the product symplectic structure. Tts
fundamental group is Z* generated by the coordinate circles; call these generators
a, b, c,d. The Euler characteristic of X is 0 and o(X) = 0. The symplectic torus
To = p x T? has fundamental group generated by ¢ and d and self-intersection 0.
We can use the manifold in the next lemma to kill one of the generators ¢ or d.

Lemma 18. There exists a symplectic 4-manifold K with w1 (K) = Z which contains
a symplectically embedded torus T with self-intersection zero such that

(1) x(K)=12and o (K) = —8, and

(2) m(K — T) = Z and the map induced by inclusion m1 (K — T) — 71(K) is an
isomorphisni.
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Proof. Let K be the symplectic 4-manifold with 71 (K) = Z constructed in Theo-
rem 13. The construction of K was the following. First a fibered 3-manifold M with
fiber a torus F 1s constructed as the mapping torus of the Dehn twist H: F' — F
on the torus along the second curve y of a symplectic basis {x, y} of 71(F). Thus
(M) = (x,y,t | [x,y],txt™! = xy,tytr™ = y) and letting N = M x S!,
Ti(N) = {x, v, 1,5 | [x,v],txt™! = xy, eyt~ = y,scentral). Then N admits
a symplectic form o (see Equation (6)) for which the torus 7y = ¢ x s is sym-
plectic, and taking the symplectic sum of N with /(1) along Ty yields K. Since
m1(N — Ty) — m1(N) is surjective and 71 (£ (1) — Tj)) = 1, where T} is the elliptic
fiber in E(1) along which the symplectic sum is taken, it follows that 771 (K') 1s infinite
cyclic, generated by x.

Let T denote the embedded torus in N given by x x s. More precisely, choose an
embedded curve y freely homotopic to x in the fiber / which avoids the base point.
Then T = y x S! ¢ M x S!is a torus and the morphism induced by inclusion
takes the two generators of 71(7) to x and s. From Equation (6) one sees that 7" 1s
Lagrangian in N. Notice also that T is disjoint from Ty = t x s since y avoids the
base point of F'. Also notice that 7" has self intersection zero since y can pushed off
itself.

Since x is non-zero in Hy (M), T is non-zero in H>(N) by the Kiinneth theorem.
[t follows by a standard argument (see e.g. Lemma 1.6 of [6]) That @ can be perturbed
by an arbitrarily small amount so that 7" is symplectic with respect to the resulting
symplectic form «’. If the perturbation is taken very small, Ty remains symplectic.
Gompf shows furthermore that a symplectic structure on the symplectic sum K =
N #7, E(1) can be chosen so that 7" remains symplectic in K.

Thus ' C K is a symplectic torus with self-intersection zero for which the induced
map on fundamental groups is the map Zx & Zs — Zx,1e. x — x, s — 1. To
compute (K — T), firstnotice that N — T = (M — y) x SL. Since y is a curve in
the fiber of the fibration M — S! (representing x), it follows that M — y is obtained
from F x [0, 1] by gluing the ends along an annulus, namely the annulus in the torus
F complementary to y. Thus 71 (M —y) = (x, v, ¢ | [x, ¥]. txt~1 = xy). It follows
that my(N — T) = (x, v, t,s | [x,y], txt~! = xy, s central). Since K — 7T is the
symplectic sum of N — T with E(1) along Ty,

mi (K =Ty ={(x,y.t,s|[x,y], txt~}

=xy, scentral, s =1, r =1) = Zx.
Take the symplectic sum, L, of K and T* along T in K and T in T,
L=T%rK,

identifying x with ¢ and s with 4. This, in effect, kills 4 without introducing any new
relations, giving a symplectic manifold with fundamental group Z>, with x (L) = 12
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and o (L) = —8&. Together with the remarks after Proposition 15 this implies the
following.

Proposition 19. There exists a symplectic 4-manifold L with fundamental group
G=17 satisfying x (L) =12 and o (L) = —8. Hence

3< mn y(M)<12.
MeM(Z?)
Moreover,

min  x (M) + o (M) = 4. 0
MEM(Z3)

Finally, we treat the case of odd rank free abelian groups.

Theorem 20. There exists a symplectic 4-manifold M with w1 (M) = Z2~ such
that x (M) =15 — 5n 4 2n* and o (M) = —7 — n.

Theorem 20 gives the bound

min X(M)—(2—2(2n—1)+C(2n—1,2)) < 2n+ 10.
MeM(Z2n—1)
In other words, the difference between the lower bound of Equation (1) and the
examples constructed here grows linearly with the rank. This is in contrast with the
examples of even rank free abelian groups: that difference is always a constant. On
the other hand, it is an improvement over the general construction of Theorem 6,
whose difference grows quadratically in n.

The proof of Theorem 20 depends on finding a suitable symplectic form on the
(Kihler) manifold S, = Sym?(F ¢) for which we can identify certain tori as La-
grangian. The main technical result needed is the following proposition, whose proof
was suggested to us by R. Gompf.

Proposition 21. Let I denote the closed surface of genus g, andletm: FxF — S,
denote the regular 2-fold branched cover corresponding to the Z./2 action (x, y) +—
(v,x) on F x F with fixed submanifold B = {(x,x) | x € F}. Let wr be a fixed
symplectic form on the surface F and let @ = wr @ wor € QXF x F) be the
Z[2-equivariant symplectic form on the product.

Then there exists a symplectic form o’ € Qz(Sg) so that the pullback 7* (")
agrees with w outside a small tubular neighborhood of B.

Proof. We first show that in any neighborhood of B in I x /7 one can find a tubular
neighborhood N of B which admits a semi-free Hamiltonian S! action with fixed
set B, such that the Z/2 action (x, v) —> (v, x) embeds in the S' action as multipli-
cation by —1. The Hamiltonian function @ : N — [0, ¢) satisfies w~1(0) = B. This
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is a standard fact in symplectic topology; we include a proof for the benefit of the
reader.

Fix a Riemannian metric on ' x F and let P — B be the principal SO(2) = U (1)
bundle associated to the normal bundle of B, i.e. P is the bundle with ¢ (P) =
2 — 2g. Then P admits a free Z/2 action commuting with the U (1) action, namely
multiplication by —1 € U(1). Let E = P xy () D* — B be the associated disc
bundle. Note that E is diffeomorphic to the normal disc bundle v of B C F x F.
Moreover, one can choose the diffeomorphism E = v equivariant with respect to the
Z/2 action on E and the linearization of the Z/2 action (x, y) +— (y, x) near B in
F xF.

The symplectic form « on /' x I restricts to a symplectic form g on B. This form
extends to an S!-equivariant symplectic form on £ with corresponding Hamiltonian
function : E — [0, 1], so that =1 (0) = B (see [23, page 155]).

Since E and v are equivariantly diffeomorphic symplectic bundles and restrict
to the same symplectic form wp on B, Weinstein’s symplectic tubular neighborhood
theorem (see [30] and [23, page 98]) implies that there is a Z/2-equivariant sym-
plectomorphism from a neighborhood of the zero section in £ and a neighborhood
of Bin F x F. Since any neighborhood of the zero section in E contains a smaller
neighborhood of the form E£, = w0, &), pulling back 1« and the U (1) action via
the symplectomorphism restricted to £/, gives the desired neighborhood N, Hamil-
tonian sz, and corresponding Hamiltonian ST action.

Denote the quotient of N — B by the Z/2 action by U. Thus U is endowed
with the quotient symplectic structure (since Z/2 acts freely and symplectically on
N — B with quotient U) and admits a free Hamiltonian S! (= S!/(Z/2)) action with
Hamiltonian j1: U — (0, &).

Symplectic cutting U at £/2 (see [17]) yields a symplectic manifold N diffeomor-
phic to the tubular neighborhood of the branch set B C S,. The symplectic structure

on U 1is the restriction to U of the symplectic structure on S, — B (pushed down
from the equivariant symplectic structure on F' x I' — B). Since symplectic cutting
preserves the symplectic structure away from the cut locus it follows that S, admits

a symplectic form &’ whose restriction to S, — N pulls back to the restriction of e to
FxF—N. O

Notice that the proof of Proposition 21 applies equally well to any regular branched
cover X — ¥ = X /G with connected, symplectic branch manifold B € X and G-
equivariant symplectic form w on X.

Proof of Theorem 20. Let F be a closed surface of genus g with a symplectic form
or. Lety; and y; be disjointly embedded curves in F representing different elements
in a symplectic basis for H; (F). Then T = y; x y, 1s a Lagrangian torus in F' x F.
Since y1 and y, are disjoint the composite ' C I' x I' — S, is also an embedding.
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Proposition 21 implies that this torus (which we continue to denote 7') in S, is
Lagrangian with respect to a suitable symplectic form on S,. The torus T C S,
represents a non-trivial homology class in I7; (S, ) since its transfer 7 ([ F]) € Hy(F x
I") is nonzero (it equals y; x v2 4+ y1 x y2) by the Kiinneth theorem.

Thus the symplectic form on S, can be perturbed slightly so that T C S, 18
symplectic. Taking the symplectic sum of S, with the manifold K constructed in
Lemma 18 so that yields a symplectic manifold M whose fundamental group is the
quotient of m1(S,) = 72 by the subgroup generated by [y ], i.e. w1 (M) = Z?8~1,
and such that y (M) = x(S;) + 12, o (M) = o(S;) — 8. The calculations of
Proposition 16 finish the proof. O

5.4. Other abelian groups. In Section 6 of [6] (Propositions 6.4 and 6.6), Gompf
explores the geography of symplectic 4-manifolds with certain abelian fundamen-
tal groups constructed by symplectically summing torus bundles with E(1). Tor
completeness we state his results in our terminology.

Theorem 22 (Gompf). (1) If G is the direct sum of up to three cyclic groups, except
LBOLBLorifG=ZBLBL/kDL/Ewithk,t £, then there is a symplectic
4-manifold M withmi(M) = G, x(M) =12 and x (M) + o (M) = 4.

DIGIsZeZ/kBZ/EDZ/n, orif G =ZDLDLD Lk withk,¢,
n # 0, then there is a symplectic 4-manifold M with m1(M) = G, x (M) = 24 and
x(M)+o(M) =8

Note that these computations include the computations we gave for cyclic groups

in the previous subsections. Using the same arguments as in the previous subsections,
the first statement in Theorem 22 has the following consequences:

(DG =Z/kDL/EDT/nwithk, £, n £ 0, then

3< inf x(M)<12 and inf x(M M) =4.
_W(G)x( } £ fm(G)x( ) +o (M)

(2) fG =Z/k®Z/¢ ®Z with k, £ # 0, then

2< inf y(M)<12 and inf y(M M) = 4.
_EDITI(IG)X( ) < an EDIII(IG)X( )+ o (M)

(3) If G = Z/k ® Z* with k # 0, then

0< inf x(M)<12 and inf x(M M) =0or4.
_m(G)x( ) = Sm(G)x( ) +o (M)
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Corresponding (but weaker) bounds can be derived from the second statement of
Theorem 22.

Gompf also gives examples of relatively small symplectic 4-manifolds with other
(non-abelian) fundamental groups. We refer the interested reader to his beautiful
article [6].

6. Some final remarks

We end with a brief discussion about some difficult issues surrounding minimizers
of y. The 4-dimensional Poincaré conjecture can be rephrased by saying that any
simply connected topological (resp. smooth) 4-manifold with minimal Euler charac-
teristic is homeomorphic (resp. diffeomorphic) to the 4-sphere. In other words, if one
minimizes the Euler characteristic y on the class of simply connected 4-manifolds,
the minimizer is unique. Freedman’s theorem [5] proves the Poincaré conjecture for
topological manifolds, and the smooth question i1s one of the outstanding problems
in 4-dimensional topology.

New wrinkles appear in the symplectic case. For example CP? minimizes the
Euler characteristic among simply-connected symplectic 4-manifolds, and Freed-
man’s theorem implies any two minimizers are homeomorphic. One might call the
problem of whether any two simply connected symplectic 4-manifolds with y = 3
arc diffeomorphic (or symplectomorphic) the “symplectic Poincaré conjecture”. A
counterexample would involve finding a simply-connected symplectic 4-manifold
(M, w) having x(M) = 3 and Ky - [w] > O (cf. [18] or [20]). The question of
whether a simply connected symplectic manifold with x = 3 is diffeomorphic or
symplectomorphic to CP? is unresolved, but there has been much recent progress in
the direction of a counterexample. Starting with [25] and expanded upon in [24],
[28], [4], [26], new examples were constructed of irreducible smooth 4-manifolds

homeomorphic but not diffeomorphic to CP? # nCP? for n = 5, 6,7, 8. However,
for n = 5 the examples are not symplectic.

All attempts to change the diffeomorphism type of known minimizers with-
out changing their fundamental group seem to fail, suggesting that minimizers of
X IM(G) — Z are somehow special. But to conjecture that a symplectic minimizer
of y: MM(G) — Z 1s unique up to diffeomorphism, however, 1s simply incorrect.
For example, S? x T? and the nontrivial S2-bundle over 72 both have fundamental
aroup Z2. Yet the search for other examples with G = Z? seems futile. It is certainly
easy to build homology T2 x S? symplectic manifolds: let ¥ be zero surgery on
a fibered knot in S? and take ¥ x S!. The only example from this extensive list
that has fundamental group 72 is when the knot is the unknot, i.e., when ¥ x S! is
diffeomorphic to T2 x S2. The key difference between S2 x 72 and the nontrivial
S?-bundle over 72 is that the first is spin and the second is not. So minimizers of
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x . 9N(G) — Z can have different intersection forms of the same rank. This leads us
to make, possibly out of ignorance, the following conjecture:

Conjecture 23. Let M be a symplectic 4-manifold with 71(M) = G which mini-
mizes y . M(G) — Z. Let @y denote the intersection form of M. Then any other
symplectic manifold with intersection form Q 3y which also minimizes y : 9(G) —
Z 1s diffeomorphic to M.

We offer this conjecture merely as a new twist on an old theme in 4-manifold
theory, namely, describing conditions under which 4-manifolds are possibly unique.
A weaker conjecture would be to let Q 37 denote the equivariant (i.¢. Z[ G ) intersection
form of M. A counterexample to this conjecture would also be interesting. A good
place to start is to find another minimizer of IM(Z®) which is not diffeomorphic to S3.
Notice that any minimizer of y is necessarily minimal. If & is not a free product then
any minimizer of x is irreducible.

Suppose instead that one looks for minima of y +o onMi(e). Then minimizers are
not unique: for example CP? # nCP” are minimizers in N (e). These examples indi-
cate that to go beyond excessively general observations one may have to restrict further
the class of manifolds, e.g. irreducible manifolds. Even then minimizers are not
unique (up to diffeomorphism, for example). Indeed there are examples mentioned
above of irreducible, symplectic 4-manifolds homeomorphic but not diffeomorphic
to CP2 # nCP" for n = 6 (cf. [28]).

We end this article with remarks about improving our bounds.

What is missing in our results is a method for increasing the lower bounds of
minpsenn( ) x (M) which uses the fact that M is symplectic in a non-trivial way. The
lower bounds given in the present article are obtained by combining the lower bounds
valid for all 4-dimensional Poincaré complexes (e.g. Equation (1)) with two simple
facts which hold for symplectic manifolds: T (M) > 1and 1 — by (M) + b+ (M) is
even. This second fact depends only the existence of an almost complex structure.
Our calculations show that for G = Z?8, the difference

min ¥ (M) — min ¥ (M)
M (Z28) Mo (Z.29)

equals zero or one. On the other hand, a recent article of Kotschick [15] shows that
for Gy the free group on k generators, the difference

min y (M) — min M
Sm(Gk)x( ) mtoo(Gk)x( )
gets arbitrarily large as k goes to infinity. Thus any improvement of the lower bounds
which uses the symplectic structure in a deeper way will have to take these kinds of
examples into account.
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As explained at the end of Section 4, improving our upper bounds requires that
we find a symplectic 4-manifold K with x (K) < 12 which contains a symplecti-
cally embedded torus T of self-intersection number zero with m(K —T) = Z or
m1(K —T) = 1. We have not found any such manifold, and might conjecture that
one does not exist. It is not hard to show that any such K must satisfy x (K) > 6.
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