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The functor of units of Burnside rings for p-groups

Serge Bouc

Abstract. In this paper, I describe the structure of the biset functor B~ sending a p-group P
to the group of units of its Burnside ring B (). In particular, I show that B is a rational biset
functor. It follows that if £ is a p-group, the structure of B~ (P) can be read from a genetic
basis of P: the group B (P) is an elementary abelian 2-group of rank equal to the number
isomorphism classes of rational irreducible representations of P whose type is trivial, cyclic of
order 2, or dihedral.

Mathematics Subject Classification (2000). 19A22, 16U60.

Keywords. Burnside ring, unit, biset functor.

1. Introduction

If G 1s a finite group, denote by B(() the Burnside ring of G, i.e. the Grothendieck
ring of the category of finite G-sets (see e.g. [4]). The question of the structure of
the multiplicative group B (G) has been studied by T. tom Dieck ([23]), T. Mat-
suda ([18]), T. Matsuda and T. Miyata ([19]), T. Yoshida ([26]), by geometric and
algebraic methods.

Recently, E. Yal¢in wrote a very nice paper ([24]), in which he proves an induction
theorem for B” for 2-groups, which says that if P is a 2-group, then any element of
B> (P) is a sum of elements obtained by inflation and tensor induction from sections
(T, S) of P,such that 7/S is trivial or dihedral.

The main theorem of the present paper implies a more precise form of Yalgmn’s
Theorem, but the proof is independent, and uses entirely different methods. In par-
ticular, the biset functor techniques developed in [3], [7] and [9], lead to a precise
description of B> (P), when P is a 2-group (actually also for arbitrary p-groups,
but the case when p is odd is known to be rather trivial). The main ingredient con-
sists of showing that B™ is a rational biset functor, and this is done by showing that
the functor B> (restricted to p-groups) is a subfunctor of the functor I, R(”i, where
Rg’f@ = Homy(Rq, Z) denote the Z-dual of the functor Rq of rational representations,
and FzR(’f@ =—F® Rg’i. This leads to a description of B> (P) in terms of a genetic
basis of P, or equivalently, in terms of rational irreducible representations of P.
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The paper is organized as follows. In Section 2, I recall the basic definitions,
properties and constructions related to the Burnside ring of a finite group. Section 3
1s a similar summary of the main definitions and notation on biset functors. Section 4
deals with genetic subgroups and rational biset functors. Section 5 gives a natural
exposition of the biset functor structure of B*. In Section 6, T give cases where
inflation or restriction allow for a computation of B> (G) for a finite group G, and
also some results about faithful elements in B> (P) for specific p-groups P. In
Section 7, I introduce a natural transformation of biset functors from B” to F, B*.
This transformation is injective, and in Section 8, I show that the image of its resiriction
to the subcategory of p-groups is contained in the subfunctor [, Rg@ of F, B*.

This is the key result, leading to a precise description of B (), when G is a finite
p-group, or more generally a finite nilpotent group (Theorem 8.7). The main result
of Section 9 is a description of the lattice of subfunctors of the restriction of B to
the subcategory of p-groups: it is always a uniserial p-biset functor (even simple if
p is odd). This result has two interesting consequences: the first one is a complete
answer to the question, raised by Yal¢in ([24]), of the surjectivity of the exponential
map B(P) — B> (P) fora 2-group P. The second one is a connection with the Dade
group of p-groups: I show that there is a short exact sequence of p-biset functors
involving B*, F Ry and the Fz-reduction T DE  of the torsion subfunctor of the
functor of relative syzygies in the Dade group.

2. The Burnside ring of a finite group

Details on the definitions and proofs of the results about the Burnside ring summarized
in this section can be found e.g. in [4].

Definition 2.1. Let G be a finite group. The Burnside group B(G) is the quotient
of the free abelian group on the set of isomorphism classes of finite G-sets, by the
subgroup generated by the elements [X L Y] — [X]—[V], where X and Y are G-sets
and X U Y is their disjoint union, and where [ X | denotes the isomorphism class of
the G-set X.

The product of the G-sets X and Y is the cartesian product X x ¥, for diagonal
G-action. This construction extends to a product on B((G), giving it the structure of
a commutative ring, called the Bumside ring of . The identity element of B(G) 18
the class of a G-set of cardinality 1. It will be denoted by 1p.

2.2. The canonical basis. The elements of B(G) can be written as differences [X]—
[ V'] for suitable finite G-sets X and ¥. One can show that the abelian group B(G) 1s
a free abelian group on the set of isomorphism classes of transitive G-sets. Such a
transitive (z-set is isomorphic to the set of cosets G/ H, for some subgroup H of G.
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If H and K are subgroups of G, then the G-sets G/H and /K are isomorphic if
and only if the subgroups H{ and K are conjugate in GG. Thus:

Definition 2.3. Let [sg] be a set of representatives of conjugacy classes of subgroups
of G. Then the clements [G/H ], for H € [sg], form a Z-basis of B((), called the
canonical basis of B(G).

Note in particular that 1 5 = [G/G].

If H is a subgroup of G, then the correspondence mapping [ X] to the cardinality
| X | of the set X¥ of elements of X which are fixed by H can be extended uniquely
to an additive map ¢g : B(G) — Z. The map ¢y is actually a morphism of rings
with identity elements. Conversely, any ring homomorphism from B(G) to Z 1s equal
to ¢, for some subgroup H of G.

Definition 2.4. The product ring C(G) = [ ¢y, Z is called the ghost ring of G.
The product map ¢ = [[ 4 e[sc] Vo 18 called the ghost map.

Theorem 2.5 (Burnside). The ghost map is injective.

This theorem means that an element a of B(G) is characterized by the integers
lat|, for all subgroups H of . Moreover, since B(G) and C(G) are free abelian
groups with the same rank, the cokernel of the ghost map is finite. A theorem of
Dress ([15]) characterizes the image of B(G) inside C((Gr).

2.6. Idempotents. Another consequence of Theorem 2.5 is that the ghost map ¢
becomes an isomorphism after extension of scalars to Q: in other words, the map

Qb= [] Qbu: QBG)=Q®z B(G) > QG =QezCG) = [[ @

Helsgl Helsg]

is a (@-algebra isomorphism. In particular Q@ B(G) is a split semi-simple commutative
(Q-algebra. Its primitive idempotents are indexed by the set [sg]. The idempotent efl
indexed by the subgroup 1 1s characterized by the fact that for any a € QB(G), the
product ae; is equal to |a [e&, where |a™| = (Qpg ) (a).

It has been shown by Gluck ([16]) and independently by Yoshida ([25]) that eg
can be expressed as

1
627 K K,H GK’
$ |NG(H)|K§{| (K, H)[G/K]

where p (K, H) is the value of the M&bius function of the poset of all subgroups of G,
ordered by inclusion of subgroups.
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2.7. Primespectrum. The prime spectrum of B(G), and more generally of localiza-
tions of B((r) with respect to any set of prime numbers, have been described by Dress
([15]). In particular, Dress showed that the primes spectrum of B(G) 1s connected 1f
and only if the group G is solvable. Equivalently, the identity element 1p = [G/G]
is a primitive idempotent of B(() if and only if G is solvable.

Notation 2.8. If G is a finite group, then let B (G) denote the group of units of
B(G).

It follows from Theorem 2.5 that an element u of B(G) is in B*(G) if and only
if |uf| = 41 for any subgroup H of G, or equivalently, if u> = 1. In particular,
the group B (G) of units of the ring B(() is always an elementary abelian 2-group.

It also follows that the mappings # +— (1p — #)/2 and e +— 1 — 2e are mutual
inverse bijections between B” (G) and the set of idempotents ¢ of QB(G) such that
2¢ € B(G).

The determination of B* (G) for an arbitrary finite group G is an open problem
in general. The following argument, due to tom Dieck ([23], Proposition 1.5.1)
illustrates its difficulty: suppose that G has odd order. Now if u € B*(G), the
idempotent e = (1 —u)/2 of QB(G) 1s such that 2¢ € B(G). But |Gle 1s also in
B(G), by the above formulae for primitive idempotents in QB (G ). Since |G| 1s odd,
it follows that e € B((G).

Conversely, if ¢ is an idempotent in B(G), then 13 — 2¢ € B> (G). In other
words, when G is odd, there is a one to one correspondence between B™(G) and
the idempotents of B((). So proving that & is solvable is equivalent to proving that
B (G) = {£13}, by the above theorem of Dress. Thus:

Theorem 2.9 (tom Dieck). Feit-Thompson’s theorem is equivalent to the statement
that if G has odd order, then B> (G) = {*1p}.

So even the question of knowing when B> (G) = {#£1p} is highly non-trivial.
Note however that for an odd order p-group, this becomes rather obvious (see
Lemma 6.3).

There are not so many general results on the structure of B (G): Yoshida ([26])
stated some reduction theorems, using 2-perfect subgroups of . He also gave the
following nice characterization of the image of B (G) inside C* (G):

Theorem 2.10 (Yoshida). Ler G be a finite group. Then the element u of C*(G) =
]_[HE[SG] {£1}liesin¢ (B . (G)) if and only if, for each subgroup H of G, the mapping

xH € Ng(H)/H — ”;x% e {&1} is a group homomorphism.

For abelian groups, Matsuda ([18]) proved the following:



Vol. 82 (2007) The functor of units of Burnside rings for p-groups 587

Theorem 2.11 (Matsuda). Let G be an abelian group. Then B> (G) is elementary
abelian of order 214", where n is the number of subgroups of index 2 of G.

In the same article, Matsuda computes B (G) in some particular cases, e.g.
when G is dihedral, or isomorphic to the product of two dihedral groups (with some
restrictions on the orders). Matsuda and Miyata ([19]) have shown that if & 1is the
semi-direct product of a normal subgroup H by an odd order group K, then B (G)
is isomorphic to the subgroup B> (H)* of elements of B> (IT) which are fixed by
the natural action of K. Proposition 6.5 will generalize this result to the case of a
normal subgroup H of odd index in G.

2.12. Restriction, inflation, fixed points, tensor induction. The main tool in the
study of the group of units of the Burnside ring is the existence natural group ho-
momorphisms B” (G1) — B’ (G») for different groups G and G. These maps
correspond to various situations:

e If /1 is a subgroup of G, then the restriction to f1 of the G-action induces a linear
map Resg: B(G) — B(H), which 1s actually a ring homomorphism, preserving
identity elements. It follows that it maps units to units, and this gives a restriction
map also denoted by Resg from B> (G) to B*(H).

e If N is a normal subgroup of G, then the inflation of (G/N)-sets (0 G-sets
with a trivial N-action induces a map Inf v: B(G/N) — B(G), which is a
ring homomorphism, and preserves identity elements. This gives an inflation map
Infg, v : B*(G/N) — B*(G).

o If N is a normal subgroup of G, and if X is a G-set, then the set X of elements
of X which are fixed by N is a (G/N)-set. This gives a map B(G) — B(G/N),
called the fixed points map, or the deflation map. This 1s again a ring homomorphism,

and it preserves identity elements. So it induces a deflation map Defg /N B*(G) —

B*(G/N).

e The three previous operations B (G1) — B (G») are the restrictions to units
groups of a ring homomorphism B(G1) — B((37). This is no longer the case for
the fourth operation, which is an induction operation: if H is a subgroup of G, and
if ¥ is an H-set, then the set Homy (G, Y) of H-equivariant maps from G to Y
can be endowed with the G-action defined by (gf)(x) = f(xg),for g, x € G and
J € Homg (G, Y). This construction can be extended to give a map Teng : B(H) —
B(G), called tensor induction, which 1s nof additive in general, but stlll multiplicative,
and preserves identity elements. This extension to a multiplicative map between
Burnside rings can be achieved by different means. One of them will be detailed in
Section 5. By restriction to the corresponding groups of units, the map Teng gives
amap B*(H) — B (G), called the tensor induction map, or the multiplicative
induction. It has often been denoted by Jndg. It will be denoted by Teng in this

paper.
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e Together with the obvious map Iso(g): B*(G1) — B> (G>) associated to a
group isomorphism ¢ : G; — G, the above four kind of maps can be given a unified
definition, using bisers. This leads to the structure of bisef functor on B”, and will
be detailed in Section 5.

2.13. Yalcin’s theorem. The present paper originates in a recent article by Yal¢in
([24]), as already mentioned in the introduction. The main result of Yalgin’s paper is
an induction theorem, stated below with the following notation: if (/, K) 1s a section
of the group G, i.e. if H is a subgroup of & and K is a normal subgroup of H (see
Definition 3.4), denote by Teninf g sk the map from B “(H/K) to B*(G) obtained

by composing the inflation map Infg /K with the tensor induction map Teng. Then:

Theorem 2.14 (Yalcin[24]). Let G be a finite 2-group, and let € denote the set of
sections (H, K) of G such that H = K or H/K is a dihedral group of order at
least 16. Then the map

@ Teninff,,: & B (H/K)— B (G)
(H,K)ett (H,K)eHt

Is surjective.

The present paper can be viewed as a refinement of this theorem, by a systematic
use of the formalism of biset functors.

Notation 2.15. In the remainder of this paper:

+ The brackets will be omitted in the Burnside ring. So there will be no notational
difference between a finite G-set X and its isomorphism class.

« If a € B(G), then the image of @ under the above map ¢g will be denoted by
|a™|. This can be any element of Z.

+ The group B(G) will be identified with its image 1 ®z B(G) inside QB(G) =
Q ®z B(G).

3. Biset functors

Notation and Definition 3.1. Denote by C the following category:
+ The objects of € are the finite groups.

« If G and H are finite p-groups, then Home (G, H) = B(H x G°P) is the
Burmside group of finite (, &)-bisets. An element of this group is called a
virtual (H, G)-biset.
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+ 'The composition of morphisms is Z-bilinear, and if &, H, K are finite groups, if
U is a finite (H, (7)-bhiset, and V is a finite (K, H)-biset, then the composition
of (the isomorphism classes of) V and U 1s the (isomorphism class) of V x gy U.
The identity morphism Ids of the group G is the class of the set G, with left
and right action by multiplication.

If p is a prime number, denote by C, the full subcategory of € whose objects are
finite p-groups.

Let # denote the category of additive functors from € to the category Z-Mod of
abelian groups. An object of ¥ is called a biser functor. Similarly, denote by F,, the
category of additive functors from C, to Z-Mod. An object of F, will be called a
p-biset functor.

If F is an object of ¥, if G and H are finite groups, and if ¢ € Home (G, H),
then the image of w € () by the map F(g) will generally be denoted by ¢(w).
The composition ¢ o ¢ of morphisms ¢ € Home (G, H) and ¢+ € Home (H, K) will
also be denoted by ¢ x g ¢.

Notation 3.2. Throughout this paper, the symbol 1 denotes a trivial group. The
Burnside biset functor will be denoted by B. The functor of rational representations
(see Section 1 of [7]) will be denoted by Rg. The restriction of B and Rg to €, will
also be denoted by B and Rg.

Recall that the Burnside biset functor B is defined as follows: its value at the finite
group ( 18 equal to the Burnside group B(G). If H and G are finite groups, if U is a
finite (H, G)-biset, and if X 1s a finite G-set, then U x ¢ X 1s a finite A -set, and this
correspondence induces a linear map B(U): B(G) — B(H). This construction can
be extended to giveamap B(¢): B(G) — B(H) associated toany ¢ € B(H x G°P).
The Burnside functor B is isomorphic to the Yoneda biset functor Home (1, —).

3.3. Examples. Recall that this formalism of bisets gives a single framework for
the usual operations of induction, restriction, inflation, deflation, and transport by
isomorphism via the following correspondences:

« If H 1s a subgroup of G, then let Indffl € Home (H, G) denote the set G, with
left action of G and right action of I by multiplication.

« If H 1is a subgroup of G, then let Resg € Home (G, H) denote the set G, with
left action of f{ and right action of G by multiplication.

« If N < G,and H = G/N, then let Inf, € Home (H, G) denote the set H,
with left action of G by projection and multiplication, and right action of H by
multiplication.
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« If N < G, and H = G/N, then let Def¥, € Home(G, H) denote the set H,
with left action of A by multiplication, and right action of G by projection and
multiplication.

« Ifgp: G — Hisagroupisomorphism, thenlet Isog = Isog (¢) € Home (G, H)
denote the set /, with left action of I by multiplication, and right action of G
by taking image by ¢, and then multiplying in 71.

Definition 3.4. A section of the group G is a pair (T, S) of subgroups of G such that
SAT.

Notation 3.5. If (T, S) is a section of G, set

Indinf%s = Ind?lnfg/s and Defres(T;/S = Defg/SResg.

Then Indinf%s = G/S as (G, T/S)-biset, and Defres%s = S\Gas (T/S, G)-
biset.

Notation 3.6. Let G and H be groups, let U be an (H, G)-biset, and letu e U. If T
is a subgroup of H, set

T" ={g € G | there exists t € T with tu = ug}.
This is a subgroup of G. Similarly, if S is a subgroup of G, set
"S = {h € H | there exists s € S with us = hu}.

This is a subgroup of 1.

Lemma 3.7. Let G and H be groups, let U be an (H, G)-biset, and let S be a
subgroup of G. Then there is an isomorphism of H-sefs

u/s= || Hprs.

ue[H\U/S]

where [H\U/S] is a set of representatives of (H, S)-orbits on U.

Proof. Indeed H\U/S is the set of orbits of H on U /S, and * S is the stabilizer of uS
in H. O

3.8. Opposite bisets. If G and H are finite groups, and if U is a finite (H, G)-biset,
then let UP denote the opposite biset; as a set, itis equal to U, and it is a (G, H )-biset
for the following action:

guh (in U =hlug™ (inU) forallhe HueclU,geG,
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This definition can be extended by linearity, to give an isomorphism
¢ — ¢°P: Home (G, H) — Home (H, G).
[t is easy to check that (¢ o )P = ¢r°P o @°P_ with obvious notation, and the functor

G— G
¢ = %

is an equivalence of categories from C to the dual category, which restricts to an
equivalence of G, to its dual category.

Example 3.9. If G is a finite group, and (7', S) is a section of &, then
(Indinf%, ) = Defires
as (I'/S, G)-bisets.

Notation and Definition 3.10. If F is a biset functor, the dual biset functor F* is
defined by
F*(G) = Homz(F(G), Z),

for a finite group &, and by
F*p)(a) = a o F(™),

for any ¢ € F*(G), any finite group H, and any ¢ € Homg (G, H). In particular, if
(T,S)isasectionof G,if ¢ € F*(G)andu € F(T/S), then

(Defres, g ) (u) = p(Indinf, s u).
Similarly, if ¥ € F*(T/S) and v € F(G), then

(Indinf$, ¢ ¥)(v) = ¢ (Defresy s v).

3.11. Subfunctors. Let I be a biset functor. A biset subfunctor F’ of I consists of
the data of a subgroup F’(G) of I'(G), for each finite group G, such that

F(p)(F'(G)) € F'(I),

for any finite groups G and 1, and any ¢ € Home (G, ). In this case, the quotient
biset functor F/F’ is defined in the obvious way.
The category F of biset functors 1s an abelian category, where a sequence

B s
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is exact if and only if all the evaluations

FI(G) 25 Fy(G) 25 F3(G)

at a particular finite group G, are exact sequences of abelian groups. In particular,
the kernel and cokernel of a morphism «: F/ — F of biset functors are defined
respectively by (Kera)(G) = Ker ag and (Coker a)(G) = Coker ag for any finite
group G.

Let F be a biset functor. Let £ be a set of finite groups, and let Sy be a subset
of F(H),forany H € #¢. The subfunctor (S ) ez Of F generarted by these data 1s
the intersection of the family of all subfunctors £’ of F such that F'(H) 2> Sy, for
any Il € #€. It 1s easy to sce that for any finite group G

(Su)mex(G) = ) Home(H, G)(Sy)
He#H

is the subgroup of F(G) generated by all images of elements of the sets Sy by
morphisms / — G in C, for H € #.

The definitions and properties exposed in this subsection have obvious analogues
for p-biset functors: the category F5 is an abelian category, where kernels and cok-
ernels are defined “pointwise”. The notion of subfunctor generated by some data
extends trivially to the case of p-biset functors, by replacing the category € with C,.

3.12. Some idempotents in Ende (G). Let G be a finite group, and let N < G.
Then it is clear from the definitions that

Defl,y o InfG,y = (G/N) xg (G/N) = 1dgn. (3.13)

It follows that the composition jﬁ = Infg IN© Defg /N is an idempotent in Ende (G).

Moreover, if M and N are normal subgroups of G, then j§ o j& = j<. . Moreover
G

Lemma 3.14 ([9], Lemma 2.5). If N < G, define fﬁ € Ende(G) by

=Y nacV.M)jg,

MAG
NCM

where pag denotes the Mdbius function of the poset of normal subgroups of G. Then
the elements fﬁ, for N 4 G, are orthogonal idempotents of Ende(G), and their
sum is equal 1o 1dg.
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Moreover, it is easy to check from the definition that for N < G,

7§ =fg,y o 177 o Defl . (3.15)
and
J'zc\; = Inf(G;/N 2 Defg/N = Z fz\(j-
M<G
MDSN

Lemma 3.16. If N is a non trivial normal subgroup of G, then
S oInfg,y =0 and Def,y o fi7 =0.
Proof. Indeed by 3.15
e Inf(G;/N = f{ e Infg/N © Defg/N ° Infg/zv
= Z fleZgInfg/N =,
MG
MDN

since M # 1 when M > N. The other equality of the lemma follows by taking
opposite bisets. O

Remark 3.17. It was also shown in Section 2.7 of [9] that if P is a p-group, then

H= > wd,N)P/N,

NCQ Z(P)

where p 18 the Mobius function of the poset of subgroups of N, and €21 Z(P) 1s the
subgroup of the centre of P consisting of elements of order at most p.

Notation and Definition 3.18. If F is a biset functor, and if G is a finite group, then
the idempotent flG of Ende (G) acts on F(G). Its image

IF(G) = fEF(G)

is a direct summand of F (G) as Z-module: it will be called the set of faithful elements
of F(G).

The reason for this name 1s that any element « € F () which is inflated from a
proper quotient of G is such that £'( flG)u = 0. From Lemma 3.16, it 1s also clear
that

IF(G) = ﬂ Ker Def -
1£N<G
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4. Genetic subgroups and rational p-biset functors

Definition 4.1. A finite p-group P has normal p-rank 1 if every abelian normal
subgroup of P is cyclic.

These groups have been classified long ago (see Theorem 4.10 of Chapter 5
of [17]): if p # 2, they are the cyclic p-groups, and if p = 2, they are the cyclic
2-groups, the generalized quaternion 2-groups, the dihedral 2-groups of order at least
16, and the semi-dihedral 2-groups (of order at least 16).

The following definitions are essentially taken from Section 2 of [10]:

Notation and Definition 4.2. Let P be a finite p-group. If Q is a subgroup of P,
denote by Zp(Q) the subgroup of Np(Q) defined by

Zp(Q)/Q = Z(Np(Q)/0).

A subgroup @ of P is called genetic if it satisfies the following two conditions:
(1) The group Np(Q)/Q has normal p-rank 1.
(2) If x € P,then Q"N Zp(Q) € Qifandonly if Q* = Q.

Two genetic subgroups Q and R are said to be linked modulo P (notation Q —p R),
if there exist elements x and y in P suchthat 0*NZp(R) C Rand R*NZp(Q) < (.

This relation 1s an equivalence relation on the set of genetic subgroups of P. The
set of equivalence classes is in one to one correspondence with the set of isomorphism
classes of rational irreducible representations of P, by Section 1.7 and Proposition 4.4
of [9]. A generic basis of P is a set of representatives of these equivalences classes.

If V is an irreducible representation of P, then the fype of V is the isomorphism
class of the group Np(Q)/Q, where Q 1s a genetic subgroup of P in the equivalence
class corresponding to V by the above bijection.

Remark 4.3. The definition of the relation —p given here is different from Defini-
tion 2.9 of [10], but it is equivalent to it, by Lemma 4.5 of [9].

Example 4.4. If P is an abelian p-group, then it follows from the definition that a
subgroup Q of P is genetic if and only if the group P/ Q is cyclic. Moreover, if Q
and R are genetic subgroups of P, then @ —p Rifand only if Q = R. Soif P is
abelian, there 1s a unique genetic basis of P, consisting of all subgroups @ of P such
that /0 is cyclic.

The following is Theorem 3.2 of [9], in a slightly different form:
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Theorem 4.5. Let P be a finite p-group, and & be a genetic basis of P. Let F be a
p-biset functor. Then the map

Iy = @ Indinf, 402 D 3F(Np(Q)/Q) — F(P)
Qeg Q<g

is split injective.

Remark 4.6. There are two differences with the initial statement of Theorem 3.2
of [9]: here I use genetic subgroups instead of genetic sections, because these two
notions are equivalent by Proposition 4.4 of [9]. Also the definition of the map Ig
is apparently different: with the notation of [9], the map I is the sum of the maps
F(ag), where ag i1s the trivial (P, P/P)-biset if Q = P, and ag is the virtual
(P, Np(Q)/Q)-biset P/Q — P/Q it @ # P, where Q 18 the unique subgroup of
Zp(Q) containing (, and such that IQ : Q| = p. Butitis easy to see that the
restriction of the map F(P/ Q) to dF (Np(Q)/Q) is actually 0. Moreover, the map
F(P/Q) is equal to Indinf ]I\),P( 0)/0" So in fact, the above map Iy is the same as the
one defined in Theorem 3.2 of [9].

Definition 4.7. A p-biset functor F is called rational if for any finite p-group P, the
map Ig s an isomorphism, for some genetic basis § of P.

Lemma 7.3 of [9] shows that this condition does not depend on the genetic basis
G of P. In other words, the word some in Definition 4.7 can be replaced by the word
any.

Remark 4.8. This definition and the use of the word rational were first motivated by
the case of the functor Rg, which 18 the typical example of a rational p-biset functor
(see Example 7.2 of [9] for details). More generally, the definition of a rational
p-biset functor shows that the evaluations of such a functor can be computed from
its values at p-groups of normal p-rank 1, which are generally easy to obtain.

Remark 4.9. Another useful property of this particular class of functors is that the
full subcategory of the category ¥, whose objects are rational p-biset functors 1s a
Serre subcategory: in other words, if I is a subfunctor of the p-biset functor F,
then F is rational if and only if F" and F'/ [ are rational. Moreover, any dual functor
of a rational biset functor is a rational biset functor (see Proposition 7.4 of [9] for
details about these results).

5. The functor of units of the Burnside ring

If G and H are finite groups, and if U is a finite (H, G)-biset, recall that UP denotes
the (G, H)-biset obtained from U by reversing the actions. If X is a finite G-set, then
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Ty (X) = Homg(U®P, X) is a finite H-set. The correspondence X +— Ty (X) can
be extended to a correspondence Ty : B(G) — B(H), which is multiplicative (i.e.
Ty (ab) = Ty (a)Ty(b) for any a, b € B(G)), and preserves identity elements (i.¢.
Ty (G/G) = H/H). This extension to B(() can be built by different means: the
following is described in Section 4.1 of [5], and it is similar to a construction given
by T. tom Dieck ([23]). It uses G-posets and Lefschetz invariants, whose definition
is due to J. Thévenaz ([22]):

Definition 5.1. Let G be a finite group. A finite G-poset X is a finite G-set X,
partially ordered by a G-invariant relation < (i.e. forany g € G andany x, y € X, if
x <y, then gx < gy).

The Lefschetz invariant A x of a finite G-poset X is the element of B(G) defined
by

Ax= ) (—h*"YG/G,,
selG\Sd(X)]

where [G\Sd(X)] is a set of representatives of G-orbits on the set Sd(X) of linearly
ordered subsets of X, where dim(s) = |s| — 1 and G, is the stabilizer of s in G.

Remark 5.2. The idea of considering this kind of “Euler characteristic” is already
mentioned informally by T. tom Dieck ([23], Chapter 1), who uses this terminology
because of the following: if H is a subgroup of G, then

(Apf=xxf= 3 (pime
sesd(XH)

is the Fuler—Poincaré characteristic of the poset X7,

Example 5.3. Let X be a G-set. Consider X as a G-poset for the equality relation
(i.e.x < yin X ifand only if x = y). Then Ax = X in B(G), and x (X)) = |X¥|
for any subgroup H of G.

If a 1sanelement of B(G), 1t1s easy to show that there exists a finite G-poset X such
that « is equal to the Lefschetz invariant A x ([2], Lemme 2). Now Homg (UP, X)
has a natural structure of H-poset, and one can set Ty (a) = Agomgwer, x). It 1S
an element of B(H'), which does not depend of the choice of the poset X such that
a = Ay, because with Notation 3.6 and Lemma 3.7, for any subgroup T of 1 the
Euler—Poincaré characteristic x (Homg (U°P, X)*) can be computed by

x(Homg(U®, )Ty =[] »x(x™,
ueT\U/G

and the latter only depends on the element A x of B(G). This shows that 7y (a) 1s
well defined, and can be computed with the following formula:
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Lemma 5.4. Let G and H be finite groups, and let U be a finite (H, G)-biset. Then
forany a € B(G) and any subgroup T of H

Ty@ = T "I

weT\U/G

It follows in particular that Ty, (B % (G)) C B”(H). Morcover, it is easy to check
that 7y = Ty if U and U’ are isomorphic (H, G)-bisets, and that Ty, (a) =
Ty, (a)Ty, (a) for any (H, G)-bisets Uy and Uy, and any a € B(G).

It follows that there 1s a well defined bilinear pairing

B(H x G®) x B*(G) — B*(H),

extending the correspondence (U, a) +— Ty(a). If f € B(H x GP) (i.e.if fisa
virtual (H, G)-biset), the corresponding group homomorphism B> (G) — B”*(H)
will be denoted by B” (f).

Now let K be a third group, and V be a finite (K, H)-set. If X is a finite G-set,
there 1s a canonical isomorphism of K -sets

Hompg (VP, Homg (UP, X)) = Homg((V xgzg U)P, X),

ShOWiIlg that Ty o Ty; = TVXHU~
It follows more generally that B*(g) o B*(f) = B*(g xg f) for any g €
B(K x H°P) and any f € B(H x G°P). Finally this shows:

Proposition 5.5. The correspondence sending a finite group G to B*(G), and a
homomorphism f in C to B*(f), is a biset functor.

Remark 5.6. The restriction and inflation maps for the functor B coincide with the
usual ones for the functor B. The deflation map Defg IN corresponds to taking fixed
points under N (so it does not coincide with the usual deflation map for B, which
consist in taking orbits under N).

Similarly, if 1 is a subgroup of G, the induction map from 7 to G for the functor
B* is the tensor induction Teng, and 1t 1s different from the induction map Indg for
the Burnside functor B.

6. Faithful elements in B* (G)
The following lemma ([19], Lemma 2.8) is a key tool in this section:

Lemma 6.1 (Matsuda—-Miyata). Let G be «a finite group, and u € B> (G). If (T, S)
is a section of G such that T /S is an odd order p-group, then | = |ut|.
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Proof. Indeed, the element « can be written as the difference X — Y of two G-
sets X and Y. Now u® = X° — Y* in B(Ng(5)/S). Moreover the p-group 7'/
acts on X, and the set of fixed points under this action is X7. It is well known
that | X*| = [(X*)T/%| modulo p. Of course, a similar congruence holds for |¥*|,
showing that |u*| and |u”| are congruent modulo p. But [u#®] and |u” | are equal to
+1ifu € B*(G). Since p > 3, this forces |u”| = |uT|. O

In the following lemma, Assertion 2 is a refinement of a result of Matsuda ([18]):
in the case of a nilpotent group G, it gives an explicit isomorphism between B (G)
and B (G37), where G is a Sylow 2-subgroup of . The most general form of the
argument requires the following notation:

Notation 6.2. If G is a finite group, denote by / (G) the subgroup defined by

I{(G) = (] Ng(H),
HCG

where the intersection runs over the set of all subgroups H of G.

The subgroup 7 (G) has been considered in particular by Beidleman, Heineken
and Newell ([1]), who call it the norm of G. Obviously I (&) contains the centre of G.
Moreover, every subgroup of /(G) is normal in I (G), so I (G) 1s nilpotent. Though
it is not necessary for the following proof, it should be noted that by a theorem of
Dedekind ([14]), the odd order part of /() is abelian.

Lemma 6.3. (1) Let G be a finite group, and let Z be a normal subgroup of odd
order of G, contained in 1(G) (e.g. a central subgroup of odd order of G). Then the
inflation map

Infg,,: B*(G/Z) — B*(G)

is an isomorphism.

(2) If G is nilpotent, then G = Gogq X G2, where Gogq is the subgroup of elements
of odd order of G, and G, is the unique Sylow 2-subgroup of G. Then the group
isomorphism G/ Gogq = Go, composed with the inflation map Infg /Goad induces an
isomorphism B (Gy) — B> (G).

(3) In particular, if G is an odd order p-group, then B (G) = {&1}.

Proof. For Assertion 1, consider an element # of B (G). If H is a subgroup of G,
then |u”| = |u?|: indeed, the group Z normalizes H, and it is nilpotent, so it has
a filtration

L=ZoD>721D>---D27Z,=1

by (normal) subgroups Z;, fori = 0, ..., n, such that each factor group Z;/Z; 11 is
an odd prime order p; -group, for some p;, fori =0, ..., n — 1. The equality lufl| =
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|ufZ| follows, by repeated application of Lemma 6.1 to the section (HZ;, HZ;11)
of G.

Now consider the element v = InfZ y ,Defé ,zH- For any subgroup i of G, one
has that [v#| = |u®%|. Hence u = v. In other words the map Infg/ZDefg/Z is
the identity map of B (G). This shows Assertion 1, since the map Def} , Infg , is
always the identity map of B*(G/Z), by 3.13.

Assertion 2 follows easily by induction on the order of Goqq, using a subgroup 72

of odd order in the centre of . Assertion 3 is the special case of Assertion 2, when
Gr=1. U

Remark 6.4. So in the sequel, when considering p-groups, the only really non-trivial
case will occur for p = 2. However, some statements will be given for arbitrary p-
groups.

The following result uses the same kind of elementary argument that was used in
Lemma 6.3, the main difference being that it also requires Feit—Thompson’s Theorem.
It is a slight generalization of a theorem of Matsuda and Miyata:

Proposition 6.5. Let G be a finite group, and N be a normal subgroup of odd index
in G. Then the group G/N acts on B>(N), and the maps Resg and Teng induce
mutual inverse isomorphisms between B*(G) and B> (N)%/V,

Proof. Tarst the group G acts on N by conjugation, hence 1t acts on B(N) by ring
automorphisms, so it acts on B> (N) by group automorphisms. Moreover, the action
of N on B(N) is trivial, so G/N acts on B (N).
Itis also clear that Res$ B*(G) € B*(N)/V: indeed, if u € B(G) and g € G,
then
g(Resgu) = Resg(gu) = Resgu.

Now for any subgroup H of &G, by Lemma 5.4

[(Ten§ResGw) | =[] IRes§uy¥ ™|
geHN\G

|MNﬂgH|
gEﬁN-\G
= |1 1Y (since NNSH = &(N N H))
geHN\G
NNH | |G:HN NNH
= | NOH|IGHNT | NOH)

since |G : HN| is odd. Now the group H/(H N N) = HN /N has odd order, hence
itis solvable, by Feit—Thompson’s Theorem, and as in Lemma 6.3, an easy induction
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argument, using Lemma 6.1, shows that [«¥"7| = |u#|. So |(TenGResGu)# | =
|u?| for any subgroup H of G, and Ten$Res is the identity map of B*(G).

Now if v € B*(N)“/¥ the element Res§ Ten$ v is obtained from v by applying
the (N, N)-biset G. Since N < G, this biset 1s isomorphic to the disjoint union of
the classes Nx, for x € G /N, each such class being viewed as an (N, N)-biset by
left and right multiplication. Clearly this biset Nx is isomorphic to the (N, N)-biset
associated to the automorphism # — *#n of N. Thus

G G X . —
Resy Tenyv = E v=|G:Nlv=u,
xeG/N

since v 1s invariant under the action of G/N, and since |G/N| is odd and 2v = 0.
Hence Res% Ten§, is the identity map of B> (N)%/¥, as was to be shown. O

Remark 6.6. Matsuda and Miyata ([19], Theorem B 1iii) proved that the restriction
Res$: B*(G) — B*(N)%/V is an isomorphism, under the additional hypothesis
that the group G 1is isomorphic to the semi-direct product of N and G/N.

Notation 6.7. If G is a finite group, denote by Fg the set of subgroups H of G such
that H N Z(G) =1, and set [Fg] = Fg N [s¢g].

Lemma 6.8. Let G be a finite group. If | Z(G)| > 2, then dB*(G) is trivial.

Proof. Recall that if H € [sg], then the corresponding primitive idempotent eg, of
QB(G) has the property that ae, = |a'?|e%, for any a € B(G). Thus

o= Z |aH|eg.

Helsg)

Now let « € dB*(G). Then Defg/Na is the identity element of B*(G/N), for
any non-trivial normal subgroup N of G. Now suppose that /1 is a subgroup of G
containing N. Then

H| _ G _ Ng(H)/H G/N G _
la™| = |DefresNG(H)/Ha| = |IsoNG/N(H/N)/(H/N) DefresNG/N(H/N) DefG/Na| = 1.

In particular |a?| = 1if H N Z(G) # 1. Tt follows that there exists a subset A of
[ F'] such that

a=G/G-2) €.

HeA
If A #Wie ifa # G/G,let L be a maximal element of A. Then L. # G, because
Z(G) # 1. The coefficient of /L in the expression of & in the canonical basis of
B(G) 1s equal to
LML) L
|Na(L)| NG (L)
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This is moreover an integer, since a € B> (G). It follows that [Ng(L) : L] is
equal to 1 or 2. Butsince L N Z(G) = 1, the group Z(G) embeds into the group
Ng(L)/L. Hence |Ng(L) : L| = 3, and this contradiction shows that A = @, thus
a=G6G/G. 0O

Lemma 6.9. Ler P be a finite 2-group, of order at least 4, and suppose that the
maximal elements of Fp have order 2. If |P| = 2|Fp|, then d B*(P) is trivial.

Proof. 1eta € 9B (P). By the argument of the previous proof, there exists a subset
A of [ Fp] such that
a=P/P -2 Z 2.
HeA
The hypothesis implies that (1, H) = —1 for any non-trivial element H of [Fp].
Now if 1 € A, the coefficient of P/1 in the expression of a in the canonical basis of
B(P) is equal to

1 1 1 1 —44+2|A
|P| ~ |Np(H)] | P| — |P] | P|
HcA {1} HEA—{I}

where A is the set of subgroups of P which are conjugate to some element of A.
This coefficient is an integer if @ € B(P), so | P| divides 2| A| —4. But |A| 1s always
odd, since the trivial subgroup is the only normal subgroup of P which is in A in this

case. Thus 2| A| —4 is congruent to 2 modulo 4, and cannot be divisible by | P, since
|P| > 4.
So1 ¢ A, and the coefficient of P/1 in the expression of a is equal to

1 2|A
22N H) |P|‘
 |Np(H)| — |P|

Now this is an integer, so 2|A| is congruent to 0 or 1 modulo the order of P, which
is even since |P| > 2|Fp| = 2. Thus 1 ¢ A, and 2|A| is a multiple of |P|. But
2|A| < 2|Fp|since 1 & A. Soif 2|Fp| < |P], it follows that A is empty, and A 18
empty. Hence a = P/ P, as was to be shown. O

Corollary 6.10. Let P be a finite 2-group. Then the group d B*(P) is trivial in each
of the following cases:

(1) P is abelian of order at least 3.
(2) P is generalized quaternion or semi-dihedral.

Remark 6.11. Case 1 follows easily from Matsuda’s Theorem 2.11. Case 2 follows
from Lemma 4.6 of Yal¢in ([24]).
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Proof. Case 1 follows from Lemma 6.8. In Case 2, if P is generalized quaternion,
then I'p = {1}, thus | P| = 2|Fp|. And if P is semidihedral, then there is a unique
conjugacy class of non-trivial subgroups H of P such that H N Z(P) = 1. Such a
group has order 2, and Np(H) = HZ(P) has order 4. Thus |Fp| =1+ %, and
| P| = 2| Fp| also in this case. (.

Corollary 6.12 (Yalgin [24], Lemma 4.6 and Lemma 5.2). Let P be a p-group of
normal p-rank 1. Then 0 B> (P) is trivial, exceptif P is
o the trivial group, and 3 B* (P) is the group of order 2 generatedbyvp = —P/P;
« cyclic of order 2, and 0 B (P) is the group of order 2 generated by

up = P/P — P/1;

o dihedral of order at least 16, and then 0 B (P) is the group of order 2 generated
by the element
vp=P/P+P/1—P/I—-P/J,

where I and J are non-ceniral subgroups of order 2 of P, not conjugate in P.

Proof. Recall that the p-groups of normal p-rank 1 (see Definition 4.1) are the cyclic
groups if p # 2, or the cyclic groups, the generalized quaternion groups, and the
dihedral or semi-dihedral groups of order at least 16 if p = 2.

Lemma 6.3 and Lemma 6.8 show that d B (P) is trivial, when P has normal
p-rank 1, except possibly if P is trivial, cyclic of order 2, or dihedral.

Now if P is trivial, then obviously B(P) = Z,so B*(P) = dB>(P) = {(£P/P}.
If P has order 2, then clearly B*(P) consists of =P/P and +=(P/P — P/1), and
dB*(P) = {P/P,P/P — P/1}. Finally, if P is dihedral, the set Fp consists of
the trivial group, and of two conjugacy classes of subgroups 1 of order 2 of P, and
Np(Hl) = HZ for cach of these, where Z is the centre of P, Thus

| Fpl| :1—|—2ﬂ:1+ﬂ.
4 2

Now with the notation of the proof of Lemma 6.9, one has that 2|A| =0 (| P]), and
2|A| < 2|Fp| = 24| P]. Soecither A = @, and in this case « = P/ P, or2|A| = |P|,
which means that A is the whole set of non-trivial elements of Fp. In this case

a=P/P -2} +eb),

where I and J are non-central subgroups of order 2 of P, not conjugate in P. It1s
then easy to check that

a=P/P+P/1—(P/I+P/]),

so a is indeed in B(P), hence in B ( P). Moreover Defﬁ 128 18 the identity element
of B*(P/Z),s0a = f{’a,and a € 9 B> (P). This completes the proof. O
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7. A morphism of biset functors

If &k 1s any commutative ring, there is an obvious isomorphism of biset functor from
kB* = k ®z B* to Hom(B, k), sending the element « = ), o; & v, where
«; € kand ; € B*(G), to the linear form &: B(G) — k defined by &(G/H) =
2 i(G/H ).

Notation 7.1. Let {1} = Z* be the group of units of the ring Z. The unique group
isomorphism from {£1} to Z/2Z will be denoted by u +— u .

If G is a finite group, and if @ € B ((), then recall that for each subgroup S of
G, the integer |25 | is equal to £1. Define a map e : B” (G) — F2B*(G) by setting
ec(a)(G/S) = |a” |4, for any a € B*(G) and any subgroup S of G.

Proposition 7.2. The maps ¢ define an injective morphism of biset functors
g: B — F,B*.

Proof. The injectivity of the map e is obvious. Now let & and [ be finite groups,
and let U be a finite (H, 7)-biset. Also denote by U the corresponding element of
B(H x G°P). If a € B*(G), and if T is a subgroup of H, then by Lemma 5.4

B W@ = [T la"I.

ueT\U/G

Thus

en (B W@) /1y =TT 1™),

ueT\U/G

TL!
= > "y

ueT\U/G
= Y ec@(G/TY
ueT\U/G
= eg(a)(UP/T) (by Lemma 3.7)
= £6(a) (U xu H/T)
=2 B*(U) (s (a)) (H/T)

thus ey o B*(U) = Fp B*(U) o eg. Since both sides are additive with respect to U,
the same equality holds when U is an arbitrary element of B(H x GP), completing
the proof. O
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8. Restriction to the case of p-groups

The additional result that holds for finite p-groups (and not for arbitrary finite groups)
is the Ritter—Segal theorem ([20], [21], see also [6]), which says that the natural trans-
formation B — R of biset functors for p-groups, is surjective. By duality, it fol-
lows that the natural transformation i kR@ — kB* is injective, for any commutative
ring k. The following gives a characterization of the image i (kR7)) inside kB*:

Proposition 8.1. Let p be a prime number, let P be a p-group, let k be a commutative
ring. Then the element ¢ € kB*(P) lies in i(qu”i@(P)) if and only if the element

Defres%s ¢ lies in i(kRC’@(T/S)), for any section T /S of P which is

« elementary abelian of rank 2, or non-abelian of order p* and exponent p, if
PEY
« elementary abelian of rank 2, or dihedral of order at least 8, if p = 2.

Proof. Since the image of kR@ is a subfunctor of kB*, if ¢ ¢ i(kR@(P)), then
Defres%s ¢y € i(kR@(T/S)), for any section (7', S) of P.
Conversely, consider the exact sequence of biset functors over p-groups

00— K—B— Rgp—0

Every evaluation of this sequence at a particular p-group is a split exact sequence of
(free) abelian groups. Hence by duality, for any ring k&, there 1s an exact sequence

O—>kR@—>kB*—>kK*—>O.

With the identification kB* = Homgy (B, k), this means that if P is a p-group, the
element ¢ € kB*(P) lies in i(qu”i(P)) it and only if (K(P)) = 0. Now by
Corollary 6.16 of [10], the group K () is the set of linear combinations of elements
of the form Indinf ITJ /s 0(«x), where T'/S is a section of P, and @ is a group isomorphism
from one of the group listed in the statement to 7/S, and « is a specific element of
K (T/S) in each case. The proposition follows, because

p(Indinf],s0(k)) = (Defrest s 9) (0 (x)),
and this is zero if Defresﬁ/s @ lics in i(kR@(T/S)). O

Theorem 8.2. Let p be a prime number, and P be a finite p-group. The image of the
map ep is contained in i(IE‘zR@(P)).

Proof. The proof goes by induction on the order of P: suppose that

e0(B*(Q)) S ig(F2R5(0)),



Vol. 82 (2007) The functor of units of Burnside rings for p-groups 605

forany p-group Q with |Q| < |P|. Leta € B*(P), and let T/S be any section of P.
Since
Defres%s epla) = erys Defres%s a,
and since this lies in iz (IFzR(’@(T/ S)) it |T/S| < |P|, by induction hypothesis,
Proposition 8.1 shows that one can suppose that P is elementary abelian of rank 2 or
non-abelian of order p° and exponent p if p 1s odd, or that P is elementary abelian
of rank 2 or dihedral if p = 2.
Now if N 1s a normal subgroup of P, by 3.15, one has that

P/N
Shepa) =epff(a)=1Infh n(ep/n(f] " Defh ya)).

Sinceep(a) =) yap f ]5 ¢ p(a), the induction hypothesis implies that f ]5 ep(a) lies
in ip(F2RE(P)), for N # 1. Thus, one can suppose a = f a,ie. a € 3B”(P).
But if P is elementary abelian of rank 2, or if P has odd order p>, then 8 B> (P) is
trivial, by Lemma 6.3 and Corollary 6.10. Hence there is nothing more to prove if
p s odd. And for p = 2, the only case left is when P is dihedral. In that case by
Corollary 6.12, the group @ B ( P) has order 2, generated by the element

vp = Z eg—(ef—i—ef),
Helspl-{1.7}
where [sp] 18 a set of representatives of conjugacy classes of subgroups of P, and
where [ and J are the elements of [sp] which have order 2, and are non central
in P. Checking that ep(vp) lics in i(FzR@(P)) 1s equivalent to checking that
ep(vp)(K(P)) =0inF,. Since moreover

(f40)(b) = p(fub)
forany ¢ € F2B*(P)and b € B(P),itfollows thatEP(Up)(f]{;K(P)) =0if N £#1.
In other words, it is enough to check that ep(vp) (3K (P)) = 0.
Now fIPP/H =P/H—P/HZ, where Zisthe centre of P. ThisisOif H © Z,
so d B(P) 1s the set of elements

B=flouP/N+sP/I+tP/J)
=r(P/1=P/Z)+s(P/] — P/IZ)+1(P/] —P}]Z),

for r, s, t € Z. If such an element g 1s in K (P), then in particular

P
18] = %(Zr—l—s—l—t) =3
so2r+s+1t=0.
But ep(vp)(P/H) 1s equal to zero, except if A 1s conjugate to [ or J, and then
eplup)(P/H) =1, it follows that ep(vp)(p) = s + ¢t = —2r, which is equal t0 0
in [F,, as was to be shown. This completes the proof. 0
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Corollary 8.3. The p-biset functor B is rational.

Proof. Indeed, itisisomorphic to a subfunctor of I¥» R(”i, and > Rq"i@ = Homgz (Rq. ).
Now R is rational (see Remark 4.8), so its ;-dual and any subfunctor of it are
rational (by Remark 4.9), hence B™ is rational, O

Notation 84. Lete: B* — I, R@ denote the unique morphism such thati o £ = ¢.

The existence of such a morphism 1s a consequence of Theorem 8.2, [t1s injective
since ¢ is injective.

Theorem 8.5. Let P be a p-group. Then B (P) is an elementary abelian 2-group
of rank equal to the number of isomorphism classes of rational irreducible represen-
tations of P whose type is trivial, cyclic of order 2, or dihedral. More precisely:

(1) If p # 2, then B*(P) = {£1}.

(2) If p = 2, thenlet ¢ be a genetic basis of P, and let # be the subset of ¢ consisting
of elements Q such that Np(Q)/Q is trivial, cyclic of order 2, or dihedral. If
Q € H, then B> (Np(Q)/Q) has order 2, generated by vn,);0. Then the
set

{Teninf {0 UNp(@)/0 | Q € 3}
is an Fy-basis of B*(P).

Proof. This follows from the definition of a rational biset functor, and from Corol-
lary 6.12. =

8.6. Nilpotent groups. Theorem 8.5 and Lemma 6.3 give the structure (and an
explicit F;-basis) of B (G) when G is a finite nilpotent group: Theorem 8.5 applies
to a Sylow 2-subgroup G2 of G, and then Lemma 6.3 shows that inflation from G
to G is an isomorphism B (G2) — B (G).

It might be worth noting that the result can also be expressed using the following
natural generalization of the notion of genetic subgroups and genetic basis from p-
groups to nilpotent groups:

e A finite group K has normal rank 1 if every abelian normal subgroup of K is
cyclic.

e Let (& be afinite nilpotent group. A Sylow subgroup of & is a Sylow p-subgroup
of G, for some prime p. Recall that any subgroup / of G is equal to the direct product
of its subgroups I N S, when S runs through the Sylow subgroups of G.

¢ A subgroup 1 of G is called generic if the following two conditions hold:

— The group Ng(H)/H has normal rank 1.
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— Ifx e G,then H* N Zg(H) € H ifandonly if H* = H, where Zs(H) is the
subgroup of Ng(H) defined by Zg(H)/H = Z(Ng(H)/H).

With this definition, it is easy to see that f7 is a genetic subgroup of & if and only if
I N S is a genetic subgroup of S, for each Sylow subgroup S of G.

e Two genetic subgroups I and K of G are said to be linked modulo G (notation
H —; K) if there exist x and vy in G such that

H*NZg(K)CK and KYNZg(H)C H.

It is easy to see that this happens if and only if ({1 N S) —g (K N §) for each Sylow
subgroup S of G. In particular, the relation —¢ 18 an equivalence relation on the set
of genetic subgroups of G. A genetic basis of G 1s by definition a setof representatives
of equivalence classes for this relation.

If A and K are genetic subgroups of & such that /1 —g K, then the groups
Ng(H)/H and Ng(K)/K are isomorphic. The isomorphism class of this group is
called the type of H or K, or the type of their equivalence class for —g .

e Now the structure theorem for B (G) can be stated as follows:

Theorem 8.7. Let G be a finite nilpotent group. Let & be a genetic basis of G, and let
H be the subset of G consisting of elements H such that N (H )/ H is frivial, cyclic
of order 2, or a dihedral 2-group. Then the set

{Teninng(H)/H UNg(H)/H | H ¢ Jf}
is an Fa-basis of B*(G).

Proof. Indeed, let G = Gogq x S, where S is a Sylow 2-subgroup of G. If H is a
subgroup of G such that Ng(H)/H is a 2-group, then H = Gygg x @, for some
subgroup Q of S. Morcover Ng(H)/H = Ng(Q)/Q in this case, and H is a genetic
subgroup of G if and only if Q is a genetic subgroup of S. Finally if Q and R are
genetic subgroups of S, then (Gogqg X Q) —g (Gogq x R) if and only if Q —g R.

O

Remark 8.8. If G is abelian, then it follows easily from the above definitions that
there 1s a unique genetic basis of G, consisting of all subgroups H such that G/H
is cyclic (sec also Example 4.4). So in that case, the rank of B” (G) is equal to 1
plus the number of subgroups of index 2 in G: this gives a new proof of Matsuda’s
Theorem (2.11).
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9. The functorial structure of B> for p-groups

In this section, I will describe the lattice of subfunctors of the p-biset functor B*.
This result will be a consequence of the description of the lattice of subfunctors
of F2Rg, stated in [7]. It will allow for a complete answer to the question of the
surjectivity of the exponential map B(P) — B (P) for a 2-group P (see 9.7). It
will also lead to an interesting connection with the Dade group of p-groups, namely
the existence of a short exact sequence involving B”*, F, R}, and the F;-reduction

Fy DE., of the torsion subfunctor of the functor D of relative syzygies in the Dade
group. The reader 1s referred to [11] for the basic constructions on the Dade group
and the functorial approach to it. The p-biset functor D was introduced in [8],

where it was shown that it is a quotient of the Z-dual of the Burnside functor.

9.1. Simple functors. Recall first some notation and basic results on simple biset
functors: the category of biset functors # and the category of p-biset functors ¥,
are abelian categories. Their simple objects are parametrized by pairs (H, V), where
I 15 a finite group (in the case of ) or a finite p-group (in the case of F5), and V
is a simple ZOut(H )-module, where Out(H) is the group of outer automorphisms
of Il (see e.g. [3], Proposition 2, page 678, or [11], Proposition 7.10 for details).
All the simple functors appearing in this section correspond to the case where V
is the quotient Z/q7Z with trivial Out(H )-action, for some prime number ¢. The
corresponding simple functor will be denoted by Sg 7, .

9.2. The case p # 2. If p # 2, there is not much to say, since B (P) = T, for any
p-group P, by Assertion 3 of Lemma 6.3. In this case, the functor B” is the constant
functor I'y, introduced in Corollary 8.4 of [11]. It i also isomorphic to the simple
functor S1 g, .

In this case moreover, it has been shown by J. Carlson and J. Thévenaz ([13],
Theorem 13.3) that for any p-group P, the torsion part Do (F) of the Dade group
D(P) is equal to the torsion part DS (P) of the subgroup of D(P) generated by
relative syzygies (actually in this case D(P) = D*(P) by Theorem 7.7 of [10]). In
this case moreover, by Corollary 8.4 of [11], the functor > Rg@ has a unique non zero
proper subfunctor, isomorphic to S g,. This yields the following remarkable version
of Theorem 11.2 of [11]:

Proposition 9.3. If p # 2, the injection &: B — Wy Rf, fits into a short exact
sequence of p-biser functors

0 — B” —8> FZR@ — Diors — 0,

where Dy I8 the torsion part of the Dade p-biset functor.
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9.4. The case p = 2. There is a bilinear pairing
{ ¥ IFZR@ x F2 Ry — Fy.
This means that for each 2-group P, there is a bilinear form
(,)p: FaRH(P) x F2Rg(P) — Ty,

with the property that for any 2-group @, for any f € Home, (P, Q), for any a €
IE‘ZR{@(P) and any b € F» Rg( @), one has that

(F2RG(f)(@), b)g = (a, FaRo(fP) (b)) p.

Moreover this pairing is non-degenerate: this means that for any 2-group P, the pair-
ing (, ) p is non-degenerate. In particular, each subfunctor /* of IF; R7, is isomorphic
to P2 R/ F L. where F 1 is the orthogonal of F for the pairing (, ).

In particular, the lattice of subfunctors of E‘zR@ 1s 1somorphic to the opposite
lattice of the lattice of subfunctors of F2Rg. Now since B is isomorphic 0 a
subfunctor of ', Ry, its lattice of subfunctors is isomorphic to the opposite lattice of
the lattice of subfunctors of I, Rg containing B = (B ><)L. By Theorem 4.4 of [7],
any subfunctor L of ', Ry is equal to the sum of all subfunctors Hy it contains, where
0 is a 2-group of normal 2-rank 1, and Hg is the subfunctor of 2 R generated by
the image CTDQ in F, R (Q) of the unique (up to isomorphism) irreducible rational
faithful Q@ Q-module @ .

In particular BF is the sum of the subfunctors Hg, where Q is a 2-group of normal
2-rank 1 such that @ € B*(Q). This means that (a, ) = 0, foranya € B*(Q).
Now ®¢g = f1Pg since @ 1s faithful, so

(a, D)o = (a, f2Dg)o = (fa, o).

because le = le)OP. Thus &y € B*(Q) if and only if & is orthogonal to
dB(Q). Since Q has normal 2-rank 1, this is always the case by Corollary 6.12,
except possibly if @ is trivial, cyclic of order 2, or dihedral (of order at least 16).
Now Hy = H¢, = F2 Ry by Theorem 5.6 of [7]. Since B~ is not the zero subfunctor
of F3 Ry, it follows that Hy € B, if Q is trivial or cyclic of order 2. Now if Q is
dihedral, then ®¢ is equal to QQ/I — QQ/IZ, where [ is a non-central subgroup
of order 2 of @, and Z 1s the centre of Q (see Proposition 3.7 of [7]). Now

(Eglug), Do) = eg(u)(Q/I = Q/1Z)=1-0=1,

It follows that Hyp & BY if Q is dihedral. Finally B* is the sum of all subfunctors
Hg, where Q is cyclic of order atleast 4, or generalized quaternion, or semi-dihedral.
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Recall from Theorem 6.2 of [7] that the poset of proper subfunctors of IF, Ry 18
isomorphic to the poset of closed subsets of the following graph:

A
N\

L YA SD64

XL

()3

SD16

SD32

SD128 oD 58

\XLTN

'The vertices of this graph are the isomorphism classes of groups of normal 2-rank 1
and order at least 4, and there is an arrow from vertex () to vertex R if and only if
Hpr C Hg. The vertices with a filled e are exactly labelled by the groups Q for which
Hp € B, and the vertices with a o are labelled by dihedral groups.

By the above remarks, the lattice of subobjects of B* is isomorphic to the opposite
lattice of the lattice of subfunctors of 2 R containing B?. Thus:

Theorem 9.5, The p-biset functor B™ is uniserial. It has an infinite strictly increasing
series of proper subfunctors

Oclocly---CcL,C---

where L is generated by the element vy, and L;, fori > 0, is generated by the element
UD,; 3 Of B™(Dyivs). The functor Lo is isomorphic to the simple functor S15,, and
the quotient Li/L;_1, for i = 1, is isomorphic to the simple functor Sp ;5 ¥,.

Proof. Indeed L = B* + H D 18 the unique maximal proper subfunctor of [, Rq.
Thus Lo 1s isomorphic to the unique simple quotient of I'; R, which is S1.p, by
Proposition 5.1 of [ 7]. Similarly fori > 1, the simple quotient L; /L; _1 1s isomorphic
to the quotient

(B*+ Hp,,5)/B* + Hp,, ),

which is a quotient of

(B*+ Hp,.,)/B* = Hp . ;/(B*N Hp

2i+3)‘

But the only simple quotient of Hp ;. is Sp,; 5 F,, by Proposition 5.1 of [7] again.
O
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Remark 9.6. Let P be a 2-group. By Theorem 5.12 of [7], the F,-dimension of
S1.m, (P) 18 equal to the number of isomorphism classes of rational irreducible rep-
resentations of P whose type is 1 or €5, whereas the Fy-dimension of Sp ;5 7, (P)
is the number of isomorphism classes of rational irreducible representations of P
whose type 1s 1somorphic to D,i+3. This gives a way to recover Theorem 8.5: the
F>-dimension of B*(P) is equal to the number of isomorphism classes of rational
irreducible representations of P whose type is trivial, cyclic of order 2, or dihedral.

9.7. The surjectivity of the exponential map. Let G be a finite group. The expo-
nential map exps : B(G) — B> (G) is defined in Section 7 of Yalgm’s paper ([24])
by

expg(x) = (=1 1 x, 9.8)

where —1 = —1/1 € B*(1), and where the exponentiation
(v,x) € B*(G) x B(G) =~ y * x € B*(G)

is defined by extending the usual exponential map (¥, X) +— Y X where X and
Y are G-sets, and Y¥ is the set of maps from X to Y, with G-action given by
(g /)x) =gf(g " x).

Yalgin ([24], Theorem 7.6) shows that if the 2-group P has no subquotient iso-
morphic to the dihedral group Do, for n > 4, then the map expp is surjective, but
he also gives an example ([24], Lemma 7.9) of a 2-group admitting a subquotient
isomorphic to D1 for which the map expp 1s surjective.

[tis possible to refine Yal¢in’s result, by giving a necessary and sufficient condition
for the surjectivity of the map expp for a 2-group P. The first step in doing this is
the following alternative description of the map expg, for an arbitrary finite group G-
the group B(G) is naturally isomorphic to Home (1, &), by considering any G-set as
a (G, 1)-biset. It is clear that if X is a finite G-set, and Y is a finite set, then

Tx(Y) =YX,

where Tx(Y) = Homy(X°P, Y) as in Section 5.
Equality 9.8 can be extended by linearity, to show that for any x € B(G)

expg(x) = (—1) t x = B" (x)(—1).

In particular the image Im(exps) of the exponential map expg 18 equal to
Home (1, G)(—1). Denoting by J the sub-biset functor of B* generated by —1 €
B (1) (see 3.11), it is now clear that Im(exp) = J(G) for any finite group G.
Now the restriction of the functor J to the category ¢G> 1s equal to Lo, which 1s
isomorphic to the simple functor 51 p,. By Theorem 5.12 and Remark 5.13 of [7],
if P is a finite 2-group, then the I';-dimension of Sy g, () is equal to the number of
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isomorphism classes whose type is trivial or cyclic of order 2, and this is also equal to
the number of isomorphism classes of absolutely irreducible rational representations
of P. This gives finally:

Proposition 9.9. Let P be a finite 2-group. Then:
(1) The Fy-dimension of the image of the exponential map

expp: B(P) — B*(P)

is equal to the number of isomorphism classes of absolutely irreducible rational
representations of P.

(2) The map expp is surjective if and only if the group P has no irreducible rational
representation of dihedral type, or equivalently, no genetic subgroup Q such
that Np((Q)/Q is dihedral.

9.10. Connection with the Dade group. Proposition 9.3 stated an interesting con-
nection between the p-biset functors B, F» R{’@ and Dy, when p is an odd prime.
Theorem 9.5 is an extension of this result to the case p = 2. So in this section p
denotes an arbitrary prime number.

First recall the following notation: if P is a finite p-group, and X is a finite
P-set, denote by wy the element of B*(P) defined by wx(P/Q) = 1if X€ £ 0,
and wx(P/Q) = 0 otherwise. Denote by 2y the c¢lass in the Dade group D(P) of
the syzygy relative to X of the trivial module, and by D*(P) the subgroup of D(P)
generated by these relative syzygies. Recall from [8] (Theorem 1.7 and Theorem 1.8)
that D¥(P) is the evaluation at P of a p-biset functor, and that there exists a surjective
morphism of p-biset functors & from B* to D% such that ® p(wy) = Qyx, for any
finite p-group P and finite P-set X. This yields an exact sequence of p-biset functors

0— R, - B* > D¥/DZ  — 0,

tors

where D{ _is the torsion subfunctor of D*. This shows that = © o/ is a surjective

tors
Denote by 0: F,RY — F, D% the

morphism of p-biset functors R — D 5

tors*
F;-reduction of this map.

Proposition 9.11. Ler p be a prime number. There is an exact sequence of p-biset
functors:
£ 7
0> B 5 IE‘QR@ —% IE‘QDt%rS 3},
Proof. In the case p # 2, this proposition is equivalent to Proposition 9.3, because
Fth%rS = Fthors g Dtors ln thlS Case.

To prove the proposition in the case p = 2, it is enough to show that the image
of 2 is contained in the kernel of 6, and that for any 2-group P, the F,-dimension of
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IE‘ZR@(P) is equal to the sum of the F,-dimensions of B (P) and IE‘th%rs(P): but
by Corollary 7.6 of [9], there is a group isomorphism

D (P) = (Z/4Z)"F & (Z/2L)"",

where ap is equal to the number of isomorphism classes of rational irreducible repre-
sentations of P whose type is generalized quaternion, and b p equal to the number of
isomorphism classes of rational irreducible representations of P whose type is cyclic
of order at least 3, or semi-dihedral. Thus

dimp, F2D{2 (P) = ap + bp.

Now since dimp, B™ (P) is equal to the number of isomorphism classes of rational
irreducible representations of P whose type is cyclic of order at most 2, or dihedral, it
follows that dimp, Fy D32 (P)+dimg, B> (P) is equal to the number of isomorphism
classes of rational irreducible representations of P, 1.¢. to dimp, I R(’@(P).

So the only thing to check to complete the proof, is that the image of € is contained
in the kernel of @, Since B>, T, R and Iy D§: . arerational 2-biset functors, it suffices
to check that if P is a 2-group of normal 2-rank 1, and a € d B” (P), then the image
of a in dF, R@(P) lies in the kernel of 6. There is nothing to do if P is generalized

quaternion, or semi-dihedral, or cyclic of order at least 3, for in this case 9 B (P) = 0
by Corollary 6.10. Now if P is cyclic of order at most 2, then D%(P) = {0}, and
the result follows. And if P is dihedral, then D*( P) is torsion free by Theorem 10.3
of [12], so D&, (P) = {0} again. O

tors

Acknowledgements. I wish to thank the referee for his careful reading of this paper,
and his detailed report. I also thank Jacques Thévenaz for stimulating discussions and
many useful suggestions, and the Bernoulli Center at EPFL, where the first version
of this paper was completed in April 2005.

References

[1] T.Beidleman, H. Heineken, and M. Newell, Centre and norm. Bull. Austral. Math. Soc. 69
(3) (2004), 457-464. Zbl 1060.20020 MR 2066664

[2] S. Bouc, Exponentielle et modules de Steinberg. J. Algebra 150 (1) (1992), 118-157.
Zbl 0759.19001 MR 1174892

[3] S. Bouc, Foncteurs d’ensembles munis d’une double action. J. Algebra 183 (0238) (),
664-736, 1996. Zbl 0858.19001 MR 1401673

[4] S.Bouc, Burnside rings. In Handbook of Algebra, Volume 2, Chapter 6D, North-Holland,
Amsterdam 2000 2000, 739-804. Zbl 0969.19001 MR 1759611

[5] S. Bouc, Non-additive exact functors and tensor induction for Mackey functors. Mem.
Amer. Marth. Soc. 144, no. 683, (2000). Zbl 0949.19001 MR 1662073



614

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Bouc CMH

S. Bouc, A remark on a theorem of Ritter and Segal. J. Group Theory 4 (2001), 11-18.
/bl 0976.20001 MR 1808835

S. Bougc, The functor of rational representations for p-groups. Adv. in Math. 186 (2004),
267-306. Zbl 1055.20005 MR 2073907

S. Bouc, A remark on the Dade group and the Burnside group. J. Algebra 279 (1) (2004),
180-190. Zbl 1059.19001 MR 2078393

S. Bouc, Biset functors and genetic sections for p-groups. J. Algebra 284 (1) (2005),
179-202. Zbl 1062.19001 MR 2115011

S.Bouc, The Dade group of a p-group. fnvens. Math. 164 (2006), 189-231.7bl 1099.20004
MR 2207787

S. Bouc and I. Thévenaz, The group of endo-permutation modules. Invent. Math. 139
(2000), 275-349. 7Zbl 0954.20002 MR 1738450

I. Carlson and I. Thévenaz, Torsion endo-trivial modules. Algebr. Represent. Theory 3
(2000), 303-335. Zbl 0970.20004 MR 1808129

I. Carlson and J. Thévenaz, The classification of torsion endo-trivial modules. Ann. of
Math. 162 (2) (2005), 823-883. Zbl 05042687 MR 2183283

R. Dedekind, Uber Gruppen, deren simmtliche Theiler Normaltheiler sind. Math. Ann. 48
(4) (1897), 548-561. JFM 28.0129.03 MR 1510943

A. Dress, A characterization of solvable groups. Math. Z. 110 (1969), 213-217.
Zbl 0174.30806 MR 0248239

D. Gluck, Idempotent formula for the Burnside ring with applications to the p-subgroup
simplicial complex. [llinois J. Math. 25 (1981), 63—67. Zbl 0424.16007 MR 0602896

W. Gorenstein, Finife groups. Harper & Row, Publishers, New York, L.ondon 1968.
Zbl 0185.05701 MR 0231903

T. Matsuda, On the unit group of Burnside rings. Japan. J. Math. 8 (1) (1982), 71-93.
Zbl 0517.16008 MR 0722522

T. Matsuda and T. Miyata, On the unit groups of the Burnside rings of finite groups. J.
Math. Soc. Japan 35 (1) (1983), 345-354. Zbl 0491.20004 MR 0692332

I. Ritter, Ein Induktionssatz fiir rational Charaktere von nilpotenten Gruppen. J. Reine
Angew. Marh. 254 (1972), 133-151. Zbl 0242.20003 MR 0470058

(5. Segal, Permutation representations of finite p-groups. Quart. J. Math. Oxford 23 (1972),
375-381. 7Zbl 0338.20017 MR 0322041

J. Thévenaz, Permutation representation arising from simplicial complexes. J. Combin.
Theory 46 (1987), 122—-155. Ser.A. Zbl 0638.20006 MR 0899904

T. tom Dieck, Transformation groups and representation theory, Lecture Notes in Math.
766, Springer-Verlag, Berlin 1979. Zbl 0445.57023 MR 0551743

E. Yal¢in, An induction theorem for the unit groups of Burnside rings of 2-groups. J.
Algebra 289 (2005), 105-127. Zbl 1076.19002 MR 2139093

T. Yoshida, Idempotents in Burnside rings and Dress induction theorem. J. Algebra 80
(1983), 90—105. Zbl 0521.20003 MR 0690705



Vol. 82 (2007) The functor of units of Burnside rings for p-groups 615

[26] T.Yoshida, On the unit groups of Burnside rings. J. Math. Soc. Japan 42 (1) (1990), 31-64.
/bl 0694.20009 MR 1027539

Received April 19, 2005

Serge Bouc, CNRS-LAMEFA, Université de Picardie-Jules Verne 33, rue St Leu,
80039 Amiens Cedex 1, France

E-mail: serge.bouc @u-picardie.fr



	The functor of units of Burnside rings for p-groups

