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Injections of Artin groups

Robert W. Bell and Dan Margalit*

Abstract. We study those Artin groups which, modulo their centers, are finite index subgroups
of the mapping class group of a sphere with at least 5 punctures. In particular, we show that any
injective homomorphism between these groups is given by a homeomorphism of a punctured
sphere together with a map to the integers. The technique, following Ivanov, is to prove that
every superinjective map of the curve complex of a sphere with at least 5 punctures is induced
by a homeomorphism. We also determine the automorphism group of the pure braid group on
at least 4 strands.

Mathematics Subject Classification (2000). Primary 20F36; Secondary 57M07.
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1. Introduction

We investigate injective homomorphisms between Artin groups which, modulo their
centers, embed as finite index subgroups in the mapping class group of an m-times
punctured sphere S,,, where m > 5.

The extended mapping class group of a surface I is the group of isotopy classes
of homeomorphisms of F:

Mod(F) = mp(Homeo(F)).

Theorem 1. Let m = 5. If G is a finite index subgroup of Mod(Sy) and p: G —
Mod(S,,) is an injective homomorphism, then there is a unique f € Mod(S,,) so that

p(g) = fef ! forallg € G.

In particular, Theorem 1 applies to four infinite families of Artin groups modulo
their centers: A(Ay,)/Z, A(By)/Z, A(Cn 1), and A(An 1) where n = m — 2 (see
below for definitions). The group A(B;,) is asubgroup of A(A; ) and inherits the same
center Z; the groups A(Cy_1) and A(A,_1) have trivial center. Thus, Theorem 1 is a

*The first author is partially supported by a VIGRE postdoctoral position under NSF grant number 0091675
to the University of Utah. The second author is supported by an NSF postdoctoral fellowship.
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generalization of work of Charney—Crisp, who computed the automorphism groups
of the aforementioned Artin groups using similar techniques [9].

Following Ivanov, we prove Theorem 1 by translating the problem into one about
the curve complex C(Sy;,). This is the abstract simplicial flag complex with vertices
corresponding to 1sotopy classes of essential curves in S, and edges corresponding
to disjoint pairs of curves. To this end, we focus on particular elements of G powers
of Dehn twists; each such element is associated to a unique isotopy class of curves in
Sm (see Section 2). We show that the injection p must take powers of Dehn twists to
powers of Dehn twists, thus giving an action p, on the vertices of C(S,,). Since p, 18
easily seen (o0 be superinjective in the sense of Irmak (i.e. p, preserves disjointness and
nondisjointness), we will be able to derive Theorem 1 from the following theorem,
proven in the appendix.

Theorem 2. Let m > 5. Every superinjective map of C(Sy) is induced by a unigue
element of Mod(S,,).

The proofs of both theorems are modeled on work of Ivanov, who showed that
every 1somorphism between finite index subgroups of Mod(F') 18 the restriction of an
inner automorphism of Mod(F'), when the genus of F is at least 3 [24]. To do this,
he applied his theorem that every automorphism of C(f) is induced by an element
of Mod(F'). His method has been used to prove similar theorems by various other
authors ([26], [28], [18], [20], [19], [15], [31], [8]). In particular, Korkmaz proved
that every automorphism of C(S,,) is induced by an element of Mod(S,,) [26], and
Irmak showed that every superinjective map of C(F), for higher genus I, is induced
by an element of Mod(F), thus obtaining the analog of Theorem 1 for surfaces of
genus at least 2 ([18], [20], [19]).

After the completion of the work presented in this paper, the final cases of Irmak’s
theorem were completed by Behrstock—Margalit [3] and Shackleton [34]. See the
appendix for a detailed historical remark.

Artin groups. Before we explain the applications of Theorem 1 to Artin groups, we
recall the basic definitions. An Artin group 1s any group with a finite set of generators
{s1,..., sy} and, for each i # j, a defining relation of the form

885 55 4 = 8384 55

where s;s5; ... denotes an alternating string of m;; = mj; letters. The value of m;;
must lie in the set {2, 3, ..., oo} with m;; = o0 signifying that there is no defining
relation between s; and s;.

It is convenient to define an Artin group by a Coxeter graph, which has a vertex
for each generator s; and an edge labelled m;; connecting the vertices corresponding
tos; and s; if m;; > 2. The label 3 is suppressed. The Coxeter graphs A,, B, C‘n_l,
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and A, _; for the Artin groups A(A,), A(By), A(C,_1), and A(A,_;) are displayed
in Figure 1.

- o o - — 8 e @ An (n >0
04—0—o— e — o ————® By, (n>1)
04—0—0— -- —0—0—40 énfl (n > 3)

Figure 1. Coxeter graphs with n vertices.

Artin groups and mapping class groups. The Artin group A(A,) is better known
as the braid group on »n 4 1 strands. If D, is the disk with » + 1 punctures,
and Homeo (D, +1, 3 Dy41) 1s the space of homeomorphisms of D41 which are the
identity on the boundary, then A(A,) 1s isomorphic to

Mod(Dy+1, 3Dy+1) = mo(Homeo( Dy 41, 0Dy41))

(see, e.g., [6]). Note that homeomorphisms which are the identity on the boundary
are necessarily orientation preserving. The pure braid group P(A,) 1s the (finite
index) subgroup of A(A,) consisting of elements which fix each puncture of D 1.
The group A(B,) i1s isomorphic to a subgroup of A(A,) fixing one given puncture
(see [1] or [9]).

The center Z of A(A,) i1s generated by the Dehn twist about a curve isotopic (0
d Dy 41; we denote this element by z. Both A(B;,) and P (A,) inherit the same center.

We can also identify A(A,)/Z, A(B,)/Z, and A(C‘n_l) with the subgroups of
Mod(S,+42) consisting of orientation preserving elements which fix one, two, and
three particular punctures, respectively; further P(A,)/Z is isomorphic to the pure
mapping class group PMod (S, 42 ), which is the finite index subgroup of Mod(S; 42)
consisting of orientation preserving elements which fix every puncture. The group
A(A,_1) is also isomorphic (o a finite index subgroup of Mod(S,,2). A complete
description of these isomorphisms appears in the paper of Charney—Crisp [9]. The
proofs are due to Allcock, Kent—Peifer, Charney—Peifer, Crisp, and Charney—Crisp

([11, [251, [101, [12], [9D).

Applications. We now give some consequences of Theorem 1. A group is co-Hopf-
ian if each of its injective endomorphisms is an isomorphism.
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Corollary 3. Forn > 3, all finite index subgroups of Mod(Sy42) are co-Hopfian; in
particular, the groups A(Ay)/Z, A(By)/Z, A(Cy_1), A(A,_1), and P(A,)/Z are
co-Hopfian.

Foreach O < k < m = n + 2, let G be a subgroup of Mod(S,,) consisting
of orientation preserving elements which fix & given punctures. Note that Gy is
the index 2 subgroup of Mod(S,,) consisting of orientation preserving elements,
G1 = A(A)/Z, and Gy = Gy, = PMod(Sy). Also, G2 = A(B,)/Z and
G3 = A(Cy-y).

Corollary 4. Suppose n = 3 and let G and H be any of the groups in Figure 2. Then
there exists an injection p: G — H if and only if there is directed path from G to H
in Figure 2.

A(Ap—1)

|

PMod(Sp42) — = Gy =+ —=Ga—= A(C, 1) —= AB/Z —= A(A)/Z — Gy

Figure 2. The diagram for Corollary 4.

Theorem 1 tells us that o preserves the index of G. We have [Mod(Sy,) : Gi] =
2m!/(m — k)!, and the index of A(A,_1) is the same as A(C,_1) = G3 (see [9]).
Since A(An 1) & A(Cn 1) (see [9]), there are no arrows from right to left. To
complete the proof of the corollary, it suffices to note that P(A,)/Z is not a subgroup
of A(A,_1) (see [9])and that P(A,)/Z, contained in each Gy, is normal in Mod(S,,).

One might also ask whether or not any injection from Corollary 4 is unique up to
automorphisms of /. The answer is no. For instance, since G, 1s normal in G, we
may conjugate G, by any element of Mod(S,,) to get an injective homomorphism
G, — Gy for any k. However, if £ > 0, then f might not fix the k punctures fixed
by Gy, and so there is no automorphism of G which achieves the injection.

We also characterize injections between the groups A(A,), A(By), and P(A,)
(with their centers). There are inclusions: P(A,) — A(By) — A(A,) (see Sec-
tion 5); all other injections between these groups are described by the following
corollary to Theorem 1. We denote the center of a group G by Z(G).

Theorem 5. Suppose n > 3 and let G be a finite index subgroup of A(A,). If
p. G — A(Ay) is an injective homomorphism, then there is an induced injection
G/Z(G) — A(A,)/7Z. Moreover, there is a unique f € Mod(S,42) so that, after
identifying A(Ay)/Z with the group G, we have

p(e)Z = f(gZ) !
forall g € G.
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In Section 5, we explain how this theorem may be applied to give an explicit list
of all injections of A(A,), A(B,), and P(A,) into A(A,). The case of A(A;) was
already handled in a previous paper of the authors [4].

Combining Theorem 5 with Corollary 4, we immediately obtain an analogue of
Corollary 4 for A(A,). Precisely, if Lj is a subgroup of A(A,) corresponding to
elements which fix k particular punctures, then there 1s an injective homomorphism
L; — Lpifand only if ; > k. In particular, there is an injective homomorphism
between two of the groups A(A,), A(By), and P(A,) if and only if there is an obvious
one.

We further prove the following theorem. For the statement, note that each L
inherits the same center Z as the entire group A(A,).

Theorem 6. The natural map Aut(Ly) — Aut(Li/Z) is surjective.

We give a more complete description of Aut(L) in two cases. The first is a
theorem of Charney—Crisp [9].

Theorem 7. Forn > 3, we have
Au(A(B,)) = (Zy x Zp) X (G X Z)
where G2 is the group defined above.

Whereas the Chamey—Crisp proof of Theorem 7 relies on a semidirect product
decomposition of A (B;,) due to Kent—Peifer, we work directly from the isomorphism
A(B,) = L.

Finally, we compute the automorphism group of the pure braid group. The proof
uses our understanding of injections P(A,) — A(A,), a theorem of Korkmaz, and
a direct product decomposition of P(A,) pointed out to us by Luis Paris.

Theorem 8. Suppose n > 3 and let N = ("3'). We have
AUL(P(A,)) 2 Mod(Sy42) & (Zp x ZN1).

We note that P(A3) is isomorphic to the free group on two letters and P (A1) = Z.

Acknowledgements. The authors would like to thank Benson Farb for bringing
the work of Charney—Crisp to our attention and for his continued encouragement
on this project. Joan Birman, Chris Leininger, and Luis Paris were very generous
with their time and energy; for this we are thankful. We are also grateful to Mladen
Bestvina, Tara Brendle, Ruth Charney, Feng Luo, Andy Putman, Michah Sageev, Saul
Schleimer, Steven Spallone, and Kevin Wortman for helpful conversations. Finally,
we thank the referees for comments which improved the paper.
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2. Background

Curves. By a curve in a surface F, we mean the isotopy class of a simple closed
curve in 7 which is not isotopic to a point, a puncture, or a boundary component
of F. We will often not make the distinction between a representative curve and its
isotopy class.

We denote by i(a, b) the geometric intersection number between two curves a
and b,

A maximal collection of pairwise disjoint curves in S, is called a pants decom-
position. Any pants decomposition of S,, or D,,_1 has m — 3 curves.

The interior of a curve in Dy, is the component of its complement which does
notcontain @ D, 41. A curvein Dy 1 with k£ punctures in its interior is called a k-curve.

Curve complex. The curve complex C(I') for a surface I, defined by Harvey, is
the abstract simplicial flag complex with a vertex for cach curve in /' and edges
corresponding to geometric intersection zero [17].

A map ¢: C(F) — C(F) is called superinjective if for any two vertices v and
w of C(F), thought of as curves in F, we have that i(v, w) = 0 if and only if
i(@p(v), ¢(w)) = 0. Superinjective maps of C(S,;) are injective for m > 5 since,
given two distinct curves, there is a curve which is disjoint from one but not the other.

Twists. A Dehn twist about a curve a, denoted T,, is the element of the mapping
class group which has support on an annular neighborhood of a, and 1s described on
that annulus by Figure 3.

Figure 3. Dehn twist about a curve a.

If a is a 2-curve, we define the half rwist about a, denoted ,,, to be the element of
the mapping class group which has support the interior of a, and 18 described inside
this twice-punctured disk by Figure 4.

Foreach f € Mod(S,,),lete(f) = 11if f preserves orientationande(f) = —1if
not. We will use the following connection between the topology and algebra of Dehn
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Figure 4. Half twist about a curve «.

twists in Mod(S,,). In the statement (and throughout the paper), we use functional
notation; that is, elements are applied right to left.

Fact 9. Suppose f € Mod(S,,). Then fT,f~! = T;((f)). In particular, [ f, T, =1
implies f(a) = a, and powers of Dehn twists commute if and only if the curves have
geomelric intersection zero.

For a group I', we define its rank, tk I, to be the maximal rank of a free abelian
subgroup of I'. It follows from work of Birman—Lubotzky—McCarthy that for any
surface I, tk Mod( /) is realized by any subgroup generated by powers of Dehn twists
about curves forming a pants decomposition for /7 [7]; thus, tk Mod(S,,) = m — 3.
The following theorem of Ivanov gives another connection between the algebra and
topology of Mod(S,,) [24]. We restrict our attention here to the genus () case, which
has a particularly simple statement. Throughout, C' g (g) denotes the centralizer of g
in the group H.

Theorem 10. Let m = 5 and let P be a finite index subgroup of PMod(S,,). An
element g of P is a power of Dehn twist if and only if Z(Cp(g)) = Zandtk Cp(g) =
m — 3.

We now state a group theoretical lemma, due to Ivanov—McCarthy [21], which
will be used in Proposition 12.

Lemmall. Letp: I' — 1" be any injective homomorphism of groups, whererk I =
tkI' < o0. If G < I is a free abelian subgroup of maximal rank, and g € G, then

tk Z(Cri(p(g))) = 1k Z(Cr(g)).

Note that Lemma 11 applies whenever g 1s a power of a Dehn twist and both I'
and I’ are finite index subgroups of PMod(S,,).
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3. Subgroups of Mod(S,,)

Let p: G — Mod(S,) be an injective homomorphism, where G i1s a finite index
subgroup of Mod(S;,) with m > 5. Set Q0 = PMod(S,;) and P = O N o~ L0,
Note that since P is a finite index subgroup of Mod(S,,), every Dehn twist has a
nontrivial power in P.

Proposition 12. Let a be a curve in Sy, and choose any nonzero k so that T a" e P.
There is a unique curve a’ (independent of k) and an integer k" so that p(T, ak) =d ak,/.

Proof. By Theorem 10, Z(Cp(g)) = Z. Lemma 11 and the fact that p is injective
imply that Z(Cg(p(g))) = Z. Since tk p(Cp(g)) = tk Mod(S;), Theorem 10 says
that p(g) must be a power of a Dehn twist about some curve a’. The uniqueness of @
follows from the fact that (7,) N P is cyclic. O

By Proposition 12, p induces a well-defined action p, on curves given by

PTE) =Ty 4y

Applying Fact 9, we have:
Proposition 13. The map py is a superinjective map of C(Sy,).

We are now ready to complete the proof of Theorem 1, assuming Theorem 2.

Proof. By Propositions 12 and 13, the injection p gives rise to a superinjective map
Py of C(S), which by Theorem 2 is induced by a unique f € Mod(S,,); that 1s
to say, pi(c) = f(c) for every curve c¢. Since f is unique, we can check that
p(g) = fef! by checking that fg(c) = p(g)f(c) for any curve c. We choose k

so that T;(C), TF ¢ P, and let k¥’ and k” be the integers given by the application of

Proposition 12 to 7, ., and T

Ty = p(The) = peT g™ = p()p(TFH)p(g)™!
. k// _1 . :I:kf/
= p@Ts (&) =T (o)

Thus Tf;(c) = T;;’gf) f(ey» Which implies that fg(c) = p(g) f(c). O

4. Subgroups of A(A})

Let G < A(A,) be a finite index subgroup and p: G — A(A,) an injective ho-
momorphism. To prove Theorem 5, we need to show that p induces an injective
homomorphism G/ Z(G) — A(A,)/Z and apply Theorem 1.
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As with Theorem 1, we shall require the existence of a superinjective map py of
C(D;,41) which is induced by p in the sense that for any curve a we have

p(Ty) = T} (2"

for some integers k, &/, and k" (k and &’ nonzero); as usual z is the generator of
the center of A(A,). The argument is exactly the same as in Proposition 12, with
Theorem 10 replaced by the following corollary of Theorem 10.

Corollary 14. Let P be a finite index subgroup of P(A,). An element g of P is the
product of a central element and a nontrivial power of a noncentral Dehn twist if and
only if Z(Cp(g)) = Z? and rk Cp(g) = n.

We now prove the theorem.

Proof of Theorem 5. Let G be a finite index subgroup of A(A,)andp: G — A(A,)
an injective homomorphism. We know that G has nontrivial center Z(G) since it
is finite index in A(A,). Further we have Z(G) = Z N G = Z. Indeed, if ¢ is an
element of Z((), then ¢ must fix every curve in D, by Fact 9 and the fact that &
is finite index; hence ¢ is a power of z.

Let ¢ denote a generator of Z(G). We now show that p(Z(G)) < Z by showing
p(¢) € Z. Since tk G = rk A(A,,), we have that p(¢%) € Z for some nonzero k.

Choose a pants decomposition & of D, ;1. As in Section 3, we know that p, () 18
also a pants decomposition. Further, because ¢ 1s central and p is injective, it follows
that p(¢) fixes each element of p,(#). Since an orientation preserving element of
Mod(S3) is determined by its action on the punctures, it follows that p(¢) lies in
the free abelian subgroup generated by half twists and Dehn twists in the curves of
0, (P). Since p(0)* € Z, it now follows that p(¢) € Z.

Moreover, we have that p~1(Z) < Z(G), by the injectivity of p. Thus, p induces
a well-defined injection G/Z(G) — A(A,)/Z. Since G/Z(G) is finite index in
A(A,)/Z, we may apply Theorem 1. Thus, fixing an identification A(A,)/Z <
Mod(S;4+2), there is a unique f € Mod(S,,+2) so that

p(RZ=fgZ)f™
for all g € G. This proves the theorem. O

We now take a moment to interpret Theorem 5 in a way that will be useful to us in
the next section. The element f € Mod(S,42) from the theorem does not necessarily
correspond o an element of Mod(D,, 1), for it may switch the puncture of Sy7
corresponding to the boundary of D, ; with another puncture. However, even in
this case, since C(Dy11) = C(S,42), the element f induces an automorphism f,
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of C(D,41). Since f is an element of Mod(S,42) as opposed to Mod(D;11), the
map f, may take a k-curve to an (n — k 4 2)-curve.

Now, let g be a power of a noncentral Dehn twist or half twist in &; for concrete-
ness, ¢ = TX. The coset gZ is a power of a Dehn twist, also denoted T, thought
of as an element of Mod(S,42). The conjugate f(gZ)f —1 s equal to Tfi ((i:))k It

follows from Theorem 5 that p(g) is a product of T fi ((Qk with a central element. We

again emphasize that f is an ¢lement of the mapping class group of S,42, and not
D, 11, and so f, can take a curve to one which is not topologically equivalent in
Dy 1. In fact, we will see examples of this “nongeometric” phenomenon in the next
section, where we classify injective homomorphisms of A(A,), A(B,), and P(A,)
into A(A,). As each of these groups 1s generated by half twists and Dehn twists, we
will be able to understand these injections via the following corollary to Theorem 3,
which summarizes the above discussion.

Corollary 15. Let G be a finite index subgroup of A(A,) and p: G — A(Ap) an
injective homomorphism. There is an f € Mod(S,42) so that for any power of a
Dehn twist TX € G, we have

k
p(Th) = TiE )

; _ Tk
for some integer t = ((T)).

The analogous statement for half twists also holds. We remark that the reason
we focus on Dehn twists and half twists here is that in A(A,) there is a natural
representative of a Dehn twist coset of A(A,)/Z, and so, combined with the action
of f, on curves, there 1s a relatively simple form for the image under p of a power of
a twist.

Moving punctures criterion. Another fact which will be useful in the next section is
that / must send moving punctures to moving punctures; that is, the set of punctures
of Sp42 which are not fixed by every element of G/Z(G) must be sent by f (o into
the n + 1 punctures which are not fixed by A(A, )/ Z (recall that only one puncture 1s
fixed by A(A,)/Z). This is because conjugation by f sends fixed punctures to fixed
punctures and moving punctures to moving punctures. Below, we call this the moving
punctures criterion. We remark that this criterion can be used to derive Corollary 4
from Theorem 1.

5. Catalogue of injections

We now use Theorem 5 to list all injections of the groups P(A,), A(B,), and A(A,)
nto A(A,). As usual, we denote the generator of Z by z.

Instead of applying Theorem 5 directly, we will instead use Corollary 15 and
the moving punctures criterion. We use the notation of Corollary 15: given an
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element f of Mod(S,+2), the symbol f, denotes the induced automorphism of
C(Sy42); the identification C(Dy 1) = C(S,42) comes from the identification
A(An)/Z < Mod(Sp42).

5.1. Injections of A(A,). The Artin group A(A;) is defined via the presentation
given by Figure 1. We denote the generators by o1, . . ., 0,. Under the identification
with Mod(D;,4+1, 8 D,,.41), each generator o; corresponds to a half twist f{,, about a
curve ¢; in Dy 41 (see [6]).

Let p: A(A,) — A(A,) be an injective homomorphism. Applying the moving
punctures criterion, we see that the element f € Mod(S,42) given by Theorem 5
must send the puncture of ;47 fixedby A(A;)/Z to itself. Therefore, we may think
of f as an element of Mod(D,,1). Corollary 15 then implies that p is described on
generators by the formula

i) = Hi ks

where each #; 18 an integer. Since the o; are all conjugate in A(A,), we have that #; 1s
the same for all ;. Conversely, any choices of f € Mod(D;+1) and f = £; determine
an injective homomorphism. Indeed, Theorem 5 tells us that

p()Z = f-Z) [
and so the kemel of p is contained in Z. However, since z = (o7 . .. 0,)" L, we have

p(z) = 7 @OHD) — dF @)
Asn >3, weseet(n(n+ 1)) cannot be —1, so p(z) is not trivial, and the kernel of
p 1is trivial. Thus, we have an injection for any ¢; moreover, the map is not surjective
when ¢ # 0: the preimage of Z is contained in Z, but z > 10+ g6 nothing
maps (o z.

It follows that Aut(A(A,)) = Mod(D,4+1). This was first proven by Dyer—
Grossman [14]. Tvanov was the first to compute Aut(A(A,)) from the perspective of
mapping class groups [22].

5.2. Injections of A(B,). Again, this group has a presentation given by Figure 1.
We denote the generators for A(B,), from left to right, by s1,...,s,. The usual
inclusion A(B,) — A(A,) is given by 51 — 012 and s; — o fori > 1.

Letp: A(B,) — A(A,) be an injective homomorphism. There are two punctures
fixed by A(By)/Z < Mod(S,42). By the moving punctures criterion, the element f
given by Theorem 5 must send one of these two punctures to the puncture fixed by
A(A,)/Z. Identifying o; with H,, as above, this means that f, takes a; to a 2-curve
when { > 1, and f,(ay) 1s either a 2-curve or an n-curve. We will see 1in Section 6
that Aut(A(B,)) — Aut(A(B,)/Z) is surjective, so we are forced to consider these
nongeometric maps f,.
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As above, the homomorphism p is given on generators by

p(Ty) = Tfi((Q)Z” and p(H,) = H]f*((il),)zli for: > 1.

Since the s; are conjugate for ¢ > 1, we have that #; is the same for these i; set
u = t; and v = f. Conversely, we have a well-defined homomorphism for any
uand v. If ¢ — 1, we again have that ¢ € Z. Since z = (s1...5,)", we have
7 > ghtnudnin=Lv Byt there are no « and v which make the latter trivial (as » and
n(n — 1) are not relatively prime), so every choice of « and v leads to an injection.

5.3. Injections of P(A,). We identify P(A,) with the elements of A(A,) which
fix each puncture of Dy 1. There is a standard generating set for P(A,), due to Artin,
consisting of one Dehn twist 75, ; for each pair of punctures of Dy41 (see [29, pp.
173-174]). If the punctures of D;_; lie in a horizontal line, then each a; ; can be
realized as the boundary of a regular neighborhood of an arc which lies below this
horizontal and connects the :" and ;" punctures; note that @; = a; ;1.

Let p: P(A;) — A(A,) be an injective homomorphism. As in the previous
cases, we apply Corollary 15 and deduce that p is described on generators by

p(Tai,j) = T;;((Zi)’j)zti’j

for some f € Mod(S,42). In the case of P(A,)/Z, there are no moving punctures
in Sy 42, and so the moving punctures criterion gives no restriction for the action of f
on the punctures of S,4+2. We will see in Section 6 that in fact every f € Mod(S,42)
gives rise to an automorphism of P(A,), and so the f associated to p is arbitrary.

Conversely, since all of Artin’s defining relations of P(A,) are commutation
relations (see [2]), it follows that even if the #; ; are all different, o is a well-defined
homomorphism. Again, the kernel of ¢ must be contained in Z. In the generators of
P(A;), z can be written as

(Tan,nﬁ»l)(Tanfl,rH»l Tanfl,rz) e (Tal,n+1 LR Tal,3 Tal,Z)

(recall we use functional notation) and so we see that
s T2 h,

Hence, there is an affine hyperplane in ZV, where N = ("}"), corresponding to

noninjective homomorphisms of P(A,) into A(A;).

Remark. The abstract commensurator Comm(G) of a group G 1is the collection of
isomorphisms of finite index subgroups of GG, where two such isomorphisms are equiv-
alent if they agree on some common finite index subgroup. For a given group A(A,,),
A(By), or P(A,), different choices of the function ¢ give rise to distinct elements of
Comm(A(A,)). After the first version of this paper was written, Leininger—Margalit
proved that Comm(A(A,)) = Mod(S,42) x (Q* x Q) [27].
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6. Automorphisms

In this section we prove Theorem 6 by constructing a lift & of the natural map
Aut(Ly) — Aut(Ly/7Z). As in the introduction, L is the subgroup of A(A,) con-
sisting of elements which fix k particular punctures. In the cases of L1 = A(B,,) and
Lq.y1 = P(Ay), we will compute the automorphism groups explicitly (Theorems 7
and 8).

Before we begin in earnest, we note that any L; can be generated by Artin’s
generators for P(A,) plus a collection of half twists which are lifts of the elements
of the symmetric group on 7 + 1 letters which are in the image of Ly.

Charney—Crisp define a fransvection of a group G with infinite cyclic center
Z = (z) to be a homomorphism G — G of the form x — xz'®), wherer: G — Z
is a homomorphism. They observe that such a map is an automorphism if and only
if its restriction to Z is surjective; this holds if and only if #(z) = +1, i.e., z — zEL.
We denote by Tv(G) the transvection subgroup of Aut(G).

We consider the following sequence:

1 — Tv(Ly) — Aut(Ly) — Aut(Ly/Z) — 1. (1)

Our main goal is to construct the lift & : Aut(Ly/Z) — Aut(Lg) (so the sequence
is exact). The group Tv(Lj) can often be computed directly from a presentation
of Li, and (by Theorem 1, say) Aut(L;/Z) is isomorphic to the subgroup (_}k+1
of Mod(S,42) consisting of elements which preserve a set of k 4 1 punctures (the
group Gy, 1 is generated by Dehn twists, half twists, and a reflection). In the cases
of L1 = A(By) and L,+1 = P(A,), we will show that the above exact sequence is
split.

6.1. Auxiliary groups. Intuitively, we would like to “blow up” the punctures fixed
by Ly into boundary components so that the group Gy41 = Aut(Li/Z) cannot distin-
guish between the original boundary of D, and the fixed punctures. In particular,
we want Gy to be able to interchange 8 D, 1 with the fixed punctures.

We remark ahead of time that the cases of L1 and L, | are not quite as complicated
as the general case of Theorem 6, even though the results are stronger for these groups
(Theorems 7 and 8). Some of the details can be skipped in these cases.

Let S be a sphere with n + 2 boundary components. We choose a set P of
distinguished points in S, one in each boundary component. Then, we define Mod(S)
to be the group of homeomorphisms of S fixing P as a set, modulo isotopies which
fix P.

We fix an embedding S — D,,; which induces an isomorphism on the level of
curve complexes (send each boundary component to a circle around a puncture or
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a circle parallel to 9D, 41). We will use the same names for the curves which are
equivalent under this isomorphism (and the other isomorphisms below).

We get the embedding ¢: A(A,) — Mod(S) as follows, If the generators o;
correspond to half twists H,, about the 2-curves a;, then we define ((H,,;) to be the
generalized half rwist about a;, as indicated in Figure 5. The generalized half twist
about a curve a is denoted H,. The homomorphism ¢ has appeared previously; see
for instance [11].

(o o) -
N

Figure 5. Generalized half twist.

For our definition of ¢ to be precise, we must specify the points of P. If {d;} are
the boundary components of S, we choose the unique such labelling consistent with
the isomorphism C(D,41) = @(S) and the choice of the {g;}. We draw S in the
plane so that d, 7 is the outer boundary component and the other d; are Euclidean
circles whose centers lie on a horizontal line. Then, the points of P are chosen to be
the leftmost point of each circle (this choice is consistent with Figure 5).

To see that ¢ is a homomorphism, one only needs to check the two braid rela-
tions. The commuting relation obviously holds. In Figure 6, we show the effect of
tW(Hy Hy,  Hy ) = «(Hy  Hy Hy, ). We can also see that ¢ 1s injective; indeed, the
map S — D, induces a left inverse 7 : Mod(S) — A(A,). Of course, ¢ restricts
to an injection L; — Mod(S), also called ¢, for any k.

N

Figure 6. The braid relation in Mod(S).

We introduce another surface Sy, obtained by gluing punctured disks to the 4;
corresponding to the punctures in D, 11 not fixed by Lj (the surface Sy is a sphere
with k + 1 boundary components and n — k + 1 punctures). The inclusion S — S
identifies C(S) with @(S;) and induces a map n: «(L;) — PMod(S;), where by
PMod(S}) we mean the isotopy classes of homeomorphisms of S; which are the
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identity on the boundary. Fixing a set of points P < 85 (one for each of the k + 1
boundary components), we can alternatively think of PMod(Sy) as a normal subgroup
of the group Mod(Sy), which consists of homeomorphisms of Sy fixing P as a set
(modulo 1sotopies fixing P).

'The map ¢, = n o |z, 18 again injective since there is an inverse i induced by
eluing punctured disks to k of the components of 9 S.

We also want a map from Mod(S;) to G41. We glue punctured disks to the k + 1
boundary components of S in order to obtain the surface S,,2. The inclusion of
surfaces induces a surjective map Mod(S;) — Gpy1.

We encode the key relationships between all of our groups in Figure 7.

A(Ay) —— Mod(5) — Mod(S,42)

|

Ly ————Mod(S;) —— Gr41
]
PMod(Si)

Figure 7. Groups used in the definition of & : Aut(Ly/Z) — Aut(L;).

6.2. Generalized lantern relation. In order to define our lift &.: Aut(L,/Z) —

Aut(Ly), we will need a relation in PMod(S) called the generalized lantern relation.
Let {7y, ; } be the set of Artin generators for P(A,), and let {; } be the set of boundary

components of S (indexed appropriately). In the language we have developed, the
relation is

12) = t(Tay e ) Tayy s Ta 1) - - oy iy -+ - Tag 3101 )
=T g asudiy ey T

dn+1 A+2

(the first equality is the well-known relation in P (A, ), and the second equality is the
generalized lantern relation). This relation appears in the work of Wajnryb [35], who
writes that the relation can be checked “by induction (by drawing many pictures)”.
In Section 7, we give a straightforward proof of the relation.

Without reference to ¢, the generalized lantern relation is simply:

Tanrit) Ty yir Tan ) oo Ty ey - Ty s Ty s) = T;l_lsz_l Y N A

drH»l

In the case of n = 2, this relation is precisely the famous [lantern relation, known to
Dehn [13].
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Stated in this alternate way, the relation exhibits an obvious asymmetry in P(A,)
between the punctures of D1 and 3D,,1. In our first description of the relation
(which 1s the formulation used below), there still 1s an asymmetry (in the signs), and
we will see that this is what prevents us from finding a homomorphism Aut(L;/Z) —
Aut(Ly).

6.3. The lift. We now define our lift & from G, = Aut(Li/Z) to Aut(Ly).
Given an element f € Gy, we choose a lift £ in Mod(S). Since PMod(Sy) is
normal in Mod(S;), conjugation by f induces an automorphism vy of PMod(Sk);
this automorphism is well-defined since any two lifts differ by a central element of
PMod(S). We cannow define an endomorphism of L. via the composition 7z o folk.
To see that this composition of homomorphisms is actually an automorphism of Ly,
we will show that it 1s surjective. This suffices since Ly 1s Hopfian, that 1s, every
surjective endomorphism is an automorphism: braid groups are residually finite by
a result of Grossman and finitely generated residually finite groups are Hopfian by
results of Mal’cev [16].

The homomorphism i o ¢ o ¢ clearly induces a surjection from Ly to L/ Z,
and by the generalized lantern relation, it also induces a surjection Z — Z (z maps
to either z or z71). It follows that 7% o Yy ot 18 a surjection. We are now justified in
calling the composition & ( f), and this defines our lifting (it is clear that & is a lift).
This completes the proof of Theorem 6.

6.4. Generalized Artin generators. The automorphisms of Ly in the image of &
do not preserve the conjugacy classes (in A(Ay)) of the usual generators for Ly:
twists about 2-curves can get mapped to twists about n-curves. Thus, if we want to
understand the image of &; via the action on generators of Ly, we need to expand the
generating set.

A generalized Artin generator for Ly 1s any one of the following elements of Ly:

(1) H,, where a is a 2-curve;

(2)y T,, where a is a 2-curve;

(3) T, 7z~ !, where a is an n-curve with a movable puncture in the exterior;
(4) T, z*!, where a is an n-curve with a fixed puncture in the exterior.

For each of the first three types of generalized Artin generators, we denote the element
associated to the curve a by g(a).

Below, we will argue that only the first three types are needed for L. For Ly with
k > 1, the fourth type of generator is where we see the failure of & to be a homo-
morphism.

Since ¢ is used in the definition of &, we will need to know the images under ¢
of the generalized Artin generators (by definition, we only know the images of the



Vol. 82 (2007) Injections of Artin groups 741

standard ones). Here we only deal with the first three types, since those are the ones
needed for &7.

By definition ¢(H,,) is equal to H,,. Since T, , = H?, one can check that
((Tay,) = HZ is equal to T,,,T; ' T; ! by consulting Figure 5. If & € A(A,) and
hi(a1,2) = a, then we see that

W(g(@) = 1(hHg, ,h™") = () Hay )W)~ = ) = HY

where g € {1, 2}. The third equality holds because ¢ (/) and 4 induce the same maps
of @(Dy,41) (which is identified with C(S)). As part of our proof of the generalized
lantern relation in Section 7, we will use our understanding of the action of ¢ on each
H, and H 3 to show that if @ is a curve surrounding each puncture but the " and
o = +1, then «(T,z71) is equal to T, 7, T, ! .
6.5. Automorphisms of A(B,). Recall that A(B;) is isomorphic to L1, and that
A(B,) is generated by elements s; where sy = 1, and s; = H,, fori > 1. We now
compute the transvection subgroup of Aut(A(B,)) and show that our lifting & from
Gy = Aut(A(B,)/Z) to Aut(L1) = Aut(A(B,)) is a homomorphism.

In Section 5, we classified all transvections of A(B,) in terms of two integers,
# and v. These were defined by s1 — s1z% and s — s2z”. We also found that

Inutnin=1v = Again, in order for a transvection to be an automorphism, we
1

Al ol
need z — z*!. We see that z — z if and only if nu +n(n — v =0and 7 — 2z~
if and only if nu 4+ n(n — 1)v = —2. The latter case actually cannot happen, since
nu + n(n — 1)v is divisible by n > 3 while —2 is not. Thus, Tv(A(B;)) = Z.

We now want to show that &; is a splitting of the sequence (1). Recall that
g: Gy — 7y is the homomorphism which records whether or not ¢lements are
orientation preserving.

We take as a generating set for L the generalized Artin generators of the first
three types (this contains the usual generating set). Let f € Gy = Aut(L1/7). We
claim that we have the following simple formula for the action of & (f) on the first
three types of generalized Artin generators of Lq:

E1(N)(gla)) = g(fula))*V),

It follows that &1 1s a homomorphism.

By the moving punctures criterion, f can only switch the puncture corresponding
to @ Dy 41 with the puncture corresponding to the fixed puncture of D, 1. Therefore,
&(f) preserves the set of generalized Artin generators of the first type. Also, £(f)
either preserves or interchanges the second and third types, depending on whether or
not f preserves the puncture of S, > corresponding to 3D, 1.

Checking the above formula is straightforward. Applying ¢ to g(a) yields a “push
map” (see Section 7), composing with ¢y gives a push map which is conjugate in
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PMod(S;); finally, 1 gives g( fx(a)). A more formal argument is to simply apply
our computation of ¢(g(a)) given above. For example, if g(a) is of the first type, then
we have:

n(g(@) = f,,
Yy o ugl@) = I,
E1(/)(g(@)) = 71 oy o u(gl@) = Hy' ) = g(fula))* D,

The key point is that, since f € G», and a does not have the first (fixed) puncture
in its interior, f,(a) is also a 2-curve which does not have the first puncture in its
interior. The other cases are nearly identical.

We now have that Aut(A(By,)) = Gy x Z. The eroup G, is 1somorphic (o
(Zy x Z) X G2, where, as in the introduction, the group G is the group of orientation
preserving elements of G, which fix two particular punctures. Thus, we can write
Aut(A(B,)) as ((Zy x Zy) X G2) x Z. As noted by Charney—Crisp, the elements
of G; commute with the transvections of Aut(A(B,)), and so, finally, we obtain
Theorem 7: Aut(A(B,)) = (Zy x Zp) X (Gy x 7).

Remarks. In the special case of £ = 1, we can give a more straightforward definition
of thelift&. Givenan f € G,, wedefine & ( f) directly by the formula & ( f)(g(a)) =
2( fo(a))Ed), Using the presentation of A(B,,), and the generalized lantern relation,
one can directly check that this defines a homomorphism Gy — Aut(A(By)).

Although not necessary for the proof, we can write down a formula for the action
of £ (f) on the fourth type of generator: &1 ( f)(T,z%) = (Tf*(a)T;i(zf))g(f), where §
1s the homomorphism to Z, which records the action of f on the two punctures of
S, which are fixed setwise by Go.

6.6. The case k > 1. We now argue that & is not a homomorphism for k& > 1.
Surprisingly, there is a different lifting for the case L, 11 = P(A,) whichis a splitting
(see below).

Let a be a curve in D; 41 which surrounds all punctures except the first. Let
g € Mod(S,42) = Aut(P(A,)/Z) be an element whose lift g € Mod(S) satisfies
g(dy) = dy and g(dy42) = d. Similarly to our calculations for A(B,,), we can check
that &(g) takes T,z ! to To,a)- Let f € Gy = Aut(Ly) be such that £ © g(a) = a,
but f o 2(di) = dyyz and f © g(dyt2) = di. Then &(f) takes Ty, 0y to Tz~
However, & ( fe) takes T,z ' to T,z. Thus, & 1s not a homomorphism.

6.7. Automorphisms of P(A,). A surprising and fundamental fact about P(A,) is
that this group splits as a direct product over its center. The isomorphism P(A,) —
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P(A,)/7Z x Z is noncanonical and is given as follows.

Taljg = (Taljgs 1)
Ty ; = (I ;. 0) for (i, j) #(1,2).

Cli’j
It is straightforward to check that this is an isomorphism; the key facts are that
the relations for P(A,) are commutators and that 75, , appears exactly once in the
standard word representing the generator for the center of P(A;).

In general, when a group G splits over its center, its automorphism group is a
semidirect product Aut(G/Z) x Tv(G). It 1s a theorem of Korkmaz that
Aut(P(A,)/Z) = Mod(S;,2) (our Theorem 1 is a generalization).

The transvection subgroup can be computed directly. Using the notation of Sec-
tion 5, we can choose integers f; ; so that z maps to either z or z~1. Thus, there
is a surjective map Tv(P(A,)) — Zy given by this action on the center. The ker-

nel of this map consists of those transvections with Y 7 ; = 0. As in Section 3,
there are N = ("1') of the # ;, and so this kernel is isomorphic to Z¥~!. There
is a splitting Z, — Tv(P(A,)) (set t12 = —2 and all other ¢; ; = 0), and so

Tv(P(A,)) & Zo x ZVN—1, This completes the proof of Theorem 8.

7. Generalized lantern relation

We now prove the “generalized lantern relation”, used in Section 6. We freely use
the notation of that section. Also, we make a point of recalling that, contrary to the
usual convention for braid groups, we use functional notation for the composition of
mapping classes.

Our goal is to understand ¢(z). We think of z as a product of elements

g =Ty TaypTa,

and we will first understand each ¢(g;) individually. We draw S in the plane as in

Section 6. This allows us to see the g; ; in S exactly as they appear in D,1.

We can think of each 15, ; as a push map, where the i" boundary component moves
around the ;" boundary component, while travelling clockwise inside @; ; in such a
way that it never turns (Figure 5 represents the halfway point).

We can thus think of g; as a product of these push maps (the solid arrows in
Figure 8). We now see the following intuitive relation: g; can also be obtained by
pushing the :" boundary component around the n — i 4 1 boundary components to
its right all at once (the dashed arrow in Figure §). We then observe that this latter
push map is equivalent to

-l T

Citlntl " dp ~ Cintl
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Figure 8. A relation between push maps.

where the curves are as shown in Figure 9. This intuitive relation (which is already
an interesting relation in the mapping class group) is explained more formally in the
remark below (see also [30], [33]).

Cin+l

Figure 9. The curves needed to write g; as a product of Dehn twists.

We can now compute ¢(z) as the product of the ¢(g;):

_q 1 R | TR
(T T T ) L (Tc3’n+1 sz T627n+1)(T02’”+1Td TCl,n+1)'

Cntlntl“dy *Cantl 1

All of the T, ; elements cancel except the first (rightmost), which is equal to Ty, .
and the last, which is equal to 7' d;il' Thus, ¢(z) is equal to the product of 7, , with

T d_ll vmid, d;il’ and this is exactly the generalized lantern relation.

We notice that, applying the map = to «(z), we see that we have proven that the
product of the g; is indeed equal to z in P(A,).

Also, since ¢ takes conjugates of the Ty, ; to the corresponding conjugates of the

t(Ty; ;). the same holds for the conjugates of the g;. This fact was used in Section 0.

Remark. We now explain a more formal framework for proving the intuitive relation
that pushing a disk around two loops is the same as pushing it around a composite
loop. Let X be the subset of the configuration space of n + 1 ordered points in the
unit tangent bundle of the disk, where each point lies in a different fiber. There is
a natural map from 771 (X) — Mod(S) (the projection to the disk of each point in
X specifies the location of a particular boundary component and the vector specifies
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the rotation; if we like, we can replace boundary components with rigid disks in the
sphere). The relation described above simply follows from the fact that this map is a
homomorphism. Putman has observed that relations in (X)) thus give rise (o many
different “generalized lantern relations™ [33].

Appendix. Superinjective maps of curve complexes

In this section, let S = S, , be an orientable surface of genus g with » punctures.
Throughout, we tacitly assume that all surfaces have negative Euler characteristic
(the curve complex is uninteresting otherwise). We define the complexity of Sg ; 10
be 3g + n — 3; for the surfaces under consideration this is the number of curves in a
pants decomposition.

We define the curve complex C(S) as the abstract simplicial flag complex with
vertices corresponding to isotopy classes of essential curves in S (or simply “curves’)
and edges corresponding to curves in S which have the smallest possible geometric
intersection number in S. For Sy 4, the minimal intersection is 2; for Sy 1, the minimal
intersection 1s 1; and for all other S with C(S) nonempty, the minimal intersection 1s
zero, as in the main body of this paper.

A.l1. Statement of theorem. Our main goal is to prove the following.

Theorem 16. Let S = S, , and S = Sy v be two surfaces of the same complexity.
Any superinjective map ¢ : C(S) — C(S') is surjective.

Superinjective maps are easily seen to be injective (given two vertices, there 18
a vertex connected to one but not the other), so it follows that superinjective maps
are automorphisms. We can then apply the theorem of Ivanov, Korkmaz, and Luo
that if S is any surface of negative Euler characteristic other than Sj », then each
automorphism of C(S) is induced by Mod(S) [22], [26], [28]. The result is that,
for these surfaces, superinjective maps of C(S) are induced by Mod(S); this is the
general case of Theorem 2. As a consequence, one can deduce the corresponding
generalization of Theorem 1 (see [3] for precise statements ).

Theorem 16 actually implies a more general theorem, due to Shackleton: there
are no injective homomorphisms from a finite index subgroup of the mapping class
group of one surface to a mapping class group of another surface with equal or smaller
complexity, if the curve complexes are not 1somorphic [34].

We also give an elementary proof of the classification of curve complexes [28];
that is, the only isomorphic curve complexes are

C(S1,1) = C(S0,4), C(S1,2) =C(So,5). C(82,0) = C(So,6).
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Historical remark. There are a number of papers on automorphisms and superinjec-
tive maps of the curve complex. Different versions of this paper appeared at various
points in the progression of ideas. The theorems stated 1n the introduction were new
theorems when the first version of this paper was written. The more general state-
ments and proofs given in this appendix came later. We keep the old statements in
the introduction to preserve this paper’s place in the history, but present the newer
proofs in this appendix because they are both simpler and more general.

In brief, Ivanov first proved the automorphism theorem for surfaces of genus at
least 2 [22], then Korkmaz proved it for genus O and 1 [26]. Around the same time, L.uo
gave a completely different proof for all surfaces, and also settled the case of the twice
punctured torus [28]. Irmak proved the superinjective theorem for surfaces of genus
atleast 2 [18], [20], [19]. Later, the first version of this paper proved the superinjective
theorem for genus 0 [5], and Behrstock—Margalit proved it for genus 1 [3]. Finally,
Shackleton proved that an injective simplicial map between curve complexes of the
same dimension 1s an isomorphism [34].

A.2. Proof of theorem. We now begin our proof of Theorem 16, which is an induc-
tion on complexity. First we deal with the lowest complexity cases. For the surface
of complexity 0, namely Sg 3, Theorem 16 is vacuously true, since C(Sp 3) is empty.

Farey graphs. For surfaces of complexity 1 (57,1 and Sp 4), Theorem 16 is a well
known fact. In these cases, C(5) 1s the Farey graph, or ideal triangulation of the disk
(see [32]), and one readily checks that any injective simplicial map of the Farey graph
is surjective.

Lemma 17. Let S and S be complexity 1 surfaces. Every superinjective map
b: C(S) — C(S') is surjective.

From this point forward, let S and S’ be fixed surfaces of the same complexity
> 2,and let p: C(S) — C(S) be a fixed superinjective map.

Adjacency graph. To proceed by induction on complexity, the main step is to show
that ¢ preserves the complexity of a curve ¢, by which we mean the minimum positive
complexity of a component of S — ¢. A useful tool for this 1s the adjacency graph,
which s a graph () associated to a pants decomposition . Ithas a vertex for every
element of &, and an edge if the corresponding curves are boundary components of
the same pair of pants in S. Note that () is always connected.

Since ¢ is injective, it maps a pants decomposition & to a pants decomposition
¢ (P) and induces a map from the vertices of ¢(.P) to the vertices of (¢ (#)). In
fact, more 1s true.

Lemma 18. Ler P be a pants decomposition for S. The map ¢ induces a graph
isomorphism G(P) — G(d(P)).
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The adjacency graph was introduced by Behrstock—Margalit, and also by Shack-
leton [3], [34].

Proof. Leta and b be two curves and & = {a, b, ¢y, ..., ci} a pants decomposition
for S. If @ and b, say, are connected by an edge in §(# ), then we can find a vertex z of
C(S) which is not connected to a or b but is connected to ¢; for all i, i.¢., 7 intersects
a and b but no other elements of 2 (we identify vertices of §(J5) with vertices of
C(S) and with curves in S). Thus, ¢(a) and ¢ (b) must be connected by an edge in
$((P)).

If a and b are not connected by an edge in 4 (), then there are curves a; and o
so that, if we set ap = a and by = b, the set of curves {a;, b;, c1, ..., ¢} is a pants
decomposition for any of the 4 choices for ¢ and j. In other words, (ag, bo, a1, b1),
in that order, form a square in C(S — Ug;). If ¢(a) and ¢ (b) are connected by an
edge in §(¢(P)), then ¢(a) and ¢(H) lie on a connected complexity 2 component
of §" — Ug(¢;). However, C(Sp5) = C(S1,2) contains no squares. Thus, ¢(a) and
¢ (b) cannot be connected by an edge in G(¢(P)). O

As animmediate consequence, we have the desired lemma about curve complexity.
Lemma 19. For any curve c, ¢(c) has the same complexity as c.

Proof. 1et c be any curve in S and & any pants decomposition containing ¢. Com-
plexity can be read off from (% )—remove the vertex ¢ and all (open) edges ema-
nating from ¢, and count the number of vertices in each of the remaining components.
Thus, an application of Lemma 18 completes the proof. O

Simple pairs. Two curves a and b form a simple pair in S if there 1s a pants de-
composition & = {a, cp, ..., cx} so that b is also disjoint from the ¢;, and @ and b
are connected by an edge in the curve complex for the complexity 1 component of
S — Uge;. The following lemma was proven in the case of nonseparating curves by
Ivanov in his original work concerning automorphisms of G(.5) [23, Lemma 1].

Lemma 20. If a and b form a simple pair of curves in S, then ¢ (a) and ¢ (b) form a

simple pair.

Proof. 1et P = {a, co, ..., ck} be a pants decomposition which comes from the
definition of simple pairs. We assume that a and cg are connected in G(P ), and we
consider the complexity 2 component F of S — {cy, ..., cx}. Let us first assume

that /7 is Sp 5.

We claim that @ and b form a simple pair if and only if they are nonadjacent points
of some pentagon in C(Sp 5). One direction is easily exhibited by construction. The
other direction is left as an exercise; see [4] for a proof.
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Since ¢ preserves all of the properties used in this characterization of simple
pairs, we are done in the case of Sp 5. Since C(Sp5) = C(S7,2), and the isomorphism
takes simple pairs to simple pairs (the 1somorphism 1s induced by the hyperelliptic
involution of S7,2; see [28]), the proof is complete. O

We are now ready to prove the theorem.

Proof of Theorem 16. As advertised, we proceed by induction on the complexity of S.
The base step is Lemma 17. Now suppose that the complexity of S is greater than 1,
and that the theorem is true for all surfaces of smaller complexity.

Let ¢ be any curve in S. By Lemma 19, ¢ (c) has the same complexity. It then
follows from consideration of the adjacency graph that ¢ induces maps from the curve
complexes of the component(s) of S — ¢ to the curve complexes of the components
of " — ¢(c). What is more, the induced maps are superinjective: for components
of complexity 1 this follows from Lemma 20 and for components of complexity
greater than 1 it is obvious (we simply throw out components of complexity zero).
The components of § — ¢ have complexity strictly smaller than that of S and so by
induction ¢ restricts to surjective maps of the corresponding curve complexes.

As a result, we see that for every curve in S’ which is in the image of ¢, the
closed star of that vertex in C(S’) is in the image of ¢. Since C(S’) is connected, ¢
1 surjective. O

A.3. Classification. We now apply Lemmas 19 and 20 to give a simple proof of
the classification of isomorphic curve complexes. Of course, automorphisms are
superinjective, so we may freely use these lemmas.

For the proof, we define a standard simple pair to be a simple pair which lies
on a complexity 1 side of a complexity 1 curve. It follows from Lemmas 18, 19,
and 20 that standard simple pairs are preserved by automorphisms of (). The key
feature 1s that, except in the case of 512, the curves of a standard simple pair are of
the same topological type: either both nonseparating, or both curves which cut off a
twice-punctured disk.

Theorem 21. Aside from the pairs (51,1, So.4), (51,2, S0,5), and (52,0, So,6), nO two
surfaces of negative Euler characteristic have isomorphic curve complexes.

In each of the three exceptional cases, the isomorphism is induced by the hyper-
elliptic involution of the surface of positive genus (see [28]).

Proof. Since isomorphic curve complexes have the same dimension, it suffices to show
that the genus of S = S, ;, can be detected in C(S). Given the list of isomorphic curve
complexes, we may assume that the complexity of S 1s at least 3, and that S is not 53 .

The first step is to show that nonseparating curves can be recognized in C().
Nonseparating curves are almost characterized by the fact that they are not cut points in
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any adjacency graph; in other words, their complexity is one less than the complexity
of S. The only other curves which satisfy this property are curves which cut off
a twice-punctured disk in S. One difference between these two kinds of curves is
that a nonseparating curve can form a standard simple pair with three disjoint curves
simultaneously (this fails for 57 o), while for a curve which bounds a twice-punctured
disk, this 1s impossible.

Butnow the genus of S is simply the maximum number of disjoint standard simple
pairs of nonseparating curves, so we are done. O

A.4. Automorphisms. Finally, we say a few words about the proofs of the theorem
that automorphisms of C(.5) are induced by Mod(S). Ivanov’s original approach was
to show that an automorphism of €(S) induces an automorphism of an associated
arc complex, and then apply the fact that automorphisms of the arc complex are
determined by the action on a single maximal simplex. Luo gives an inductive proof,
also making use of an algebraic structure on the vertices of C(S): two curves are
“multiplied” via surgery, and so it suffices to understand the automorphism on a
generating set.

Building on this idea, Shackleton gives a purely topological inductive approach as
follows. Leta beacurvein S. Since the topological type of a 1s preserved (as above),
there is an induced automorphism of (S — @) which, by induction, is induced by
Mod(S — a). To this element of Mod(S — a) corresponds a (T;;) coset in Mod(S).
To pin down a particular element, one repeats the procedure with a curve b disjoint
from a. The intersection of the two cosets 1s a single mapping class, which, a priori,
depends on @ and b. One then chooses a curve ¢ which is connected to b in C(S — a)
and shows that the mapping class associated to a, b 1s the same as that associated
toa, c. By connectedness of C(S), the proof 1s complete. For details, see Shackleton’s
paper (what he calls “the inductive step”) [34, pages 229-231].
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