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Inégalités de Milnor—Wood géométriques

Gérard Besson, Gilles Courtois et Sylvestre Gallot

Résumé. Nous prouvons une généralisation de la célebre inégalité de Milnor—Wood. S1Y estune
variété riemannienne fermée, nous considérons une représentation de son groupe fondamental
dans le groupe d’isométries d’une espace symétrique X de méme dimension. Lorsque X est le
produit d’espaces symétriques de courbure strictement négative et de dimension strictement
supérieure a 2, nous démontrons une majoration du volume de cette représentation par un
nombre calculé a 1’aide des entropies volumiques de Y et X. Le cas d’égalité est étudié et
donne un théoreme de rigidité. Ensuite nous décrivons des exemples de représentations de
volume non nul. En dimension 3 I'inégalité ci-dessus donne une preuve simple d’un théoréme
dll & Soma montrant la finitude du nombre de variétés hyperboliques fermées dominées par une
méme variété fermée.

Abstract. We prove a generalisation of the celebrated Milnor—Wood inequality. If ¥ is a closed
Riemannian manifold, we consider a representation of its fundamental group into the isometry
group of a symmetric space of the same dimension. When X is the product of symmetric spaces
of negative curvature and of dimension greater than 2, we prove an upper bound of the volume of
this representation computed in terms of the volume entropies of ¥ and X. The case of equality
1s studied and gives rise to a rigidity theorem. We then describe examples of representations of
non-zero volume. In dimension 3 the inequality gives a simple proof of a theorem due to Soma
showing the finiteness of the number of closed hyperbolic manifolds dominated by the same
closed manifold.

Mathematics Subject Classification (2000). 53 C24, 53 C35, 20 C15.

Mots-clés. Inégalité de Milnor—Wood, entropie volumique, barycentre, représentation, formule
de Schlifli.

1. Introduction
La célebre inégalité de Milnor—Wood ([33] et [49]) affirme que, si
E— X

est un fibré plat en fibres ST sur la surface compacte 2 de genre y > 2, alors la
caractéristique d’Euler de ce fibré, notée y (E) vérifie,

X (E)| = Ix(X)] =2y -2,
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1’égalité ayant lieu si £ est le fibré tangent de X.

Un fibré plat étant défini par une représentation de 71 (%), I'inégalité ci-dessus
est en fait une restriction imposée a cette représentation a valeurs dans le groupe des
homéomorphismes du cercle. Les valeurs possibles de la caractéristique d’Euler de £
sont décrites dans [26].

Dans cet article nous envisageons une généralisation, en dimension supéricure de
cette inégalité. Pour cela nous définissons le volume d’une représentation. Plus préci-
sément, soit ¥ une variété différentielle fermée orientée de dimension n et soit p une
représentation de son groupe fondamental dans le groupe d’isométries d’une vari€té
symétrique de courbure négative de dimension n et simplement connexe, notée X.
Considérons une application f durevétement universel de ¥ dans X équivariante par
rapport & p, alors, si @ désigne la forme volume de X, 1a forme f* passe au quotient
sur Y.

Definition 1.1. On appelle volume de la représentation p le nombre,

vol(p) = ‘ fY Fro

Dans certains cas ce nombre peut-éire interprété comme la classe d’Euler d’un
fibré plat. Des bornes supérieures de vol(p) existent. Elles reposent souvent sur le
choix d'une famille de sections particuliéres du fibré plat. Dans [16], par exemple,
K. Corlette utilise des sections harmoniques pour démontrer un théoreme de rigiditc
sur les représentations de volume maximal. Le cas ou X est hyperbolique réel est
abordé par A. Reznikov dans [41] ; I'auteur y prouve une inégalité optimale et ¢’est
ce type de résultats que nous étendons dans le présent travail. Le cas d’¢galité dans
I’'inégalité de A. Reznikov est prouveé par N. Dunfield dans [19] etdans [17], il consiste
a montrer que, si le volume est maximal, la représentation est fidele et discrete.
Signalons I’article [30] dans lequel 1’auteur décrit une autre notion de volume de
représentations et construit de nouveaux invariants numeriques.

Dans le cas ou X est]’espace hyperbolique réel nous prouvons, dans cet article, que
le volume des représentations est constant sur les composantes connexes de 1’espace
des représentations. C’est un résultat évident lorsque la dimension est paire car, dans
ce cas, le volume est aussi un nombre d’Euler, mais nouveau dans le cas de dimension
impaire. Plus précisément nous prouvons le

Théoreme 1.2. Soit Y une variéié différentielle fermée et orientée et p;: mi(¥Y) —
Isom(X) une famille de représentations qui dépend de maniére C' du paramétre
t € R alors le volume vol{p;) est constant.

La méthode employée consiste a utiliser la formule de Schlifli (voir aussi [11]).
I1 s’agit d’une approche nouvelle dans ce contexte ; en fait nous construisons un
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“polyedre” géodésique hyperbolique dans X équivariant par rapport a I’'image de p.
I1 s’agit d’une réunion de simplexes hyperboliques géodésiques invariants par I’image
de p; les simplexes pouvant se chevaucher ils ne fournissent pas une triangulation
de X. Nous construisons ensuite une application p-équivariante polyedrale. Ceci
permet alors de calculer le volume de la représentation. La formule de Schlifli ainsi
qu’un peu de théorie du degré permet alors de montrer la constance de ce volume. Un
corollaire frappant est une preuve tres simple du résultat suivant de T. Soma ([45]),

Théoreme 1.3 (T. Soma). Soit Y une variété différentielle fermée de dimension 3.
L’ensemble des variétés hyperboliques fermées X, de dimension 3 telles qu’il existe
une application continue de degré non nul de Y sur X, est fini.

La preuve se résume comme suit. Appelons f 1’application de degré non nul
de Y sur X et p la représentation induite de m1(Y) dans m1(X), alors vol(p) =
deg( f) vol(X). Le théoreme 3.17 affirme qu’il existe une constante C(Y) telle que
vol(p) < C(Y). Par ailleurs le volume des variétés hyperboliques fermées est minoré
par une constante universelle (qui dépend de la dimension). Ceci montre que le degré
de f ne peut prendre qu’un nombre fini de valeurs. Le volume de la représentation p
étant constant sur les composantes connexes de I’espace des représentations de 1 (YY)
dans mr1 (X) il ne prend également qu’un nombre fini de valeurs. Finalement le volume
de la variéié hyperbolique X ne prend qu’un nombre fini de valeurs. Un résultat de
W. Thurston affirme alors qu’il n’y a qu’un nombre fini de variétés X possibles. Le
lecteur peut consulter les détails dans le paragraphe 5.

Le théoreme 1.2 est en fait un corollaire d’un résultat plus général, que nous
décrivons maintenant. Rappelons la définition de I’entropie volumique d une variéte
Riemannienne (Y, g). Pour x € Y, on désigne par B(x, R) la boule géodésique de
centre x ¢t de rayon R, alors on définit

1
Eni(Y. g) = lim — log(vol(B(x. R))).

Dans ce qui suit X = ]_HJ X; est le produit des espaces symétriques simplement
connexes de courbure strictement négative, X ;. Chacune des variétés X ; est munie
d’une métrique ozizgé, ou g6 est symétrique normalisée (de courbure comprise entre
—4 et —1, par exemple) et «; est un réel strictement positif. Parmi tous les choix de
nombres ¢; il en est un qui donne une entropie volumique minimale (voir la propo-
sition 2.4) ; nous noterons go la métrique correspondante sur X qui est de dimension
n. Son entropie volumique est un nombre calculable. Nous prouvons,

Théoreme 1.4. Soit Y une variété riemannienne fermée de dimension n et p une
représentation de m1(Y) dans Isom(X), alors

. E n
i) vol(p) < (fig g ) vol(Y. ).
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i) Lorsque Ent(Y, g) > 0 [’égalité dans I’inégalité ci-dessus a lieu si, et seulement
si, la représentation p estinjective, X = X /p(m1(Y)) est une variété compacte
et (Y, g) est homothétique a (X, go).

Ce résultat était annoncé en 1998 dans [17]. 11 généralise le cas ou la représentation
a une image discréte et cocompacte, ¢’est-a-dire 1’analogue des théorémes de [7]
pour le cas ou I’espace localement symétrique compact est localement un produit
d’espaces symétriques derang 1. Ce dernier résultat, concernant les produits d’espaces
symétriques de rang 1 avec image discréte cocompacte, est énoncé par Ch. Connell
et B. Farb dans [13].

La preuve de I'inégalité se fait en exhibant une famille d”applications p-équivari-
antes de ¥ sur X construites par la méthode introduite dans [7]. Le cas d’égalité est
beaucoup plus difficile car I’image de p n’est pas supposée discrete ; plus précisément,
nous montrons que, dans le cas d’égalité, la famille d’applications p-équivariantes
que nous construisons converge vers une application harmonique ; ceci permet, en
particulier, de montrer que la limite est de classe C*. La combinaison des propriétés
liées a I’harmonicité€ et de celles liées a la construction ci-dessus conduit au résultat.

Remarquons que les applications p-équivariantes construites sont particuliere-
ment adaptées a 1’étude du volume et conduisent a des résultats optimaux compa-
rables, dans un cadre plus général, a ceux de N. Dunfield [19]. Signalons également
un travail récent de S. Francaviglia et B. Klaff [24] dans lequel les auteurs utilisent
une intéressante variante de la construction de [8] pour étudier le cas ou Y est une
variété hyperbolique de volume fini.

Enfin, 'inégalité ci-dessus peut s’ interpréter agréablement dans le cadre de 1a co-
homologie bornée (voir [28]). Le récent travail de M. Burger, A. lozzi et A. Wienhard
([14]) développe ce point de vue et aboutit a de tres jolis résultats concernant les
représentations du groupe fondamental des surfaces.

Nous tenons a remercier A. Reznikov, M. Boileau, D. Cooper, S. Francaviglia,
N. Bergeron et J.-P. Otal pour des conversations mtéressantes. Nous remercions sur-
tout deux référés anonymes ainsi que T. Bithler pour leurs importantes remarques qui
ont permis d’améliorer considérablement la rédaction de ce texte.

2. Géométrie des espaces produits

A titre d’exemple, nous décrirons la géoméirie de I’espace ()? ; g(l) &5 g(z)) = (H™ x
H", g} @ g3) muni de la métrique produit ou (H™, gl) (resp. (H", g3)) désigne
I’espace hyperbolique simplement connexe de dimension # (resp. #2) (de courbure
constante égale a —1). Pour un exposé général sur les espaces symétriques, nous
renvoyons a [29].
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2.1. Géodésiques. Soient x = (x1,xp) € Xetu = = (u1, uz) € Ty, xl)X tels que
||u||21@ , = ||u 1||2 + ||u2||22 = 1, alors la géodésique de X, notée ¢, partant de x
et de Vltesse 1n1uale u est cM(t) = (c1(1), ca(t)), ou ¢; (i =1, 2) est la géodésique de
H™ partant de x; et de vitesse initiale «;. Une géodésique définie par un vecteur u =

(u1, u2) telle que vy = 0 ou bien u; = 0 est dite singuliére ; ces cas correspondent a

cy(t) = (x1,c2(8)) ou  cyu(t) = (c1(f), x2).

Une géodésique définie par un vecteur u = (11, up) tel que u; # O, pour: = 1, 2,
est dite régulicre.

2.2. Courbures et plats. La courbure sectionnelle de ()? , g(l) & g(z)), qui se calcule
aisément, est négative ou nulle. Soit alors x = (x1,x2) € X, u = (u1,up) € T, X,
un vecteur régulier, alors 1’ application

R* — )?,
(t,s) —> (c1(t/a1), ca(s fa))

ou a1 = ||lutll gl et ay = ||uz|| ) réalise un plongement isométrique de R? muni de

sa métrique euclidienne dans ()? , g(l) D g(%). On peut vérifier aisément que I’'image de
cette application est totalement géodésique en constatant que, s1 o; désigne la symétrie
orthogonale par rapport a la géodésique ¢; dans (H", g(i)), I’image de I’application
ci-dessus est I’ensemble des points fixes de o1 x o dans )? ; 1l s’agit donc d’un
sous-espace totalement geodemque plat et qui est, de plus, de dlmensmn maximale
avec ces propriétés : (X 80 69 g(z)) est un espace symétrique de rang 2. Nous noterons
désormais go la métrique gO @ g5

Remarque. D’une manicre générale, s1 X est le produit riemannien de p espaces
symétriques de courbure strictement négative, alors X est de rang p.

2.3. Métriques localement symétriques. On peut munir la variété différentielle X
d’autres métriques localement symétriques ; en effet, pour «1 et w2 deux nombres
réels strictement positifs, on définit :

2 ] )
Bay,an = ®180 D ¥38¢-

Contrairement aux espaces symétriques irréductibles, les espaces symétriques pro-
duits sont flexibles.

2.4. Groupe d’isométries. On détermine aisément le groupe d’isomélries de
(X, guy,oy)- Eneffet, siny # na

Isom()?, Say.0n) = Isom(H™, gé) x Isom(TH"2, g(z)).
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Siny = ny etag = «p, I’échange des deux facteurs est une isométrie supplémentaire
qui est involutive ; le groupe d’isométries de (X, gy,.¢,) €st donc un produit semi-
direct de Z/27Z par le groupe [som(H"!, gg) x Isom(H"2, gg).

2.5. Fonctions de Busemann. On rappelle que, si (M, g) est une variété rieman-
nienne completeetsic: R — M estune géodésique minimisante sur toute sa longueur
etparamétrée par I abscisse curviligne (¢’est-a-dire, ¢ estun plongement isométrique),
alors on définit la fonction de Busemann associée a c,

Bo(x) = lim d(x,c() =t = 1lim (d(x.c(t)) —d(e(0). ().

On montre que la limite existe (voir [2], p. 23). Si (M, g) est une variét¢ simplement
connexe de courbure négative ou nulle son bord a I’infini (voir [2], paragraphe 3, p. 21)
s’identifie a une sphere de dimension n — 1, ou n = dim M, grice au choix d’un point
mo € M qui sert d’origine. Chaque point ¢ € d M, le bord a I'infini de M, détermine
une géodésique minimisante sur toute sa longueur, a savoir, | unique géodésique ¢ qui
passe par mg ettelle quelim;_ 4, c(t) = 6. Lafonction de Busemann correspondante
estnotée B(-, 0). Remarquons qu’elle dépend du choix de 1’origine.
Dans notre situation, il est souhaitable de travailler sur une partic du bord quireflete
mieux la structure produit. Pour la variété X ci-dessus le bord a I'infini s identifie
a smtna—1 (pour toutes les métriques gw1 ;) apres le choix d’une origine. Nous
utiliserons §"1~1 x §m=1 < gmFm-l quj g’identific dans 9X 2 8]1-]1”1 x "2,
Plus precnsement con31der0ns , par exemple, la métrique go = 80 P go, appelons
X0 = (xO, ) une origine de X = H" x H"2, e bord de X s’identifie aux rayons
geodemques paramétrés par longueur d’arc et partant de xg ; nous ne considérerons
que les géodésiques ¢ = (c1, ¢2) ol ¢; est une géodésique de H™ , telle que, pour tout
t eR,|ci()] g = 2 (O] g2 > ous les appellerons géodésiques diagonales. Elles
sont donc paramétrées par un point ¢ = (01, 02) o 6; € §™~1 = gH" . I s’agit du
bord de Furstenberg (voir [20], paragraphe 3.8, p. 235), mais nous n’utiliserons pas
sa description probabiliste. Nous le noterons dr X . 11 est important de noter que nous
utiliserons toujours ce bord ; en effet, si nous changeons la métrique en gy ¢,, NOUS
pouvons considérer des g@1 = -géodésiques ¢ = (cq, ¢2) telles que —||c1(t)|| e, =

||cz(t) I 8uy> ol go; = o? 80 ; elles définissent un bord qui s’identifie a E)FX

Remarque. Lorsque n; = np = 2 etay = ap = 1, le bord de Furstenberg de X,
Slx Sl $?= 8X s’identifie naturellement i un tore de Clifford dans S>.

Maintenant, pour 6 = (61,6;) € gmi—l 5 gm=1 on note EO(', 6) la fonction
de Busemann de (X, gg) correspondante (I’origine xo = (x(%, x%) ¢tant fixée), et
B;(-,6;) = Bxé(., 6;),1 = 1, 2, 1a fonction de Busemann de (", gé), ona:
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Lemme 2.1. Avec les notations ci-dessus, si x = (x1, x2) € X
— 1

Bo(x,0) = —=(B1(x1,01) + Ba(x2,02)).

- )

Preuve. Soit ¢ la géodésique paramétrée par 1’abscisse curviligne définie par 6 et

telle que c(0) = xp = (x§. x3). Alors, sic = (c1, c2), ona [|éq]] = % = ||é2]], d’ol
1 :
di(xi,ci(t)):Ef+Bi(Xi,9i)+8i(f), i =1,2
avec g; (1) — 0. Ici, d; désigne la distance dans le facteur 1 =1, 2.

f—400
Le lemme se déduit alors du développement limité de

d(x, c(t)) — 1 = (dF(x1, (1)) + d3 (xz, ca () /* = 1. 0

De méme, si By, o, (-, 0) désigne la fonction de Busemann de ()? . 8uy.ay) OUO e8t
dans le bord défini ci-dessus, on a :

Lemme 2.2. Avec les notations ci-dessus, si x = (x1,x2) € X

1
1/05%4—05%

La preuve de ce lemme se fait comme celle du lemme 2.1.

By, (x,0) = (1 B1(x1,01) + 2 Ba(x2, 62)).

2.6. Elément de volume. Si on note d ve I’élément de volume d’une métrique rie-
mannienne g, il est immédiat que

_ MM
dvg, ., =0 & dvgg) ®dvgg

oudv g désigne 1’élément de volume de (H", gé) pouri = 1,2,

2.7. Entropie. On rappelle la définition de Ientropie (volumique) d’une variété
riemannienne (M, g) que nous supposerons compacte pour simplifier. Soit x € M un
point du revétement universel M de M alors la quantité suivante existe et ne dépend
pas de x,

1
Ent(¢) = lm - log (vol(Bjg(x, R)))

ou By (x, R) désigne la boule métrique de centre x et de rayon R dans M muni de la
métrique relevée de g.

Par définition Ent(g) est 'entropie de la variété riemannienne (M, g), elle ne
dépend de M qu’a travers la relevée de g a M. Par abus de langage, nous parlerons
de Ientropie de gy, o, Sur X.
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Proposition 2.3. Pour tous oy, «y positifs

_1)2 _ 132
itz o0} — \/(nl 17 | (1)

) )

Preuve. Le calcul de ’entropie des espaces symétriques est fait dans [7]. Rappelons
que I’entropie d’un produit vérifie

n1 o142 ny o 2\2
Eﬂt(gal,az)z _ Ent(H 2, o) 1 Ent(H 2, g5) ' -
o o
Dans cet article on se propose de prouver un théoréme d’entropie minimale (voir
I’introduction) ¢’est-a-dire de minimum de I’entropie a volume fixé. Dans ce para-
graphe nous examinons cette question pour la famille de métriques gq, o, . Plus préci-
sément, soit I" un sous-groupe discret cocompact de Isom(H"!, gé) x Isom(H"2, g%),
agissant sans points fixes sur X.Ce groupe agit par isomeétries sur X pour toutes les
mEriques guq,ay> 0N peut donc munir le quotient X = X/ T' des métriques induites
que Nnous NOLerons encore gy «,. Par ailleurs,

vOl(X, gu1.00) = o] ety VOI(X, 20).

Proposition 2.4. Pour tous a1, ) strictement positifs tels que of'ay* =1, ona

1

n1—1\" /ny—1\"2\ nitm
25 (22 (25
N8y ,a0) = ”1+”2( o =

= Ent (8a1,a2)

1 1
[ fm=1 S\ A [ (=1 Jar\" ] nrny
o ar = |\ /m m-n 2= |\ m - :

L’égalité, dans l'inégalité ci-dessus, a lieu si et seulement si «; = aj.

Remarque. Lorsque les espaces symétriques sont complexes, quaternioniens ou de
Cayley, les calculs sont comparables et sont laissé€s au lecteur.

Dans la suite nous noterons go la métrique g4, 4,-

Preuve. On a

2 2
111—1 nz—l )
nl(«/nla’l) + nz(«/nzdz
n1 + ng

Ent(ga, «,)* = (n1 + n2)
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la fonction x — x? étant strictement log-concave

12111 12)12 1 2
n|— aptny f no— nytny n1tay
B = 01402 (2™ ()T ()

d’ou le résultat

1
ni—1I\m sup—1\n2\ ntn2
(e o) = Vit ((T=)" (Z=) )"
n (gozl,(xg) > /n+n2 ( \/ﬂ \/@

De plus, par stricte log-concavité, 1’égalité n’a lieu que si et seulement si

np—1 _ny - 1
N N

c’est-a-dire si a; = «;. O

Remarques. 1) Si n; = ny, alors la métrique minimisante est homothétique a gg (le
facteur d’homothétie étant calculé de sorte a avoir un volume 1).
ii) L.a courbure de Ricci de la métrique gqy - €8t

Ricei(ga; o) = (11 — D)gg ® (n2 — 1)gg.
La métrique gy .o, n’est donc d’Einstein que si
np—1 _ny— 1

g 2
o7 ay

Par conséquent, en général, la métrique qui minimise la fonctionnelle Ent, parmi les
Suy,x0» N ESL pas d’Einstein. Par contre, elle I'est si et seulement si np = ny.

De méme, si X est un espace produit général, ¢’est-a-dire, si (X, g) = (X1, g1) X
X (Xp, gp). ot ( Xk, gi) estun espace symétrique de courbure strictement négative,
de dimension ny et d’entropie notée Ey, on considere les métriques,

2 2
o =181 D Daygyp
ouo = (o, ...,qp,) avec o > 0. Alors, onala
Proposition 2.5, Pour tous nombres réels et strictement positifs o1, .. ., o tels que

Odi”...OlSPZL onda y
P i,
E,‘ e

Ent(g,) zﬁ( ( ) )

!

oun=mny+- -+ n, =dim(X).
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L’égalité, dans 'inégalité ci-dessus, a lieu si, et seulement si, pour tout i =
,2,....p

o =a; = j—fll_;(f[l (\g—n_;)%)

2.8. Mesure de Patterson—Sullivan. Sur le revétement universel d’une variété de
courbure strictement négative, (M, g), on peut définir une famille de mesures qui est
appelce (par abus de langage) la mesure de Patterson—Sullivan. Elle consiste a associer
a chaque pointm € M (le revétement universel de M) une mesure borélienne positive
sur d M, notée u,,. Cette famille est entierement caractérisée par les deux propri€tés
suivantes :

i) §82.(0) = exp (— Ent(g)(B(m,0) — Bm',))) (on a choisi ici une origine

O € M afin de définir B). Cette propriété affirme que pour m # m’ les mesures jiy,
et 1, sont absolument continues 1'une par rapport a ’autre et la densité s exprime
comme ci-dessus. _ _

i1) Pour tous y € Isom(M), y agit par homéomorphisme sur d M, et

Hym) = Vs (ftm)

(voir [31]).

Dans le cas ot M est un espace symétrique de courbure négative ou nulle (et pas
strictement négative) une construction est possible (voir [1], [39] et [33]). Dans notre
situation, ¢’est-a-dire

(M, g) = (X, g0) = (H", g}) x (H"™, g2)

la famille de mesures suivante, portées par JH" x oH" vérifie des propri€tés ana-
logues aux précédentes : pour x = (x1,x2) € X et = (61, 6;) € dH" x "2

dpy = e—(ﬂl—l)Bl(xl791)—(112—1)32(?62,92)(191 ® db,.

Remarque. Remarquons que la mesure ci-dessus n’est pas la mesure de Patterson—
Sullivan portée par le bord de Furstenberg. Le lecteur peut consulter les références
[11, [39] et [33].

En effet,
1) Pour xp et x € X, duy, et duy sont absolument continues, mais la densité n’a
plus la forme précédente, elle vaut :

diy
dpix,

=exp (—[(n1 — 1)B1(x1,01) + (n2 — 1) Byr(x2,0)]) .
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Notons, en revanche, que p, = e~Ui=UBi%) 40, est la mesure de Patterson—

Sullivan de (H™, gé). Par ailleurs, on appelle Py la densité jﬁx’; ; ¢’est le noyau

de Poisson de ()? , 20) ; cette fonction est, en effet, le produit des noyaux de Poisson
de chaque facteur et est donc harmonique.

ii) Siy = (1. v2) € Isom(@"1, g}) x Isom(H"2, g2) alors

My (x) = YV« (fx)

car

vi(ie) = (1, v2) (s, ® ) = ()« (1) ® (2)«(1s,)
1 2
= Ry (xp) ® Hoya(xg) = By ()

De méme, si n1 = np, on vérifie aisément que I'tisométrie supplémentaire

C(x1, x2) = (x2, x1)

satisfait cette contrainte.

Dans la suite nous travaillerons donc avec cette famille oy qui est le produit des
mesures de Patterson—Sullivan de chaque facteur. Terminons en remarquant que st
BI.“ " désigne la fonction de Busemann de (", oeiz gé), alors

: . 1 .
Ent(e]go) B () = —(ni = D B, ),
I
de sorte que la famille ., ne dépend ni de ar, ni de «y. Pour la méme raison Fj est
aussi une fonction harmonique (en x) sur (X, g, ) pour tout & = (crq, o).

2.9. Barycentre. Nous construisons ici une application inverse de x > piy, ¢’est-
a-dire une application qui associe a la plupart des mesures sur d X un point de X qui
est son centre de masse ou barycentre. La construction est analogue a celle de [7] et
[8] a I'utilisation pres de o X au lieu de 0X.

Soit 'V une mesure borélienne positive non nulle sur dp X, on considre la fonction

x€X, Bupa(x) :f By (x,6) dV(0).
Ip X

On définit les mesures marginales sur 0H™ et dH™ par :

1) Vi(A1) = V(A1 x dH™) = m1,(V), ou Ay est un borélien de dH"! et 7 1a
projection canonique de 9 7 X sur 9H™ ; et de méme,

ii) Vo(Ay) = V(OH" x As) = m,(V), ou Ay est un borélien de 0H"2 et my la
projection de 9y X sur OH™2,
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Proposition 2.6. Si V| et 'V, sont des mesures non nulles et sans atomes, pour tous
o1, oy strictement positifs, la fonction By, o, est C=, strictement convexe sur X et
tend vers Uinfini lorsque x tend vers infini.

Preuve. Par définition de V1, Va et By, o,,0na:
£o:1 0 (x)

Bx(x2,67) de(é’z)) -

1
= — (alf Bi(x1,61) dV1(th) +a2f
/C(% + C(% oH™ a2
En effet,

f _ Bi(x1.61) dV(61.02)) :f _Bi(x1,71(01,02)) dV(01. 02)
arX or X

_ f By (x1, 0)d(my + V)(6))
A"

et de méme avec I’autre terme. Alors, on applique les résultats de [18], [7] et [8] qui
montrent que x; — f am Bi(xi, 0p) d'V(0;) eststrictement convexe, pouri = 1, 2, et
tend vers I’infini lorsque x; tend vers I’infini dans H" . On rappelle qu'une fonction est
dite strictement convexe si elle ’est en restriction a toute géodésique non constante.
I1 est alors facile de vérifier que By, , €St strictement convexe en restriction a toute
géodésique non constante de X = H™ xH"2. Les autres conclusions de la proposition
sont également €videntes. O

Remarque. L'hypothese sur la mesure V est vérifice, par exemple, des que celle-ci
est absolument continue par rapport a la mesure de Lebesgue sur oy X. Par ailleurs,
elle peut étre affaiblie (voir [7]).

Corollaire 2.7. Sous les mémes hypotheses, la fonction By, o, admet un unique
minimum sur X que nous appellerons le barycentre de 'V, noté bar('V), qui ne dépend
pas de ay, wy (@ condition qu’ils soient strictement positifs). De plus bar(V) =
(bary ('V1), bary(V2)), ot bar; ('V;) désigne le barycentre de la mesure 'V; dans ™.

Preyve. L’unicité résulte de la stricte convexité de By, o, (@1 > 0, o > 0) et du fait
By o5 (%) i +o00. Le point x* = (x], x7) est défini par I'équation vectorielle,
X— 1+

VBuan(x) =0

c’est-a-dire o faH”l Vi8B1(x], 01) dVi(01) + a2 .[BIHI”Z Vo Br(x,02) dVa(th) = 0
(ici V; désigne le gradient d’une fonction définie sur H").
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Si x; = bar; ('V;) (voir [8]), alors
f ViBi()_Ci,Qi) dV(QI) =0 pOU.I’i =1, 2
A"

Par unicité on a donc x; = xf (i = 1, 2), ¢’est-a-dire

bar(Vy,, q,) = (bary (Vy), bara(V2)). O

3. Le volume des représentations

Nous donnons dans ce paragraphe une application de la technique introduite dans [9]
aux représentations du groupe fondamental d’une variété compacte.

Dans ce qui suit X estun produit fini d’espaces symétriques simplement connexe
de courbure strictement négative. Chaque facteur est supposé de dimension supcrieure
ou €gale a 3. On munit X de la métrique go décrite dans la proposition 2.4, ¢’est-a-
dire celle qui réalise I’entropie minimale pour tous les quotients compacts de X. Par
ailleurs, (¥, g) est une variété riemannienne compacte dont le groupe fondamental
est noté I'. On considere

p: ' — Isom()?, 20)

une représentation. Il existe toujours une application équivariante Vi ¥ > X car
X est contractile (dans la suite nous donnerons un exemple explicite d’une telle
application). Elle vérifie donc que

Fy) =p()f(y) pourtousy eletye?.

On peut toujours la supposer C 1, quitte 2 1a régulariser. Si on note wg la forme volume
de (X, go) alors,

Definition 3.1. On appelle volume de la représentation p, le nombre

walf] = ‘ fY F* (o)

Remarques. i) La définition ci-dessus a un sens car, f étant C', f*(wo) est une
forme continue sur ¥ qui de plus est invariante par I'. Par ailleurs, il est immédiat de
verifier que vol(p) ne dépend pas du choix de I"application équivariante 1.

ii) Quitte a changer I’orientation de X on peut supposer que I'intégrale |, ¥ F*(wp)
est positive.

Nous prouvons le théoreme suivant :
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Théoreme 3.2. Avec les notations ci-dessus :

5 E , n
i) vol(p) < (—~—E;;gg§ gj)) vol(Y, g).

11) Lorsque Ent(Y, g) > 01 égalité, dans I'inégaliré ci-dessus a lieu si, et seulement

si, la représentation p est injective, X = X /(") est une variété compacte et
(Y, g) est homothétique a (X, go).

Remarques. 1) Ce résultat est un premier pas dans la compréhension des représenta-
tions des groupes fondamentaux de variétés compactes dans des groupes d’isométries
d’espaces symétriques de type non compact.

ii) Les exemples de telles représentations sont rares et nous discuterons ce point
plus loin dans le texte. Plus rares encore sont les exemples dont le volume est non
nul,

111) Un exemple est donné par p = fy,ou f: ¥V — X = X / Ty est une appli-
cation continue de degré deg(f) sur la variété compacte X. Dans ce cas vol(p) =
| deg(f)| vol(X, go). Pour un énoncé précis voir le théoreme 3.17

iv) Seul le cas de dimension 2, ou notre méthode ne s’applique pas, est comple-
tement compris (cf. [26]). En particulier, le théoreme 3.2 est une généralisation de la
célebre inégalité de Milnor—Wood (cf. [35], [49] et [41]).

Preuve. La preuve de I'inégalité est semblable a celle prouvée dans [7], section 3,
nous la faisons maintenant dans le contexte des représentations. Le cas d’égalité est
beaucoup plus difficile car nous ne disposons pas de quotient compact de X (X /p(1")
n’est méme pas un espace séparé, en général) sur lequel s’appuyer afin d’utiliser la
théorie du degré (voir la preuve du cas d’égalité de [7], section 7). Une étape de la
preuve consiste a montrer que, dans la cas d’égalité, p(17) est discret et cocompact.
Dans ce qui suit 4 désigne de manicre générique la distance sur 1’espace considéré.
Soit f une premiere application continue et p-équivariante,

f:Yy—X,
par exemple, nous pouvons prendre, pour € > 0,

Fosy = bar(z o~ Ent(¥,)(1+2) d(y,y (o) p(y)*dg)
yel’

ou yo € ¥ est une origine et les notations sont celles du paragraphe 2.

On rappelle que si1 6 € IrX etz € X, do désigne la mesure canonique sur Ir X
et Po(z, 6) le noyau de Poisson de (X go), normalisé en I’origine xo € X de sorte
que

Py(xg, ) = 1.
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Nous construisons une autre application, comme dans [7], définie, pour tout
¢ > Ent(Y, g), par

Fe(y) = bar(( f eI P (f(2), ) d%(z)) d@)
Y

[’avantage de la fonction F. sur f est qu'elle est plus réguliere ; en effet, f nesta
priori que Lipschitzienne alors que F. est de classe C". !, Ce point sera crucial pour le
cas d’égalité. Montrons la régularité de F..

Posons comme dans [7], section 2.3, pour ¢ > Ent(Y, g)

Yro(y,0) = f?e—“m Po(f(z),0) dvg(z)

et

Y. 6)
Jop % Wy 6) o’

d.(y, 0) est de norme Ll(ap}?, df) égale a 1, donc la mesure 11y, - st de probabi-
lité. Le barycentre d’une mesure est invariant par multiplication de celle-ci par une
constante strictement positive, d’ou,

Fe(y) =bar(uy ).

CI)C(y) 0) — ’u/y’c — CI)C(y7 Q)dg.

Lemme3.3. L'application (¢, y) > $c(y, Yestde classe Clde JEnt(Y, g), —|—oo[><Y
dans L' (BFX)

Preuve. 11 n’est pas possible de montrer le lemme ci-dessus par simple application
du théoreme de dérivation sous le signe somme. Toutefois, dans [7], lemme 2.4, nous
prouvons, comme corollaire du théoréme de convergence dominée, que y — P.(y, )
est de classe C1 (A ¢ fixé) et, siu € 1, Y sa différentielle est donnée par

(- )y, 0) = —c [i;e—““”) (- d)(y, 2) Po(f(2), 8) dvg(2)

la continuité en ¢ de cette quantité est évidente en remarquant que |u - d| < [|u|g,
que Py est strictement positif et que, pour y et z fixés, ¢ —> e~40"2) est décroissante
en ¢ ; cecl permet d”appliquer une nouvelle fois le théoreme de convergence dominée.

De méme, pour y et £ fixés, on peut appliquer le théoreme de dérivation sous le
signe somme afin de montrer la différentiabilit€ en ¢ (4 y et & fixé). En effet,

0 < d(y,7)e” 4D < (=¢dbn)

pour tout ¢’ < ¢. Ceci montre que

dire
dc

(v,0) = — f?d@, e~ Py(F(2), 0) dvg(2)
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existe et, encore grice au théoreme de convergence dominée, est continue en (c, y).
Ceci prouve le lemme ci-dessus. On remarque que le méme type d’argument que ceux
utilisés dans [7] montrent que a;i ¢ est de classe C1 comme fonction de y i valeurs
dans L' (97 X).

De méme . est de classe C® enc et chaque dérivée en ¢ est de classe C Leny
comme fonction de Y a valeurs dans L1 (87 X). 1’assertion du lemme concernant &
s’en déduit. O

Lemme 3.4. L’application

F: |Ent(Y, g), -I—OO[X? — f,
(e, y) —> Fo(y)

est de classe C1,

Preuve. 11 s’agit d’une simple application du théoréeme des fonctions implicites (voir
[7], section 5er. Rappelons la preuve de ce fait. Soit {ei(x)};=1,... n une base ortho-
normée de 7, X dépendant de manicre C* de x € X. Définissons les fonctions

A :[ dBo(x, 0)(ei (x))boly, 0) d
o X

(on rappelle que Bo(x, #) désigne la fonction de Busemann de ()? , o) normalisée en
xo et d6 la mesure canonique de dr X, ¢’est-a-dire provenant de 1a mesure de Haar
sur le compact maximal), et

G: Ent(Y, g), +oo[x X x ¥ — R"
(Caxs )7) — (G](C,X,y), "'9Gﬂ(caxay))'

Alors, la fonction F,. est définie par I’équation implicite
G(e, Fe(y), y) = 0. (1)

Le théoreme des fonctions implicites est alors facile a vérifier car la condition qu’il
requiert est exactement celle qui assure I’existence du barycentre.

La fonction G étant C! en (c, x, v) le lemme est prouvé. En fait F, est, pour les
mémes raisons que précédemment, C™ en ¢, O

Preuve de I’inégalité 1) du théoreme 3.2. Nous donnons la preuve dans un cas particu-
lier afin d’éviter des lourdeurs dans les notations ; le cas général est rigoureusement
identique. ~

Nous considérons, comme précédemment, X = H™ xH"2, ot n; > 3. Rappelons
que X est muni de la métrique go = g4,.4,. OU les nombres a; sont ceux calculés dans
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la proposition 1.4. L.a métrique go minimise 1’entropie normalisée, sur X, parmi les
mériques gy, .o (voir la proposition 2.4).

La notion de barycentre étant indépendante des coefficients «; servant a définir
la métrique, nous utiliserons, pour simplifier, la métrique go = g(l) b g% (voir le
corollaire 2.7). N

Notons que chaque mesure p4y - est sans atome. Par ailleurs, le barycentre sur X
se décompose (cf. corollaire 2.7) et donc également la fonction F,

I?C: Y — X = W™ x ™2,
v — (F1.e(3). F2.c(3)

ol f}-,c(y) = bar; (7; * (iy,c)). Si X n'est pas un produit, nous travaillons avec la
seule fonction F.. Le résultat principal est le suivant :

Lemme 3.5. Pour ¢ > Ent(Y, g) ef pour tout y € 17, ona

- C i
| JTac F.(y)| < (+)
’ Ent(X, go)
oun =dimY = dim X = n{ 4+ ny et le Jacobien est calculé a 'aide des métriques g
sur Y et go sur X.

Preyve. Comme nous I"avons remarqué dans le chapitre précédent la notion de ba-
rycentre, et donc la définition de I’ apphcatlon F., ne depend pas de oy, &, Nous
pouvons donc utiliser sur X la métrique go 80 & 80 (on rappelle que 80 dé-
signe ici la métrique de courbure constante égale 3 —1 sur H"). Rappelons une
nouvelle fois la notation gg = a1 g(l) P azg(z) ol a; sont les valeurs calculées dans
la section précédente, telles que go minimise 1’entropie normalisée parmi les mé-
triques g« - NOus noterons det(DF (¥)) le déterminant de 1a différentielle de F
en v calculé a I'aide des métriques g sur Y et go sur X; ; par ailleurs Jac FC( y) =

al azzdet(DF (v)) est le déterminant de DF (v) Calcule a I'aide des métriques g

sur ¥ et go sur X. Notons que go est normalisée par ay'a,” = 1, de sorte que

Jac F.(y) = ay'a 2det(DF (y)) = dét(DF,(y)). Nous distinguerons toutefois les
deux expressions aﬁn d’éviter les confusions entre les métriques gg et go.

Lstimation de ﬁ(Dﬁc( v)). Ici, tous les calculs se font a ’aide de 1la métrique gg sur
X. Rappelons que nous désignons par B; les fonctions de Busemann sur H* muni de
la métrique gé. Comme dans [9], page 155, nous définissons les formes quadratiques
hy.c, ky o et les opérateurs symétriques associés Hy ., K . sur ch(y))? .

e, ) = [ DBz, (0. 0) i o6) = 20(K o). 0)
ar X

_ 2
hyo(v, ) = [8 (B 5 3)0)) i c9) = BoCHc(0), )
F
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owveTly (y)X . Ici, comme dans la section précédente,

= 1
Bo(x,0) = —=(Bi(x1, 01) + Ba(x2, 0p)).
V2

Enfin, nous définissons la forme quadratique h’y . et 'opérateur syméirique associé
, =
Hj . sur1yY,

2
W, o) = 4 f (A iy () A0 = g(H. o, )
IFpX

pouru € Ty Y. Dans cette formule la différentielle de /@, est prise par rapport a la
variable y. Nous utiliserons les mémes notations pour les formes bilin¢aires associces.
En différenciant I’équation implicite (1) qui définit F,, nous obtenons, pouru € T,Y
etv € Tﬁ;(y)X’

ky,o(v, DE.(0)W) = — | _dBoy gy (¥) dDeiy.0) () dO
op X [(Fe(y),8)

=<2 [ dBoy )0 (OBl 0) dy/ By ,0)
IrX

et, en utilisant I’inégalité¢ de Cauchy—Schwarz,

|y (DF. ) (@), v)| < (hy oo, )2 (0, )2

Un lemme élémentaire d’algebre lindaire (cf. [8], lemme 5.4) donne, a partir de (2.5),

d&t(Ky ) [T&(DF()| = (dé ) (der )72,

Rappelons que la famille de mesures ¢y . est normalisée (de masse totale égalea 1
pour touty € Y etc > Ent(Y, g)). La trace d'une forme quadratique ¢ (calculée dans
une base orthonormée par rapport 4 une structure euclidienne g) étant notée trace, ¢,
en injectant dans la définition de h;,c le fait que [|Vdy ||, = 1,nous obtenons, comme
dans [7], p. 751,

7
trace(f1} ) = traceg (h} ) < c¢*,
d’ou N
) 172 % n1+ns
et ) = ()
( y’C) N/t n2

Maintenant la définition de A, . (et H, .) montre que

. H1 ®
Hy,c—(* Hz)
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ou H; désigne la restriction de H, . a H" ; plus précisément, pour i = 1,2 et v; €
TFi,c(y)Hni

- - 2
eb(Hivr ) = [ (@B, ©00)’ dic®

api

1 2
= |, o 7B 0 () dity.e©)
F

1
"2 [BH (B 737,00 @0)) d (s (11y,0)) (81).

Remarquons que, puisque ||dB;|| g = 1 et ()4 pty o €St une probabilité, nous avons

trace(2H;) = 1.

Ki 0
Ky,C: (0 Kz)

avec,pouri =1,2etvy; = Tﬁ}c(y)H”i’

De méme,

; 1
g(I)(KiUi’ vi) = E ./E;H”' DdB”(ﬁi’C(y),gi)(Ui, v;i) d(ﬂi*(ﬂy,c))(gi)~

Lemme 3.6. Avec les notations précédentes, nous avons
i) déu(Ky ) = dét(Kq) dét(K2):
1) dét(Hy, ) < dét(Hy) dét(Hy).

[’égalité 1) est évidente et ’inégalité i1) est classique (voir [3], p. 63) pour les
matrices symétriques.

Par ailleurs, sur les espaces hyperboliques H", la relation suivante est vérifiée
(voir [7], p. 751), pouri =1, 2,

DdB; = g — dB; ® dB;

qui se traduit en
1

V2

ou [; désigne I'identité de T, .(yhH" . En regroupant ces remarques, nous obtenons,
a partir de 2.5,

K; = (; —2H;)

c )”1+”2 (dét2H)Y2  (dét2H,)1/?

dét Dﬁc S\l —7— .
[dEUDFe(y))] = (m dét(I — 2H,) dét(l — 2Hy)
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Alors, un lemme algébrique donne (cf. [7], appendice B),

(dét2H;)1/2 <( N )
dét(l —2H;) — \n; —1/

I’égalité n’ayantlieu que si, et seulement si, 2H; = n%]j (rappelle quetrace(2H;) = 1).
On utilise ici 'hypothese n; > 3, pour tout i.

En regroupant ces inégalités, il vient

| Jac Fo(y)| = '@ [d@U D F,(y)]

ny np
< g2 a; a, ( Jh )ﬂl ( N )nz
- (V/h1+ ng)m+m2\ng —1 ny —1
1

~ ()
~ \Ent(X, go)

d’apres la proposition 2.4. Ce qui prouve le lemme 3.5.
[’inégalité 1) du théoréme 3.2 s’en déduit par intégration et passage a la limite en
lorsque ¢ tend vers Ent(Y, g).

Rsmarques sur le cas général. Si X = )?1 X o0 X }?p elgo =81 P - D gpou
(X%, gr) est un espace symétrique de courbure strictement négative et de dimension
ng, on munit X de la métrique go = a1g1 ® --- @ apgy, ou les nombres a; sont
ceux calculés dans la proposition 2.5. La métrique go minimise 1’entropie normalisée
parmi les métriques g, (voir la proposition 2.5).

Alors, comme ci-dessus, on pose go = g1 @ - - - & gp. On suppose de plus que la
courbure sectionnelle de (X, gk) est normalisée de sorte quelle soit ¢gale a —1 si
(Xk. gx) est hyperbolique réelle et comprise entre —4 et —1 dans les autres cas. Le
calcul de I’entropie d une telle métrique est donné dans [7], p. 740.

_Pourx = (x1,....xp) € X etd = (01,....0,) € 0pX (0rX = 9X1 x - x
dXp), la fonction de Busemann de (X, go) est

_ 1
Bo(x,0) = E(Bl(xla 0) + -+ BP(XP’ QP))

et on a les décompositions

H  x * * Ky 0 0O 0

*  Hy % * 0 Ky 0O 0
Hy,c = ) Ky ¢ = ;

* * % 0 0 0

* % ok Hp 0 0 0 K,

avec trace(pHy) =lpourk=1,2,..., p.
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La relation qui lie K; et H; dépend du type d’espace considéré (hyperbolique réel,
complexe, quaternionien ou de Cayley) et est décrite dans [7], p. 751. On peut vérifier
aisément que _

trace(/pKy) = Er = entropie de( X, gi)
pourk=1,..., p.
Dans I’appendice B de [7], proposition B.1, nous montrons que

dét(pHi)'? _ (ﬁ)
déy/pK) ~\ Ex )

On conclut, alors, grice a la proposition 2.5, comme ci-dessus. 0

Preuve du cas d’égalité 1) du théoreme 3.2. La preuve commence comme dans le
paragraphe 7 de [7]. Rappelons que Ent(Y, g) > 0. Nous pouvons donc fixer le facteur
d’homothétie en normalisant g de sorte que

Ent(Y, g) = Ent(X, go) = Eo.

On suppose donc que vol(p) = vol(Y, g). Le travail porte sur I’é¢tude des formes
quadratiques, déja introduites au paragraphe précédent,

s 2
hy,c("‘) :[ N(dB()Hﬁc(y),g)(‘)) $.(v,0)do,
dr X
) = [ DBy g, el3.)
Idr X

et des endomorphismes symétriques et définis positifs correspondants, Hy . et Ky ..
La plus grande valeur propre de H, . est notée Ay, (y) et vérifie,

0 < an(y) <1,

en effet, I’endomorphisme symétrique Hy . est de trace égale a 1 et est défini positif
car le support de la mesure est le bord de Furstenberg. On rappelle ¢galement que
trace(K, ) = Ent(X, go) = Ly (ceci car @ est normalisée).

lere étape : convergence presque siire de Hy .. L’inégalité i) du théoréme 3.2
montre que

~ 1 ~
| Jac F.(y)| < (EL) pour tous y € Y etc > Fy.
0

Lemme 3.7. 1] existe une suite cy tendant vers Ey, telle que Jac Fo(y) — 1
presque siarement sur Y. —+00
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Preuve. Comme dans [7], lemme 7.3, posons f.(y) = Jac fc(y) —1et fcjE —
sup(0, £ 1) ; 1a fonction fc+ tend uniformément vers 0 lorsque ¢ tend vers Ey car,

n ~
0< fHy) < (Eio) —1 pourtouty €7,

Par ailleurs, pour tout ¢ > Eo,

vol(p) :Lﬁ:(wo) znyac Fo(y) dvg

o (Eio)”vol(y, o) —fyf; dv,.

On rappelle que les orientations sont choisies en sorte que |, ¥ F Fawq) soit positive.
L’hypothese vol(p) = vol(Y, g) implique que /. tend vers O dans LYY, g) lorsque ¢
tend vers Ly, d’oul’existence d’une sous-suite ¢ telle que /- tende vers z€ro presque
stirement. O

Lorsque (Y g) = ()? g0), la mesure est 1a mesure canonique du bord de Fursten-
berg dr X et p est 'injection naturelle de I dans le groupe d’isométries de X, alors
I’endomorphisme H, . prend une forme particuliere ; en effet, pour tout x € X et
pour ¢ = [y
L 7 () 0 0

pn
H, o= 0 pnz —L 0 0 |
0 0 0
0 0 0 ﬁlp
oux = (x1,...,xp) et I désigne I'identité de Txka t. Désormais nous noterons

Hy P'endomorphisme H, o. Les termes K;, qui se calculent en fonction de H; =
ﬁl,-, valent K; = ﬁn I;. Nous noterons de méme Ko I’endomorphisme K g
correspondant.
A partir de maintenant nous considérerons une suite ¢y — Eo telle que
Jac Fck (v) —— 1 presque sirement en y € Y. bsvom
k— 400

Lemme 3.8. Pour presque tout y € ¥, limy_, | oo Hy ., = Ho.

Preuve. Pour tout y € Y et pour tout ¢ > Fy

o ¢ \n(dét Hy )'/? c \"
[Jac FOnl = (ﬁ) Ky (E_O) ‘

=4 12
Soit y € Y tel que | Jac Fck(y)l — 1, la quantité (%ett+c") tend vers sa valeur
+

yck)

maximale, a savoir */_ . On rappelle que ]_[p " = 1 (voir le paragraphe 1).
ppelic q



Vol. 82 (2007) Inégalités de Milnor—-Wood géométriques 775

Par une preuve en tout point analogue a celle donnée dans I’appendice B, propo-
sition B5 de [7] et en utilisant 3.6, nous montrons 1’existence d’une constante A > 0
telle que

(dét Hy )'/? n\"
i s(f) (1 — AllHy,. — Holl3,)

dét(Ky o) Eo
de sorte que
1 Eo\" ~

IHye — Holz, = (1 (22) 11 Fot)
et, si | Jac F,, (v)] —> 1, alors

k——+o0

Hy,ck —— Hy. O
k—4o00

2¢éme étape : convergence uniforme de H, ., vers Hy. Nous reprenons les étapes
de la preuve du cas d’égalité de [7], paragraphe 7.

Soit ¢y k—> Ey une sous-suite telle que Jac I, — 1 presque surement et
—+o0

Hy ., tende presque surement vers Hy. Pour simplifier les notations nous utiliserons
I'indice k en lieu et place de I’'indice ck.

Lemme 3.9. Soient v et ¥ deux points de Y tels que \F <1 — % en fout point d’une
g-géodésique minimisante « qui joint y a y', alors

dgo(Fr(¥), Fe () < Kidg(v. Y.

On rappelle que kﬁ(y) = A () est la plus grande valeur propre de H,y .

Le choix de 1 — % est arbitraire, un autre choix, indépendant de la dimension,
donnerait des estimations similaires.

Preuve. On tire, comme précédemment, de 1’équation implicite qui définit fk, pour
tousu € TyY etv € Tf, (1 X,

oKDy Futw).v) = = [ aBoyzi)(0) d i o)
F
- f dBoyg, )0 (N Py, 6) dy/Bry ) () d,
IrX
s A2
I ENE ) X

(KD Pt o)) = 2a0(t o)) ([
F

Un calcul immédiat montre que

1/2
( [8 (4 Brgy @) ) < Pl ). ()

rX
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Si u et v sont de norme 1, dans leur espace respectif, alors

130 (Ky 1 Dy (), v)| < cx@o(Hy x(v), v)"*

< o/ AR ().

Maintenant, si X est un produit d’espaces symétriques de rang 1, de courbure
comprise entre —1 et —4, 1l est facile de vérifier (voir [7], appendice B) que, au sens
des formes quadratiques, pour tout: = 1,2, ..., p,

Ki= Iy = H; = (1= ().
On rappelle que [; (resp. K;) désigne la restriction de Hy i (resp. Ky i) a X;. En
DVEW G Dy Fe(u) # 0, il vient

1Dy Fe ()1l
VA )
- 1—?Lk( )

prenant v =

1Dy F () gy < (%)

(si D Fk(u) = (0, I'inégalit€ est tr1v1alement vraie). Soit o 1a g- geodes1que deyay’
le long de laquelle A"(a(r)) <1 — +,ona,pour tout u € TQ(I)Y de norme 1
||D0t(t)Fk(u)”§o <2nky = Kj
(si k est assez grand pour que ¢ < 2Fp). Par le théoreme des accroissements finis
dz, (fk(J’), fk()")) < K1dg(y, ). O

Lemme 3.10. Avec les mémes notations que précédemment, si P désigne le transport
parallele de fk(y) a ﬁk(y’ ) le long de la go-géodésique minimisante qui les joint,
ona _ _

ey o P — hy kllzy < Ko[dg(y, ¥') + dgy (Fr(y), Fr(3))].

Preuve. Nous désignons par A(f) 'unique go-gcoddsique, qui est minimisante, allant
de Fk(y) a Fk( y') et par Z un champ de vecteurs parallele, le long de #, de norme 1.
Pour simplifier, posons Z; = Z(Fk(y)) et Z, = Z(Fk(y )). Alors

hy/,k(Zz, Z2) — hy,k(Zly Z1)

n 2
:[ _(dBoy g, 3n,0)(Z2)) iy, 0) dO
IrX
_[a X(dBol(Fk(y) 9)(21)) di (v, 0) do
_ 5 B ,
- [BF?? [(dBOI(Fk(y’),Q)(ZZ)) - (dB0|(ﬁk(y)’9)(Zl)) ]Cbk(y',é)) Ao

+fa )f}(dEOKFk()’),@)(Zl))z(cbk(yf’9) — Oy, 0)) db
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Des formules explicites de Dd By et du fait que ||d Bojcx.0)( )|z, < 1, nous tirons
I'inégalité

|(dEO|(Fk(y/)’9)(ZZ))2 - (dEO|(fk(y),9)(Zl))2| =< Kédg"o (ﬁk()’/), ?k(y))

De méme, comme Py (y, -) est denorme 1 dans L1 (9 Fi , d&) eten utilisant I’inéqua-
tion ()

| (B 20) [(V00) = (VElr.9)) ] a0

aF X

< (IV®(3 ) = VO M2 ) (IVPRG )+ VORG, 2, %))
=< deg(ya y/)-

Le lemme découle de I’addition de ces inégalités. O

Lemme 3.11. La suite H, j converge uniformément par rapport &y € Y vers Hy
lorsque k tend vers +00.

Preuve. Le comportement de H vis-a-vis de 'actionde I sur Y montre qu’il suffitde
prouver la convergence uniforme sur un domaine fondamental D C Y. Le théoréme
d’Egoroff ([23], p. 77) et le lemme 3.8 attestent que, pour tout > 0, il existe un
ensemble mesurable K tel que

1) vol,(D\K) <1,

ii) sur K, 1a suite y — [, ; converge uniformément vers Hy.
Fixons ¢ > 0 petit, on peut choisir 5 tel que D \ K ne contienne aucune g-boule de
rayon g, car, en effet, le volume d’une telle boule sur Y est minoré (la métrique de Y
est périodique). On choisit aussi N € N de sorte que

1) pourtoutk > N, Eg < ¢ < Eo+ ¢

i) pourtoutk > N etpourtout y € K, || Hy r — Hollg, < e.
Par ailleurs, si y € K, d,(y, K) < &. Rappelons que les valeurs propres de Iy sont
les nombres ﬁ, i =1,2,..., p.Posons K3 = Ko(Kq+ 1)+ 1 et supposons ¢ assez

petit pour que Kae < 1 — sup; (ﬁ) — % Nous allons montrer que si k£ > N, alors
|Hyr — Hollzgo, < K3e pourtouty € D.
Si ce n’est pas vrai, il existe y’' € D tel que
|Hy x — Hollz, > Kae,

soit alors y € K tel que dy (', y) < &. Par continuité de I’application y +— H, g, il
existe un premier point ¥” sur le segment géodésique [y, '] tel que || Hy» i — Hyp|| =
K3e. Le choix de K3 montre que, sur le segment géodésique [y, y”1,

X 1 1
Ay §Sup(—)—|—K38 <1-—-—.
y2u

i n
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D’apres les lemmes 3.9 et 3.10 ceci conduit a
Nhyro P —hyillzy < Ko(Ky+ 1e
et comme ||Hy r — Hollz, < & ceci conduit a
| Hyr x — Hollgy < (K2(K1+1) + 1)e = Kae
qui est une contradiction. O

Remarquons que la convergence uniforme de H, i vers Hy implique la conver-
gence uniforme de K, ; vers K.

3eéme étape : convergence uniforme d’une sous-suite de Fy

Lemme 3.12. /] existe une sous-suite de la suite Fy qui converge uniformément vers
une application I': 'Y — X continue et éguivariante.

Preuve. Pour ¢ > 0 donné, il existe M € Ntel quesik > M
|Hy x — Hollzy < & pourtouty € Y.
D’ou
Hy,k < Hy+ el

et par une remarque précédente
K vk = Ko —el.

Ces deux in¢galités ¢tant a comprendre au sens des formes quadratiques. On déduit
alors, avec (xx), qu’il existe un nombre réel C > 0O tel que, pour tout y € Y et
uelyY,
1Dy Fr(u)ll g, <

(s1 & est assez pet). o N

La suite d’application Fy: ¥ — X est donc équicontinue.

Supposons qu’il existe yo tel que F(yo) ne reste dans aucun compact. Quitte a ex-
traire une sous-suite, on peut supposer que Fk(yo) —> 0caX (le bord
géométrique de X ). Pour tout y € Y, alors R

dgo (Fr (). Fr(y0)) < € dy(y. y0)

de sorte que F 1 (y) — 0 par définition du bord géométrique de X.Lé équivariance
de I, donne i

Fr(yyo) = p(y) Fr(y0)
et donc en passant a la limite en £
0 =p(y)H

c’est-a-dire, la représentation p fixe un point de aX.
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Lemme 3.13. Si p fixe un point 6y de 39X, alors vol(p) = 0.

Preuve. Soit By(-, 6p) la fonction de Busemann définie par le point 6y € 9X. Sup-
posons d’abord que &y est dans le bord de Fiirstenberg. Posons

Z(x) = VBy(x, tg)
alors le champ de vecteurs Z est invariant par p. En effet, I’égalité
Bo(a(x). 00) = Bo(x. ™' (60)) + Bo(er( Op). Oo)
pour @ € Isom(f ), conduit a
Bo(p(y)(x),60) = Bo(x, 60) + Bo(p(¥)(O0), f)
pour tout ¥ € I'; ce qui donne en différenciant
Z(p(y)(x) = p(y)(Z(x)).

Par ailleurs, pour tout x € X
div(Z)(x) = A(Bo(-, 0)) Z E;.

Done la forme différentielle o = div(Z)wg = (Y E;)wg est invariante par p(y),

pour tout y € I'. En conséquence, pour ¢ > o, F¥(w) est invariante par y, pour
tout y € I'. La définition de la divergence conduit a I’égalité

div(Z)wo = —d(i(Z) - wo)

ou i (Z) - wo désigne le produit intérieur de wg par le champ de vecteurs Z. D’ou
Fi (@) = —F(d((Z) - w))
= —d(F2G(Z) - on))

et

e 1 ”
vol(p) = fY Frlon) = v [Y F (@) =0.

S1 6 n’est pas dans le bord de Fiirstenberg la méme preuve peut étre faite car
div(Z)(x) = A(Bo(-,0)) # 0. m

Puisque nous sommes dans le cas d’égalité, vol(p) # 0, et la suite fk(yg) reste
donc dans un compact de X.0n peut alors apphquer le théoreme d’ Ascoli pour déduire
qu’il existe une sous-suite, notée encore Fk, qui converge uniformément sur D C Y

vers une application continue F': D — X. ¢ ¢quivariance de F, &> pour tout k, montre

que F converge uniformément sur ¥ et que la limite /' est également équivariante.
O
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4eme étape : F est une isométrie

Lemme 3.14. L’application I: (? ,8) — ()? , g0) contracte les distances, ¢’est-d-
dire, pour tout v, ¥' dans Y’

dey (F(»). F(3)) < dg(y.y)

et Df(y) est une isométrie entre (Tyf;, g)et (Tg(y))?, go) pour presque fout 'y € Y.

Preuve. Pour £ > 0 donné, on peut choisir £ assez grand pour que, pour tout y € Y,

Hy,k S HO + 81,

Ky > Ko—el
Alors,i’inégalité 2.5 nous conduit a I’estimation suivante, pour u € 7, y? et v €
UASLE

20Ky (DFi(y) (). v) = (2o Hy o (v). )2 (B e, ) 7>,

Onrappelle que la définition des fonctions Frest indépendante des coefficients choisis
pour définir la métrique de référence, ¢’est-a-dire qu’elle donne la méme fonction
qu’on utilise g0 = €P!_; g}, ou bien g = PI_, a?gl. Nous avons choisi d’utiliser
go pour définir le barycentre sur X , en conséquence les matrices H, i, Hy, K, ; et
Ko sont définies ¢galement grice a la métrique go.

On rappelle également que Fi g, i = 1,2, ..., p, désigne la i-itme composante
de Fy dans la décomposition X = X1 x -+ x X et que H; (resp. K;) désigne la
restriction de Hy ;. (resp. Ky p)aT Fig (y)X ; (ict on omet volontairement les indices y

et k dans H; et K; afin d’alléger les notations). Si v = (vy, ..., v,) est tangent a fi,
c’est-a-dire si v; = 0 pour tout j # 1, alors, grice a la forme diagonale par blocs de
K, . nous obtenons

20(Ki(DF: (@), i) < (3o Hivi, v) 2 (W, (e, )"

(on identifie, par abus de langage v a sa composante v; ).
En utilisant I’inégalité précédente sur Iy g,

g ~ 1 172 1/2
(K DF k@), 1) < (== e) ol (4,0 0)'.
i
En prenant la borne supérieure en v; de norme 1, nous obtenons,

- ~ 1
1K c(DF ) @0) 2o = I1Ke(DF k) @) gy < — () sl ) (1+o(e)).
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Les inégalités précédentes donnent encore,

. (1+ o) DF; 1 (3) ()5 : (It} 4 (u u))l/z(l + o(¢))
k J— o ’

ni/P " o= ok

or les coefficients a; apparaissant dans la définition de la métrique gg valent :

Ei\/ﬁ

Eo/ni

i =

d’ou, pour tout u € Tyf;

N

ai|DE () )l gy = J

1/2
(), G, )1+ o(e))
et, pour tout u € 7, y?

ﬁ]z‘gg(u, u) = ||Dﬁk(y)(u)||§0

= Za IDF; i () ()12

i=1

: (En)z " p, u)(1 4 o(e)).

On peut alors calculer la trace du tenseur symétrique Fk go par rapport a la mé-
trique g sur Y en y € Y.

trace, (Fi'go) < n(1 + o(e)).

En effet, on rappelle que traceg(hy P < (cr)? < (Eg+e)?.
Par ailleurs le déterminant de F ij‘ go relativement a g, ¢’est-a-dire | Jac Fkl2 tend

presque surement vers 1 sur Y. Alors si Ap,y désigne la matrice de Fk go dans une
base g-orthonormée, nous avons, pour k assez grand,

1
1 — &< (détAp )™ < ~trace(Ar,y) < 14 ¢
n

ce qui implique que
1Ay — (dét Ag )Y Id|| = o(s).

En conclusion, D Fy converge presque stirement sur Y vers une isomérie.

Alors, I’application Fest limite uniforme d’une suite d’applications lipschitzienne
F © dont les différenticlles D Fy sont uniformément bornées et convergent presque
stirement vers une isométrie ; le lemme 7.8 de [ 7] montre que, dans ce cas, ’application
I est 1-lipschitzienne. Nous ne reproduisons pas la preuve de ce fait.
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[’ application F est presque partout différentiable par le théoreme de Rademacher
et, comme elle est 1-lipschitzienne, on a, pour presque tout y € ¥

| Jac F (v)] < 1.

Par ailleurs,
vol(p) :f F* (o) :f (Jacﬁ(y))dug = vol(Y, g).
Y

D’ou, pour presque tout y € Y Jac F(y) = 1.

Enfin, pour presque tout y € Y, pour tout u € Ty Y, le caractire 1- -lipschitzien de
F implique que _

1Dy Fu)llgy < [luellg.
Ceci, combiné au fait que pour presque tout y € Y, JacF (v) = 1, montre que
la diftérentielle de £, Dy F, est presque partout sur Y une isométrie (entre 7,Y et
iy %)-

Le lemme est prouvé, O

Lemme 3.15. L’application F minimise la fanctionnelle E,(h) = Vollm fY |Dh||§ .

parmi toutes les applications h de Y dans X, p-équivariantes et llpschltzlennes pour
tout p > n. Ici ||Dh||g oo €8t calculée a l'aide de la métrigue g sur Y et 2o Sur X.

Preuve. Notons que, par I’équivariance de 2, I'intégrand dans I’expression de £ (h)
est invariant par I" et est donc une quantité définie sur Y. Rappelons que, si {e;} est
une base g-orthonorméeen y € V,

1 & 1/2
DR = (5 2 IDROIEDIZ,)
i=1

Cette quantité est définie pour presque tout y € Y.Ona donc, pour presque tout
yevt,
| Jach(y)|*/" < | DR(Y)|I, 4

pour tout p > 0. Maintenant si p > n
_ (vol(p) )P/”
~ \vol(Y)
p/n
= Jac h(y)d
(Vom | saeniy vg<y>)

< ;fﬁach(y)lp/”dv (y) < Ep(h)
= Vol(Y) s = e
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Si i est remplacée par F , en utilisant le fait que DF (v) est une isométrie pour
presque tout y € Y, il vient

= E,(F) < E,(h). 0
Corollaire 3.16. L’application F est de classe C™.

Preuve. En fait, nous prouvons que F' est harmonique, la régularité s’en déduit.
De manicre heuristique nous pouvons dire que I’équation d’Euler associde a la
fonctionnelle E,, p > n s’écrit

div (| DF|IZ 52 DF) =0
ou ladivergence est a comprendre comme celle d’une 1-forme sur Y avaleurs dans T'X

(voir [21], page 6). Mais F a une différentielle qui est presque partout une isométrie,
de sorte que ||DF |l¢.20 = 1 presque partout sur Y et I’équation devient

div(DF) =0

¢’est-a-dire F est harmonique.

Plus précisément, DF est interprétée comme une 1-forme sur Y a valeurs dans le
fibré F~1(T X), ¢’est-a-dire un élément de CS(T*(Y) ®F 1(TX)), qui est de plus
p-¢quivariante (voir [21], page 8); soit alors Z un champ de vecteurs C™ le long de
F, qui satisfait €galement la relation de p-€quivariance adéquate, ¢’est-a-dire qui est
un élément de GOO (Y F-NTX )) il existe une variation a un parametre de F notée

F, p-équivariante, telle que

dr ~r()’)|r=0 = Z(y) pourtouty & Y

(voir [22], page 397).
Comme F minimise Ep,pour p>n,ona

—  E,(F)=0

dt |1=0 2(F)

c’est-a-dire,
d

dt|; 0V01(Y)

f IDFO)IE gydug(y) = 0

mais
— [ IDE 01 e ()

o /  (IDF )8 g0)dve()

= i, PO L ODFOIE Jdve
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En t = 0, comme ||Df(y)||g,g,0 = 1 pour presque tout y € )7, ona

2
0— r/

7 2
= Sol(?) Jy NPT e )05 )

¢’est-a-dire, F est un point critique de la fonctionnelle £,. L’application F est donc
faiblement harmonique (au sens des distributions, voir [22], page 397). D’apres les
théoremes de régularité classiques (voir [22], 3.10, page 397), F' étant continue, elle
est de classe C™. O

Remarque. Nous avons montré que F est un point critique de FE,, mais en fait
elle minimise cette fonctionnelle car I’espace étant de courbure négative ou nulle la
fonctionnelle E; est convexe.

Nous pouvons alors terminer la preuve du théoréme 3.2 11). Lapplication Fa
une différentielle D F(y) qui est continue en y et est donc une isométrie pour tout
y € Y la variété ¥ étant connexe ot complete, X étant connexe et simp}ement
connexe nous déduisons de cela que F' est une isoméirie surjective de ¥ sur X (c’est
en effet un exercice classique, voir [25], 2.108, exercice a), page 97). En particulier
p(I") est un sous-groupe discret cocompact de Isom(X) agissant sans points fixes et
la représentation p est injective. O

Une conséquence immédiate est le théoreme suivant. Supposons que p(I') = I'
est un sous-groupe discret cocompact du groupe d’isométries de X qui agit sans point
fixe, le quotient X = X /'y est une variété compacte.

Théoreme 3.17. Soit (Y, g) une variété riemannienne compacte de méme dimension
que X et f: Y — X une application continue, alors
i) (Ent(Y, g))" vol(Y, g) > |deg f| Ent(X, go)" vol(X, go)
i1) ['égalité, dans Uinégalité ci-dessus, a lieu si, et seulement si, f est homotope a
un revétement riemannien.

La preuve est immédiate ; en effet, dans le cas considéré on a
vol(p) = | deg f| vol(X, go).
Remarques. Le lemme 3.13 peut s’ étendre et donne lieu a la proposition suivante :

Proposition 3.18. S’il existe une mesure de Radon finie et non nulle w, définie sur
d X, invariante par p(I'), alors vol(p) = 0. Par ailleurs, si vol(p) # O alors p(I")
est réductif et Zariski dense.

On rappelle que o (17) est dit réductif si son adhérence de Zariski I’est, ¢’est-a-dire
si cette derniere a un radical unipotent trivial.
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Preuve. la premiere partie se prouve comme le lemme 3.13 en posant

Z(x) = f” VB(x,0)du0).
9X

La seconde partie résulte de résultats classiques ; en effet, un sous-groupe du groupe
d’isométries de X est réductif s’il ne fixe pas un point sur le bord de X, ce qui est le
cas si vol(p) # 0. De plus, un sous-groupe réductif fixe une sous-variété totalement
géoddsique qui est un sous-espace strict si le groupe n’est pas Zariski dense. La
non-nullité de vol(p) entraine que ce sous-espace est tout X, d’ou le résultat. O

Notons que dans [32], la réductivité de p(I') est prouvée &tre une condition né-
cessaire et suffisante a 1’existence d une application harmonique p-équivariante.

Enfin, le théoréme 3.2 conduit au corollaire suivant. Rappelons la définition du
volume minimal d’une variéié,

minvol(Y) = inf{vol(Y, g): g métrique sur Y telle que |K,| < 1}

Corollaire 3.19. Si p est une représentation de I = 71(Y) dans Isom()? ,20),onY
est une variété compacte, alors

Ent(X. go)

n—1

n
minvol(Y) > ( ) vol(p).
Preuve. On rappelle que s8i la courbure sectionnelle K, de la métrique g vérifie
Ky > —1lalorsonaEnt(Y, g) <n — 1 (voir [7]). O

Remarques. 1) En particulier, s’1l existe une représentation p telle que vol(p) # 0
alors minvol(Y) > 0.
i1) On pourrait remplacer le volume minimal minvol(Y) par

minvolg;cei (¥Y) = inf { vol(Y, g) : Ricciy > —(n — 1)g}.

4. Exemples

Dans ce paragraphe nous nous intéressons au cas ou ()f7 , ) est elle-méme un produilt
fini d’espaces symétriques simplement connexe de courbure strictement négative.
Comme précédemment un tel espace sera noté (X, gg), ol gg est la métrique définie
au paragraphe 2 et qui minimise I’entropie. De méme, I' désigne un réseau cocompact
et sans torsion de Isom(X, go) préservant I’orientation, et p est un morphisme

p: ' — Isom()?, 20).
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Des exemples de telles représentations sont rares et le but de ce paragraphe est, en
particulier, de rappeler quelques unes des constructions classiques.
Dans cette situation, le théoréme 3.2 s’écrit

vol(p) < vol(X, go)

ouX = X /. L’égalité, dans cette inégalité, n’a lieu que si et seulement si 1’espace
(X/p(I'), go) estune variété isométrique a (X, go), c’est-a-dire si p(I") est un réseau
cocompact de Isom(X, gp). Nous répondons, dans ce paragraphe a la question :

Question 4.1. Existe-t-il des représentations, comme ci-dessus, telles que I’ inégalité
0 < vol(p) < vol(X, go) est vraie ?

Rappelons qu'un réseau 1" dans un groupe de Lie G, semi-simple connexe sans
facteur compact est dit réductible si G posséde des sous-groupes normaux H et H’
telsque G = H.H', HN H estdiscretet I'/(I' N H).(I' N H') est fini (voir [40],
page 86). I' est dit irréductible s’il n’est pas réductible

Alors, lorsque I' est irréductible, le théoréme de super-rigidité de Margulis ([34],
chapitre VII) fournit une réponse négative compléte a la question ci-dessus.

Proposition 4.2. Avec les notations ci-dessus, si I' est irréductible et vol(p) # 0
alors p(I') est un réseau cocompact de Isom(X, go) et donc vol(p) = vol(X, go).

Preuve. On se propose d’appliquer le théoreme 1X.6.16 de [34], p. 332. On note
G = Isom()? , 80),C estun groupe algébrique défini sur R et semi-simple. Pour utiliser
le résultat 1X.6.16 de [34] il faut travailler avec des groupes de Lie connexes, or I’
est un sous-groupe de G4, le sous-groupe de G constitu¢ des isométries préservant
Porientation et G4 n’est pas nécessairement connexe. En effet, siy = (y1, ..., va),
ouy; € Isom(X;, §6), et si un nombre pair de y; renverse 1’orientation alors y € G4,
néanmoins y ne peut pas &tre connecte a I’'identité.

On rappelle que G a un nombre fini de composantes connexes car ¢’ est un groupe
algébrique. Soit GY la composante Zariski connexe de 1’élément neutre et T'? =
GONT et = p=1(p(I'% N GY). Pour alléger les notations nous avons noté p la
représentation restreinte 4 I'°,

Il est ais€ de vérifier que GY = Isom+()?1, §5) X oo X Isom+(§p, gg) ou Isom
désigne le groupe (connexe) d’isométries directes.

Les deux lemmes qui suivent n’utilisent pas I'irréductibilité de I'. Cette hypothese
ne sera utilisée que pour appliquer le théoréme de super-rigidité.

Lemme 4.3. Le groupe T'0 est un réseau cocompact de G° ainsi que de G et le groupe
't est d’indice fini dans T'V.
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Preuve. 1. application naturelle I'/ T — G/GY est injective, I'? est donc d’indice
fini dans I" et est un réseau cocompact de G. Par ailleurs, GY/ I'? est une composante
connexe de G/ T'Y, donc est compacte. L’application I'’/ ' — G /GY induite par p
est injective, d’ou le résultat. O

Le groupe I'! est donc un réseau cocompact de G (et de GV) qui de plus, comme I,
est irréductible. La restriction de p A I'' est un homomorphisme

P [ ¥
a valeurs dans le groupe semi-simple, connexe G.

Lemme 4.4. Les groupes G et G® ont un centre trivial.

Preyve. Cect découle du fait que le groupe d’isométries d’un espace symétrique de
rang 1 a un centre trivial. O

Dans la terminologie de [34], le groupe G° est adjoint (il n’a pas de centre et
est défini sur R, voir [34], p. 13). Notons que, d’apres la proposition 3.18, le groupe
o (T est Zariski-dense dans G°.

Nous sommes maintenant en situation pour appliquer le théoréme de super-rigidité
1X.6.16 ¢) de [34], p. 332 (le groupe GY, qui est le groupe de départ et d’arrivée n’a
aucune composante simple compacte, ¢’est-a-dire n’a pas de facteur R-anisotrope).
La représentation p s¢ prolonge en un (unique) homomorphisme continu

5:GY = GY

qui est donc analytique (car G est algébrique). Comme 5 (GY) est un sous-groupe
algébrique qui contient A(I'!), qui est Zariski dense dans G°, on en déduit que
A(GY) = G". En particulier 5 est un difféomorphisme et 5(I'') est un groupe dis-
cret et cocompact. On en conclut que les variétés localement symétriques X/ ' et
X /p(T'h sont isométriques et donc que

vol(py1) = vol(X/T'1).
Comme I'! est d’indice fini dans I", on en déduit que
vol(p) = vol(X, go)- O

Nous allons maintenant étudier les cas ou le réseau I” est réductible. On rappelle
qu’un réseau I'! de G qui est réductible vérifie les propriétés suivantes (voir [40],
p. 86, 5.22) : il existe une famille finie de sous-groupes normaux et connexes de G°,
M, ..., Hi, qui commutent deux-a-deux, telle que :
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i) H;N ]_[j#i H; est discret pour tout i € {1, ..., k}.

iy GO =[], H;.

i) ' = H; N I'! est un réseau irréductible de ;.

v) ]_[f-‘;l Fil est un sous-groupe normal d’indice fini de I''.

Comme précédemment nous pouvons travailler a un sous-groupe d’indice fini
pres et donc supposer que ]_[f-;l Fil = I'!. De méme, chaque H; doit étre un produit
de facteurs simples composant G°, ¢’est-a-dire

pi+ri

H = 1_[ By

S=pi

Dans la suite, par groupe super-rigide nous entendons un groupe auquel nous
pouvons appliquer le théoréme de super-rigidité, ¢’est-d-dire, dans notre situation,
soit H; estde rang supérieur ou €gal a 2 (r; > 1) ou bien H; est le groupe d’isométries
directes d’un espace hyperbolique quaternionien ou du plan hyperbolique de Cayley.

Proposition 4.5. Avec les notations ci-dessus, si I' est réductible et vol(p) # 0
et si, pour tout i, H; est super-rigide alors p(1") est un réseau cocompact et donc
vol(p) = vol(X, go).

Preuve. Comme précédemment nous travaillons avec le sous-groupe I'!. Nous dé-
finissons p; = i, pour i = 1,...,k;1ct nous commettons un abus de langage
13

et identifions I'} et {e} x - x {e} x I'l x {e} x - x {e}. Définissons les groupes

K, = p; (Fil), I’adhérence de Zariski de p; (Fil) ; ce sont des sous-groupes algébriques
de GV et le théoréme 6.15 1), a) de [34], p. 332 affirme que, sirang ; > 2, K; estun
groupe semi-simple. Insistons sur le fait que f7; est considéré comme un sous-groupe
du groupe de départ de la représentation p et K; comme un sous-groupe du groupe
d’arrivée. Le méme résultat pour le cas ou f1; estle groupe d’isométries (directes) de
I’espace hyperbolique quaternionien ou du plan hyperbolique de Cayley est prouvé
dans [46]. Dans tous les cas, donc, K; est un groupe semi-simple.

Pour tout 7, K; est normalisé par ('Y, Comme p(I'!) est Zariski dense, K; est
distingué dans G, donc semi-simple et sans facteur compact. De plus, le produit
n'l.kle i contient p (I'!) et coincide donc avec GY.

Nous pouvons donc appliquer le théoreme de super-rigidité de [34], (6.16 ¢),
p- 332) pour les composantes [{; de rang > 2 et celui de [16] pour les autres et
affirmer que les représentations p; se prolongent en des morphismes continus

@ - HI' — Ki.
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On construit alors un prolongement de p en

V1s v > (2101 - or(70).

Les morphismes ¢; commutent et ¢ est bien défini et est un morphisme continu. On
termine donc la preuve de la proposition 4.5 par les mémes arguments que ceux de
la preuve de la proposition 4.2. O

Nous nous intéressons maintenant au cas ol G¥ posséde des composantes simples
non super-rigides. Supposons donc que I'! = Fll X F% ou F} est un réseau cocompact
d’un groupe I extension finie d’un produit de groupes super-rigides et F% est un
réseau cocompact de Hy produit de copies de PO(k, 1) et PU(K’, 1). Les arguments
qui précedent s’ appliquent pour montrer que

i) p(I') est Zariski dense dans G si vol(p) # 0.

1) Soit K;,i = 1, 2,I’adhérence de Zariski de p; (I‘il). Ladensité¢ de p(I") implique
la densité (pour la topologie de Zariski) de K1 K5 ; les deux groupes commutent. En
décomposant Fll en produits de réseaux cocompacts irréductibles on voit que K1 est
semi-simple sans facteurs compacts. Si G% = ]_[f:1 Gy, oules Gy, sont des groupes
d’isoméiries directes d’espaces symétriques de rang 1 et de type non compact, alors
K = ]_[i=1 G (par exemple); en effet, K1 est un sous-groupe normal de GP.
Le groupe K7 est donc inclus dans ]_[é7 41 G et comme K1K» est Zariski dense,
K2 = ]_[é7 +1 Gk (en particulier 1l est semi-simple). On peut choisir une application
équivariante f; de H; — K; et un calcul immédiat montre que

vol(p) = vol(p1) vol(p2),

de sorte que vol(p1) # 0. Le théoreme de super-rigidité (appliqué comme précédem-
ment aux composantes irréductibles de F}) permet d’étendre p1 en un morphisme
continu

(2 H1 — K 1

et 1a non nullité de vol{p;) montre que ¢ est un isomorphisme et donc montre que
p(I'}y estisomorphe a T'} ce qui conduit 2

vol(p1) = vol(Hy/T]).

Le groupe K contient les composantes non super-rigides de G°, de méme que Hy,
ils sont donc isomorphes. C’est la seule composante non triviale de p.

Nous donnons maintenant un exemple de représentation du groupe fondamental
d’une variété hyperbolique réelle, de volume non nul.
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Exemple : produit amalgamé. Soit X une variété hyperbolique compacte de di-
mension n > 3. Supposons qu’il existe dans X une hypersurface compacte plongée
totalement géodésique notée X et incompressible, ¢’est-a-dire telle que I’ application
induite : 711 (X) — 71 (X) soitune injection. Nous supposons de plus que cette hyper-
surface sépare X en deux composantes connexes X 4 et Xp de groupe fondamental
respectif A et B. En posant C' = 71 (%), le théoréme de Van Kampen montre que

71(X) =Axc B

produit amalgamé de A et B sur C. Les groupes m1(X), A, B et C sont des sous-
groupes de PO(n, 1) et agissent donc sur I’espace hyperbolique H". Choisissons un
relevé X de X dans H" ; X est une hypersurface totalement géodésique. On identifie
C au sous-groupe de 1 (X) qui fixe X. Soit s la symétrie par rapport a %, on définit

p:m(X) — PO(n, 1),
acAr—a,

bheB+—>s shs™ !
Lemme 4.6. L’application p définirt une représentation de 71 (X) dans PO(n, 1).

Preuve. Le groupe m1(X) est le quotient du produit libre A x B par les relations qui
consistent a identifier un élément de C dans A avec le méme élément dans B. Comme
p est un morphisme en restriction a A et a B respectivement, 1l suffit de vérifier la
compatibilité avec les relations. Or, s1c € C

d’ou le résultat. O

Afin de calculer le volume de cette représentation il faut trouver une application
lipschitzienne f: H" — H", p-équivariante.

Proposition 4.7. Avec les notations ci-dessus on a,
vol(p) = vol(X ) — vol(X ).

Preuve. Nous allons décrire f de manidre précise et le calcul du volume s’ensuivra.
Le fait que 7r1 (X) soit un produit amalgamé est équivalent ([44], p. 48) a ’existence
d’un arbre T', sur lequel 71 (X) opeére (sans inversion) en sorte que le quotient soit
un segment (deux sommets joints par une aréte). Les sous-groupes A, B et C sont
alors les stabilisateurs respectifs des deux sommets et de I’aréte de I’arbre quotient.
Nous allons donner une description géométrique de cet arbre 7. Nous avons choisi
un relevé ¥ de I"hypersurface compacte X plongée dans X ; X dtant une sous-variété
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plongée, sans auto-intersection, les translatés yi de ¥ par les éléments y € m1(X)
sont deux a deux disjoints ; ils séparent donc H" en une infinité de composantes
connexes. Les deux composantes connexes dont 1’adhérence contient iN sont des
revétements universels de X 4 et X g respectivement, que nous noterons X4 et Xp.
Les autres composantes connexes sont les translatés par les ¢léments de 71(X) de
X4 et Xp. Les sous- groupes A et B préservent XpetXp respectivement (apres un
choix convenable d’un point base et d’un de ses releves).

Maintenant, choisissons un point x, € X4 et un point xp € X . Nous allons
définir un arbre de la fagon suivante : les sommets sont les v (x;) et v(xp), ou y
parcourt 71 (X) ; on joint deux sommets y (x,) et ' (xp) par une aréte si, et seulement

si, les composantes connexes correspondantes yff A ety X p sont telles que yi AN

v/ X B # #. On vérifie aisément qu’il s’agit d’un arbre car chaque aréte correspond a
une hypersurface y (X) qui sépare X en deux composanies connexes.

Soitalors x € X \ UV or ¥ X, il appartient a une composante connexe du complé-

s 4 oo ) e rd Ve
mentaire de UyEI‘ v 2 qui correspond a un sommet de 1~arbre précédent. Dans cet
arbre il existe un unique chemin joignant la composante X 4 a celle de x ; ce chemin
est une succession d’arétes eg, ez, . .., ¢ prises dans 'ordre, de la composante X 4
a celle de x. Chacune de ces arétes correspond a une image de % et nous noterons

se; la symétrie orthogonale hyperbolique par rapport a cette hypersurface totalement
géodésique.

Definition 4.8. On pose f(x) = s¢; 08y 0+ -+ 0 54, (x).

1’ application f est bien définie. Elle est @™ par morceaux et continue ; en effet, la
seule ambiguité dans la formule ci-dessus est lorsque x est sur I’hypersurface définie
par ey, mais dans ce cas 5., (x) = x.
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Lemme 4.9. L’application f est p-équivariante.

Preyve. 11 suffit de vérifier I’équivariance pour les éléments de A et ceux de B qui
engendrent le groupe fondamental de X. ~

a) Sia € A, le chemin dans I"arbre joignant la composante X 4 a celle de ax est
constitué des arétesNael, ..., aeg;eneffet, puisque a € A, aX a4 = X4 etl'aréte aeg
a son origine dans X 4. D’ou

f(ax) = Bgpy - - - Sgge (AX) = asela_l .. .aseka_l(ax) = af(x) = p(a)f(x).

b) Si b € B, le chemin joignant la composante X4 a celle de bx est constitué
du chemin dans I’arbre joignant X 4 a X 4 suivi de I'image par » du chemin précé-
dent. Rappelons que les sommets de I"arbre sont les ¢léments de I'/A et I'/B et les
arétes sont les €léments de I'/ C (voir [44]). Par exemple, la composante connexe X 4
correspond a e A (classe de 1’élément neutre ¢), celle de Xp a eB ; elles sont

eA eB bA

& @
eC bC

relides par I'aréte ¢C. Par ailleurs bX 4 correspond a la classe bA reliée a eB par
I’aréte HC. En conclusion, nous avons

f(bx) =50 spo 0 (bsy, ... 50,h7 1) (bx)

ou e désigne par abus de langage I'aréte eC et s, = 5. D’ou

F(bx) = (sbsb™ Y o (bse, .. .56,b ) (bx) = p(b) f(x). O

Fin de la preuve de la propositiOn La fin de la preuve est évidente ; en effet f

renverse 1’orientation sur X p etest] 1dent1te sur X A, 11 suffit donc de ch0151r un
domaine fondamental dans la réunion X 4 U X pour lequel X se releve sur £ O

Pour &tre complet, il faut construire des variéi€s X hyperboliques admettant une
hypersurface connexe séparante qui sépare la variété en deux parties de volume dis-
tinct. Cette construction nous a été suggérée par N. Bergeron. Soit My une variété
compacte de dimension 3, hyperbolique a bord totalement géodésique qui est une
surface compacte connexe notée . De tels exemples existent (voir [38], [12], th. 4.3
et [6]). Considérons le double M obtenu par recollement de deux copies de My le
long de . La variété compacte M sans bord est hyperbolique car X est totalement
geodemque Le théoréme 2 de [5] montre que I’'on peut construire un revétement fini
M de M el _que X se releve isométriquement a M en une sous-varié(é totalement
géodésique 3 non séparante. On découpe alors M le long de b2 pour obtenir une

variété a bord dont les deux composantes du bord, notée 21, 22, sont isométriques a
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¥ ~ ¥ et on recolle & chacune de ces composantes une copie de M. Alors, §1 (et
fz) découpe la nouvelle variét¢ hyperbolique en deux composantes 1'une de volume
égal a vol(M1) et I'autre de volume égal a vol(M) 4 vol(M1) > vol(My).

Il serait intéressant de disposer de tels exemples en dimensionz > 4. Remarquons,
par ailleurs, que I’ensemble des valeurs de vol(p) ainsi obtenu est discret (pour une
variété donnée) ; une explication précise a ce phénomene est fournie par le chapitre
sutvant.

5. Volume et déformations

Nous avons dé€ja remarqué que, lorsque la dimension de X est paire, le volume d’une
représentation (X est supposée symétrique) est le nombre d’Euler du fibré plat cor-
respondant. En particulier, ce nombre est constant Ie long des déformations continues
de représentations. Nous allons prouver un résultat analogue dans le cas ou la dimen-
sion de X est impaire. De telles déformations existent en dimension 3 ([4]) et nous
en donnons des exemples. La constance du volume est prouvée en dimension 3 par
S. Reznikov [42] ; nous donnons ici une preuve, valable en toute dimension, qui repose
sur la formule de Schlifli. Dans ce qui suit M désigne une vari€té riemannienne fer-
mée et orientée de dimension n et X I’espace hyperbolique réel simplement connexe
de dimension n.

Théoreme S.1. Soit M une variété différentielle fermée et orientée et py: w1 (M) —
Isom(X) une famille de représentations qui dépend de maniéere C' du parameétre
t € R, alors le volume vol(p;) est constant.

Ce résultat peut se déduire des travaux de A. Goncharov (voir [27], Theorem 2.17).
Nous en présentons ici une preuve plus simple qui repose sur un lemme technique dont
le but est de construire une application équivariante affing par morceaux particuliere.
Par application affine nous entendons une application affine entre des simplexes munis
de leur coordonnées barycentriques.

Lemme 5.2. Sous les hypothéses du théoreme 5.1, il existe une triangulation T de
M et une application continue et affine par morceaux for M - X qui est po-équi-
variante et non dégénérée au sens ou l'image par fo d’un simplexe de la triangula-
tion T est un simplexe géodésique de X non dégénéré.

Preyve. 1’'1dée est de construire une triangulation 7 de M, m1-équivariante, et de
définir fy de facon affine sur chaque simplexe.

Un théoreme classique affirme que toute variété lisse compacte M est homéo-
morphe a un complexe simplicial K ; plus précisément K est un espace triangulé
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muni d’une métrique euclidienne par morceaux (que 1’on peut réaliser dans R"). Cet
homéomorphisme peut, de plus, &tre choisi Lipschitzien. Le volume de toute repré-
sentation de 1 (M) = 71 (K) peut donc se calculer en intégrant sur M ou bien sur K.
Dans la suite nous noterons également M ce complexe euclidien par morceaux et
toute triangulation sera une subdivision de la décomposition de K en simplexes.

Choisissons alors une triangulation suffisamment fine de M et appelons 77 la
triangulation invariante par 7z (M ) sur M quis’en déduit par image réciproque. Soit 1)
un domaine fondamental (de Dirichlet) dans M pour 1’action de w1 (M). Quitte a
modifier un peu 7; ou bien D on peut supposer qu’aucun sommet de la triangulation
n’estsur 0D.

Notons (my, ..., my) la liste des sommets de 77 qui sont dans I’intérieur de D,
N estalors le cardinal des sommets de la triangulation de départ sur M. Choisissons
maintenant N points dans X, notés (y1, ..., yy) de sorte que Si(mjy,...,mj. ) est
un k-simplexe de 7 alors le simplexe géodésique de X de sommets (v, ..., Vi, )
estnon dégénéré pour tout k& < dimM + 1. Cect est toujours possible car, pour chaque
sommet y;, la réunion des conditions de dégénérescence des simplexes contenant y;
est un ensemble fermé d’intérieur vide (une réunion finie de £ — 1-plans). Ces choix
étant fait, 1l existe autour de chaque point y; un petit voisinage V; en sorte que,
pour n’importe quel choix de points yj. ..., yy avec y; € V;, la propri€té de non
dégénérescence ci-dessus soit encore vérifiée. Par la suite nous aurons également
besoin de choisir les point y; de sorte que

yi #poly)y; pourtousy € m(M)etj #1i,

ceci est toujours possible car la réunion des points de 1’orbite des y;, pour j # i, qui

sont dans V; estun ensemble dénombrable. On procede donc par récurrence, y; étant

fixé on choisit y» € V2 dans ’ensemble partout dense qui est le complémentaire de

’orbite de y1, puis y3 dans le complémentaire des orbites de y1 et y» et ainsi de suite.
On définit alors fo par :

folymi) = po(y)yi pourtousy € my(M)eti =1,....N

eton étend f~0 a I'intérieur d’un simplexe (m;,, .. ., m;,) enune application affine sur
le simplexe géodésique engendré parles points y; . . . ., ¥, ; onutilise pour celala mé-
trique euclidienne sur les simplexes de Metla métrique hyperbolique sur ceux de X.
Par le choix des points y; € X , tous les simplexes dont les sommets sont dans 1'inté-
rieur de D sont transformés par foendes simplexes non dégénérés. Considérons main-
tenant le cas ou certains sommets sont dans I’intéricur de D et d’autres a I’extérieur.
Soit (mjy, ..., mi,, vymj, ..., y;,m; ) untel simplexe et supposons que son image
par fo. ¢’est-a-dire le simplexe not€ (Yiy, -« -, Yiys PV ) Vs - - -5 PV, )Y, ), s0iL dé-
généré ; cela signifie qu’il existe 1 < k < ¢ tel que p(y;,)y; appartienne au sous-
espace totalement géodésique £ engendré par les points (i, ..., yi,, 0¥V, - - -
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2 (Vjr_1) ¥ ) (rappelons que, par construction, (y;,, ..., y;,) estun (p—1)-simplexe
non dégénéré) ; on déplace alors y;, a l'intérieur de V;, pour le séparer de p(y;, ) -1g.
ceci est possible si E reste fixe lorsque 1'on déplace yj,, ¢’est-a-dire si aucun des
poInts Yiy, ..., Vi, (Y1) Vits - -+ » P(Vi_1) Vje_, 0'estdans I’ orbite de yj, . Par le choix
des y; ceci ne peut se produire que 81 y;, = y; avec! = 1,...,q et! # k ou bien
vi, = vi;, [ =1,..., p. Les points y; étant en bijection avec les points m; cela im-
pliquerait que dans le simplexe (m;,, ..., mi,, vymjp, ..., v;,m;,) deux des points
miy coincident et donc qu’au quotient sur M il se projette sur un simplexe dégénéré ce
qui est impossible. On peut donc séparer y;, du sous-espace totalement géodésique
P (Vi) —1E. On utilise ensuite I’argument de densité pour choisir le nouveau point y;,
disjoint de la réunion des orbites par p (711 (M)) des autres points y;. On procede alors
par récurrence sur les simplexes considérés qui sont en nombre fini.

Les autres simplexes sont des images par un élément p(y), pour y € w1 (M) des
simplexes d’un des deux types précédents. Ceci prouve le lemme 5.2. O

Preuve du théoreme. Nous noterons 75 la collection des simplexes de X ainsi ob-
tenue. Soit F une face de codimension 2 de 77 et I son image dans 73. L’¢toile

de F dans 7 contient un nombre fini de n-simplexes sq, ..., sp dont les images
sont notées s{, R s,’c. Le link autour de [ est un cercle. Précisément, considérons

un voisinage tubulaire de rayon assez petit, noté Tub(F), de cette face F de codi-
mension 2. Alors le bord de Tub(fF') est difféomorphe a F x S1. La variété M est
supposée orientde, et donc aussi M. Sur le bord de Tub(F) nous choisissons une
courbe C générateur de Hy(dTub(F), Z) ~ Z; nous pouvons, par exemple, prendre
I'intersection de 8'Tub(F) avec un hyperplan orthogonal a F en un point (on peut
définir un tel hyperplan bien que la métrique sur M, qui est euclidienne sur chaque
simplexe, soit singuliere en /). S1nous choisissons arbitrairement une orientation sur
chaque face de codimension 2, donc en particulier sur [, cela fournit une orientation
du cercle ¢ compatible avec celle de M.

1 application fy, linéaire par morceaux, envoie F sur F’ (par construction) et donc
dTub([) sur un cylindre topologique que 1’on peut projeter, a partir de I/, sur le bord
dTub(F”") d’un petit voisinage tubulaire de F’ (pour la métrique hyperbolique). Cela
induit une application,

fo: Hi(dTub(F), Z) —> Hi(3Tub(F’), Z)

et on appelle degré transverse de fo en F, I’image par fo* du générateur de
M1 (dTub(["), R) ; cette classe est un multiple entier de la classe fondamentale de
Hi(0Tub(F"), Z) et nous pouvons dong, par abus de langage, identifier le degré
transverse a un nombre entier relatf. On peut également définir ce degré en utilisant
le cercle € tracé sur 3Tub(F) et un cercle ¢’ analogue sur dTub(F”) sur lequel on
projette fO(G).
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Soit 6(F,s) (resp. 0'(F’,s")) 'angle diédral (euclidien) du simplexe s € T;
en la face I (resp. du simplexe s’ € 7% en la face /”'). Les nombres 6 et 6 sont
choisis positifs. L’application fo d’un simplexe s sur un simplexe s’ peut préserver
ou renverser "orientation (on rappelle que cette application est affine en restriction
a s) et nous poserons ¢(s) = ¢(s’) = %1 suivant le cas considéré.

Lemme 5.3. Soit F : une face de codimension 2 image de I, le degré rransverse de
Joen F, noté degy fo, vérifie,

drdegrp fo =+ Z e(s"O'(F', s").

sT/F'Cs’

Preuve. Pour F telle que fo(F) = Flets € Ty telsque F C s, fO(G Ms) se projette
sur €' N s’ (ou s" = fols)) qui est un arc d’angle de valeur absolue e’ (F',s"). On
peut choisir les orientations de X et I’ de sorte que I’angle orienté de la projection
de fo(CNs)est+0'(F', sy sie(S) = +1,et —0'(F', 5" si fo renverse I’ orientation
de 5. La quantité >, JFICs! e(s")E'(F', s") représente donc 1’angle orienté total de la
projection de fo(C) sur @, ¢’ est-a-dire 27 deg s fo. Sil’orientation de X estrenversée
la relation devient 2z deg - fo = — > o Ficy €ENO(F,s').

Considérons alors une déformation de po, soit p;, que nous supposerons C' en ¢.
Nous construisons 1’application f; de la manidre suivante

fi(mi) = y; i=1,....N,
Ffrlymy) = pe(y)y:  pourtout y € my (M),

et ensuite on étend f; de manidre affine dans chaque simplexe. La collection des
simplexes images et leurs sommets varient de manidre C' en ¢. Nous noterons cette
collection 75 (). Tous les simplexes de 75 (¢) sont non dégénérés, pour ¢ assez petit ;
en effet, il suffit de n’en considérer qu'un nombre fini, les autres s’en déduisant
par équivariance. Notons également que, par construction, f; dépend de maniére C!
en ¢, en particulier, le volume hyperbolique d’un simplexe de 75 (¢) est une fonction
C! de ¢. Soit F une face de codimension 2 de 7 57 et F’(¢) son image pat f; Pour
s € T%(t), nous noterons 6'(¢; I, s”) ’angle (positif) diédral de s” en I””. Nous ne
mentionnerons pas la dépendance en ¢ des simplexes de 75(1) et de leurs faces de
codimension 2 s’il n’y a pas d’ambiguité. Par ailleurs si s'(1) = ﬁ(s) et ¢ est assez
petit €(s(1)) ne dépend pas de 1. O

Lemme 5.4.
d

E( 3 e(s’)e’(r;F’,s’))zo.

s'fF Cs’
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Preuve. Pour t assez petit, 1a face F’(t) est homéomorphe a F/(0) ; de méme s/ (1) est
homéomorphe a 5”(0) si s'(r) € T (1) et ils sont tous non-dégénérés. Les voisinages
tubulaires de F’(r) et F’(0) sont aussi homéomorphes et on peut définir le degré
transverse de f; grice a F(0). Alors, par constance du degré par déformation, pour ¢
assez petit, on a deg () (f1) = degpr(0,(fo). O

Rappelons la formule de Schlifli (cf. [43] and [36]). Soit s” un simplexe hyperbo-
lique géodésique et /" une de ses faces de codimension 2 ; si s”(r) est une déformation
de classe C1 de s’ = s/(0), alors

d 4 d 4 4 / !
T DL = = > & L9 @), 5(0)) volp—2(F(0))

= F/cs/

ou vol,_» désigne le volume (n — 2)-dimensionnel de la face considéré.

Pour s € Ty choisissons un relevé s € 737 ; alors f; identifie de maniere C*
jusqu’au bord s avec un simplexe hyperbolique de 7%. L’ équivariance de f; permet de
définir de maniere unique une métrique hyperbolique sur 5 dont 1a collection produit
une métrique g(¢) sur M qui est continue et hyperbolique par morceaux. En particulier
le volume des faces de codimension 2 et les angles diédraux en celles-ci sont ceux
du simplexe hyperbolique f:(s). Soit w la forme volume hyperbolique de X, alors

vol(pr) zf [ (w) = Z ff; (@)

s€Tym
=Y o) vol(fi(s)) = Y e(3) vol(s, (1))
SETM SETM

en définissant €(s) = €(s) = €( ft (s)). Ici on a identifié, par abus de langage, f;" (w)
avec une forme différentielle sur M grice a I'équivariance de f;. La formule de
Schlifli donne,

d d
EVOI()OI) — _Z E(E(ﬂ vol(5, g(1)))
s€Ty

=Y Y« s)— 5. 1)) vol, o (F, g(1))

STM FCs

ou0(t; 5, F) désigne I’angle diédral en F du simplexe 5 mesuré A 1’aide de la métrique
z(r). Test égal A 8(r; fi(s), f;(F)) ot s et F sont des relevés respectifs de s et F.

4 _
Zvolip) =Y (X @2 @ F5) voby 2(F 56

F  §/FcCs
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La quantité entre parenthese peut se calculer sur M ou bien sur M car elle ne
concerne que I’étotle d’une face I ; elle peut également se calculer sur X par définition
de g(1). Le lemme précédent montre que, pour toute face I,

d — =
s)—(@(; F,5)) =0
Z_e(s) — 0 F,5)
§OF
Ce qui prouve que % vol(p;) = 0. O

Une conséquence immediate du théoréme 5.1 est le corollaire suivant. Notons
R(m (M), Isom(X)) ’espace des représentations du groupe fondamental d’une va-
riété M dans le groupe d’isométries de 1’espace hyperbolique.

Corollaire 5.5. Soit M une variété différentielle fermée et orientée, alors la fonc-
tionnelle, _
vol: R(m (M), Isom(X)) — R

prend un nombre fini de valeurs.

Preuve. Le groupe d’isométries Isom()? ) = PO(n, 1) est un groupe algébrique ; par
ailleurs, 1 (M) est de présentation finie donc R (w1 (M), Isom()? )) est une variété
algébrique (avec singularités) et possede un nombre fini de composantes connexes.
Le théoreme 5.1 affirme que la fonctionnelle vol est constante sur chaque composante
CONnexe., U

Remarque. Ce résultat est énoncé dans [42], toutefois la preuve est incompléte sauf,
peut-&tre, en dimension 3. Celle présentée ci-dessus nous a été suggérée par J.-P. Otal
(voir [11]).

Considérons alors les variétés hyperboliques fermées de dimension n. Un théo-
reme de Wang [48] affirme que, pour n > 4 et V > 0 le nombre de variétés hyperbo-
liques fermées de volume inférieur 2 V est fini. Ce résultat est notoirement faux en
dimension 3 et en dimension 2. Si X désigne une variété hyperbolique fermée et M
une variété diftérentielle fermée, nous dirons (voir [28]) que M domine X s’il existe
une application continue de degré non nul de M sur X. Le théoréme 5.1 permet de
donner une preuve tres simple du résultat suivant ;

Théoréeme 5.6 (T. Soma [45]). Soit M une variété différentielle fermée de dimen-
sion 3, alors il n’existe qu’un nombre fini de variétés hyperboliques de dimension 3
fermées dominées par M.

Preuve. Désignons par f: M — X I'application continue de degré non nul de M sur
X, ou X est une variété hyperbolique fermée. L’application f induit un morphisme
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Je: T (M) — m1(X), Cest-a-dire une représentation p de w1 (M) dans PO(n, 1).
Par définition du degré de f nous avons,

vol(p) = deg(f) vol(X).

Par ailleurs, si on munit M d’une métrique riemannienne quelconque, le théoreéme 3.2
montre que ce volume est borné par un nombre ne dépendant que de M (et de cette
métrique) que nous noterons C(M). Nous avons donc,

deg(f) vol(X) < C(M)

c’est-a-dire, deg(f) < C(M)/vol(X). Le volume d'une variété hyperbolique com-
pacte est bornée inféricurement par une constante universelle v, ne dépendant que de
la dimension n grace au lemme de Margulis (voir [13]). En conséquence,

deg(f) < C(M)/v3.

Il n’y a donc qu’un nombre fini de valeurs possibles pour le degré de I’application f.
De méme deg( f) vol(X) = vol(p) ne prend quun nombre fini de valeurs d’apres le
corollaire 5.5. Le volume des variétés X fermées domindes par une variété fermée
fixe M ne peut donc prendre qu un nombre fini de valeurs ce qui, d’apres une résultat
de W. Thurston ([47]), montre qu’il ne peut y avoir qu'un nombre fini de telles
variétés. O

Nous terminons en donnant un exemple de telles déformations, montrant la perti-
nence du théoreme 5.1. Il nous a été communiqué par Daryl Cooper par I’intermédiaire
de Michel Boileau.

Exemple (D. Cooper). Soit N une variété hyperbolique fermée de dimension 3.
Considérons la somme connexe de N avec S! x S2, notée N#(S! x §2), le groupe
fondamental de cette variété est le produit libre 71 (M) = Z. Soit k un nocud homo-
topiquement nul dans N#(S! x S2) qui rencontre S! x S? en au moins deux points.
D’apres R. Myers ([37]) on peut trouver de tels noeuds en sorte qu'une chirurgie de
Dehn autour de & transforme N#(S! x S?) en une variété hyperbolique fermée M
(voir aussi [10] page 797). La proposition 3.2 de [10] permet de construire une appli-
cation continue f: M — N#(S! x §2) de degré 1. Par ailleurs il existe également
une application continue, /i : N#(S! x §?) — N de degré 1 qui consiste 2 écraser
S1 x 82 en un point. Nous obtenons donc une application continue de degré 1,

he f: M — N

et une représentation pg = hy o fi: (M) — 7 (N) C PO@3, 1). Le volume de
cette représentation est,
vol(p) = vol(N) > 0
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car i o f estdegré 1 et 'image de p est le groupe fondamental de N. Par ailleurs pg
se décompose en,

001 (M) L 71 (M)« Z 25 POG, 1),

Le facteur libre Z permet alors de déformer /i, sans contrainte et donc de produire
des déformations non triviales. Plus précisément, si y € w1 (M) vérifie que f.(y)
est le générateur du facteur Z, alors po(y) = 1. On peut déformer continiiment 7.,
en déformant seulement 1’'image de f;(y ), par exemple en un élément hyperbolique
dont la longueur de translation varie ; de la sorte la déformation p; ainsi obtenue est
non-triviale. En augmentant le nombre de facteurs S' x S2 nous pouvons aisément
augmenter le nombre de parametres disponibles pour déformer p.

Remarque. Il serait intéressant de construire de telles déformations en dimension
supérieure ou égale a 4. Il est facile d’en construire de volume nul, mais des exemples
de volume non nul restent a décrire.
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