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Arithmetically Cohen—-Macaulay bundles on hypersurfaces

N. Mohan Kumar, A. P. Rao and G. V. Ravindra

Abstract. We prove that any rank two arithmetically Cohen—Macaulay vector bundle on a
general hypersurface of degree at least three in P° must be split.
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1. Introduction

Let X < P" be a hypersurface of degree 4. A vector bundle £ on X is called
arithmetically Cohen-Macaulay (ACM for short) if H (E(k)) = 0 for all k and
0 <1 < n — 1. By Horrock’s criterion [6], this is equivalent to saying that £ has a
resolution

00— F — Fy— FE — 0,

where the F;’s are direct sums of line bundles on P*. If 4 = 1, F is a direct sum of
line bundles (op. cir); the ACM condition 1s vacuous forn = 1, 2,

In this article, we will be interested in ACM bundles of rank two. Forn = 3, ACM
rank two bundles are ubiquitous (see Remark 1). Hence we will deal with smooth
hypersurfaces X of degree d > 2 in P" with n > 4 and ACM rank two bundles on X
which are not direct sums of line bundles of the form O x (k). By the Grothendieck—
Lefschetz theorem, these bundles are the same as the indecomposable rank two ACM
bundles on X.

Our main theorem is

Theorem 1.1. Let X C P" be a smooth hypersurface of degree d = 2.

(1) If n = 6, any ACM rank two bundle on X is a direct sum of line bundles
(Kleppe [8]).

(2) () If n =5, then for any ACM rank two bundle E on X, HY (X, EYQE(k) =
O for all k. In particular, E is rigid.
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(b) Ifn = Sand X is general ( for a dense Zariski open subser of the parameter
space of hypersurfaces) of degree d > 3, then any ACM bundle of rank
wo is a direct sum of line bundles.

(3) If n = 4 and X is general of degree d > 5, then for any ACM rank two bundle
Eon X, H(X,EY® E)=0fori =1,2. In particular, E is rigid.

Remarks. 1) Part (1) of the theorem is known by the work of Kleppe ([8], see
Proposition 3.2) where he proves a much more general theorem in this direction.
Our proof of this particular case 1is different and essentially falls out of some of the
computations necessary for part (2) of the theorem.

2)Ifn = 5and d > 2, there certainly exist special smooth hypersurfaces with
non-split ACM bundles. Here is a fairly simple way to construct them: Let f, g,
i be a regular sequence of homogeneous polynomials. Let a, b, ¢ be non-constant
homogenecous polynomials such that these six polynomials have no common zero in
P* and such that ' = af + bg + ch is homogenecous of degree 4 > 2. Let X be
defined by /' = (. Then we have an exact sequence

00— F— Ox(—degf) P Ox(—degg) d Ox(—degh) - [ — 0,

where [ is the ideal generated by f, g, / in Oy, the map to [ is the obvious one and
E is the kernel. One casily checks that £ is an indecomposable ACM bundle on X
of rank two. Any smooth quadric hypersurface in P> has a Pliicker equation F =0
and so the above construction applies.

If n = 5ford = 3,4,5 and 6, the statement (2)(b) of the theorem has been
proved already by Chiantini and Madonna [5].

3) In the case of n = 4, the rigidity statement was proved for quintic threefolds by
Chiantini and Madonna [3]. Further, it is known that indecomposable ACM bundles
of rank 2 exist for any smooth hypersurface of degree d with 2 < 4 < 5 ([1], [2],
[71). One way to see this 1s to note that any such hypersurface contains a line and
hence the construction in 2) applies. On the other hand, it was shown by Chiantini
and Madonna [4] that such bundles do not exist for a general sextic in P* and one
expects the same to be true for general hypersurfaces of degree d > 6! in which case
our result 1s trivially true.

4) When n = 3, any smooth hypersurface contains a point and hence the con-
struction in 2) applies in this case (0o.

We now give a brief sketch of the proof of Theorem 1.1 (2)(b). Suppose we
have a rank two indecomposable ACM bundle £ on a hypersurface X of degree d.
We show that the module N = B, H2(X, EY ® E(k)) is a non-zero graded cyclic
module generated by an element of degree —d (Lemma 2.3). In the P3 case, N is

I'This has been recently proved by the authors and will appear in International Mathematics Research Notices
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a Gorenstein module and the socle element is in degree 2d — 6. Thus we see that
Ny £#0forall —d < k < 2d — 6. By means of a deformation-theoretic argument,
we will show that if X is general, then the multiplication map N_; — Ny by any
g € H(X, Ox(d))iszero (Corollary 3.8), which by the cyclicity implies that Nop = 0.
This is a contradiction if 4 is at least three.

2. Cohomology computations

We will work over an algebraically closed field of characteristic zero, though most
of the arguments will go through in characteristic not equal to two. We will assume
throughout that X is a smooth hypersurface of degree d > 2 in P* with n > 4 and its
defining equation is # = 0. Let E be rank two bundle on X. By the Grothendieck—
Lefschetz theorem, PicP" — Pic X is an isomorphism. So by normalising I, we
will assume that ¢1(E) = e where e = 0 or —1. We will now assume E 15 ACM.
'Then we have a minimal resolution

O—>F1—>F0—>E—>O,

where the F;’s are direct sums of line bundles on P* of rank r (£ = Ox(a) ® Ox(b)
for some integers a and b if and only if r = 2).
Dualizing the above we get,

0— Fy — F — &xtg,, (E, Opr) > 0.
Applying FHomg,, (E, *) to the exact sequence
0 — Opn > Opa(d) — Ox(d) — 0,
we get the long exact sequence,
Homy, (E, Opn(d)) — EV(d) — &xtly ,(E, Opn) = &xtly  (E, Opn(d)).
The first term 1s zero and multiplication by « is zero. Thus we get
E(d—e)=EY(d) > &l (E, Ops).
This implies that Flv = Fy(d — e). Thus we can rewrite our minimal resolution as

0> Fl=FY(—d 5 Fy— E—0. (1)

In fact by [2], the map ¢ can be chosen to be skew-symmetric though we will not use
this fact.
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By restricting to X, we get an exact sequence

0> E(—d) > Fil® Oy =F % Fo@0x = Fy — E — 0. )

Let the image of ¢ be denoted by G. Then G is a vector bundle of rank r — 2 on X.
Taking exterior powers of ¢ in (1), we have an exact sequence

O—>A2F1—>A2F0—>5'~”—>0 (3)
for some cokernel sheaf ¥ .

Lemma 2.1. We have an exact sequence
0> L—>F >F@0x=F =0,

where L is a line bundle on X and F is a vector bundle of rank 2r — 3 on X which
Jits info a natural exact sequence

0> E®G—>F — Ox(e) = A’E — 0.
Proof. We certainly have an exact sequence
0> 1IF > F > F >0,

where I is the ideal sheaf defining X in P, It suffices to check that TF is a line
bundle on X and F is a vector bundle of rank 2r — 3 for the first part of the lemma.
Both statements are local. Clearly ¥ 1s set-theoretically supported only along X. By
localising we may assume that (1) looks like

O—>F1—>F()—>E—>O.

where the F;’s are free of rank r and the matrix of the map F; — Fy is the diagonal
matrix (u, u, 1,1, ..., 1) where u = O defines X. Then the matrix in (3) is given by
the diagonal matrix (uz, u,...u,1,1,...,1) where we have one uz, 2(r —2)u’s and
the rest 1°s. The claim about 75 and F follows easily from this.
To see the final exact sequence, we restrict (3) to X to get
A*F — A*Fy > F — 0.
From the exact sequence

0>G—>Fy—>E—>0

we note that B B B
im (A2F] — A*Fp) = im (A2G — A%F).
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This leads to the natural diagram

0 0
AiG — A%G
0 g A2F, — A?E = Ox(e) =0
0—E®G }i (9X||(e)ﬁ‘-()
S
where § 1s defined by the diagram. O

Next we note the vanishing of various cohomologies. From (1) and (3) we have
H(E() =H(F(x) =H (L) =0, 1<i=n-2. “)

This implies from the lemma above that
H(F#)=0 1<i<n-3. (5)

Tensoring the exact sequence 0 — E(—d) — F; — G — Owith E ¥ and taking
cohomologies, we get

H(EV®GKk) =H M EVQ®E(-d+k) forallkandl <i <n—3. (6)

Similarly, tensoring the exact sequence 0 — G — Fy — E — 0 with E ¥ and
taking cohomologies, we get

HEVQEK) =HTHEY®GKk) forallkandl <i<n—3. (7

From the exact sequence in the lemma, using (4), (5), we get
H(E® G(k) =0 forallkand2 <i <n —3. (8)

Lemma 2.2, The vector bundle E is a direct sum of line bundles if and only if
H*(EY @ E(—d)) = 0.

Proof. If E 1s a direct sum of line bundles, this vanishing is clear. So assume the
vanishing. From (6) we see that Ext YWE, Gy = HY(EY @ G) = 0 and thus we see
that the exact sequence 0 — G — Fy — E — 0 splits. Since Fy is a direct sum of
line bundles, we see that so 1s E. O
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Corollary 2.3. If E is an indecomposable bundle, then the finite length module
B, H!(E® G(k)) is a non-zero cyclic module generated by an element of degree —e.

Proof. By Lemma 2.1 we have an exact sequence
0>E®G—>F — Ox(e) = 0.

Taking cohomologies and using (5), we get the fact that the module is cyclic generated
by an element of degree —e. If it is zero then

HY(E ® G(—e)) =H(EV ® G) =0,

and so by (6) H2(EV ® E(—d)) = 0. By the previous lemma, the bundle would then
have to be split. O

3. Deformation criteria for ACM vector bundles

We have already noted that for n < 5, given any degree d > 2, there exists a smooth
hypersurface of degree 4 and a non-split ACM bundle of rank 2 on the hypersurface.
So, in this section, we analyze the situation, when there is such a vector bundle on a
general hypersurface X of degree 4.

We will start with some results on vector bundles on families of varieties. We will
not prove the most general results in this direction, but just what we need. Most of
the arguments are similar to those used in the construction of quot schemes and are
well known to experts. We are really interested in Corollary 3.5 and much of what
follows consists of technical results to achieve it.

Let us start by fixing some notation. All schemes will be of finite type over the
base field. Let p: X — S be a flat projective morphism. If g: T — S is any
morphism, we will denote by X7 = X x5 T, the fiber product and p’: X7 — T,
g': Xt — X, the natural S-morphisms. We start with an elementary lemma, whose
proof we omit.

Lemma 3.1. Let X, S, T be as above and let V. C X be any subset such that
g (Xr)NV =@ Then, ¢'(X7) N p~ p(V) = 0.

Proposition 3.2. Let p: X — S be a flat projective morphism. Let F1, F> be two
vector bundles on X with H (X, FZV ® I |x,) =0foralls € S. Let m > 0 be an
integer. Then there exists a scheme q: S' — S and an exact sequence

g Fy — q"F > G — 0,
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where G is a rank m vector bundle on Xg. Furthermore, one has the following
universal property: for any reduced S-scheme T with structure morphism f: T — S
and an exact sequence

f/*FZ e f/*Fl G =0

with G' a rank m vector bundle on X, there exists an S-morphism T — S such
that the second sequence is just the pull back of the first by the induced morphism
XT — Xsl,

Proof. The hypothesis on H! ensures that § = p*(FQV ® I7) 1s a vector bundle on S.
Let
#=AEY) S S,

Then ¢*& has a section and J¢ is universal with this property. We have the fiber
product diagram,

X%%-X

SN

%S

By the flatness of ¢ we have
Pt (B ® 1) =q*€

and so g’ *(sz ® I1) has a section. Thus on X 5 we get the universal map ¢ I, —
g Fi. Let G be the cokernel. By semi-continuity, the points x € X such that
dimy () G ® k(x) < m constitute an open set, which we denote by V. Since p’ is flat
p'(V)is open. Let #' C J€ be the closed subset with the reduced scheme structure
which is the complement of p'(V). Thus, replacing # with #’, we get an exact
sequence, where G has the property that at every point x € X g, dimyy) G @ k(x) >
m. Again, the set of points x € Xz~ such that dimgy G ® k(x) > m is a closed
subset, say Z. Since p’ is proper, we may take S’ C J¢’ to be the open set which is
the complement of the closed subset p’(Z). It is clear that on X ¢ we have an exact
sequence as claimed.

We need to check the universal property. So,let f: 77 — S be as in the proposition
with the exact sequence as mentioned. Letusdenoteby f': Xy — Xand p”: X7 —
T the corresponding maps. The existence of the map f"*F) — f"*F] gives a section
of pi f*(F,” ® Fy) which is equal to f*& by semi-continuity. This implies that we
have a morphism g: T — #€ over S and the exact sequence

q/;’:}cE*2 s q/*El — G — 0

on X x pulls back to the one on Xy via the induced map g’: Xy — Xy. Since
G’ is a rank m vector bundle, we see that ¢’(X7) NV = ¢ and thus we see that by
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Lemma 3.1, g'(X7)N p'~1p/(V) = @. Since T is reduced, this implies that g factors
through #¢’. Next, we notice that ¢'(X7) N Z = @ and by another application of
Lemma 3.1, we are done., O

112

Given a rank two (non-split) ACM bundle E on X, we rewrite (1) with Fy
Pi_; Ornlai), a1 = ay > - > ar and r > 2 to get

r r
¢
0— @@pn(—ai te—d) > @Opn(ai) > E 0.
i=1 i=1

As before, we assume thate =0 ore = —1.

Lemma 3.3. When n > 4, for fixed d there are only finitely many possibilities for
(at, ..., ay).

Proof. Since sequence (1) 1s minimal, we see that all entries of ¢ must be at least
of degree 1 and thus degdet¢ > r. But this determinant 1s just the square of the
equation defining our hypersurface and thus it mustbe 2d. Sor < 2d and is bounded.
From the fact that ¢ is an inclusion, we see that —a, + ¢ — d < ay. Thus, if we show
that a1 1s bounded above, then it will follow that a, is bounded below and then we
will have only finitely many possibilities for the a;’s.

For this we proceed as follows. Let a = ap. Since (1) 18 minimal, we get an
inclusion @y (ay) — E such that the quotient 1s torsion free. Thus, we get an exact
sequence

0—>0x(a) > E— I{e—a) — 0,

where [ is the ideal sheaf of a codimension two subscheme Z C X. This implies
wyz = Oz(e —2a +d —n — 1) where @z is the canonical bundle of Z. Let
7+ Z — P"3 be a general projection, so that 7 is finite. Then

wewyz = Hom(m, Oz, Opn-3(—n + 2)).

Since Opn—3 1s a direct summand of 7.0z, HY(rwz(n — 2)) # 0 and thus
HY(O®z(e—2a+d —3)) £0. Since n > 4, and E is ACM we see that H (7 (x)) = 0
and thus HY(Ox(k)) — H°(@z(k)) is onto. Since X is a smooth hypersurface,
HY(Ox(k)) = 0fork < 0. Thus we see thate —2a+d —3 > Qora < (e+d —3)/2.

O

Theorem 3.4. Let P denote the parameter space of all degree d smooth hypersurfaces
inP" withn > 4 and X5 C P"* x P the universal hypersurface. Assume that there
exist rank two ACM non-split bundles on hypersurfaces corresponding to a Zariski
dense subset of P. Then there exists a scheme P’, a dominant morphism P’ — P
and a rank two bundle over X x p " which is ACM and non-split for any point in P’
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Proof. By Lemma 3.3, for any rank two non-split ACM bundle on a hypersurface X
of degree d, we have finitely many choices for r, ¢ and the @;’s. Let us fix one of
these. Then for all vector bundles 2 with these invariants, we have a presentation,

F(}/(e—d)®(9x—>F0®69X—>E—>O.

Thus, we consider the flat projective morphism p: X6 — & and the vector bundles
Fa’ (e —d), Fo pulled back to X, which we denote by the same name. Notice that
the vanishing condition on first cohomology in Proposition 3.2 holds if » > 3. Thus
we getaschemeg: " = S'(e, r,a;) — P as in the proposition for m = 2. Let G be
the corresponding rank two bundle on X 5. We have a closed subset S < S’ where
the map Fy (e — d) — Fp is minimal. We may restrict to S” and let p: Xg» — 8
be the structure map.

By the relative version of Serre vanishing [9],there exists an integer #i such that
forallm > mgand all i > 0, R' p,G(m) = 0. Since G is a vector bundle and p is
flat, by repeated application of semi-continuity theorems (see for example, page 41,
[9]), one sees that H' (X, G(m)x,) = Oforalli > Oand all m > mg. By duality this
isalsotrueforall: < n—1and all m < mq for a suitable m . Thus we see that there
are only finitely many integers k such that H (X, G(k) |x,) # O forsomes € S” and
some i withQ < i < n — 1. Since the set of s € S” such that H (X, G(k) |x,) # 0
for fixed i, k is a closed subset, we see that there is a well-defined closed subset
7 < 8" such that H (X,, G(k) |x,) # O for some k and some ; with() <1 <n —1
ifandonlyifs € Z. If welet T = S§” — Z, we see that on X7, the bundle G has
the property that on each fibre over 7', it is ACM and non-split. Let ' =[] T, the
union taken over all possible choices of r > 2, e and the g;’s. Thus, we get rank two
non-split ACM bundles on all fibres of X p — P,

To prove that £’ — P is dominant, it suffices to show that the image of this
map contains a dense set. Let x € & be a point such that X, supports a rank
two non-split ACM bundle, say E. Let r, e, 4; be the corresponding invariants.
Then by the universal property of Proposition 3.2, we see that there exists a point
y € 8 = 8(r, e, a;) such that ¢(y) = x and the pull back of the corresponding G
is this bundle E. By minimality of our resolution, we see that y € S”. Since E is
ACM, we see that y € T'. This completes the proof. O

For a hypersurface X < P” of degree d, the total infinitesimal deformation X 4
of X in P" is contained in P" x Spec A where A = k@ VV, V = H'(0x(d)) and
VV2 = 0 in the ring A. The following corollary uses characteristic zero.

Corollary 3.5. Assume that we have non-split rank two ACM bundles on a general
hypersurface of degree d in P" with n > 4. Then for a general hypersurface X of
degree d there exists a rank two bundle & on X 5 such that & x is a non-split ACM
bundle.
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Proof. By Theorem 3.4, under the hypothesis, we have a finite type scheme P’
mapping dominantly to % and a rank two bundle on the ‘universal hypersurface’ in
P" x #’ which is non-split and ACM on each fiber. Since # is integral, by replacing
P’, we may clearly assume that it is integral. Since the map is dominant, we may
take a generic multi-section and thus assume that ' — P is generically finite.
Replacing again &’ by a suitable open set, we may assume that the map is etale since
the characteristic is zero . If x € £ corresponding to X C P" is the image of y € P/,
then the tangent spaces at x and y are isomorphic. Now noting that V is the tangent
space at x to &, we are done. L]

For the next theorem, we will need the following elementary lemma from ho-
mological algebra, whose proof (which we omit) follows from the construction of
push-outs.

Lemma 3.6. Ler

0 A B
Jl lj’
0 A — @

be a push-out diagram where A, A/, B, B’ are sheaves. Then i’ splits if and only if
there exists a homomorphism . B — A such that e oi = j

Before we state the next theorem, let us fix some notation. Let X be a smooth
hypersurface of degree d in P" with n > 3 defined by # = 0 and I an ACM bundle
on X of arbitrary rank.

Let v € HY(Opn(d)) be such that the image v € V = H%(Ox(d)) is non-zero.
Let B = k[e] with 2 = 0. The map —v: VY — ke defines a natural surjective
ring homomorphism A — B where A = k @ VY with V¥ = 0 as before. Let
X, C P" x Spec B be the corresponding hypersurface defined by u — ev = 0. In the
theorem we will assume that there is a bundle & on X, such that the restriction of &
toX C X, 18 E.

As always we have a resolution

O B S E a1

with the F;’s direct sums of line bundles on P*. This gives as before, by restriction
to X, a long exact sequence, and by splitting 1t to short exact sequences, an exact
sequence,

0= E(—d) > F1 > G —0

for some bundle G on X as in (2). Let us denote by ¢ the corresponding extension
class in
Ext}QX(G, E(—d)) = Hl(GV ® E(—d)).
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Theorem 3.7. With the notation and assumptions as above, under the natural map
H(GY ® E(—d)) > H(GY @ E))
the image of ¢ is zero.

Proof. Since € 1s flat over k[e], we have,
EXsE = E/e8.

We get an exact sequence

O—>E:88—i>8£>E:8/88—>0.

Let p: X. — P" be the projection, which is clearly a finite map. Taking the direct
image under p of the above exact sequence and noting that p restricted to X < X, 1s
a closed embedding in P, we get

0> ES p6=F5E—0. 9)

We want to interpret multiplication by # on ¥. We know that # — v annihilates &,
and so multiplication by « 1s the same as multiplication by ev. But multiplication by
¢ 1s just the composite ¢ o 7. Thus we see that multiplication by u is the composite

F5ES Ed) S Fd), (10)

using the factthati cv =voi: £ — F(d).
The exact sequence (9) gives an element 1 in Ext}gw(E , E). From the exact
sequence

0= F —>F—E—=I0(

we get
H(F ® E) — Exty,, (E, E) > H(F) ® E).

Since E is ACM and n > 3 the last term is zero. Thus we can lift » t0 an «¢ €
HO(Fl‘/ ® E) and we get the push-out diagram

Lo "
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Multiplication by « gives the following commutative diagram
Fo(—d) — Fy
ﬁl lﬁ
F(—d)——F.
Since # annihilates E, the top row factors as
Fo-d) 5 A% R

for a suitable map . Using (10) we get the following diagram, which we will show
1s in fact commutative:

4 ¢

Fo(—d) I Fy
d |
Fled) > E(-d 1 spg—tog

B¢ = ix follows from (11). We have
v = uP = Bu = B = iay.

Since 1 1s an inclusion, this implies, v = ayfr, proving commutativity. Restricting
this diagram to X, we get

_ _ ¢ _
Fo(—d) F Fy
ﬁl al iﬁ

F ®op Ox(—d) —Z> E(—d) —= F — > F ®0,. Ox.

The image of v is just E(—d) and thus we can rewrite the above diagram as

_ @ _
Fo(—d) — E(=d)" F Fy

,BJ _ l | iﬂ

v 1

F ®@pp Ox(—d) —+ E(—d) L F ®opm Ox.

Restricting (11) to X and twisting by @ x (—d ), we see that one has a commutative
diagram
E(—d)— |y

|k

E(-d)—>E.
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The extension class ¢ corresponds to the top row of the following commutative
diagram:

0—> E(—d) = G 0
E

and by Lemma 3.6, under the natural map

Ext!(G, E(—d)) > Ext'(G, E).
¢ goes to zero. Therefore, under the map
H{(GY @ E(—d)) > HY(G" ® E),
£ goes to zero. O

Corollary 3.8. Assume the rank of E is two, n > 4 and that as before, E can be
deformed in the direction of v. Then the natural map

H2(EY @ E(—d)) > HX(EY @ E)
is zero.
Proof. From Theorem 3.7, under the map
H(GY ® E(~d)) > H'(GY @ E),
¢ goes 1o zero. By (2), we have GV = G(d — ¢). Thus, under the map
HY(G ® E(—e)) > H(G ® E(d — ¢)).

¢ goes to zero. If E is indecomposable, HY(G @ E(—e¢)) is one dimensional with ¢
as basis element by Corollary 2.3. From (6) we have

H'(G® E(—e +k)) =H*(EY ® E(—d + k).
Thus we get that the map
H2(EY @ E(—d)) > HXEV @ E)

is zero. O
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4. Proof of Theorem 1.1

Proof of Theorem 1.1 (1). Forn > 6,
HY(EY ® E(—d)) = H(EY ® G(—d))
by (7). This group is zero by (8). The proof now follows from Lemma 2.2. O
Proof of Theorem 1.1 (2) (a). For n = 5, using (7) with i = 1, we have
HY(X, EY ® E(k)) = HX(X, EY @ G(k)).
This group is zero by (8). O

Proof of Theorem 1.1 (2) (b). The proof is by contradiction. Assume that a general
hypersurface X of degree 4 > 3 has an indecomposable ACM bundle of rank two.
From Corollaries 3.5 and 3.8 we see that

HY(EY @ E(—d)) > HXEV @ E)

is zero for any v € HY(Ox(d)). By Corollary 2.3 and (6) we know that the graded
module N = @, H*(E Y ® E(k)) = @, N is cyclic and generated by a non-zero
element ¢ in degree —d. Thus Ny, the degree zero component of N, consists of
multiples of ¢ by elements v € HY(Ox(d)). Since these are zero we get N; = 0 for
i > 0. As n =5, we have by Serre duality that

HXEY @ E(—d)) 2 HX(EY ® EQ2d — 6))V.

Hence Nyy;_¢ # 0. It d = 3, then 2d — 6 > 0, and this contradiction proves the
result. O

Proof of Theorem 1.1 (3). Assume that a general hypersurface X of degree d > 5
has an (indecomposable) ACM bundle of rank two. By the same arguments as in the
proof above, the graded module N has N; = 0 for: > 0 and thus H2(E Y@ E)=0.
By Serre duality we have H (EY @ E) = HY(EY ® E(d — 5)) = N;_s and hence
is zero for d > 5. O
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