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Inégalités de Milnor–Wood géométriques

Gérard Besson, Gilles Courtois et Sylvestre Gallot

Résumé. Nous prouvonsunegénéralisation de lacélèbre inégalité deMilnor–Wood. SiY est une
variété riemannienne fermée, nous considérons une représentation de son groupe fondamental
dans le groupe d’isométries d’une espace symétrique X de même dimension. Lorsque X est le
produit d’espaces symétriques de courbure strictement négative et de dimension strictement
supérieure à 2, nous démontrons une majoration du volume de cette représentation par un
nombre calculé à l’aide des entropies volumiques de Y et X. Le cas d’égalité est étudié et
donne un théorème de rigidité. Ensuite nous décrivons des exemples de représentations de
volume non nul. En dimension 3 l’inégalité ci-dessus donne une preuve simple d’un théorème
dû à Soma montrant la finitude du nombre de variétés hyperboliques fermées dominées par une
même variété fermée.

Abstract. We prove a generalisation of the celebrated Milnor–Wood inequality. If Y is a closed
Riemannian manifold, we consider a representation of its fundamental group into the isometry
group of a symmetric space of the same dimension. When X is the product of symmetric spaces

ofnegativecurvatureand of dimension greater than 2,we prove an upper bound of the volumeof
this representation computed in terms of the volume entropies of Y and X. The case of equality
is studied and gives rise to a rigidity theorem. We then describe examples of representations of
non-zero volume. In dimension 3 the inequality gives a simple proof of a theorem due to Soma
showing the finiteness of the number of closed hyperbolic manifolds dominated by the same

closed manifold.

Mathematics Subject Classification 2000). 53 C24, 53 C35, 20 C15.

Mots-clés. Inégalité de Milnor–Wood, entropie volumique, barycentre, représentation, formule
de Schläfli.

1. Introduction

La célèbre inégalité de Milnor–Wood ([35] et [49]) affirme que, si

E -.
est un fibré plat en fibres S1 sur la surface compacte de genre 2, alors la

caractéristique d’Euler de ce fibré, notée E) vérifie,

| E)| | | 2. - 2,
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l’égalité ayant lieu si E est le fibré tangent de

Un fibré plat étant défini par une représentation de p1( l’inégalité ci-dessus

est en fait une restriction imposée à cette représentation à valeurs dans le groupe des

homéomorphismes du cercle. Les valeurs possibles de la caractéristique d’Euler de E
sont décrites dans [26].

Dans cet article nous envisageons une généralisation, en dimension supérieure de

cette inégalité. Pour cela nous définissons le volume d’une représentation. Plus
précisément, soit Y une variété différentielle fermée orientée de dimension n et soit une
représentation de son groupe fondamental dans le groupe d’isométries d’une variété
symétrique de courbure négative de dimension n et simplement connexe, notée X.
Considérons une application f̃ du revêtement universel de Y dans X équivariante par
rapport à alors, si désigne la forme volume de X la forme f̃ * passe au quotient
sur Y

Definition 1.1. On appelle volume de la représentation le nombre,

vol(
Y
f̃ *

Dans certains cas ce nombre peut-être interprété comme la classe d’Euler d’un
fibré plat. Des bornes supérieures de vol( existent. Elles reposent souvent sur le

choix d’une famille de sections particulières du fibré plat. Dans [16], par exemple,
K. Corlette utilise des sections harmoniques pour démontrer un théorème de rigidité
sur les représentations de volume maximal. Le cas où X est hyperbolique réel est

abordé par A. Reznikov dans [41] ; l’auteur y prouve une inégalité optimale et c’est
ce type de résultats que nous étendons dans le présent travail. Le cas d’égalité dans

l’inégalité deA.Reznikovest prouvé par N. Dunfield dans [19] etdans [17],il consiste
à montrer que, si le volume est maximal, la représentation est fidèle et discrète.
Signalons l’article [30] dans lequel l’auteur décrit une autre notion de volume de
représentations et construit de nouveaux invariants numériques.

Dans lecasoùXest l’espace hyperboliqueréel nousprouvons,danscetarticle, que

le volume des représentations est constant sur les composantes connexes de l’espace
des représentations. C’est un résultat évident lorsque la dimension est paire car, dans
ce cas, le volume est aussi un nombre d’Euler, mais nouveau dans le cas de dimension
impaire. Plus précisément nous prouvons le

Théorème 1.2. Soit Y une variété différentielle fermée et orientée et .t : p1(Y
Isom(X) une famille de représentations qui dépend de manière C1 du paramètre

t R, alors le volume vol(.t est constant.

La méthode employée consiste à utiliser la formule de Schläfli voir aussi [11]).
Il s’agit d’une approche nouvelle dans ce contexte; en fait nous construisons un
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“polyèdre” géodésique hyperbolique dans X équivariant par rapport à l’image de

Il s’agitd’une réunion de simplexes hyperboliquesgéodésiques invariants par l’image
de ; les simplexes pouvant se chevaucher ils ne fournissent pas une triangulation
de X. Nous construisons ensuite une application .-équivariante polyèdrale. Ceci
permet alors de calculer le volume de la représentation. La formule de Schläfli ainsi
qu’un peu de théorie du degré permet alors de montrer la constance de ce volume. Un
corollaire frappant est une preuve très simple du résultat suivant de T. Soma ([45]),

Théorème 1.3 T. Soma). Soit Y une variété différentielle fermée de dimension 3.
L’ensemble des variétés hyperboliques fermées X, de dimension 3 telles qu’il existe
une application continue de degré non nul de Y sur X, est fini.

La preuve se résume comme suit. Appelons f l’application de degré non nul
de Y sur X et la représentation induite de p1(Y dans p1(X), alors vol(
deg(f vol(X). Le théorème 3.17 affirme qu’il existe une constante C(Y) telle que
vol( C(Y). Par ailleurs le volume des variétés hyperboliques fermées est minoré
par une constante universelle qui dépend de la dimension). Ceci montre que le degré

de f ne peut prendre qu’un nombre fini de valeurs. Le volume de la représentation
étant constant sur les composantes connexes de l’espace des représentations de p1(Y
dans p1(X) il ne prendégalement qu’un nombre fini de valeurs. Finalement le volume
de la variété hyperbolique X ne prend qu’un nombre fini de valeurs. Un résultat de

W. Thurston affirme alors qu’il n’y a qu’un nombre fini de variétés X possibles. Le
lecteur peut consulter les détails dans le paragraphe 5.

Le théorème 1.2 est en fait un corollaire d’un résultat plus général, que nous
décrivons maintenant. Rappelons la définition de l’entropie volumique d’une variété
Riemannienne Y,g). Pour x Y on désigne par B(x, R) la boule géodésique de
centre x et de rayon R, alors on définit

Ent(Y, g) lim
R.8

1

R
log(vol(B(x, R))).

Dans ce qui suit X p1 Xi est le produit des espaces symétriques simplement
connexes de courbure strictement négative, Xi Chacune des variétés Xi est munie
d’une métrique a2i gi0 où gi0 est symétrique normalisée de courbure comprise entre

-4 et -1, par exemple) et ai est un réel strictement positif. Parmi tous les choix de

nombres ai il en est un qui donne une entropie volumique minimale voir la proposition

2.4) ; nous noterons g0 la métrique correspondante sur X qui est de dimension
n. Son entropie volumique est un nombre calculable. Nous prouvons,

Théorème 1.4. Soit Y une variété riemannienne fermée de dimension n et une

représentation de p1(Y dans Isom(X), alors

i) vol( Ent(Y,g)
Ent(X,g0)

n
vol(Y,g).
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ii) Lorsque Ent(Y, g) > 0 l’égalité dans l’inégalité ci-dessus a lieu si, et seulement
si, la représentation est injective, X X/ p1(Y est une variété compacte
et Y,g) est homothétique à X,g0).

Ce résultat était annoncé en 1998dans[17].Il généralise lecas où la représentation
a une image discrète et cocompacte, c’est-à-dire l’analogue des théorèmes de [7]
pour le cas où l’espace localement symétrique compact est localement un produit
d’espacessymétriques derang 1.Cedernier résultat, concernant les produitsd’espaces
symétriques de rang 1 avec image discrète cocompacte, est énoncé par Ch. Connell
et B. Farb dans [15].

La preuve de l’inégalité se fait en exhibant une famille d’applications .-équivariantes

de Y sur X construites par la méthode introduite dans [7]. Le cas d’égalité est
beaucoup plusdifficilecar l’image de n’est pas supposée discrète ;plusprécisément,
nous montrons que, dans le cas d’égalité, la famille d’applications .-équivariantes
que nous construisons converge vers une application harmonique ; ceci permet, en

particulier, de montrer que la limite est de classe C8. La combinaison des propriétés
liées à l’harmonicité et de celles liées à la construction ci-dessus conduit au résultat.

Remarquons que les applications .-équivariantes construites sont particulièrement

adaptées à l’étude du volume et conduisent à des résultats optimaux comparables,

dans un cadre plus général, à ceux de N. Dunfield [19]. Signalons également
un travail récent de S. Francaviglia et B. Klaff [24] dans lequel les auteurs utilisent
une intéressante variante de la construction de [8] pour étudier le cas où Y est une
variété hyperbolique de volume fini.

Enfin, l’inégalité ci-dessus peut s’interpréter agréablement dans le cadre de la
cohomologie bornée voir [28]). Le récent travail de M. Burger, A. Iozzi et A. Wienhard
([14]) développe ce point de vue et aboutit à de très jolis résultats concernant les
représentations du groupe fondamental des surfaces.

Nous tenons à remercier A. Reznikov, M. Boileau, D. Cooper, S. Francaviglia,
N. Bergeron et J.-P. Otal pour des conversations intéressantes. Nous remercions
surtout deux référés anonymes ainsi que T. Bühler pour leurs importantes remarques qui
ont permis d’améliorer considérablement la rédaction de ce texte.

2. Géométrie des espaces produits

À titre d’exemple, nous décrirons la géométrie de l’espace X, g10 g20) Hn1 ×
Hn2, g1

0
g20) muni de la métrique produit où Hn1,g10) resp. Hn2,g20)) désigne

l’espace hyperbolique simplement connexe de dimension n1 resp. n2) de courbure
constante égale à -1). Pour un exposé général sur les espaces symétriques, nous
renvoyons à [29].
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2.1. Géodésiques. Soient x x1,x2) X et u u1,u2) T(x1,x2)X tels que

u 2

0
u1 2

g10.g2 g1
0 + u2 2

g2
0

1, alors la géodésique de X, notée cu, partant de x
et de vitesse initiale u est cu(t) c1(t c2(t)), où ci i 1, 2) est la géodésique de

Hni partant de xi et de vitesse initiale ui Une géodésique définie par un vecteur u
u1,u2) telle que u1 0 ou bien u2 0 est dite singulière ; ces cas correspondent à

cu(t) x1, c2(t)) ou cu(t) c1(t x2).

Une géodésique définie par un vecteur u u1, u2) tel que ui 0, pour i 1, 2,
est dite régulière.

2.2. Courbures et plats. La courbure sectionnelle de X,g1
0

g20), qui se calcule
aisément, est négative ou nulle. Soit alors x x1, x2) X, u u1, u2) TxX,
un vecteur régulier, alors l’application

R
2 -. X,

t, s) - c1(t/a1), c2(s/a2)

où a1 u1 g1
0

et a2 u2 g2
0

réalise un plongement isométrique de R2 muni de

sa métrique euclidienne dans X,g1
0

g20). On peut vérifier aisément que l’image de
cetteapplication est totalement géodésique en constatantque, si si désigne la symétrie
orthogonale par rapport à la géodésique ci dans Hni, gi0 l’image de l’application
ci-dessus est l’ensemble des points fixes de s1 × s2 dans X ; il s’agit donc d’un
sous-espace totalement géodésique plat et qui est, de plus, de dimension maximale
avec ces propriétés : X,g1 g2

0 0) est un espace symétrique de rang 2. Nous noterons
désormais ḡ0 la métrique g1

0
g20.

Remarque. D’une manière générale, si X est le produit riemannien de p espaces

symétriques de courbure strictement négative, alors X est de rang p.

2.3. Métriques localement symétriques. On peut munir la variété différentielle X
d’autres métriques localement symétriques; en effet, pour a1 et a2 deux nombres
réels strictement positifs, on définit :

ga1,a2 a
2
1g

1
0 a

2
2g

2
0.

Contrairement aux espaces symétriques irréductibles, les espaces symétriques
produits sont flexibles.

2.4. Groupe d’isométries. On détermine aisément le groupe d’isométries de

X,ga1,a2 En effet, si n1 n2

Isom(X,ga1,a2 Isom(Hn1, g
1
0) × Isom(Hn2, g2

0).
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Si n1 n2 et a1 a2, l’échange des deux facteurs est une isométrie supplémentaire
qui est involutive ; le groupe d’isométries de X, ga1,a1 est donc un produit
semidirect de Z/2Z par le groupe Isom(Hn1, g0) × Isom(Hn2, g0).

2.5. Fonctions de Busemann. On rappelle que, si M, g) est une variété riemannienne

complète et sic: R Mest une géodésique minimisantesur toutesa longueur
et paramétréepar l’abscisse curviligne c’est-à-dire,cest un plongement isométrique),
alors on définit la fonction de Busemann associée à c,

Bc(x) lim
t.+8

d(x,c(t))- t lim
t.+8

d(x,c(t))- d(c(0), c(t))

On montre que la limite existe voir [2], p. 23). Si M, g) est une variété simplement
connexede courbure négative ounulle son bord à l’infini voir [2], paragraphe 3,p. 21)
s’identifie à une sphère de dimension n-1, où n dimM, grâce au choix d’un point
m0 M qui sert d’origine. Chaque point M, le bord à l’infini de M, détermine
une géodésiqueminimisante sur toute sa longueur, à savoir, l’unique géodésique c qui
passeparm0 et telleque limt.+8 c(t) Lafonctionde Busemann correspondante
est notée B(· Remarquons qu’elle dépend du choix de l’origine.

Dans notresituation, ilest souhaitablede travailler surunepartie du bord qui reflète
mieux la structure produit. Pour la variété X ci-dessus le bord à l’infini s’identifie
à Sn1+n2-1 pour toutes les métriques ga1,a2 après le choix d’une origine. Nous
utiliserons Sn1-1

× Sn2-1 Sn1+n2-1 qui s’identifie dans X à Hn1 × Hn2

Plus précisément, considérons, par exemple, la métrique g0¯ g1
0

g20, appelons

x0 x10, x2
0 une origine de X Hn1 × Hn2 le bord de X s’identifie aux rayons

géodésiques paramétrés par longueur d’arc et partant de x0 ; nous ne considérerons
que les géodésiques c c1, c2) où ci est une géodésique de Hni telle que, pour tout

t R, c1(t) g1 c2(t) g20 0
; nous les appellerons géodésiques diagonales. Elles

sont donc paramétrées par un point .1, .2) où .i Sni-1 Hni Il s’agit du
bord de Furstenberg voir [20], paragraphe 3.8, p. 235), mais nous n’utiliserons pas

sa description probabiliste. Nous le noterons FX. Il est important de noter que nous
utiliserons toujours ce bord; en effet, si nous changeons la métrique en ga1,a2 nous
pouvons considérer des ga1,a2 -géodésiques c c1, c2) telles que 1

c1(a1 t) ga1
1
a2 c2(t) ga2

où gai a2
i gi0 ; elles définissent un bord qui s’identifie à F X.

Remarque. Lorsque n1 n2 2 et a1 a2 1, le bord de Furstenberg de X,
S1 × S1 S3 X, s’identifie naturellement à un tore de Clifford dans S3.

Maintenant, pour .1, .2) Sn1-1
× Sn2-1, on note B0(· la fonction

de Busemann de X, ḡ0) correspondante l’origine x0 x10, x2
0 étant fixée), et

Bi(· .i) B
xi0 · .i), i 1, 2, la fonction de Busemann de Hni, gi0 on a :
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Lemme 2.1. Avec les notations ci-dessus, si x x1, x2) X

B0(x,
1

v2
B1(x1, .1) + B2(x2,.2)

Preuve. Soit c la géodésique paramétrée par l’abscisse curviligne définie par et

telle que c(0) x0 x10,x2
0 Alors, si c c1, c2), on a c1

1
v2

c2 d’où

di(xi, ci t))
1

v2
t + Bi(xi, .i)+ ei t i 1,2

avec ei t) ---.t.+8
0. Ici, di désigne la distance dans le facteur i 1, 2.

Le lemme se déduit alors du développement limité de

d(x, c(t)) - t d2
2 x2,c2(t))

1/2 - t.1 x1, c1(t)) + d
2

De même, si Ba1,a2 · désigne la fonction de Busemann de X,ga1,a2 où est
dans le bord défini ci-dessus, on a :

Lemme 2.2. Avec les notations ci-dessus, si x x1, x2) X

Ba1,a2(x,
1

a2
1 + a2

2

a1B1(x1, .1) + a2B2(x2, .2)

La preuve de ce lemme se fait comme celle du lemme 2.1.

2.6. Élément de volume. Si on note dvg l’élément de volume d’une métrique
riemannienne g, il est immédiat que

dvga1,a2
a n1

1 a n2
2 dvg1 dvg2

0 0

où dv
gi0

désigne l’élément de volume de Hni, gi0 pour i 1, 2.

2.7. Entropie. On rappelle la définition de l’entropie volumique) d’une variété
riemannienne M, g) que nous supposerons compacte pour simplifier. Soit x M un

point du revêtement universel M de M alors la quantité suivante existe et ne dépend
pas de x,

Ent(g) lim
R.+8

1

R
log vol(BM x, R))

où BM x,R) désigne la boule métrique de centre x et de rayon R dans M muni de la
métrique relevée de g.

Par définition Ent(g) est l’entropie de la variété riemannienne M, g), elle ne

dépend de M qu’à travers la relevée de g à M. Par abus de langage, nous parlerons
de l’entropie de ga1,a2 sur X.
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Proposition 2.3. Pour tous a1, a2 positifs

Ent(ga1,a2
n1-1)2

a2
1

+
n2-1)2

a2
2

Preuve. Le calcul de l’entropie des espaces symétriques est fait dans [7]. Rappelons
que l’entropie d’un produit vérifie

Ent(ga1,a2
2 Ent(Hn1,g10)

2

a2
1

+
Ent(Hn2, g20)

2

a2
2

Dans cet article on se propose de prouver un théorème d’entropie minimale voir
l’introduction) c’est-à-dire de minimum de l’entropie à volume fixé. Dans ce
paragraphe nous examinons cette question pour la famille de métriques ga1,a2 Plus
précisément, soit un sous-groupe discret cocompact de Isom(Hn1, g10)×Isom(Hn2, g20),
agissant sans points fixes sur X. Ce groupe agit par isométries sur X pour toutes les
métriques ga1,a2 on peut donc munir le quotient X X/ des métriques induites
que nous noterons encore ga1,a2 Par ailleurs,

vol(X, ga1,a2 a n1
1 a n2

2 vol(X, ḡ0).

Proposition 2.4. Pour tous a1,a2 strictement positifs tels que a n1
1 a n2

2 1, on a

Ent(ga1,a2
vn1 + n2 n1-1vn1

n1
n2-1vn2

n2
1

n1+n2

Ent ga1,a2

où a1 n1-1) vn2
vn1 n2-1)

n2
1

n1+n2
a2 n2-1) vn1

vn2 n1-1)

n1
1

n1+n2

L’égalité, dans l’inégalité ci-dessus, a lieu si et seulement si ai ai

Remarque. Lorsque les espaces symétriques sont complexes, quaternioniens ou de
Cayley, les calculs sont comparables et sont laissés au lecteur.

Dans la suite nous noterons g0 la métrique ga1,a2

Preuve. On a

Ent(ga1,a2
2

n1 + n2)
n1 n1-1

vn1a1

2

+ n2 n2-1
vn2a2

2

n1 + n2
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la fonction x x2 étant strictement log-concave

Ent(ga1,a2
2

n1 + n2) n1-1

vn1

2n1
n1+n2 n2-1vn2

2n2

n1+n2 1

a n1
1 an2

2

2

n1+n2

d’où le résultat

Ent(ga1,a2
vn1 + n2 n1-1

vn1

n1 n2-1vn2

n2
1

n1+n2

De plus, par stricte log-concavité, l’égalité n’a lieu que si et seulement si

n1 - 1

vn1a1

n2- 1

vn2a2

c’est-à-dire si ai ai

Remarques. i) Si n1 n2, alors la métrique minimisante est homothétique à ḡ0 le

facteur d’homothétie étant calculé de sorte à avoir un volume 1).

ii) La courbure de Ricci de la métrique ga1,a2 est

Ricci(ga1,a2 n1- 1)g1
0 n2- 1)g2

0.

La métrique ga1,a2 n’est donc d’Einstein que si

n1- 1

a2
1

n2- 1

a2
2

Par conséquent, en général, la métrique qui minimise la fonctionnelle Ent, parmi les

ga1,a2 n’est pas d’Einstein. Par contre, elle l’est si et seulement si n1 n2.

De même, si X est un espace produit général, c’est-à-dire, si X, ḡ) X1,g1) ×
· · ·×(Xp, gp), où(Xk, gk) est unespacesymétrique de courbure strictementnégative,
de dimension nk et d’entropie notée Ek, on considère les métriques,

ga a
2
1g1 · · · a2p gp

où a a1, ap) avec ak > 0. Alors, on a la

Proposition 2.5. Pour tous nombres réels et strictement positifs a1, ap tels que

an1
1 a

np
p 1, on a

Ent(ga) vn
p

i=1

Ei
vni

ni
n

où n n1 + · · · + np dim(X).
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L’égalité, dans l’inégalité ci-dessus, a lieu si, et seulement si, pour tout i
1,2, p

ai ai
Ei
vni

p

k=1

vnk

Ek

nk
n

2.8. Mesure de Patterson–Sullivan. Sur le revêtement universel d’une variété de

courbure strictement négative, M, g), on peut définir une famille de mesures qui est
appelée parabusde langage) lamesurede Patterson–Sullivan.Elle consiste à associer
àchaque pointm M le revêtement universel deM) une mesure borélienne positive
sur M, notée µm. Cette famille est entièrement caractérisée par les deux propriétés
suivantes :

i) dµm
dµm

exp - Ent(g)(B(m, - B(m on a choisi ici une origine

O M afin de définir B). Cette propriété affirme que pour m m les mesures µm
et µm sont absolument continues l’une par rapport à l’autre et la densité s’exprime
comme ci-dessus.

ii) Pour tous Isom(M), agit par homéomorphisme sur M, et

µ. m) .*(µm)

voir [31]).
Dans le cas où M est un espace symétrique de courbure négative ou nulle et pas

strictement négative) une construction est possible voir [1], [39] et [33]). Dans notre
situation, c’est-à-dire

M,g) X, ḡ0) Hn1, g 1
0) × Hn2, g 2

0)

la famille de mesures suivante, portées par Hn1 × Hn2 vérifie des propriétés
analogues aux précédentes : pour x x1, x2) X et .1, .2) Hn1 × Hn2

dµx e-(n1-1)B1(x1,.1)-(n2-1)B2(x2,.2)d.1 d.2.

Remarque. Remarquons que la mesure ci-dessus n’est pas la mesure de Patterson–

Sullivan portée par le bord de Furstenberg. Le lecteur peut consulter les références

[1], [39] et [33].

En effet,
i) Pour x0 et x X, dµx0 et dµx sont absolument continues, mais la densité n’a

plus la forme précédente, elle vaut :

dµx
dµx0

exp (-[(n1 - 1)B1(x1,.1) + n2 - 1)B2(x2, .2)])
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xi e-(ni-1)Bi xi.i d.i est la mesure de Patterson–Notons, en revanche, que µi
Sullivan de Hni,gi0 Par ailleurs, on appelle P0 la densité dµx

dµx0
; c’est le noyau

de Poisson de X, ḡ0) ; cette fonction est, en effet, le produit des noyaux de Poisson
de chaque facteur et est donc harmonique.

ii) Si .1, .2) Isom(Hn1, g10) × Isom(Hn2, g20) alors

µ. x) .*(µx)

car

.*(µx) .1, .2)*(µ1x

1 µ2x

2 .1)*(µ1x

1 .2)*(µ2x

2

µ1
.1(x1) µ2

.2(x2) µ. x).

De même, si n1 n2, on vérifie aisément que l’isométrie supplémentaire

x1, x2) x2, x1)

satisfait cette contrainte.
Dans la suite nous travaillerons donc avec cette famille µx qui est le produit des

mesures de Patterson–Sullivan de chaque facteur. Terminons en remarquant que si

Bai
i désigne la fonction de Busemann de Hni, a2

i gi0 alors

Ent(a2
i gi0 Bai

i · ·
1

ai
ni - 1)aiB i

· ·

de sorte que la famille µx ne dépend ni de a1, ni de a2. Pour la même raison P0 est

aussi une fonction harmonique en x) sur X, ḡa) pour tout a a1,a2).

2.9. Barycentre. Nous construisons ici une application inverse de x µx, c’est-à-

dire une application qui associe à la plupart des mesures sur F X un point de X qui
est son centre de masse ou barycentre. La construction est analogue à celle de [7] et

[8] à l’utilisation près de F X au lieu de X.
SoitV une mesureborélienne positive non nulle sur F X, on considère la fonction

x X, Ba1,a2(x)
F X

Ba1,a2(x, dV(

On définit les mesures marginales sur Hn1 et Hn2 par :
i) V1(A1) V(A1 × Hn2 p1*(V), où A1 est un borélien de Hn1 et p1 la

projection canonique de FX sur Hn1 ; et de même,

ii) V2(A2) V(.Hn1 × A2) p2*(V), où A2 est un borélien de Hn2 et p2 la

projection de FX sur Hn2
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Proposition 2.6. Si V1 et V2 sont des mesures non nulles et sans atomes, pour tous

a1, a2 strictement positifs, la fonction Ba1,a2 est C8, strictement convexe sur X et

tend vers l’infini lorsque x tend vers l’infini.

Preuve. Par définition de V1, V2 et Ba1,a2 on a :

Ba1,a2(x)
1

a2
1 + a2

2

a1
Hn1

B1(x1, .1) dV1(.1) + a2
Hn2

B2(x2, .2) dV2(.2)

En effet,

F X
B1 x1,.1) dV(.1, .2)

F X
B1 x1, p1(.1, .2) dV(.1, .2)

Hn1
B1(x1, d(p1 * V)(.1)

et de même avec l’autre terme. Alors, on applique les résultats de [18], [7] et [8] qui
montrent que xi Hn1 Bi(xi, .i) dV(.i) est strictement convexe, pour i 1,2, et
tend vers l’infini lorsquexi tend vers l’infini dansHni On rappellequ’unefonctionest

dite strictement convexe si elle l’est en restriction à toute géodésique non constante.

Il est alors facile de vérifier que Ba1,a2 est strictement convexe en restriction à toute
géodésique non constantede X Hn1 ×Hn2 Lesautres conclusions de la proposition
sont également évidentes.

Remarque. L’hypothèse sur la mesure V est vérifiée, par exemple, dès que celle-ci
est absolument continue par rapport à la mesure de Lebesgue sur F X. Par ailleurs,
elle peut être affaiblie voir [7]).

Corollaire 2.7. Sous les mêmes hypothèses, la fonction Ba1,a2 admet un unique
minimum sur X que nous appellerons le barycentre de V, noté bar(V), qui ne dépend
pas de a1, a2 à condition qu’ils soient strictement positifs). De plus bar(V)
bar1(V1),bar2(V2)), où bari(Vi) désigne le barycentre de la mesure Vi dans Hni

Preuve. L’unicité résulte de la stricte convexité deBa1,a2 a1 > 0, a2 > 0) et du fait
Ba1,a2(x) ---.x.+8 +8. Le point x* x*1, x*2 est défini par l’équation vectorielle,

Ba1,a2(x*) 0

c’est-à-dire a1 Hn1 1B1(x*1, .1) dV1(.1) + a2 Hn2 2B2(x*2, .2) dV2(.2) 0

ici i désigne le gradient d’une fonction définie sur Hni



Vol. 82 2007) Inégalités de Milnor–Wood géométriques 765

Si x̄i bari(Vi) voir [8]), alors

Hni
iBi(x̄i, .i) dV(.i) 0 pour i 1, 2.

Par unicité on a donc x̄i x*i i 1, 2), c’est-à-dire

bar(Va1,a2 bar1(V1), bar2(V2)).

3. Le volume des représentations

Nous donnons dans ce paragraphe une application de la technique introduite dans [9]
aux représentations du groupe fondamental d’une variété compacte.

Dans ce qui suit X est un produit fini d’espaces symétriques simplement connexe
decourbure strictement négative. Chaque facteur est supposé dedimension supérieure
ou égale à 3. On munit X de la métrique g0 décrite dans la proposition 2.4, c’est-
àdire celle qui réalise l’entropie minimale pour tous les quotients compacts de X. Par

ailleurs, Y,g) est une variété riemannienne compacte dont le groupe fondamental
est noté On considère

: - Isom(X, g0)

une représentation. Il existe toujours une application équivariante f̃ : Y X car

X est contractile dans la suite nous donnerons un exemple explicite d’une telle
application). Elle vérifie donc que

f̃ y)) f̃ y) pour tous et y Y

On peut toujours la supposer C1, quitte à la régulariser. Si on note .0 la forme volume
de X, g0) alors,

Definition 3.1. On appelle volume de la représentation le nombre

vol(
Y
f̃ * .0)

Remarques. i) La définition ci-dessus a un sens car, f̃ étant C1, f̃ * .0) est une

forme continue sur Y qui de plus est invariante par Par ailleurs, il est immédiat de

vérifier que vol( ne dépend pas du choix de l’application équivariante f̃
ii) Quitte à changer l’orientation de X on peut supposer que l’intégrale

Y f̃ * .0)
est positive.

Nous prouvons le théorème suivant :
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Théorème 3.2. Avec les notations ci-dessus :

i) vol( Ent(Y,g)
Ent(X,g0)

n
vol(Y,g).

ii) Lorsque Ent(Y,g) > 0 l’égalité, dans l’inégalitéci-dessus a lieu si,et seulement

si, la représentation est injective, X X/ est une variété compacte et

Y, g) est homothétique à X, g0).

Remarques. i) Ce résultat est un premier pas dans la compréhension des représentations

des groupes fondamentaux de variétés compactes dansdes groupes d’isométries
d’espaces symétriques de type non compact.

ii) Les exemples de telles représentations sont rares et nous discuterons ce point
plus loin dans le texte. Plus rares encore sont les exemples dont le volume est non
nul.

iii) Un exemple est donné par f*, où f : Y X X/ 0 est une
application continue de degré deg(f sur la variété compacte X. Dans ce cas vol(

| deg(f )| vol(X,g0). Pour un énoncé précis voir le théorème 3.17
iv) Seul le cas de dimension 2, où notre méthode ne s’applique pas, est complètement

compris cf. [26]). En particulier, le théorème 3.2 est une généralisation de la

célèbre inégalité de Milnor–Wood cf. [35], [49] et [41]).

Preuve. La preuve de l’inégalité est semblable à celle prouvée dans [7], section 5,
nous la faisons maintenant dans le contexte des représentations. Le cas d’égalité est

beaucoup plus difficile car nous ne disposons pas de quotient compact de X X/
n’est même pas un espace séparé, en général) sur lequel s’appuyer afin d’utiliser la

théorie du degré voir la preuve du cas d’égalité de [7], section 7). Une étape de la

preuve consiste à montrer que, dans la cas d’égalité, est discret et cocompact.
Dans ce qui suit d désigne de manière générique la distance sur l’espace considéré.

Soit f̃ une première application continue et .-équivariante,

f̃ : Y - X

par exemple, nous pouvons prendre, pour > 0,

f̃ y) bar e-Ent(Y,g)(1+e) d(y, y0))
)*d.

où y0 Y est une origine et les notations sont celles du paragraphe 2.
On rappelle que si F X et z X, d. désigne la mesure canonique sur F X

et P0(z, le noyau de Poisson de X, ḡ0), normalisé en l’origine x0 X de sorte

que

P0(x0, · 1.
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Nous construisons une autre application, comme dans [7], définie, pour tout

c > Ent(Y, g), par

Fc(y) bar
Y

e-cd(y,z)P0 f̃ z), dvg(z) d.

L’avantage de la fonction Fc sur f̃ est qu’elle est plus régulière ; en effet, f̃ n’est a

priori que Lipschitzienne alors que Fc est de classe C1. Ce point sera crucial pour le

cas d’égalité. Montrons la régularité de Fc.
Posons comme dans [7], section 2.3, pour c > Ent(Y, g)

.c(y,
Y

e-cd(y,z)P0(f̃ z), dvg(z)

et

c(y, .c(y,

F X .c(y, d. µy,c c(y, d..

c(y, est de norme L1(.FX, d.) égale à 1, donc la mesure µy,c est de probabilité.

Le barycentre d’une mesure est invariant par multiplication de celle-ci par une

constante strictement positive, d’où,

Fc(y) bar(µy,c).

Lemme3.3. L’application c, y) c(y, · est declasseC1 de ]Ent(Y, g),+8[×Y
dans L1(.F X).

Preuve. Il n’est pas possible de montrer le lemme ci-dessus par simple application
du théorème de dérivation sous le signe somme. Toutefois, dans [7], lemme 2.4, nous
prouvons,comme corollairedu théorème de convergence dominée, que y c(y, ·
est de classe C1 à c fixé) et, si u TyY sa différentielle est donnée par

u · .c)(y, -c
Y

e-cd(y,z)(u · d)(y,z)P0(f̃ z), dvg(z)

la continuité en c de cette quantité est évidente en remarquant que |u · d| u g,
que P0 est strictement positif et que, pour y et z fixés, c e-cd(y,z) est décroissante
en c ; ceci permet d’appliquer une nouvelle fois le théorème de convergence dominée.

De même, pour y et fixés, on peut appliquer le théorème de dérivation sous le

signe somme afin de montrer la différentiabilité en c à y et fixé). En effet,

0 d(y, z)e-cd(y,z) e-c d(y,z)

pour tout c < c. Ceci montre que

.c
c

y, - Y
d(y, z)e-cd(y,z)P0 f̃ z), dvg(z)
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existe et, encore grâce au théorème de convergence dominée, est continue en c, y).
Ceci prouve le lemme ci-dessus. On remarque que le même type d’argument que ceux
utilisés dans [7] montrent que .c

c
est de classe C1 comme fonction de y à valeurs

dans L1(.F X).
De même .c est de classe C8 en c et chaque dérivée en c est de classe C1 en y

comme fonction de Y à valeurs dans L1(.F X). L’assertion du lemme concernant
s’en déduit.

Lemme 3.4. L’application

F : ]Ent(Y, g),+8[×Y -. X,
c, y) - Fc(y)

est de classe C1.

Preuve. Il s’agit d’une simple application du théorème des fonctions implicites voir
[7], section 5b.). Rappelons la preuve de ce fait. Soit {ei(x)}i=1,...,n une base
orthonormée de TxX dépendant de manière C8 de x X. Définissons les fonctions

Gi(c, x, y)
F X

dB0(x, ei(x)) c(y, d.

on rappelle que B0(x, désigne la fonction de Busemann de X, ḡ0) normalisée en

x0 et d. la mesure canonique de FX, c’est-à-dire provenant de la mesure de Haar
sur le compact maximal), et

G: ]Ent(Y,g),+8[×X × Y -. Rn

c, x, y) - G1(c, x, y), Gn(c, x, y)

Alors, la fonction Fc est définie par l’équation implicite

G(c, Fc(y), y) 0. 1)

Le théorème des fonctions implicites est alors facile à vérifier car la condition qu’il
requiert est exactement celle qui assure l’existence du barycentre.

La fonction G étant C1 en c,x,y) le lemme est prouvé. En fait Fc est, pour les
mêmes raisons que précédemment, C8 en c.

Preuve de l’inégalité i) du théorème 3.2. Nous donnons la preuve dans un cas particulier

afin d’éviter des lourdeurs dans les notations ; le cas général est rigoureusement
identique.

Nous considérons, comme précédemment, X Hn1 ×Hn2, où ni 3. Rappelons
que X est muni de la métrique g0 ga1,a2 où les nombres ai sont ceux calculés dans
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la proposition 1.4. La métrique g0 minimise l’entropie normalisée, sur X, parmi les
métriques ga1,a2 voir la proposition 2.4).

La notion de barycentre étant indépendante des coefficients ai servant à définir
la métrique, nous utiliserons, pour simplifier, la métrique ḡ0 g1

0
g2

0 voir le

corollaire 2.7).
Notons que chaque mesure µy,c est sans atome. Par ailleurs, le barycentre sur X

se décompose cf. corollaire 2.7) et donc également la fonction Fc

Fc : Y -. X Hn1
× Hn2

y - F1,c(y), F2,c(y))

où Fi,c(y) bari(pi * µy,c)). Si X n’est pas un produit, nous travaillons avec la

seule fonction Fc. Le résultat principal est le suivant :

Lemme 3.5. Pour c > Ent(Y, g) et pour tout y Y, on a

| Jac Fc(y)|
c

Ent(X,g0)

n

où n dim Y dim X n1+ n2 et le Jacobien est calculé à l’aide des métriques g
sur Y et g0 sur X.

Preuve. Comme nous l’avons remarqué dans le chapitre précédent la notion de
barycentre, et donc la définition de l’application Fc, ne dépend pas de a1, a2. Nous
pouvons donc utiliser sur X la métrique ḡ0 g10 g20 on rappelle que gi0
désigne ici la métrique de courbure constante égale à -1 sur Hni Rappelons une
nouvelle fois la notation g0 a1g10 a2g20 où ai sont les valeurs calculées dans

la section précédente, telles que g0 minimise l’entropie normalisée parmi les
métriques ga1,a2 Nous noterons dét(DFc(y)) le déterminant de la différentielle de Fc
en y calculé à l’aide des métriques g sur Y et g0 sur X ; par ailleurs Jac Fc(y)
a

n1
1 a

n2
2 dét(DFc(y)) est le déterminant de DFc(y) calculé à l’aide des métriques g

sur Y et g0 sur X. Notons que g0 est normalisée par an1
1 a n2

2 1, de sorte que

Jac Fc(y) an1
1 an2

2 dét(DFc(y)) dét(DFc(y)). Nous distinguerons toutefois les
deux expressions afin d’éviter les confusions entre les métriques g0 et ḡ0.

Estimation de dét(DFc(y)). Ici, tous les calculs se font à l’aide de la métrique ḡ0 sur
X. Rappelons que nous désignons par Bi les fonctions de Busemann sur Hni muni de

la métrique gi0 Comme dans [9], page 155, nous définissons les formes quadratiques

hy,c, ky,c et les opérateurs symétriques associés Hy,c, Ky,c sur TFc(y)X,

ky,c(v, v)
F X

DdB0|(Fc(y), v, v) dµy,c( ḡ0(Ky,c(v),v),

hy,c(v, v)
F X

dB0
|(Fc(y), v)

2

dµy,c( ḡ0(Hy,c(v), v)
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où v TFc(y)X. Ici, comme dans la section précédente,

B0(x,
1

v2
B1(x1, .1) + B2(x2,.2)

Enfin, nous définissons la forme quadratique hy,c et l’opérateur symétrique associé

Hy,c sur TyY

hy,c(u, u) 4
FX

d c|(y, u)
2
d. g(Hy,cu, u)

pour u TyY Dans cette formule la différentielle de v
c est prise par rapport à la

variabley. Nous utiliserons les mêmesnotations pour les formesbilinéaires associées.

En différenciant l’équation implicite 1) qui définit Fc, nous obtenons, pour u TyY
et v TFe(y)X,

ky,c v, DFc(y)(u) - F X
dB0|(Fc(y), v) d c|(y, u) d.

-2
F X

dB0
|(Fc(y), v) c(y, d

c|(y, u) d.,

et, en utilisant l’inégalité de Cauchy–Schwarz,

ky,c DFc(y)(u), v hy,c(v, v)
1/2

hy,c(u, u)
1/2

Un lemme élémentaire d’algèbre linéaire cf. [8], lemme 5.4) donne, à partir de 2.5),

dét(Ky,c) dét DFc(y) détHy,c
1/2 détHy,c

1/2

Rappelons que la famillede mesures µy,c est normalisée demasse totaleégale à 1

pour tout y Y etc > Ent(Y, g)). La trace d’une forme quadratique calculée dans

une base orthonormée par rapport à une structure euclidienne g) étant notée traceg

en injectant dans la définition de hy,c le fait que dY g 1, nous obtenons, comme
dans [7], p. 751,

trace(Hy,c) traceg(hy,c) c2

d’où

détHy,c

1/2 c
vn1 + n2

n1+n2

Maintenant la définition de hy,c et Hy,c) montre que

Hy,c
H1 *
* H2
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où Hi désigne la restriction de Hy,c à Hni ; plus précisément, pour i 1,2 et vi
TFi,c(y)Hni

gi0 Hivi, vi)
F X

dB0|(Fc(y), vi)
2

dµy,c(

F X

1

2
dBi|(Fi,c(y),.i vi)

2
dµy,c(

1
2 Hni

dB
i|(Fi,c(y),.i vi)

2
d pi*(µy,c) .i

Remarquons que, puisque dBi
gi0

1 et pi)*µy,c est une probabilité, nous avons

trace(2Hi) 1.

De même,

Ky,c
K1 0

0 K2

avec, pour i 1,2 et vi TFi,c(y)Hni

gi0 Kivi,vi)
1

v2 Hni
DdBi|(Fi,c(y),.i vi, vi) d pi*(µy,c) .i

Lemme 3.6. Avec les notations précédentes, nous avons

i) dét(Ky,c) dét(K1) dét(K2);
ii) dét(Hy,c) dét(H1) dét(H2).

L’égalité i) est évidente et l’inégalité ii) est classique voir [3], p. 63) pour les
matrices symétriques.

Par ailleurs, sur les espaces hyperboliques Hni la relation suivante est vérifiée
voir [7], p. 751), pour i 1, 2,

DdBi gi0- dBi dBi

qui se traduit en

Ki
1
v2

Ii - 2Hi)

où Ii désigne l’identité de TFi,c(y)Hni En regroupant ces remarques, nous obtenons,
à partir de 2.5,

|dét(DFc(y))|
c

vn1 + n2

n1+n2 dét 2H1)1/2

dét(I - 2H1)

dét 2H2)1/2

dét(I - 2H2)
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Alors, un lemme algébrique donne cf. [7], appendice B),

dét2Hi)1/2

dét(I - 2Hi)
vni

ni - 1

ni

l’égalité n’ayant lieuque si,etseulementsi, 2Hi 1
ni Ii rappelle que trace(2Hi) 1).

On utilise ici l’hypothèse ni 3, pour tout i.

En regroupant ces inégalités, il vient

| JacFc(y)| an1 n2
1 a2 |dét(DFc(y)|

a
n1an2

cn1+n2 1 2
(vn1 + n2)n1+n2

vn1

n1 - 1
n1 vn2

n2 - 1

n2

c

Ent(X, g0)

n

d’après la proposition 2.4. Ce qui prouve le lemme 3.5.
L’inégalité i) du théorème 3.2 s’en déduit par intégration et passage à la limite en

lorsque c tend vers Ent(Y,g).

Remarques sur le cas général. Si X X1 × · · · × Xp et ḡ0 g1 · · · gp où

Xk, gk) est un espace symétrique de courbure strictement négative et de dimension
nk, on munit X de la métrique g0 a1g1 ·· · apgp, où les nombres ai sont

ceux calculés dans la proposition 2.5. La métrique g0 minimise l’entropie normalisée
parmi les métriques ga voir la proposition 2.5).

Alors, comme ci-dessus, on pose ḡ0 g1 · · · gp. On suppose de plus que la

courbure sectionnelle de Xk, gk) est normalisée de sorte qu’elle soit égale à -1 si

Xk, gk) est hyperbolique réelle et comprise entre -4 et -1 dans les autres cas. Le
calcul de l’entropie d’une telle métrique est donné dans [7], p. 740.

Pour x x1, xp) X et .1, .p) F X F X X1 × · · · ×
Xp), la fonction de Busemann de X, ḡ0) est

B0(x,
1

vp
B1(x1, .1)+ · · · + Bp(xp,.p)

et on a les décompositions

Hy,c

H1 * * *
* H2 * *

* * *
* * * Hp

Ky,c

K1 0 0 0
0 K2 0 0

0 0 0
0 0 0 Kp

avec trace(pHk) 1 pour k 1,2, p.
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La relation qui lieKi etHi dépend du type d’espace considéré hyperbolique réel,
complexe, quaternionien ou de Cayley) et est décrite dans [7], p. 751. On peut vérifier
aisément que

trace(vpKk) Ek entropie de(Xk, gk)

pour k 1, p.
Dans l’appendice B de [7], proposition B.1, nous montrons que

dét(pHk)1/2

dét(vpKk)

vnk

Ek

nk

On conclut, alors, grâce à la proposition 2.5, comme ci-dessus.

Preuve du cas d’égalité ii) du théorème 3.2. La preuve commence comme dans le

paragraphe7de [7]. Rappelons que Ent(Y,g) > 0. Nous pouvonsdonc fixer le facteur
d’homothétie en normalisant g de sorte que

Ent(Y,g) Ent(X, g0) E0.

On suppose donc que vol( vol(Y, g). Le travail porte sur l’étude des formes
quadratiques, déjà introduites au paragraphe précédent,

hy,c( · ·
F X dB0|(Fc(y), ·

2

c(y, d.,

ky,c( · ·
F X

DdB0|(Fc(y), · · c(y, d.

et des endomorphismes symétriques et définis positifs correspondants, Hy,c et Ky,c.
La plus grande valeur propre de Hy,c est notée .cn(y) et vérifie,

0 < c
n(y) < 1,

en effet, l’endomorphisme symétrique Hy,c est de trace égale à 1 et est défini positif
car le support de la mesure est le bord de Furstenberg. On rappelle également que
trace(Ky,c) Ent(X, g0) E0 ceci car est normalisée).

1ère étape : convergence presque sûre de Hy,c. L’inégalité i) du théorème 3.2
montre que

| Jac Fc(y)|
c

E0

n
pour tous y Y et c > E0.

Lemme 3.7. Il existe une suite ck tendant vers E0, telle que Jac Fck y) ---.k.+8
1

presque sûrement sur Y
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Preuve. Comme dans [7], lemme 7.3, posons fc(y) Jac Fc(y) - 1 et f ±c
sup(0,±fc) ; la fonction f +c tend uniformément vers 0 lorsque c tend vers E0 car,

0 f +
c y)

c
E0

n

- 1 pour tout y Y

Par ailleurs, pour tout c > E0,

vol(
Y

F*c .0)
Y

Jac Fc(y) dvg

c

E0

n
vol(Y, g)- Y

f -c dvg.

On rappelle que les orientations sont choisies en sorte que
Y F*c .0) soit positive.

L’hypothèse vol( vol(Y, g) implique que f -c tend vers 0 dans L1(Y,g) lorsque c
tend versE0,d’où l’existence d’une sous-suite ck telle que f -ck

tende verszéropresque
sûrement.

Lorsque Y, g̃) X, ḡ0), la mesure est la mesure canonique du bord de Furstenberg

F X et est l’injection naturelle de dans le groupe d’isométries de X, alors
l’endomorphisme Hy,c prend une forme particulière ; en effet, pour tout x X et

pour c E0

Hx,0

1
pn1 I1 0 0 0

0 1
pn2 I2 0 0

0 0 0
0 0 01

pnp Ip

où x x1, xp) et Ik désigne l’identité de Txk Xk. Désormais nous noterons

H0 l’endomorphisme Hx,0. Les termes Ki qui se calculent en fonction de Hi
1

pni Ii valent Ki Eivpni Ii Nous noterons de même K0 l’endomorphisme Kx,0
correspondant.

À partir de maintenant nous considérerons une suite ck ---.k.+8
E0 telle que

Jac Fck y) ---.k.+8
1 presque sûrement en y Y

Lemme 3.8. Pour presque tout y Y limk.+8 Hy,ck H0.

Preuve. Pour tout y Y et pour tout c > E0

| Jac Fc(y)|
c

vn

n détHy,c)1/2

dét(Ky,c)

c

E0

n

Soit y Y tel que | Jac Fck y)| ---.k.+8
1, la quantité

détHy,
ck

1/2

dét(Ky,ck
tend vers sa valeur

maximale, à savoir
vn
E0

n On rappelle que p
i=1 ani

i 1 voir le paragraphe 1).
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Par une preuve en tout point analogue à celle donnée dans l’appendice B, proposition

B5 de [7] et en utilisant 3.6, nous montrons l’existence d’une constanteA > 0

telle que

détHy,c)1/2

dét(Ky,c)

vn
E0

n
1- A Hy,c -H0

2
ḡ0

de sorte que

Hy,c -H0
2
ḡ0

1

A
1 -

E0

c

n

| JacFc(y)|

et, si | JacFck y)| ---.k.+8
1, alors

Hy,ck ---.k.+8
H0.

2ème étape : convergence uniforme de Hy,ck vers H0. Nous reprenons les étapes

de la preuve du cas d’égalité de [7], paragraphe 7.
Soit ck ---.k.+8

E0 une sous-suite telle que JacFck 1 presque sûrement et

Hy,ck tende presque sûrement vers H0. Pour simplifier les notations nous utiliserons
l’indice k en lieu et place de l’indice ck.

Lemme 3.9. Soient y et y deux points de Y tels que .k 1-
1 en tout point d’unen n

g-géodésique minimisante a qui joint y à y alors

dḡ0 Fk(y),Fk(y K1dg(y, y

n(y) ckOn rappelle que .k n y) est la plus grande valeur propre de Hy,ck

Le choix de 1 - 1
n

est arbitraire, un autre choix, indépendant de la dimension,
donnerait des estimations similaires.

Preuve. On tire, comme précédemment, de l’équation implicite qui définit Fk, pour
tous u TyY et v TFk(y)X,

ḡ0 Ky,kDyFk(u),v - F X
dB0|(Fk(y), v) d k|(y, u) d.

-2
FX

dB0
|(Fk(y), v) k(y, d

k|(y, u) d.,

|ḡ0 Ky,kDyFk(u),v | 2ḡ0 Hy,k(v), v
1/2

FX
d k|(y, u)

2
d.

1/2

Un calcul immédiat montre que

F X
d k|(y, u)

2
d.

1/2 ck

2
g(u, u)1/2

(*)
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Si u et v sont de norme 1, dans leur espace respectif, alors

|ḡ0 Ky,kDyFk(u), v | ck ḡ0 Hy,k(v), v
1/2

ck .kn(y).

Maintenant, si X est un produit d’espaces symétriques de rang 1, de courbure
comprise entre -1 et-4, il est facile de vérifier voir [7], appendice B) que, au sens
des formes quadratiques, pour tout i 1,2, p,

Ki Ii - Hi 1 - kn(y))Ii
On rappelle que Hi resp. Ki désigne la restriction de Hy,k resp. Ky,k) à Xi. En

prenant v Dy Fk(u)

DyFk(u) ḡ0

si DyFk(u) 0, il vient

DyFk(u) ḡ0 ck
v k

n(y)
1- .kn(y) (**)

si DyFk(u) 0, l’inégalité est trivialement vraie). Soit a la g-géodésique de y à y
le long de laquelle .kn(a(t)) 1- 1

n on a, pour tout u Ta(t)Y de norme 1

Da(t)Fk(u) ḡ0 2nE0 K1

si k est assez grand pour que ck 2E0). Par le théorème des accroissements finis

dḡ0 Fk(y),Fk(y K1dg(y,y

Lemme 3.10. Avec les mêmes notations que précédemment, si P désigne le transport
parallèle de Fk(y) à Fk(y le long de la ḡ0-géodésique minimisante qui les joint,
on a

hy k P - hy,k ḡ0 K2 dg(y, y + dḡ0 Fk(y), Fk(y

Preuve. Nous désignons par ß(t) l’unique ḡ0-géodésique, qui est minimisante, allant
de Fk(y) à Fk(y et par Z un champ de vecteurs parallèle, le long de ß, de norme 1.
Pour simplifier, posons Z1 Z(Fk(y)) et Z2 Z(Fk(y Alors

hy k(Z2, Z2)- hy,k(Z1, Z1)

F X
dB0

|(Fk(y Z2)
2

k(y d.

- F X
dB0|(Fk(y), Z1)

2
k(y, d.

dB0 |(Fk(y Z2)
2

- dB0|(Fk(y), Z1)
2

k(y d.

+

F X

F X
dB0|(Fk(y), Z1)

2
k(y - k(y, d..
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Des formules explicites de DdB0 et du fait que dB0|(x, · ḡ0 1, nous tirons
l’inégalité

dB0
|(Fk(y Z2)

2

- dB0
|(Fk(y), Z1)

2
K2dḡ0 Fk(y Fk(y)

De même, comme k(y, · est de norme 1 dans L1(.FX, d.) et en utilisant l’inéquation

(*)

F X
dB0

|(Fk(y), Z1)
2

k(y
2

- k(y,
2

d.

k(y, · - k(y · L2(.F X) k(y, · + k(y · L2(.FX)

ckdg(y, y

Le lemme découle de l’addition de ces inégalités.

Lemme 3.11. La suite Hy,k converge uniformément par rapport à y Y vers H0
lorsque k tend vers +8.
Preuve. Le comportement deHk vis-à-visde l’action de surY montre qu’il suffit de
prouver la convergence uniforme sur un domaine fondamental D Y Le théorème
d’Egoroff ([23], p. 77) et le lemme 3.8 attestent que, pour tout > 0, il existe un

ensemble mesurable K tel que
i) volg(D \ K) < ;
ii) sur K, la suite y Hy,k converge uniformément vers H0.

Fixons e > 0 petit, on peut choisir tel que D \K ne contienne aucune g-boule de

rayon e, car, en effet, le volume d’une telle boule sur Y est minoré la métrique de Y
est périodique). On choisit aussi N N de sorte que

i) pour tout k N, E0 < ck < E0 + e ;
ii) pour tout k N et pour tout y K, Hy,k - H0 ḡ0 < e.

Par ailleurs, si y /. K, dg(y, K) < e. Rappelons que les valeurs propres de H0 sont

les nombres 1
pni i 1,2, p. Posons K3 K2(K1+1)+1 et supposons e assez

petit pour que K3e 1- supi
1

pni - 1
n

Nous allons montrer que si k N, alors

Hy,k -H0 ḡ0 < K3e pour tout y D.

Si ce n’est pas vrai, il existe y D tel que

Hy k -H0 ḡ0 K3e,

soit alors y K tel que dg(y y) < e. Par continuité de l’application y Hy,k, il
existe un premier point y sur le segment géodésique [y, y ] tel que Hy k -H0
K3e. Le choix de K3 montre que, sur le segment géodésique [y,y ]

k
n sup

i

1

pni + K3e 1 -
1

n
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D’après les lemmes 3.9 et 3.10 ceci conduit à

hy,k P - hy k ḡ0 K2(K1 + 1)e

et comme Hy,k -H0 ḡ0 < e ceci conduit à

Hy k -H0 ḡ0 < K2(K1 + 1) + 1 e K3e

qui est une contradiction.

Remarquons que la convergence uniforme de Hy,k vers H0 implique la convergence

uniforme de Ky,k vers K0.

3ème étape : convergence uniforme d’une sous-suite de Fk

Lemme 3.12. Il existe une sous-suite de la suite Fk qui converge uniformément vers
une application F : Y X continue et équivariante.

Preuve. Pour e > 0 donné, il existe M N tel que si k M

Hy,k -H0 ḡ0 < e pour tout y Y

D’où
Hy,k H0 + eI

et par une remarque précédente

Ky,k K0 - eI.
Ces deux inégalités étant à comprendre au sens des formes quadratiques. On déduit
alors, avec (**), qu’il existe un nombre réel C > 0 tel que, pour tout y Y et

u TyY

DyFk(u) ḡ0 C

si e est assez petit).
La suite d’application Fk : Y X est donc équicontinue.
Supposonsqu’il existe y0 tel que Fk(y0) ne reste dans aucun compact. Quitte à

extraire une sous-suite, on peut supposer que Fk(y0) ---.k.+8
X le bord

géométrique de X). Pour tout y Y alors

dḡ0 Fk(y), Fk(y0)) C dg(y,y0)

de sorte que Fk(y) ---.k.+8
par définition du bord géométrique de X. L’équivariance

de Fk donne

Fk(.y0) Fk(y0)
et donc en passant à la limite en k

c’est-à-dire, la représentation fixe un point de X.
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Lemme 3.13. Si fixe un point .0 de X, alors vol( 0.

Preuve. Soit B0(· .0) la fonction de Busemann définie par le point .0 X.
Supposons d’abord que .0 est dans le bord de Fürstenberg. Posons

Z(x) B0(x, .0)

alors le champ de vecteurs Z est invariant par En effet, l’égalité

B0 a(x), .0 B0 x,a-1 .0) + B0 a(O0), .0

pour a Isom(X), conduit à

B0 x), .0 B0(x, .0) + B0 O0), .0

pour tout ; ce qui donne en différenciant

Z x) Z(x)).

Par ailleurs, pour tout x X

div(Z)(x) B0(· Ei

Donc la forme différentielle div(Z).0 Ei .0 est invariante par

pour tout En conséquence, pour c > E0 F*c est invariante par pour
tout La définition de la divergence conduit à l’égalité

div(Z).0 -d i(Z) · .0
où i(Z) · .0 désigne le produit intérieur de .0 par le champ de vecteurs Z. D’où

F*c -F*c d(i(Z) · .0)

-d F*c i(Z) · .0)
et

vol(
Y

F*c .0)
1

Ei Y
F*c 0.

Si .0 n’est pas dans le bord de Fürstenberg la même preuve peut être faite car

div(Z)(x) B0(· 0.

Puisque nous sommes dans le cas d’égalité, vol( 0, et la suite Fk(y0) reste

donc dans un compactde X.On peutalorsappliquer le théorème d’Ascoli pourdéduire

qu’il existe une sous-suite, notée encore Fk, qui converge uniformément sur D Y

vers une application continue F : D X. L’équivariance de Fk, pour tout k, montre
que Fk converge uniformément sur Y et que la limite F est également équivariante.
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4ème étape : F est une isométrie

Lemme 3.14. L’application F : Y, g̃) X, g0) contracte les distances, c’est-
àdire, pour tout y, y dans Y

dg0 F(y), F(y dg(y,y

et DF(y) est une isométrie entre TyY, g) et TF(y)X, g0) pour presque tout y Y

Preuve. Pour e > 0 donné, on peut choisir k assez grand pour que, pour tout y Y

Hy,k H0 + eI,
Ky,k K0 - eI.

Alors, l’inégalité 2.5 nous conduit à l’estimation suivante, pour u TyY et v
TFk(y)X :

g0 Ky,c(DFk(y)(u)), v g0(Hy,c(v),v)
1/2

hy,k(u, u)
1/2

On rappelle que la définitiondes fonctions Fk est indépendante des coefficients choisis
pour définir la métrique de référence, c’est-à-dire qu’elle donne la même fonction
qu’on utilise ḡ0

p
i=1 gi0 ou bien g0

p
i=1

a2
i gi0 Nous avons choisi d’utiliser

ḡ0 pour définir le barycentre sur X, en conséquence les matrices Hy,k, H0, Ky,k et

K0 sont définies également grâce à la métrique ḡ0.
On rappelle également que Fi,k i 1,2, p, désigne la i-ième composante

de Fk dans la décomposition X X1 × · ·· × Xp et que Hi resp. Ki désigne la

restriction de Hy,k resp. Ky,k) à TFi,k(y)Xi ici on omet volontairement les indices y
et k dans Hi et Ki afin d’alléger les notations). Si v v1, vn) est tangent à Xi
c’est-à-dire si vj 0 pour tout j i, alors, grâce à la forme diagonale par blocs de

Ky,c nous obtenons

ḡ0 Ki(DFi,k(y)(u)), vi ḡ0(Hivi, vi)
1/2

hy,k(u, u)
1/2

on identifie, par abus de langage v à sa composante vi
En utilisant l’inégalité précédente sur Hy,k,

ḡi0

pni + e
1/2

Ki(DFi,k(y)(u)), vi
1

vi
gi0

hy,k(u, u)
1/2

En prenant la borne supérieure en vi de norme 1, nous obtenons,

1
Ky,c DFi,k(y)(u) g0¯ Ki DFi,k(y)(u) gi0 vpni

hy,k(u, u)
1/2

1+o(e)).
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Les inégalités précédentes donnent encore,

Ei
nivp

1 + o(e)) DFi,k(y)(u) ḡ0

1
vpni

hy,k(u, u)
1/2 1 + o(e)),

or les coefficients ai apparaissant dans la définition de la métrique g0 valent :

ai
Eivn

E0vni

d’où, pour tout u Ty Y

ai DFi,k(y)(u)
gi0

vn
E0

hy,k(u, u)
1/2

1 + o(e))

et, pour tout u TyY

F*k g0(u,u) DFk(y)(u) 2
g0

p

i=1

a
2

i DFi,k(y)(u)
2

gi0

n
E0)2 hy,k(u,u)(1 + o(e)).

On peut alors calculer la trace du tenseur symétrique F*k g0 par rapport à la
métrique g sur Y en y Y

traceg(F*k g0) n(1 + o(e)).

En effet, on rappelle que traceg(hy,k ck)2
E0 + e)2

Par ailleurs le déterminant de F*k g0 relativement à g, c’est-à-dire | Jac Fk|2, tend

presque sûrement vers 1 sur Y Alors si Ak,y désigne la matrice de F*k g0 dans une
base g-orthonormée, nous avons, pour k assez grand,

1- e détAk,y)1/ n 1

n
trace(Ak,y) 1 + e

ce qui implique que

Ak,y - détAk,y)1/nId o(e).

En conclusion, DFk converge presque sûrement sur Y vers une isométrie.
Alors, l’application F est limiteuniforme d’unesuite d’applications lipschitzienne

Fk dont les différentielles DFk sont uniformément bornées et convergent presque
sûrementvers une isométrie ; le lemme 7.8de [7] montreque,danscecas, l’application
F est 1-lipschitzienne. Nous ne reproduisons pas la preuve de ce fait.
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L’application F est presque partout différentiable par le théorème de Rademacher
et, comme elle est 1-lipschitzienne, on a, pour presque tout y Y

| Jac F(y)| 1.

Par ailleurs,

vol(
Y

F*(.0)
Y

Jac F(y) dvg vol(Y,g).

D’où, pour presque tout y Y Jac F(y) 1.
Enfin, pour presque tout y Y pour tout u TyY le caractère 1-lipschitzien de

F implique que

DyF(u) g0 u g.

Ceci, combiné au fait que pour presque tout y Y Jac F(y) 1, montre que

la différentielle de F, DyF, est presque partout sur Y une isométrie entre TyY et

TF(y)X).
Le lemme est prouvé.

vol(Y Y Dh pLemme3.15. L’application F minimise la fonctionnelleEp(h)
1

g,g0

parmi toutes les applications h de Y dans X, .-équivariantes et lipschitziennes, pour
tout p n. Ici Dh p

g,g0 est calculée à l’aide de la métrique g sur Y et g0 sur X.

Preuve. Notons que, par l’équivariance de h, l’intégrand dans l’expression de Ep(h)
est invariant par et est donc une quantité définie sur Y Rappelons que, si {ei } est

une base g-orthonormée en y Y

Dh(y) g,g0

1

n

n

i=1

Dh(y)(ei) 2
g0

1/2

Cette quantité est définie pour presque tout y Y On a donc, pour presque tout

y Y

| Jach(y)|p/n Dh(y) p
g,g0

pour tout p 0. Maintenant si p n

1
vol(
vol(Y

p/n

1

vol(Y Y

Jac h(y)dvg(y)
p/n

1

vol(Y | Jac h(y)|p/ndvg(y) Ep(h).



Vol. 82 2007) Inégalités de Milnor–Wood géométriques 783

Si h est remplacée par F, en utilisant le fait que DF(y) est une isométrie pour
presque tout y Y il vient

1 Ep(F) Ep(h).

Corollaire 3.16. L’application F est de classe C8.

Preuve. En fait, nous prouvons que F est harmonique, la régularité s’en déduit.
De manière heuristique nous pouvons dire que l’équation d’Euler associée à la

fonctionnelle Ep, p n s’écrit

g,g0DF 0div DF p-2

où ladivergenceest àcomprendrecomme celled’une 1-forme sur Y àvaleursdans T X
voir [21], page 6). Mais F a une différentielle qui est presque partout une isométrie,

de sorte que DF g,g0 1 presque partout sur Y et l’équation devient

div(DF) 0

c’est-à-dire F est harmonique.
Plus précisément, DF est interprétée comme une 1-forme sur Y à valeurs dans le

T *(Y) F-1(T X) qui est de plusfibré F-1(T X), c’est-à-dire un élément de C0

.-équivariante voir [21], page 8) ; soit alors Z un champ de vecteurs C8 le long de

F, qui satisfait également la relation de .-équivariance adéquate, c’est-à-dire qui est

un élément de C8 Y,F-1(T X) ; il existe une variation à un paramètre de F, notée

Ft .-équivariante, telle que

d
dt

Ft y)|t=0 Z(y) pour tout y Y

voir [22], page 397).

Comme F minimise Ep, pour p n, on a

d

dt |t=0
Ep(Ft 0

c’est-à-dire,
d

dt |t=0

1

vol(Y Y
DFt y) p

g,g0dvg(y) 0

mais

d

dt

1

vol(Y Y
DFt y) p

g,g0dvg(y)

1

vol(Y Y
g,g0 dvg(y)

d
dt

DFt y) p

1

vol(Y Y

p 2
DFt y) p-

2 g,g0 g,g0 dvg(y).
d

dt
DFt y)

2
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En t 0, comme DF(y) g,g0 1 pour presque tout y Y, on a

0 p/2
vol(Y Y

d

dt |t=0
DFt y) 2

g,g0 dvg(y)

c’est-à-dire, F est un point critique de la fonctionnelle E2. L’application F est donc
faiblement harmonique au sens des distributions, voir [22], page 397). D’après les
théorèmes de régularité classiques voir [22], 3.10, page 397), F étant continue, elle
est de classe C8.

Remarque. Nous avons montré que F est un point critique de E2, mais en fait
elle minimise cette fonctionnelle car l’espace étant de courbure négative ou nulle la

fonctionnelle E2 est convexe.

Nous pouvons alors terminer la preuve du théorème 3.2 ii). L’application F a

une différentielle DF(y) qui est continue en y et est donc une isométrie pour tout

y Y ; la variété Y étant connexe et complète, X étant connexe et simplement
connexe nous déduisons de cela que F est une isométrie surjective de Y sur X c’est
en effet un exercice classique, voir [25], 2.108, exercice a), page 97). En particulier

est un sous-groupe discret cocompact de Isom(X) agissant sans points fixes et

la représentation est injective.

Une conséquence immédiate est le théorème suivant. Supposons que 0

est un sous-groupe discret cocompact du groupe d’isométries de X qui agit sans point
fixe, le quotient X X/ 0 est une variété compacte.

Théorème 3.17. Soit Y,g) une variété riemannienne compacte de même dimension
que X et f : Y X une application continue, alors

i) Ent(Y, g))n vol(Y, g) | degf | Ent(X, g0)n vol(X, g0) ;

ii) l’égalité, dans l’inégalité ci-dessus, a lieu si, et seulement si, f est homotope à

un revêtement riemannien.

La preuve est immédiate ; en effet, dans le cas considéré on a

vol( | deg f | vol(X, g0).

Remarques. Le lemme 3.13 peut s’étendre et donne lieu à la proposition suivante :

Proposition 3.18. S’il existe une mesure de Radon finie et non nulle µ, définie sur

X, invariante par alors vol( 0. Par ailleurs, si vol( 0 alors
est réductif et Zariski dense.

On rappelle que est dit réductif si son adhérence de Zariski l’est, c’est-à-dire
si cette dernière a un radical unipotent trivial.
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Preuve. La première partie se prouve comme le lemme 3.13 en posant

Z(x)
X

B(x, dµ(

La seconde partie résulte de résultats classiques ; en effet, un sous-groupe du groupe
d’isométries de X est réductif s’il ne fixe pas un point sur le bord de X, ce qui est le
cas si vol( 0. De plus, un sous-groupe réductif fixe une sous-variété totalement
géodésique qui est un sous-espace strict si le groupe n’est pas Zariski dense. La
non-nullité de vol( entraîne que ce sous-espace est tout X, d’où le résultat.

Notons que dans [32], la réductivité de est prouvée être une condition
nécessaire et suffisante à l’existence d’une application harmonique .-équivariante.

Enfin, le théorème 3.2 conduit au corollaire suivant. Rappelons la définition du
volume minimal d’une variété,

minvol(Y inf{vol(Y, g) ; g métrique sur Y telle que |Kg| 1}

Corollaire 3.19. Si est une représentation de p1(Y dans Isom(X,g0), où Y
est une variété compacte, alors

minvol(Y
Ent(X, g0)

n - 1

n
vol(

Preuve. On rappelle que si la courbure sectionnelle Kg de la métrique g vérifie
Kg -1 alors on a Ent(Y, g) n- 1 voir [7]).

Remarques. i) En particulier, s’il existe une représentation telle que vol( 0

alors minvol(Y > 0.
ii) On pourrait remplacer le volume minimal minvol(Y par

minvolRicci(Y inf vol(Y, g) ; Riccig -(n- 1)g

4. Exemples

Dans ce paragraphe nous nous intéressons au cas où Y, g̃) est elle-même un produit
fini d’espaces symétriques simplement connexe de courbure strictement négative.
Comme précédemment un tel espace sera noté X, g̃0), où g0 est la métrique définie
au paragraphe2 et qui minimise l’entropie. De même, désigne un réseau cocompact
et sans torsion de Isom(X, g̃0) préservant l’orientation, et est un morphisme

: - Isom(X, g̃0).
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Des exemples de telles représentations sont rares et le but de ce paragraphe est, en

particulier, de rappeler quelques unes des constructions classiques.
Dans cette situation, le théorème 3.2 s’écrit

vol( vol(X, g0)

où X X/ L’égalité, dans cette inégalité, n’a lieu que si et seulement si l’espace

X/ g0) est une variété isométrique à X,g0), c’est-à-dire si est un réseau

cocompact de Isom(X, g̃0). Nous répondons, dans ce paragraphe à la question :

Question 4.1. Existe-t-il des représentations, comme ci-dessus, telles que l’ inégalité
0 < vol( < vol(X, g0) est vraie

Rappelons qu’un réseau dans un groupe de Lie G, semi-simple connexe sans

facteur compact est dit réductible si G possède des sous-groupes normaux H et H
tels que G H.H H n H est discret et / n H).( n H est fini voir [40],
page 86). est dit irréductible s’il n’est pas réductible

Alors, lorsque est irréductible, le théorème de super-rigidité de Margulis ([34],
chapitre VII) fournit une réponse négative complète à la question ci-dessus.

Proposition 4.2. Avec les notations ci-dessus, si est irréductible et vol( 0

alors est un réseau cocompact de Isom(X,g0)˜ et donc vol( vol(X, g0).

Preuve. On se propose d’appliquer le théorème IX.6.16 de [34], p. 332. On note

G Isom(X,g0),˜ c’est un groupe algébrique définisurRet semi-simple.Pour utiliser
le résultat IX.6.16 de [34] il faut travailler avec des groupes de Lie connexes, or
est un sous-groupe de G+, le sous-groupe de G constitué des isométries préservant
l’orientation et G+ n’est pas nécessairement connexe. En effet, si .1, .n),
où .i Isom(Xi gi0˜ et si un nombre pair de .i renverse l’orientation alors G+,
néanmoins ne peut pas être connecté à l’identité.

On rappelle que G à un nombre fini de composantes connexes car c’est un groupe
algébrique. Soit G0 la composante Zariski connexe de l’élément neutre et 0

G0 n et 1 .-1 0) n G0 Pour alléger les notations nous avons noté la

représentation restreinte à 0.

Il est aisé de vérifier que G0 Isom+(X1, g̃10)×· · · ×Isom+(
pXp,g̃0 où Isom+

désigne le groupe connexe) d’isométries directes.
Les deux lemmes qui suivent n’utilisentpas l’irréductibilité de Cette hypothèse

ne sera utilisée que pour appliquer le théorème de super-rigidité.

Lemme 4.3. Le groupe 0 est un réseau cocompact deG0 ainsi que deGet le groupe
1 est d’indice fini dans 0.
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Preuve. L’application naturelle / 0 G/G0 est injective, 0 est donc d’indice
fini dans et est un réseau cocompact de G. Par ailleurs, G0/ 0 est une composante
connexe de G/ 0, donc est compacte. L’application 0/ 1 G/G0 induite par
est injective, d’où le résultat.

Le groupe 1 est donc un réseaucocompact deG(et deG0) qui deplus,comme
est irréductible. La restriction de à 1 est un homomorphisme

:
1 G0

à valeurs dans le groupe semi-simple, connexe G0.

Lemme 4.4. Les groupes G et G0 ont un centre trivial.

Preuve. Ceci découle du fait que le groupe d’isométries d’un espace symétrique de
rang 1 a un centre trivial.

Dans la terminologie de [34], le groupe G0 est adjoint il n’a pas de centre et

est défini sur R, voir [34], p. 13). Notons que, d’après la proposition 3.18, le groupe
1) est Zariski-dense dans G0.

Nous sommesmaintenant en situation pour appliquer le théorème desuper-rigidité
IX.6.16 c) de [34], p. 332 le groupe G0, qui est le groupe de départ et d’arrivée n’a
aucune composante simple compacte, c’est-à-dire n’a pas de facteur R-anisotrope).
La représentation se prolonge en un unique) homomorphisme continu

˜ : G0 G0

qui est donc analytique car G0 est algébrique). Comme ˜ G0) est un sous-groupe
algébrique qui contient ˜ 1), qui est Zariski dense dans G0, on en déduit que

˜ G0) G0. En particulier ˜ est un difféomorphisme et ˜ 1) est un groupe
discret et cocompact. On en conclut que les variétés localement symétriques X/ 1 et

X/ ˜ 1) sont isométriques et donc que

vol(
|

1 vol(X/ 1

Comme 1 est d’indice fini dans on en déduit que

vol( vol(X, g0).

Nous allons maintenant étudier les cas où le réseau est réductible. On rappelle
qu’un réseau 1 de G0 qui est réductible vérifie les propriétés suivantes voir [40],
p. 86, 5.22) : il existe une famille finie de sous-groupes normaux et connexes de G0,

H1, Hk, qui commutent deux-à-deux, telle que :
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i) Hi n j i Hj est discret pour tout i {1, k}.
ii) G0 k

i=1 Hi
iii) 1

i Hi n
1 est un réseau irréductible de Hi

iv) k

i=1
1
i est un sous-groupe normal d’indice fini de 1.

Comme précédemment nous pouvons travailler à un sous-groupe d’indice fini
près et donc supposer que k

i=1
1
i

1. De même, chaque Hi doit être un produit
de facteurs simples composant G0, c’est-à-dire

Hi
pi+ri

s=pi
Gs

Dans la suite, par groupe super-rigide nous entendons un groupe auquel nous
pouvons appliquer le théorème de super-rigidité, c’est-à-dire, dans notre situation,
soitHi est de rang supérieur où égal à 2 ri 1) ou bienHi est le groupe d’isométries
directes d’un espace hyperbolique quaternionien ou du plan hyperbolique de Cayley.

Proposition 4.5. Avec les notations ci-dessus, si est réductible et vol( 0

et si, pour tout i, Hi est super-rigide alors est un réseau cocompact et donc

vol( vol(X, g0).

Preuve. Comme précédemment nous travaillons avec le sous-groupe 1. Nous
définissons .i |

1
i

pour i 1, k ; ici nous commettons un abus de langage

et identifions 1
i et {e} × · · · × {e} ×

1
i × {e} × · · · × {e}. Définissons les groupes

Ki .i( 1
i l’adhérence de Zariski de .i( 1

i ; ce sont des sous-groupesalgébriques
de G0 et le théorème 6.15 i), a) de [34], p. 332 affirme que, si rang Hi 2, Ki est un
groupe semi-simple. Insistons sur le fait que Hi est considéré comme un sous-groupe
du groupe de départ de la représentation et Ki comme un sous-groupe du groupe
d’arrivée. Le même résultat pour le cas où Hi est le groupe d’isométries directes) de
l’espace hyperbolique quaternionien ou du plan hyperbolique de Cayley est prouvé
dans [46]. Dans tous les cas, donc, Ki est un groupe semi-simple.

Pour tout i, Ki est normalisé par 1). Comme 1) est Zariski dense, Ki est

distingué dans G0, donc semi-simple et sans facteur compact. De plus, le produit
pk

i=1Ki contient 1) et coïncide donc avec G0.

Nous pouvons donc appliquer le théorème de super-rigidité de [34], 6.16 c),
p. 332) pour les composantes Hi de rang 2 et celui de [16] pour les autres et

affirmer que les représentations .i se prolongent en des morphismes continus

.i : Hi Ki
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On construit alors un prolongement de en

: G0 -.
k

i=1
Ki G0

.1, .k) - .1(.1), .k(.k)

Les morphismes .i commutent et est bien défini et est un morphisme continu. On
termine donc la preuve de la proposition 4.5 par les mêmes arguments que ceux de

la preuve de la proposition 4.2.

Nous nous intéressons maintenant au cas oùG0 possède des composantes simples
non super-rigides. Supposons donc que 1 1

1×
1
2 où 1

1 est un réseau cocompact
d’un groupe H1 extension finie d’un produit de groupes super-rigides et 1

2 est un

réseau cocompact de H2 produit de copies de PO(k, 1) et PU(k 1). Les arguments
qui précèdent s’appliquent pour montrer que

i) est Zariski dense dans G0 si vol( 0.
ii) SoitKi i 1, 2, l’adhérencede Zariski de.i( 1

i La densité de implique
la densité pour la topologie de Zariski) de K1K2 ; les deux groupes commutent. En
décomposant 1

1 en produits de réseaux cocompacts irréductibles on voit que K1 est

semi-simple sans facteurs compacts. Si G0 p
i=1 Gk, où les Gk sont des groupes

d’isométries directes d’espaces symétriques de rang 1 et de type non compact, alors

K1
q

k=1 Gk par exemple); en effet, K1 est un sous-groupe normal de G0.
Le groupe K2 est donc inclus dans p

q+1 Gk et comme K1K2 est Zariski dense,

K2 p
q+1 Gk en particulier il est semi-simple). On peut choisir une application

équivariante fi de Hi Ki et un calcul immédiat montre que

vol( vol(.1) vol(.2),

de sorte que vol(.1) 0. Le théorème de super-rigidité appliqué comme précédemment

aux composantes irréductibles de 1
1) permet d’étendre .1 en un morphisme

continu

.1 : H1 K1

et la non nullité de vol(.1) montre que .1 est un isomorphisme et donc montre que
1
1) est isomorphe à 1

1 ce qui conduit à

vol(.1) vol(H1/ 1
1).

Le groupe K2 contient les composantes non super-rigides de G0, de même que H2,
ils sont donc isomorphes. C’est la seule composante non triviale de

Nous donnons maintenant un exemple de représentation du groupe fondamental
d’une variété hyperbolique réelle, de volume non nul.
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Exemple : produit amalgamé. Soit X une variété hyperbolique compacte de
dimension n 3. Supposons qu’il existe dans X une hypersurface compacte plongée
totalement géodésique notée et incompressible, c’est-à-dire telle que l’application
induite : p1( p1(X) soit une injection. Nous supposons de plus que cette
hypersurface sépare X en deux composantes connexes XA et XB de groupe fondamental
respectif A et B. En posant C p1( le théorème de Van Kampen montre que

p1(X) A *C B

produit amalgamé de A et B sur C. Les groupes p1(X), A, B et C sont des
sousgroupes de PO(n,1) et agissent donc sur l’espace hyperbolique Hn. Choisissons un
relevé de dans Hn ; est une hypersurface totalement géodésique. On identifie
C au sous-groupe de p1(X) qui fixe Soit s la symétrie par rapport à on définit

: p1(X) -. PO(n,1),
a A - a,

b B - sbs-1

Lemme 4.6. L’application définit une représentation de p1(X) dans PO(n, 1).

Preuve. Le groupe p1(X) est le quotient du produit libre A * B par les relations qui
consistent à identifier un élément de C dans A avec le même élément dans B. Comme

est un morphisme en restriction à A et à B respectivement, il suffit de vérifier la

compatibilité avec les relations. Or, si c C

scs-1 c

d’où le résultat.

Afin de calculer le volume de cette représentation il faut trouver une application
lipschitzienne f̃ : Hn Hm, .-équivariante.

Proposition 4.7. Avec les notations ci-dessus on a,

vol( vol(XA)- vol(XB).

Preuve. Nous allons décrire f̃ de manière précise et le calcul du volume s’ensuivra.
Le fait que p1(X) soit un produit amalgamé est équivalent ([44], p. 48) à l’existence
d’un arbre T sur lequel p1(X) opère sans inversion) en sorte que le quotient soit
un segment deux sommets joints par une arête). Les sous-groupes A, B et C sont
alors les stabilisateurs respectifs des deux sommets et de l’arête de l’arbre quotient.
Nous allons donner une description géométrique de cet arbre T Nous avons choisi
un relevé de l’hypersurface compacte plongée dans X ; étant une sous-variété
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plongée, sans auto-intersection, les translatés de par les éléments p1(X)
sont deux à deux disjoints ; ils séparent donc Hn en une infinité de composantes
connexes. Les deux composantes connexes dont l’adhérence contient sont des

revêtements universels de XA et XB respectivement, que nous noterons XA et XB.
Les autres composantes connexes sont les translatés par les éléments de p1(X) de

XA et XB. Les sous-groupes A et B préservent XA et XB respectivement après un

choix convenable d’un point base et d’un de ses relevés).
Maintenant, choisissons un point xa XA et un point xb XB. Nous allons

définir un arbre de la façon suivante : les sommets sont les xa) et xb), où
parcourt p1(X) ; on joint deux sommets xa) et xb) par une arête si, et seulement

si, les composantes connexes correspondantes XA et XB sont telles que XA n
XB Ø. On vérifie aisément qu’il s’agit d’un arbre car chaque arête correspond à

une hypersurface qui sépare X en deux composantes connexes.

XA XB

Soit alors x X\ il appartient à une composante connexe du

complémentaire de qui correspond à un sommet de l’arbre précédent. Dans cet

arbre il existe un unique chemin joignant la composante XA à celle de x ; ce chemin
est une succession d’arêtes e1, e2, ek prises dans l’ordre, de la composante XA
à celle de x. Chacune de ces arêtes correspond à une image de et nous noterons

sei la symétrie orthogonale hyperbolique par rapport à cette hypersurface totalement
géodésique.

Definition 4.8. On pose f̃ x) se1 se2 · · · sek x).

L’application f̃ est bien définie. Elle estC8 par morceaux et continue ; en effet, la

seule ambiguïté dans la formule ci-dessus est lorsque x est sur l’hypersurface définie
par ek, mais dans ce cas sek x) x.



792 G. Besson, G. Courtois et S. Gallot CMH

Lemme 4.9. L’application f̃ est .-équivariante.

Preuve. Il suffit de vérifier l’équivariance pour les éléments de A et ceux de B qui
engendrent le groupe fondamental de X.

a) Si a A, le chemin dans l’arbre joignant la composante XA à celle de ax est

constitué des arêtes ae1, aek ; en effet, puisque a A, aXA XA et l’arête ae1
a son origine dans XA. D’où

f̃ ax) sae1 saek ax) ase1a-1
aseka-1 ax) af̃ x) a)f̃ x).

b) Si b B, le chemin joignant la composante XA à celle de bx est constitué
du chemin dans l’arbre joignant XA à bXA suivi de l’image par b du chemin précédent.

Rappelons que les sommets de l’arbre sont les éléments de /A et /B et les
arêtes sont les éléments de /C voir [44]). Par exemple, la composante connexe XA
correspond à eA classe de l’élément neutre e), celle de XB à eB ; elles sont

eA eB bA

eC bC

reliées par l’arête eC. Par ailleurs bXA correspond à la classe bA reliée à eB par

l’arête bC. En conclusion, nous avons

f̃ bx) s sbe bse1 sekb-1 bx)

où e désigne par abus de langage l’arête eC et se s. D’où

f̃ bx) sbsb-1
bse1 sekb-1 bx) b)f̃ x).

Fin de la preuve de la proposition. La fin de la preuve est évidente ; en effet f̃
renverse l’orientation sur XB et est l’identité sur XA, il suffit donc de choisir un

domaine fondamental dans la réunion XA XB pour lequel se relève sur

Pour être complet, il faut construire des variétés X hyperboliques admettant une

hypersurface connexe séparante qui sépare la variété en deux parties de volume
distinct. Cette construction nous a été suggérée par N. Bergeron. Soit M1 une variété
compacte de dimension 3, hyperbolique à bord totalement géodésique qui est une
surface compacte connexe notée De tels exemples existent voir [38], [12], th. 4.3
et [6]). Considérons le double M obtenu par recollement de deux copies de M1 le

long de La variété compacte M sans bord est hyperbolique car est totalement
géodésique. Le théorème 2 de [5] montre que l’on peut construire un revêtement fini
M de M tel que se relève isométriquement à M en une sous-variété totalement
géodésique non séparante. On découpe alors M le long de pour obtenir une

variété à bord dont les deux composantes du bord, notée 1, 2, sont isométriques à
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et on recolle à chacune de ces composantes une copie de M1. Alors, 1 et

2) découpe la nouvelle variété hyperbolique en deux composantes l’une de volume
égal à vol(M1) et l’autre de volume égal à vol(M) + vol(M1) > vol(M1).

Il serait intéressantde disposer de tels exemples endimension n 4. Remarquons,
par ailleurs, que l’ensemble des valeurs de vol( ainsi obtenu est discret pour une
variété donnée) ; une explication précise à ce phénomène est fournie par le chapitre
suivant.

5. Volume et déformations

Nous avons déjà remarqué que, lorsque la dimension de X est paire, le volume d’une
représentation X est supposée symétrique) est le nombre d’Euler du fibré plat
correspondant. En particulier, ce nombre est constant le long des déformations continues
de représentations. Nous allons prouver un résultat analogue dans le cas où la dimension

de X est impaire. De telles déformations existent en dimension 3 ([4]) et nous
en donnons des exemples. La constance du volume est prouvée en dimension 3 par
S. Reznikov [42] ; nousdonnons ici une preuve, valable en toute dimension,qui repose

sur la formule de Schläfli. Dans ce qui suit M désigne une variété riemannienne
fermée et orientée de dimension n et X l’espace hyperbolique réel simplement connexe
de dimension n.

Théorème 5.1. Soit M une variété différentielle fermée et orientée et .t : p1(M)
Isom(X) une famille de représentations qui dépend de manière C1 du paramètre

t R, alors le volume vol(.t est constant.

Ce résultat peut se déduire des travaux deA. Goncharov voir [27], Theorem 2.17).
Nous enprésentons ici unepreuve plus simple qui reposesur un lemme techniquedont
le but est de construire une application équivariante affine par morceaux particulière.
Parapplication affinenous entendonsuneapplication affineentre des simplexesmunis
de leur coordonnées barycentriques.

Lemme 5.2. Sous les hypothèses du théorème 5.1, il existe une triangulation T de

M et une application continue et affine par morceaux f̃0 : M X qui est .0-
équivariante et non dégénérée au sens où l’image par f̃0 d’un simplexe de la triangulation

T est un simplexe géodésique de X non dégénéré.

Preuve. L’idée est de construire une triangulation TM de M, p1-équivariante, et de

définir f̃0 de façon affine sur chaque simplexe.
Un théorème classique affirme que toute variété lisse compacte M est

homéomorphe à un complexe simplicial K ; plus précisément K est un espace triangulé
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muni d’une métrique euclidienne par morceaux que l’on peut réaliser dans Rn). Cet
homéomorphisme peut, de plus, être choisi Lipschitzien. Le volume de toute
représentation de p1(M) p1(K) peut donc se calculer en intégrant surM ou bien sur K.
Dans la suite nous noterons également M ce complexe euclidien par morceaux et

toute triangulation sera une subdivision de la décomposition de K en simplexes.
Choisissons alors une triangulation suffisamment fine de M et appelons TM la

triangulation invariante par p1(M) surM qui s’en déduitpar image réciproque. SoitD
un domaine fondamental de Dirichlet) dans M pour l’action de p1(M). Quitte à

modifier un peu TM
ou bien D on peut supposer qu’aucun sommet de la triangulation

n’est sur D.
Notons m1, mN) la liste des sommets de TM qui sont dans l’intérieur de D,

N est alors le cardinal des sommets de la triangulation de départ sur M. Choisissons
maintenant N points dans X, notés y1, yN) de sorte que si mi1, mik+1

est

un k-simplexe de T alors le simplexe géodésique de X de sommets yi1, yik+1

est non dégénéré pour tout k dimM+1. Ceci est toujours possible car, pour chaque
sommet yj la réunion des conditions de dégénérescence des simplexes contenant yj
est un ensemble fermé d’intérieur vide une réunion finie de k- 1-plans). Ces choix
étant fait, il existe autour de chaque point yj un petit voisinage Vj en sorte que,
pour n’importe quel choix de points y1 yN avec yj Vj la propriété de non
dégénérescence ci-dessus soit encore vérifiée. Par la suite nous aurons également
besoin de choisir les point yj de sorte que

yi .0( yj pour tous p1(M) et j i,

ceci est toujours possible car la réunion des points de l’orbite des yj pour j i, qui
sont dans Vi est un ensemble dénombrable. On procède donc par récurrence, y1 étant

fixé on choisit y2 V2 dans l’ensemble partout dense qui est le complémentaire de

l’orbite de y1, puis y3 dans le complémentaire des orbites de y1 et y2 et ainsi de suite.
On définit alors f̃0 par :

f̃0(.mi) .0( yi pour tous p1(M) et i 1, N

et on étend f̃0 à l’intérieur d’un simplexe mi1, miN en une application affine sur
le simplexegéodésiqueengendrépar les pointsyi1, yiN ; on utilisepourcela la
métrique euclidienne sur les simplexes de M et la métrique hyperbolique sur ceux de X.
Par le choix des points yi X, tous les simplexes dont les sommets sont dans l’intérieur

deDsont transformés par f̃0 endes simplexesnon dégénérés.Considérons
maintenant le cas où certains sommets sont dans l’intérieur de D et d’autres à l’extérieur.
Soit mi1, mip .j1mj1, .jqmjq un tel simplexe et supposons que son image

par f̃0, c’est-à-dire le simplexe noté yi1, yip .j1)yj1, .jq yjq soit
dégénéré ; cela signifie qu’il existe 1 k q tel que .jk yjk appartienne au
sousespace totalement géodésique E engendré par les points yi1, yip .j1)yj1,
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.jk-1)yjk-1 rappelons que, par construction, yi1, yip est un p-1)-simplexe

non dégénéré) ; on déplace alors yjk à l’intérieur de Vjk pour le séparer de .jk )-1E ;
ceci est possible si E reste fixe lorsque l’on déplace yjk c’est-à-dire si aucun des

pointsyi1, yip .j1)yj1, .jk-1)yjk-1 n’estdans l’orbitede yjk Par le choix
des yi ceci ne peut se produire que si yjk yjl avec l 1, q et l k ou bien

yik yil l 1, p. Les points yi étant en bijection avec les points mi cela
impliquerait que dans le simplexe mi1, mip .j1mj1, .jq mjq deux des points

ml coïncident et donc qu’au quotient surM il se projette sur un simplexe dégénéré ce

qui est impossible. On peut donc séparer yjk du sous-espace totalement géodésique

.jk)-1E. On utilise ensuite l’argument de densité pour choisir le nouveau point yjk
disjoint de la réunion des orbites par p1(M)) des autres points yl On procède alors
par récurrence sur les simplexes considérés qui sont en nombre fini.

Les autres simplexes sont des images par un élément pour p1(M) des

simplexes d’un des deux types précédents. Ceci prouve le lemme 5.2.

Preuve du théorème. Nous noterons TX la collection des simplexes de X ainsi
obtenue. Soit F une face de codimension 2 de TM

et F son image dans TX L’étoile
de F dans TM contient un nombre fini de n-simplexes s1, sk dont les images
sont notées s1 sk Le link autour de F est un cercle. Précisément, considérons

un voisinage tubulaire de rayon assez petit, noté Tub(F de cette face F de
codimension 2. Alors le bord de Tub(F est difféomorphe à F × S1. La variété M est

supposée orientée, et donc aussi M. Sur le bord de Tub(F nous choisissons une

courbe C générateur de H1(.Tub(F Z) Z; nous pouvons, par exemple, prendre
l’intersection de Tub(F avec un hyperplan orthogonal à F en un point on peut
définir un tel hyperplan bien que la métrique sur M, qui est euclidienne sur chaque
simplexe, soit singulière en F). Si nous choisissons arbitrairement une orientation sur
chaque face de codimension 2, donc en particulier sur F, cela fournit une orientation

du cercle C compatible avec celle de M.
L’applicationf̃0, linéairepar morceaux, envoie F surF par construction) et donc

Tub(F sur un cylindre topologique que l’on peut projeter, à partir de F sur le bord
Tub(F d’un petit voisinage tubulaire de F pour la métrique hyperbolique). Cela

induit une application,

f̃0 : H1(.Tub(F Z) - H1(.Tub(F Z)

et on appelle degré transverse de f̃0 en F, l’image par f̃0* du générateur de

H1(.Tub(F R) ; cette classe est un multiple entier de la classe fondamentale de

H1(.Tub(F Z) et nous pouvons donc, par abus de langage, identifier le degré
transverse à un nombre entier relatif. On peut également définir ce degré en utilisant
le cercle C tracé sur Tub(F et un cercle C analogue sur Tub(F sur lequel on

projette f̃0(C).
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Soit F, s) resp. F s l’angle diédral euclidien) du simplexe s TM
en la face F resp. du simplexe s TX en la face F Les nombres et sont

choisis positifs. L’application f̃0 d’un simplexe s sur un simplexe s peut préserver
ou renverser l’orientation on rappelle que cette application est affine en restriction
à s) et nous poserons s) s ±1 suivant le cas considéré.

Lemme 5.3. Soit F une face de codimension 2 image de F, le degré transverse de

f̃0 en F, noté degF f̃0, vérifie,

2pdegFf̃0 ±
s /F s

s F s

Preuve. Pour F telle que f̃0(F F et s TM
tels que F s, f̃0(C ns) se projette

sur C n s où s f̃0(s)) qui est un arc d’angle de valeur absolue F s On
peut choisir les orientations de X et F de sorte que l’angle orienté de la projection
de f̃0(C n s) est + F s si S +1, et - F s si f̃0 renverse l’orientation
de s. La quantité

s /F s s F s représente donc l’angle orienté total de la

projectionde f̃0(C) surC c’est-à-dire 2pdegF f̃0.Si l’orientation deX est renversée

la relation devient 2pdegF f̃0 - s /F s s F s

Considérons alors une déformation de .0, soit .t que nous supposerons C1 en t
Nous construisons l’application f̃t de la manière suivante :

f̃t(mi) yi i 1, N,

f̃t .mi) .t yi pour tout p1(M),

et ensuite on étend f̃t de manière affine dans chaque simplexe. La collection des

simplexes images et leurs sommets varient de manière C1 en t Nous noterons cette
collection TX t). Tous les simplexes de TX t) sont non dégénérés, pour t assez petit ;
en effet, il suffit de n’en considérer qu’un nombre fini, les autres s’en déduisant
par équivariance. Notons également que, par construction, f̃t dépend de manière C1
en t en particulier, le volume hyperbolique d’un simplexe de TX t) est une fonction
C1 de t Soit F une face de codimension 2 de TM et F t) son image par f̃t Pour
s TX t), nous noterons t ; F s l’angle positif) diédral de s en F Nous ne

mentionnerons pas la dépendance en t des simplexes de TX t) et de leurs faces de

codimension 2 s’il n’y a pas d’ambiguïté. Par ailleurs si s t) f̃t s) et t est assez

petit s t)) ne dépend pas de t

Lemme 5.4.
d
dt

s /F s

s t; F s 0.
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Preuve. Pour t assez petit, la face F t) est homéomorphe à F 0); de même s t) est

homéomorphe à s 0) si s t) TX t) et ils sont tous non-dégénérés. Les voisinages
tubulaires de F t) et F 0) sont aussi homéomorphes et on peut définir le degré
transverse de f̃t grâce à F 0).Alors, par constance du degré par déformation, pour t
assez petit, on a degF t)(f̃t degF 0)(f̃0).

Rappelons la formule de Schläfli cf. [43] and [36]). Soit s un simplexe hyperbolique

géodésique et F une de ses faces de codimension 2 ; si s t) est une déformation
de classe C1 de s s 0), alors

d

dt |t=0
vol(s t)) -

F s

d

dt |t=0
t; F t s t)))voln-2(F t))

où voln-2 désigne le volume n - 2)-dimensionnel de la face considéré.
Pour s TM choisissons un relevé s TM ; alors f̃t identifie de manière C8

jusqu’au bord s avec un simplexe hyperbolique deTX L’équivariance de f̃t permet de
définir de manière unique une métrique hyperbolique sur s dont la collection produit
une métrique g(t) surM qui est continue et hyperbolique par morceaux.En particulier
le volume des faces de codimension 2 et les angles diédraux en celles-ci sont ceux
du simplexe hyperbolique f̃t s). Soit la forme volume hyperbolique de X alors

vol(.t
M
f̃*t

s.TM
s
f̃ *t

s.TM

s)vol(f̃t s))

s.TM

s) vol(s, g(t))

en définissant s) s) f̃t s)). Ici on a identifié, par abus de langage, f̃*t
avec une forme différentielle sur M grâce à l’équivariance de f̃t La formule de
Schläfli donne,

d

dt
vol(.t

s.TM

d

dt
s) vol(s, g(t)))

sTM F.s

s)
d

dt t; s, F))voln-2(F, g(t))

où t; s, F) désigne l’angle diédral en F du simplexes mesuré à l’aidede la métrique

g(t). Il est égal à t; f̃t s), f̃t(F où s et F sont des relevés respectifs de s et F.

d

dt
vol(.t

F s/F.s

s)
d
dt t; F,s)) voln-2(F, g(t))
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La quantité entre parenthèse peut se calculer sur M ou bien sur M car elle ne

concerne que l’étoile d’une faceF ;elle peut également se calculer sur Xpar définition
de g(t). Le lemme précédent montre que, pour toute face F,

s.F
s)

d

dt t; F, s)) 0

Ce qui prouve que d
dt vol(.t 0.

Une conséquence immédiate du théorème 5.1 est le corollaire suivant. Notons

R(p1(M), Isom(X)) l’espace des représentations du groupe fondamental d’une
variété M dans le groupe d’isométries de l’espace hyperbolique.

Corollaire 5.5. Soit M une variété différentielle fermée et orientée, alors la
fonctionnelle,

vol : R(p1(M), Isom(X)) R+

prend un nombre fini de valeurs.

Preuve. Le groupe d’isométries Isom(X) PO(n, 1) est un groupe algébrique ; par
ailleurs, p1(M) est de présentation finie donc R(p1(M), Isom(X)) est une variété
algébrique avec singularités) et possède un nombre fini de composantes connexes.

Le théorème 5.1 affirme que la fonctionnelle vol est constante sur chaque composante
connexe.

Remarque. Ce résultat est énoncé dans [42], toutefois la preuve est incomplète sauf,
peut-être, en dimension 3. Celle présentée ci-dessus nous a été suggérée par J.-P. Otal
voir [11]).

Considérons alors les variétés hyperboliques fermées de dimension n. Un théorème

deWang [48] affirme que, pour n 4 etV > 0 le nombre de variétés hyperboliques

fermées de volume inférieur à V est fini. Ce résultat est notoirement faux en
dimension 3 et en dimension 2. Si X désigne une variété hyperbolique fermée et M
une variété différentielle fermée, nous dirons voir [28]) que M domine X s’il existe
une application continue de degré non nul de M sur X. Le théorème 5.1 permet de
donner une preuve très simple du résultat suivant :

Théorème 5.6 T. Soma [45]). Soit M une variété différentielle fermée de dimension

3, alors il n’existe qu’un nombre fini de variétés hyperboliques de dimension 3

fermées dominées par M.

Preuve. Désignons par f : M X l’application continue de degré non nul deM sur

X, où X est une variété hyperbolique fermée. L’application f induit un morphisme
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f*: p1(M) p1(X), c’est-à-dire une représentation de p1(M) dans PO(n,1).
Par définition du degré de f nous avons,

vol( deg(f vol(X).

Par ailleurs, si on munitM d’une métrique riemannienne quelconque, le théorème 3.2
montre que ce volume est borné par un nombre ne dépendant que de M et de cette
métrique) que nous noterons C(M). Nous avons donc,

deg(f vol(X) C(M)

c’est-à-dire, deg(f C(M)/ vol(X). Le volume d’une variété hyperbolique
compacte est bornée inférieurement par une constante universelle vn ne dépendant que de
la dimension n grâce au lemme de Margulis voir [13]). En conséquence,

deg(f C(M)/v3.

Il n’y a donc qu’un nombre fini de valeurs possibles pour le degré de l’application f
De même deg(f vol(X) vol( ne prend qu’un nombre fini de valeurs d’après le

corollaire 5.5. Le volume des variétés X fermées dominées par une variété fermée
fixeM ne peut donc prendre qu’un nombre fini de valeurs ce qui, d’après une résultat
de W. Thurston ([47]), montre qu’il ne peut y avoir qu’un nombre fini de telles
variétés.

Nous terminons en donnant un exemple de telles déformations, montrant la
pertinence du théorème 5.1.Il nous aétécommuniqué par Daryl Cooperpar l’intermédiaire
de Michel Boileau.

Exemple D. Cooper). Soit N une variété hyperbolique fermée de dimension 3.
Considérons la somme connexe de N avec S1 × S2, notée N#(S1 × S2), le groupe
fondamental de cette variété est le produit libre p1(M) * Z. Soit k un noeud
homotopiquement nul dans N#(S1 × S2) qui rencontre S1 × S2 en au moins deux points.
D’après R. Myers ([37]) on peut trouver de tels noeuds en sorte qu’une chirurgie de
Dehn autour de k transforme N#(S1 × S2) en une variété hyperbolique fermée M
voir aussi [10] page 797). La proposition 3.2 de [10] permet de construire une

application continue f : M N#(S1 × S2) de degré 1. Par ailleurs il existe également
une application continue, h: N#(S1 × S2) N de degré 1 qui consiste à écraser
S1 × S2 en un point. Nous obtenons donc une application continue de degré 1,

h f : M -. N

et une représentation .0 h* f* : p1(M) p1(N) PO(3, 1). Le volume de

cette représentation est,

vol( vol(N) > 0
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car h f est degré 1 et l’image de est le groupe fondamental de N. Par ailleurs .0
se décompose en,

.0 : p1(M) f*-. p1(M) * Z -h.* PO(3,1).

Le facteur libre Z permet alors de déformer h* sans contrainte et donc de produire
des déformations non triviales. Plus précisément, si p1(M) vérifie que f*(
est le générateur du facteur Z, alors .0( 1. On peut déformer continûment h*
en déformant seulement l’image de f*( par exemple en un élément hyperbolique
dont la longueur de translation varie ; de la sorte la déformation .t ainsi obtenue est
non-triviale. En augmentant le nombre de facteurs S1 × S2 nous pouvons aisément
augmenter le nombre de paramètres disponibles pour déformer

Remarque. Il serait intéressant de construire de telles déformations en dimension
supérieure ou égale à 4. Il est facile d’en construire de volume nul, mais des exemples
de volume non nul restent à décrire.
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