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Flows on S-arithmetic homogeneous spaces and applications to
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Abstract. The main goal of this work is to establish quantitative nondivergence estimates for
flows on homogeneous spaces of products of real and p-adic Lie groups. These results have
applications both to ergodic theory and to Diophantine approximation. Namely, earlier results
of Dani finiteness of locally finite ergodic unipotent-invariant measures on real homogeneous
spaces) and Kleinbock–Margulis strong extremality of nondegenerate submanifolds of Rn) are

generalized to the S-arithmetic setting.
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1. Introduction

1.1. Actions of unipotent subgroups on homogeneous spaces of real Lie groups
provide examples of important dynamical systems with numerous applications to
geometry and number theory. A fundamental phenomenon discovered by G. A. Margulis

in 1971 [M] showed that, in sharp contrast to partially hyperbolic flows, orbits
of unipotent flows are never divergent. Then in the papers [D1]–[D3] S. G. Dani
generalized and strengthened this result. In particular, for one-parameter flows he

proved that any unipotent orbit returns to big compact subsets with high frequency.
A very general explicit estimate for this frequency in terms of the size of compact
sets was given in 1998 in the paper of Margulis and the first named author [KM].
In fact it was done in a bigger generality, i.e. for a large class of maps from Rd into
SL(n,R), making it possible to derive important applications to metric Diophantine
approximation on manifolds. The nondivergence theorem of Dani and Margulis was
used in M. Ratner’s proof [Rt1], [Rt2] of Raghunathan’s topological conjecture, and

in Dani’s proof [D2] of finiteness of locally finite ergodic measures invariant under a

unipotent flow.
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In [BP], A. Borel and G. Prasad initiated the study of actions of S-adic unipotent
groups on homogeneous spaces. The generalization of Ratner’s results to the S-adic
setting was achieved in the papers [MT1], [MT3] and [Rt3]–[Rt4]. In the present
paper we prove an S-adic analogue of explicit quantitative estimates from [KM]. As
one of the applications, we show the finiteness of locally finite unipotent-invariant
ergodic measures on S-adic homogeneous spaces. We also derive applications to
number theory. Namely, generalizing the correspondence between homogeneous
dynamics and Diophantine approximation over R, we prove p-adic, and more generally,

S-arithmetic versions of conjectures of A. Baker and V. Sprindžuk, in particular
answering a question posed by I. Shparlinski.

In order to state our results, let us introduce some notation. Let S be a finite
set of normalized valuations of Q containing the Archimedean one, ZS the ring of
S-integers of Q, and QS the direct product of completions Qv of Q over v S. Put

GL(m, QS)
def

v.S
GL(m,Qv) and

GL1 m, QS)
def

g v))v.S GL(m, QS) | v.S |det(g(v))|v 1

Then one can interpret the homogeneous space

1
S,m

def GL1 m, QS)/ GL(m,ZS)

S of covolume 1 see §8.8 for details). For any v S,as the space of lattices in Qm
the valuation | · |v induces the norm · v on Qmv and we let

c(x)
def

v.S
|x v)|v for x x v))v.S QS, 1.1)

and c(x)
def

v.S
x(v)

v for x x(v))v.S QmS The latter function plays the
same role as the usual norm in the case S {8}, see Lemma 8.6.

Now define

Qe
def 1

S,m | c(x) e for all nonzero x 1.2)

It follows from the generalized Mahler’s Compactness Criterion Theorem 8.8) that
the sets Qe are compact.

Let us now formulate a special case of our Theorem 9.4.

Theorem 1.1. Consider the spaceX
v.S Qdv

v dv N, endowed with the product
metric see 2.6)) and the measure

def

v.S

.v, where .v is a Haar measure on Qdv
v 1.3)
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and let h hv)v. : X GL1(S m, QS) be a polynomial map see §9.4 for the
definition) with h(0) e. Then there existsa > 0 such that for every 1 one

S,m
can findC > 0 with the following property: for any positive e and any ball B X
centered at 0 one has

{x B | h(x) / Qe}
B)

Cea

We remark that Theorem 9.4 is in its turn a special case of a more general result,
Theorem 9.3, where the restrictions on X, and h are significantly relaxed.

1.2. Theorem 9.4 makes it possible to generalize the main results from [D1]–[D3]
to the case of products of real and p-adic algebraic groups. In particular, here is a
special case of our Theorem 10.1:

Theorem 1.2. Let G v.S
Gv, where Gv is the group of Qv-rational points of an

algebraic group Gv defined over Qv, let be a lattice in G, and let X and be as

in Theorem 1.1. Then for any d N and ß > 0 there exists a compact M G/
such that for any y G/ and any parametrization f : X U of degree d of
a unipotent algebraic subgroup U of G see §10.1 for precise definitions) one of the
following holds: either

i) there exists R R(y, f) such that

{x B | f(x)y M}
B)

1 - ß

for any ball B in X centered at 0 with radius at least R, or
ii) there exists a closed proper subgroup H of G containing U such that the orbit

Hy is closed and carries a finite H-invariant Borel measure.

In the particular case when U is one-parameter, Theorem 1.2 has been announced,

with indication of the proof, in [MT3, Theorem 11.4], [Rt4, Theorem 9.1] and [To,

Theorem 3.3], and used for the proof of Ratner’s uniform distribution theorem [Rt4,
Theorem 3] and for other related results.

1.3. The next theorem, which follows from Theorem 10.1, has been proved for real
Lie groups by Dani [D2, Theorem 4.3], and for the general case has been announced
in [MT3, Theorem 11.5].

Theorem 1.3. LetGand be as in Theorem 1.2, letH be a subgroup ofGgenerated
by unipotent one-parameter subgroups of G, and let µ be a locally finite H-invariant
measure on G/ Then there exist Borel H-invariant subsets Yi 1 i < 8, such

that µ(Yi) < 8 for all i and µ(G/ \ i Yi) 0. In particular, every locally finite
H-invariant ergodic measure on G/ is finite.
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1.4. Now let us turn to applications to number theory. Let S be a finite set consisting
of distinct normalized valuations of Q, with or without the infinite valuation. We will
interpret elements

y y v))v.S y1, yn)

S v.S Qnvof Qn where y(v) y v)
1 y v)

n Qnv and yi y v)
i QS, as

S
and will study their values y · q y1q1 + · · · + ynqn at integerlinear forms on Qn

points q q1, qn). Denote by the cardinality of S, and say that y QnS is
very well approximable, orVWA, if for somee > 0 there are infinitely many solutions
q̃ q0, q1, qn) Zn+1 to

|q0 + q · y|
q̃ - n+1)(1+e) if8 /. S,

q -n(1+e) if8 S.
1.4)

Here · is any norm on Rn+1 nothing will depend on the choice of the norm
and we will use the Euclidean norm), and | · | is the S-adic absolute value, |x|
maxv.S |x(v)|v. Also, say that y is very well multiplicativelyapproximable, orVWMA,
if for some e > 0 there are infinitely many q̃ Zn+1 such that

c(q0 + q · y) + q̃)-(1+e) if8 /. S,

+ q)-(1+e)|q0|-
e

+ if8 S,
1.5)

where we put

|x|+
def

max(|x|, 1) for x R, + x)
def

n

i=1
|xi|+ for x Rn

and define c(· as in 1.1). This unifies the standard definitions in the real and p-adic
set-ups; we refer the reader to §11 for motivation, in particular for an explanation of
the term |q0|-

e in the second line of 1.5), and for a uniform way to write down the
expressions on the right-hand sides of 1.4) and 1.5). It is easy to check using the
Borel–Cantelli Lemma that the set of VWMA vectors, and hence the smaller set of
VWA vectors, has zero Haar measure.

The subject of metric Diophantine approximation with dependent quantities
originated with a conjecture of Mahler proved by Sprindžuk in the 1960s see [Sp1]),
stating that for almost every x R, the vector

f x) x, x
2

xn 1.6)

is notVWA. On the other hand, a similar statement withVWA replaced by VWMA,
conjectured by A. Baker in 1972 [B], had not been proved until the paper [KM],
which introduced a dynamical approach to this class of problems. See also [K1] for
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a survey.) Note that Sprindžuk had also proved the p-adic counterpart of Mahler’s
conjecture, and the problem of establishing its multiplicative version, that is, proving

that the vector 1.6) is not VWMA for .-a.e. x Qp, was recently posed by
I. Shparlinski V. Bernik, private communication).

More generally, following [KLW], let us say that a measure µ on Qn
S

is
extremal resp. strongly extremal) if µ-almost every vector in QnS is not VWA resp.,
not VWMA). In these terms, the conjectures of Mahler resp. Baker) state that the
pushforward f *

of Lebesgue measure on R by the mapf as in 1.6) is extremal
resp. strongly extremal).

An important property of the curve 1.6) is that it does not belong to any proper
affine subspace of Rn. More generally, consider a Ck map f : U Fn, where F
is any locally compact valued field and U is an open subset of Fd and say thatf is
nondegenerate at x0 U if the space Fn is spanned by partial derivatives of f at

x0 up to some finite order. Note that the definition of Ck functions of an ultrametric
variable is more involved than in the real case; see §4 for details.) One can view
this condition as an infinitesimal version of not lying in any proper affine hyperplane,
i.e. of the linear independence of 1, f1, fn over F see §5 and [KM, §1] for
further discussion).

It was conjectured by Sprindžuk in 1980 [Sp2, Conjecture H2], and proved in
[KM] in 1998 that f *

is strongly extremal for f : U Rn, U Rd which is
nondegenerate at .-a.e. point of U. Much less has been known for other fields. For
example, the extremality of f* was shown by E. Kovalevskaya [Ko1], [Ko2] for

f : Zp Z3p which is normal in the sense of Mahler a subclass of p-adic analytic
functions) and nondegenerate .-a.e.

In this paper we are able to prove much more general results. The following theorem,

whichwederive fromTheorem 9.3,yieldsan S-arithmetic versionof Sprindžuk’s
Conjecture H2, in particular answering Shparlinski’s question.

Theorem 1.4. Let S be a finite set of normalized valuations of Q, for any v S take

kv, dv N and an open subset Uv Qdv
v and let be defined as in 1.3). Suppose

that f is of the form f v))v.S, where each f v) is a Ckv map from Uv into Qnv which
is nondegenerate at .v-a.e. point of Uv. Then f *

is strongly extremal.

Note that the paper [Z] considers the case when each f v) is of the form 1.6),
and proves the extremality of f *

Theorem 1.4 is a special case of Theorem 11.1, which requires a certain
terminology so we do not state it in the introduction. In fact, Theorem 11.1 generalizes
the main result of [KLW], which, among other things, studies Diophantine properties
of generic points on certain fractal subsets of Rn, in particular, the so-called
selfsimilar open set condition fractals see §11.6 for details). Following [H], those can
be considered in vector spaces over arbitrary locally compact fields; Theorem 11.1,
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combined with certain results of [KLW], implies that natural measures supported on

them are strongly extremal.

1.5. The structure of the paper is as follows. In §2 and §3 we introduce and discuss

theso-calledBesicovitchmetric spaces, Federer measures and C, a)-good functions,
that is, the language inwhich ourmain results arestated. The most importantexamples
of good functions are given by linear combinations of coordinate functions of smooth
nondegenerate maps Fd Fn. This has been established in [KM, §3] for F R,
and in §4 and §5 we develop a similar theory in the ultrametric setting. The key new
ingredient of the proof Proposition 4.2), which hinges on combinatorics of higher
order difference quotients ofCk functions of an ultrametric variable, makes it possible
to bypass the use of the Mean Value Theorem. Then in §6 and §7 we generalize a

measure estimate of [KM, §4] to the setting of functions on a Besicovitch metric
space X which are good with respect to a Federer measure on X. In §8 we prove
auxiliary results about discrete ZS-submodules of Qm

S
The quantitative S-arithmetic

nondivergence is discussed in §9 where, in particular, Theorem 1.1 is proved. §10 is
devoted to proving Theorems 1.2 and 1.3. Then in §11 we turn to the S-arithmetic
Diophantine approximation, giving all the definitions, stating the most general strong
extremality result Theorem 11.1), and mentioning applications to fractal measures.

The proof of Theorem 11.1 breaks into two special cases when S does or does not
contain the Archimedean valuation), which are treated in §12 and §13 respectively.
In both cases the argument is based on a modification of the dynamical approach to
real Diophantine approximation as developed in [KM]. The last section of the paper

lists several possible generalizations and open questions.

Acknowledgements. Part of the work was done during the authors’ collaboration
at the University of Lyon 1, Brandeis University and the Max Planck Institute; the
hospitality of these institutions is gratefully acknowledged. A preliminary version
of this paper [KT] appeared as a preprint of the MPI. The authors are thankful to
G. A Margulis for his interest in this work and valuable comments. Thanks are also
due to Vasily Bernik, Yuri Bilu, Elon Lindenstrauss and BarakWeiss for helpful
discussions, and to the referee for useful remarks. The first named author was supported
in part by NSF Grants DMS-0072565 and DMS-0232463.

2. Besicovitch covering property

2.1. For a metric space X, x X and r > 0, we denote by B(x, r) the open ball

B(x, r)
def

{y X | dist(x, y) < r} of radius r centered at x, and by B(x, r+) the

closed ball B(x, r+) def
{y X | dist(x,y) r}. Note that B(x, r+) in general does

not have to coincide with the closure B(x,r) of B(x, r).) For a subset B of X and a
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function f : B F, where F, | ·| is a valued field, we let f B
def

sup
x.B |f x)|.

If µ is a locally finite Borel measure on X and B is a subset of X with µ(B) > 0, we
define f µ,B to be equal to f Bn

suppµ, which, in case f is continuous and B is
open, is the same as the L8(µ) norm of f |B, i.e.

f µ,B sup c | µ({x B : |f x)| > c}) > 0

We will say that a metric space X is Besicovitch if there exists a constant NX such

that the following holds: for any bounded subset A of X and for any family B of
nonempty open balls in X such that

x is the center of some ball of B for every x A, 2.1)

there is a finite or countable subfamily {Bi} of B with

1A

i
1Bi NX, 2.2)

i.e. A i Bi and the multiplicity of that subcovering is at most NX.

Example 2.1. Suppose that X is ultrametric, that is, the non-Archimedean triangle
inequality dist(x1, x2) maxi=1,2 dist(x,xi) holds for all x, x1, x2 X. Then any
two balls in X are either disjoint or contain one another this observation will be

repeatedly used throughout the sequel). This implies that any covering of any subset

ofX by balls has a subcovering of multiplicity 1; thus any separable ultrametric space

is Besicovitch with NX 1 the separability of X is equivalent to the collection of
all its balls being countable).

Example 2.2. The fact thatRd is Besicovitch is the content of Besicovitch’s Covering
Theorem [Mt, Theorem 2.7]. In fact, Besicovitch’s proof, see [Mt, pp. 29–34], can
be easily generalized to give the following

Lemma 2.3. For a metric space X, define

MX
def

sup k | there are balls Bi B(xi, ri 1 i k,

i=1 Bi Ø, and xi /.
ksuch that k

j=1
j i

Bj for all i
2.3)

and also, for c > 1,

DX(c)
def

sup k | there are x X, r > 0 and pairwise disjoint

balls B1, Bk of radius r contained in B(x, cr)
2.4)

Then NX MXDX(8); hence X is Besicovitch if MX and DX(8) are finite.
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Proof. We follow the proof of Theorem 2.6 in [Mt]. Take a bounded A X and a

family B of nonempty open balls in X satisfying 2.1). For each x A pick one ball
B x, r(x) B. As A is bounded, we may assume that

R1 sup

x.A
r(x) < 8.

Choose x1 A with r(x1) R1/2 and then inductively

xj+1 A \
j

i=1

B xi, r(xi) with r(xj+1) R1/2

as long as possible. Since A is bounded, the process terminates and we get a finite
sequence x1, xk1

Next let

R2 sup r(x) | x A \ k1

i=1 B xi,r(xi)

i=1 B xi, r(xi) with r(xk1+1) R2/2 and again inductivelyChoose xk1+1 A \
k1

xj+1 A \
j

i=1

B xi, r(xi) with r(xj+1) R2/2.

Continuing this process we obtain an increasing sequence of integers 0 k0 <
k1 < k2 < a decreasing sequence of positive numbers Ri with 2Ri+1 Ri and

a sequence of balls Bi B xi, r(xi) with the following properties. For j N, let

Ij {kj-1 + 1, kj }. Then one has

r(x) < Rj /2 for j N, x A \
kj

i=1

Bi 2.5a)

Rj/2 r(xi) Ri for i Ij 2.5b)

xj+1 A \
j

i=1

Bi for j N, 2.5c)

xk A \
l j i.Il

Bi for j N, k Ij 2.5d)

A
8

i=1

Bi 2.5e)

The first three properties follow immediately from the construction.
To prove 2.5d), take j N, k Ij l j and i Il. If l < j, then xk /. Bi by

2.5b). If l > j, then xi /. Bk by 2.5b), and also r(xi) < r(xk) by the construction,
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hence xk /. Bi Finally, to verify 2.5e), observe that since Rj 0 as j .8, 2.5a)
forces r(x) to be equal to zero for any x A \ 8i 1 Bi

Clearly 2.5e) proves the first inequality in 2.2). To establish the second inequality,

assume that a point x X belongs to k balls Bi say,

x
k

i=1

Bmi

Using 2.5d) and 2.3), we see that the indices mi can belong to at mostMX different
blocks Ij We now claim that for any j N,

# Ij n {mi | i 1, k} DX(8).

Indeed, fix j N and write {n1, nl}
def

Ij n {mi | i 1, k}. By 2.5b) and

2.5c), the ballsB xni Rj/4) i 1, l, are disjoint and contained in B(x, 2Rj
so the claim follows from 2.4). This proves that X is Besicovitch, with NX
MXDX(8).

2.2. We will use the above lemma to prove that the products of Rd and certain
ultrametric spaces are Besicovitch. Here and hereafter, the product of metric spaces

Xi disti), i 1, k, will always be supplied with the product metric

dist x1, xk), y1, yk) max
i

disti(xi, yi) 2.6)

so that balls in i Xi are products of balls in Xi In particular, this convention forces
the product of ultrametric spaces to be ultrametric as well.

Lemma 2.4. If Y is ultrametric, one has MX×Y MX.

Proof. Assume MX×Y > MX, and choose k > MX and balls Bi B(xi, ri),
1 i k, in X ×Y such that k

i=1 Bi Ø and xi is not in k

j=1, j i Bj for each i.
Write Bi Ei×Fi where Ei and Fi are projectionsof Bi ontoX and Y respectively.
Without loss of generality suppose that the sequence {ri} is non-increasing. Since Y
is ultrametric and k

i=1 Fi Ø, one has Fk Fi for all i. On the other hand, since

MX < k, the center of Ek must lie in Ei for some i < k, therefore xk must lie in Bi
a contradiction.

The converse inequality is straightforward and not needed for our purposes).

Corollary 2.5. If Y is ultrametric, one has

NX×Y MXDX(8)DY 8); 2.7)

in particular, X × Y is Besicovitch if the three constants on the right-hand side of
2.7) are finite.
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Proof. It suffices to check that DX×Y 8) DX(8)DY 8), which is straightforward,
as, since Y is ultrametric, any ball in Y of radius 8r is a disjoint union of at most

DY 8) balls of radius r.

Example 2.6. Let F bea locallycompact field with a nontrivial ultrametricvaluation,
and let p be the number of elements in the residue class field of F, that is, the number

of representatives in the closed unit ball the ring of integers of F) O
def

B(0, 1+)

modulo the open unit ball the valuation ideal of F) P
def

B(0, 1). Without loss of
generality we can, and will from now on, normalize the valuation so that the diameter
of P is equal to 1/p. If F Qp, this way one gets O Zp, P pZp, and

| · | | · |p, the standard p-adic valuation.) Then it is easy to see that for any c 1,

any ball in F of radius cr is a disjoint union of at most p[logp c]+1 balls of radius r.
Therefore Corollary 2.5, in particular, implies that the metric space

1 × · · · ×F
dX Rd0

× F d1 2.8)

is Besicovitch for any ultrametric locally compact fields F1, F and any

d0, d1, d N.

2.3. We close the section with a measure-theoretic counterpart of the Besicovitch
property. Namely, say that a locally finite Borel measure µ on X is uniformly Federer
if there existsD > 0 such that

sup
r>0

µ B(x, 3r)

µ B(x, r)
< D for all x supp µ. 2.9)

Equivalently, one can replace “3” in 2.9) by anyc > 1. In otherwords, µis uniformly
Federer if and only if for all c > 1 one has

Dµ(c)
def

sup
x.suppµ

r>0

µ B(x, cr)

µ B(x, r)
< 8.

To simplify notation, we are going to write Dµ instead of Dµ(3). Note that if µ is a

uniformly Federer measure on X with suppµ X, for all c > 1 one automatically
has DX(c) Dµ(2c), or even Dµ(c) if X is ultrametric.

It is often useful to have a non-uniform version of the above definition: following
[KLW], we will say that µ as above is Federer1 if for µ-a.e. x X there exists a

neighborhood U of x such that µ|U is uniformly Federer.

Example 2.7. Let X be as in 2.8), and denote by pi the number of elements in the
residue class field of Fi i 1, It is clear that any Haar measure on X is
uniformly Federer, with D.(c) cd0

i=1(cpi)di

1See [S] and [KLW, §6] for an even weaker non-uniform version.



Vol. 82 2007) Flows on S-arithmetic homogeneous spaces 529

3. C, a)-good functions

3.1. Roughly speaking, a function is said to be good if the set of points where it
takes small values has small measure. To simplify notation, it will be convenient to
introduce a special symbol for a set of points x in a set B such that the value of a

function f at x has norm less than e. Namely, define

B f,e def
{x B | |f x)| < e}

for any f : B F, where F, | · | is a valued field.
Now let X be a metric space and µ a Borel measure on X. For a subset U of X

and C,a > 0, say that a Borel measurable function f : U F is C, a)-good on U
with respect to µ if for any open ball B U centered in suppµ one has

µ Bf,e C
e

f µ,B

a
µ(B) for all e > 0. 3.1)

In all the applications of our results, the metric space X will be the normed ring as

in 2.8), and µ will bechosen to be a Haar measure onX, in which case we will omit
the reference to the measure and will simply say that the functions are C, a)-good
on U. In particular, µ will be positive on open sets, so it will be always possible to
replace f µ,B in 3.1) by f B and not pay attention to the restriction of the center
of B lying in suppµ. The above definition generalizes the one from [KM], which
involved functions on Rd with µ being Lebesgue measure. See however [KLW]
where measures supported on proper subsets of Rd are considered.

The following properties are immediate from the definition:

Lemma 3.1. Let a metric space X, a measure µ on X, a subset U of X and C, a > 0

be given.

a) f is C, a)-good on U with respect to µ. so is |f |;
b) f is C, a)-good on U with respect to µ. so is cf for all c F;
c) fi i I, are C, a)-good on U with respect to µ and the function f

supi.I |fi | is Borel measurable f is also C, a)-good on U with respect
to µ;

d) f is C, a)-good on U with respect to µ, and c1 |f x)|
|h(x)|

c2 for all x U
h is C(c2/c1)a, a)-good on U with respect to µ.

3.2. The next lemma will be useful in dealing with functions on products of metric
spaces:
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Lemma 3.2. Let metric spaces X, Y with measures µ, be given. Suppose f is a

continuous function on U × V where U X and V Y are open subsets, and
suppose C,D,a, ß are positive constants such that

for all y V n supp the function x f x,y)
is C, a)-good on U with respect to µ,

3.2a)

and
for all x U n suppµ, the function y f x, y)

is D, ß)-good on V with respect to
3.2b)

Then f is E, )-good on U × V with respect to µ × where

aß

a + ß

C
and E a + ß)

ß

ß D
a

a
1

a+ß
3.3)

Proof. Fix a ball in U × V of the form A × B, where A and B are balls in X and

Y intersecting the supports of µ and respectively. Without loss of generality let us

rescale µ|A, .|B and f so that µ(A) B) f µ×.,A×B 1. Take an arbitrary
e > 0; we need to demonstrate that

µ × A × B)f,e Ee 3.4)

For y B let us denote by fy the function x f x, y). Also denote by the

function defined on B by y)
def

fy µ,A; note that is Borel measurable, and

B 1 because of the assumed normalization of f In view of 3.2a), for any

y B n supp one has

µ(Afy e C
e

y)

a

y)
C

µ(Afy e)

1/a
e. 3.5)

Take an arbitrary t > 0 to be fixed later), and denote

Bt
def

{y B | µ(Afy e

t}.
In view of 3.5), y Bt implies that y) is not bigger than C/ t)1/a e. Since it
follows from Lemma 3.1(c) and 3.2b) that is D, ß)-good on V with respect to
one can write

Bt {y B | y) C/ t)1/a
e} D C/ t)1/a e

ß
3.6)

Now observe that one has µ {x A | x,y) A × B)f,e
} < t whenever

y /. Bt therefore, by Fubini,

µ × A × B)f,e < µ× A × Bt + t · B \ Bt

Bt + t
3.6)

t + DCß/ae ß
· t-ß/a 3.7)



Vol. 82 2007) Flows on S-arithmetic homogeneous spaces 531

The function on the right-hand side of 3.7) attains its minimum when

t DCß/aeß ß
a

a

a+ß Cß Dß
a

a 1
a+ß e

aß

a+ß ;
substituting it into 3.7), one easily obtains 3.4) with E and given by 3.3).

3.3. Applying the above lemma repeatedly, one easily obtains

Corollary 3.3. For j 1, d, let Xj be a metric space, µj a measure on Xj
Uj Xj open, Cj, aj > 0, and let f be a function on U1 × · · · × Ud such that for
any j 1, d and any xi Ui with i j the function

y f x1, xj-1,y,xj+1, xd 3.8)

is Cj, aj )-good on Uj with respect to µj Then

f is C̃ ã -good on U1 × ·· · ×Ud with respect to µ1 × · · · ×µd 3.9)

where C̃ and ã are explicitly computable in terms of Cj aj In particular, if each of
the functions 3.8) is C, a)-good on Uj with respect to µj 3.9) holds with

ã a/d and C̃ dC.

3.4. The papers [KM] and [BKM] describe various classes of real valued functions
on open subsets of Rd which are C, a)-good with respect to Lebesgue measure.
For example, the fact that polynomials in one real variable of degree k have that
property with a 1/k) follows easily from Lagrange’s interpolation, see [DM,
Lemma 4.1] and [KM, Lemma 3.2]. Similarly, following [To], one can consider
polynomials over other locally compact fields:

Lemma 3.4. Let F be either R or a locally compact ultrametric valued field. Then

for any d, k N, any polynomial f F[x1, xd ] of degree not greater than k is

C, 1/dk)-good on Fd with respect to where C is a constant depending only on d
and k.

Proof. For ultrametric F the case d 1 is proved in [To, Lemma 4.1], and the
general case immediately follows from the one-dimensional case and Corollary 3.3.
Likewise, one can use [KM, Lemma 3.2] and Corollary 3.3 to establish the claim for
real polynomials of several variables.

3.5. Another result of [KM], which can be thought of as a generalization of the real
case of the previous lemma, is that, roughly speaking, a smooth real-valued function
is good on an open subset of Rd with respect to Lebesgue measure provided that
its partial derivatives of some order do not vanish.
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Lemma 3.5 ([KM, Lemma 3.3]). Given k N and an open subset V of Rd let

f Ck(V be such that for some constants 0 < a A one has2

a |.
k
i f x)| A for all x V, i 1, d. 3.10)

Then f is dCk A/a)1/k 1/dk -good on V where Rd is understood to be equipped

with the l8 metric induced by the norm x maxd
i=1 |xi|, i.e. the product metric

on R× · · · ×R in the sense of 2.6)), and Ck is a constant dependent on k only and
explicitly estimated in [KM]).

Our goal in the next section is to describe the class of ultrametric Ck functions
and prove a non-Archimedean analogue Theorem 4.1) of Lemma 3.5.

4. Ultrametric Ck functions

4.1. In this section westate and prove theultrametric analogue of the “d 1” case of
Lemma 3.5. We start by introducing certain terminology, most of which is borrowed
from [Sc]. Here and until the end of the section F is a complete field with a nontrivial
ultrametric valuation | · | and f an F-valued function on a subset U of F without
isolated points. The first difference quotient 1f of f is the function of two variables
given by

1f x, y)
def f x)- f y)

x - y
x, y U, x y),

defined on
2U

def
{(x, y) U × U | x y}.

We say that f is C1 at a if the limit

lim
x,y).(a,a)

1f x, y)

exists, and that f C1(U) if f is C1 at every point of U.
More generally, for k N set

kU
def

{(x1, xk) Uk
| xi xj for i j },

and define the k-th order difference quotient kf : k+1U F of f inductively by

0f def f and

kf x1,x2, xk+1)
def k-1(x1, x3, xk+1) - k-1(x2,x3, xk+1)

x1 - x2

2The upper estimate in [KM] was stronger than stated here, but in fact our weaker condition suffices for the
proof.
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Note that one could equivalently take any pair of variables in place of x1,x2), and

that kf is a symmetric function of its k + 1 variables. Then say that f is Ck at a if
the limit

lim
x1,...,xk+1).(a,...,a)

kf x1, xk+1)

exists, and that f Ck(U) if f is Ck at every point of U. The latter is equivalent to
kf being extendable to a continuous function ¯ kf : Uk+1 F. Note that k+1U

is dense in Uk+1 if U has no isolated points, so the extension is unique if it exists.
We refer the reader to [Sc, §27–29] for basic facts about Ck functions. For instance,
one can show that Ck functions f are k times differentiable, and in fact

f k)(x) k! ¯
k x, x). 4.1)

In particular, f Ck implies that f k) is continuous. However the converse is not
true, see [Sc, §27, Remark 1] for a counterexample. On the other hand, locally
analytic functions are Ck for every k.

The definition of Ck functions of several ultrametric variables is a straighforward
generalization of the one for single-variable functions. If f is an F-valued function
on U1× · · ·×Ud where each Ui is a subset of F without isolated points, let us denote
by k

i f the kth order difference quotient of f with respect to the variable xi and,
more generally, for a multiindex ß i1, id let

ßf
def i1

1 · · ·
id
d f,

where it is not hard to check that the composition can be taken in any order. The latter

“difference quotient of order ß” is defined on i1U1× · ··×. idUd and as before we

say thatf belongs toCk(U1×· · ·×Ud if for anymultiindex ß with |ß|
def d

j=1 ij at

1 ×·· ·×U id+1most k, ßf is extendable to a continuous function ¯ ßf : U i1+1
d F.

As in the one-variablecase, one can showthat partial derivatives ßf
def i1

1 · · ·
id
d f

of a Ck function f exist and are continuous as long as |ß| k. Moreover, one has

ßf x1, xd ß! ¯ ß(x1, x1, xd, xd 4.2)

where ß!
def d

j=1 ij and each of the variables xj on the right-hand side of 4.2) is
repeated ij + 1 times.

4.2. An elementary observation, which will be repeatedly used, is that if a function

f : U F, where U is an open subset of Fd is continuous at x0 U and f x0) 0,
then thereexists a neighborhoodV ofx0 such that |f x)|=|f x0)| for all x V Thus,
a natural ultrametric replacement for inequalities of type 3.10) would be assuming
that the absolute value of certain difference quotients of f is identically equal to some

A > 0 on some open set.

With this in mind, let us state an ultrametric analogue of Lemma 3.5.
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Theorem 4.1. Let V1, Vd be nonempty open sets in F, and let A1, Ad > 0,

k N and f Ck(V1 × · · · ×Vd be such that

j f| Aj on k+1
Vj ×|

k

i j
Vi, j 1, d. 4.3)

Then f is dk3-1/k, 1/dk)-good on V1 × · · · ×Vd

One can immediately observe that 4.3) amounts to saying that the absolute value
of the kth order difference quotient of each of the one-variable functions 3.8), j
1, d, is equal to Aj on k+1Vi Therefore one can use Corollary 3.3 to easily
derive the above theorem from its one-dimensional case. In other words, it suffices
to take an open subset V of F, let k N, A > 0 and f Ck(V be such that

|
kf x1, x2, xk+1)| A for all x1, x2, xk+1) k+1V, 4.4)

and prove that f is k3-1/k,1/k -good on V
The strategy of the proof will be similar to the one used in [KM] to prove the

one-dimensional case of Lemma 3.5. However, we need to pay special attention to
the following implication of 4.4) which one gets for free in a similar situation when

F R:

Proposition 4.2. Let V be a ball in F, and let k N, A > 0 and f : V F be

such that 4.4) holds. Then for any e > 0, the set V f,e is a disjoint union of at most

k balls.

If in addition one assumes that f Ck(V 4.4), in view of 4.1), would imply
that the absolute value of f k)(x) for x V is a nonzero constant. Note that
nonvanishing of the kth derivative of a real function f on an interval V R immediately
implies, due to the Mean Value Theorem, that V f,e consists of at most k intervals.
Unfortunately such a theorem is not present in the ultrametric calculus, so one has to
look for alternative approaches.

4.3. To prove the proposition, we will need the following auxiliary lemma:

Lemma 4.3. Let V be an open subset of F, f a function V F, k 2, and let

x1, xk, y V be pairwise different. Also assume that

|y - xk| |xi - xk| for all i < k, 4.5a)

| k-if xi, xk)| | k-if xi-1, xk-1)| for all i 2, k, 4.5b)

and

| k-1f x1, xk)| | k-1f x1, xk-1, y)|. 4.5c)
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Then

|f y)| max |f xk)|, |f xk-1)| 4.5d)

Proof. Note that 4.5a) implies that

|y - x1| |y - xk + xk - x1| |xk - x1|,

and from 4.5c) one gets

| k-2f x2, xk)- k-2f x1, xk-1)| |xk - x1| · | k-1f x1, xk)|

|xk - x1| · | k-1f x1, xk-1,y)| |y - x1| · | k-1f x1, xk-1, y)|

| k-2f x2, xk-1, y) - k-2f x1, xk-1)|.
4.6)

Now let us use induction on k. If k 2, 4.6) says that |f x2)- f x1)| |f y) -f x1)|, which readily implies that |f y)| max |f x1)|, |f x2)| If k > 2 and

the claim is true with k replaced by k- 1, observe that 4.6) and the “i 2” case of
4.5b) imply that | k-2f x2, xk)| | k-2f x2, xk-1, y)|. Therefore the

lemma can be applied to x2, xk, y, and 4.5d) follows.

4.4. Proof of Proposition 4.3. Replacing f by f/A without loss of generality we
may, and will, assume that A 1.

Let e > 0. Note that it follows from the discreteness of the valuation that V f,e

is the union of finitely many balls. Assume, by contradiction, that V f,e n
i=1Bi

where n k + 1 and Bi are different components of V f,e. There exist x1, xk
V f,e such that each xi belongs to a different component which after changing the
indices we can assume to be Bi and

| k-1f x1, xk)| sup
yi.B i)

i j. i) j
| k-1f y1, yk)|.

Next we rearrange x1, xk in such a way that for all 1, k- 2 one has

| f xk- xk)| | f xk- -1, xi, xk)| for all i k- -1, k,
4.7a)

where xi means that the term xi is missing.
Denote

R
def

min | k-1f x1, xk)|, |xk - x1|, |xk - xk-1|), 4.7b)

and take y B(xk, R+). Then, using 4.4) and A 1, one writes

|y-xk| | k-1f x1, xk)- k-1f x1, xk-1, y)| | k-1f x1, xk)|.
4.7c)
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It follows from 4.7a)–(4.7c) that conditions 4.5a)–(4.5c) hold, therefore, by Lemma

4.3,
e > max |f xk)|, |f xk-1)| |f y)|.

This proves that Bk B(xk, R+), and from the fact that balls Bi aredisjoint it follows
that |xk- xi| | k-1f x1, xk)| for all i k, hence R | k-1f x1, xk)|.

Now let y Bk+1. By the choice of x1, xk one has

| k-1f x1, xk)| | k-1f x1, xk-1, y)|,
hence, again by 4.4),

|y - xk| | k-1f x1, xk) - k-1f x1, xk-1,y)|
| k-1f x1, xk)| R.

Consequently x Bk, which is a contradiction.

4.5. Now we can proceed with the

Proof of Theorem 4.2. We need to show that for any open ball B V one has

B f,e k3-1/k e

f B

1/k

B) for all e > 0

whenever V is an open subset of f and f Ck(V satisfies 4.4).
It is clear that the result does not depend on the normalization of and it will be

convenient to assume O) 1, so that J diam(J for any ball J In view of
Proposition 4.2, it suffices to show that for any ball J B with f J < e one has

J k2-1/k e

f B

1/k

B). 4.8)

Also, as in the proof of Proposition 4.2, let us replace f by f/A and thus assume

A 1. Note however that now we have in addition assumed that f Ck(V
therefore 4.4) implies that

| ¯ kf x1, x2, xk+1)| 1 for all x1, x2, xk+1 V. 4.9)

It is easy to see that one can choose x1, xk+1 J such that

|xi -xj| J)/k for i j. 4.10)

After that let P be the Lagrange polynomial of degree k formed by using values of f
at these points, i.e. given by

P(x)
k+1

i=1
f xi)

k+1

j=1, j i x - xj
k+1

j=1,j i xi - xj
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Then we have k(f -P)(x1, xk+1) 0, that is,

kf x1, xk+1) kP(x1, xk+1) the leading coefficient of P

k+1

i=1
f xi)

k+1

j=1, j i
xi - xj -1

Taking absolute values, one obtains

1 |
kf x1, xk+1)| |

kP(x1, xk+1)|

max
i f xi)

k+1

j=1,j i
xi - xj -1

<
4.10) and f J <e

e
kk

J k

4.11)

Next, take any y J and letQbe the Taylor polynomial of f at y of degree k-1.
By Taylor’s formula [Sc, Theorem 29.4], for any x one has

f x) Q(x) + x - y)k ¯ kf x, y, y), 4.12)

hence

f -Q J J k
¯ k

J 4.9)
J k

4.11)
kke.

This implies

Q J max f J J k < max e, kk e kke. 4.13)

Nowlet usapplyLagrange’s formula to reconstructQonB by its values atx1, xk.
Namely, for x B write

|Q(x)|

k

i=1

Q(xi)
k

j=1,j i x - xj
k

j=1, j i xi - xj

<
4.13), 4.10) J k-1 k2k-1

e
B)

kke.(B)k-1 kk-1

J

k

4.14)

Finally, the difference between f and Q on B is, again in view of 4.12) and 4.9),
bounded from above by B)k, hence

f B max Q B, B)k <
4.14)

max k2k-1
e

B)
J

k

B)k

B)k max e
k2k-1

J k
1 <

4.11)
k2k-1

e
B)
J

k

which is equivalent to 4.8).
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5. Nondegenerate, nonplanar and good maps

5.1. In this section we will consider vector-valued functions of an ultrametric
variable. If f f1, fn) is a map from an open subset U of Fd into Fn, for any
multiindex ß i1, id we let

ßf
def

ßf1, ßfn),

and say that f is Ck if so is each fi In the latter case one denotes by ¯ ßf the

continuous function extending ßf to U i1+1
1 × · · · ×U id+1

d so that 4.2) holds with

f replaced by f
Let us now take F to be either R or an ultrametric valued field, and say that a map

f : U Fn, where U is an open subset of Fd, is k-nondegenerate at x0 U if it is
Ck on a neighborhood of x0, and the space Fn is spanned by all the partial derivatives

ßf x0) of f at x0 with |ß| k. We will say that f is nondegenerate at x0 if it
is k-nondegenerate at x0 for some k. Another way of saying this is as follows: f is
k-nondegenerate at x0 iff for any function f of the form f c0+c ·f where c0 F
and c Fn \ {0} there exists a multiindex ß with |ß| k such that ßf x0) 0.

In particular, it follows from the nondegeneracy of f at x0 that for any neighborhood

B of x0 the restrictions of 1, f1, fn to B are linearly independent over F;
in other words, f B) is not contained in any proper affine subspace of Fn. On the
other hand, the converse is true under an additional assumption that f is analytic in a

neighborhood of x0: indeed, if f can be written as a Taylor series in a neighborhood

B of x0, and it is known that all partial derivatives of f at x0 belong to a proper
subspace L of Fn, then f B) must be contained in L + x0.

In more general situations it will be convenient to use the following terminology:
if X is a metric space, µ a measure on X and f f1, fn) a map from X to
Fn, the pair f µ) will be called nonplanar at x0 X if for any neighborhood B
of x0 the restrictions of 1, f1, fn to B n supp µ are linearly independent over

F f B n supp µ) is not contained in any proper affine subspace of Fn. We will
omit the dependence on the measure when it is taken to be Lebesgue or Haar and will
simply say that f is nonplanar at x0. Thus the above remark translates into saying
that for a Ck resp., analytic) function f : Fd Fn, nondegeneracy implies resp.,
is equivalent to) nonplanarity.

5.2. We are now going to discuss another property off which will also be implied
by nondegeneracy. Namely, if F, | · | is a valued field, X a metric space, µ a
measure on X and f a map from X to Fn, let us say that f µ) is good at x0 X
cf. [K2]) if there exists a neighborhood V of x0 and positive C, a such that any

linear combination of 1, f1, fn is C, a)-good on V with respect to µ. Again,
the reference to the measure will be omitted when µ For example, it follows
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from Lemma 3.4 that polynomial maps are good at every point. Similarly, in [KM]
Lemma 3.5 was used to show that a smooth map f : Rd Rn is good at every point
where it is nondegenerate.

Our goal in this section is to prove an ultrametric analogue of the aforementioned
result, using Theorem 4.1 in place of Lemma 3.4. Namely, we have

Proposition 5.1. Let F be an ultrametric valued field, and let f f1, fn) be
a C map from an open subset U of Fd to Fn which is -nondegenerate at x0 U.
Then there exists a neighborhood V U of x0 such that any linear combination of
1, f1, fn is d 3-1/ 1/d -good on V In particular, the nondegeneracy of f
at x0 implies that f is good at x0.

Proof. Without loss of generality we can put x0 0, and consider the family of
functions

H
def

h c0 +
n

i=1 cifi | maxi=0,1,...,n |ci| 1

It is enough see Lemma 3.1(b)) to find a neighborhood V of 0 in Fd such that any

h H is d 3-1/k, 1/d -good on V
From the nondegeneracy assumption it follows that for any h H one can find

a multiindex ß with

1 |ß| k and |.ßh(0)|
n

i=1
ci.ßfi(x0) 0. 5.1)

Now take h H and consider the functions h g, where g runs through the group
GL(d,O) of linear isometries of Fd We recall that O {x F | |x| 1}, see

Example 2.6.) Forany givenmultiindex h g)(0) is a homogeneous polynomial
in matrix elements of g of degree | | with coefficients given by f 0) where

| | | |. It follows from 5.1) that for any with |.| k this polynomial is
nonzero. Hence it is possible to choose g so that h g)(0) 0 for all multiindices

with |.| k. In fact, we are only interested in choosing g with

k
i h g)(0) 0 for each i 1, d. 5.2)

Using 5.2) and the compactness of both H and GL(d, O), one can find a ball V

V1× · ·· ×Vd 0 in Fd here Vi are balls in F of the same radius) such that for any

h H there exist 1 k g GL(d, O) and A1, Ad F \ {0} such that
4.3) holds for f h g. Therefore, by Theorem 4.1, for any h H one can find

1 k and g GL(d,O) such that for any ball B V and e > 0 one has

Bh g,e dk3-1/k e

h g B

1/dk

B) d 3-1/ e

h g B

1/d
B).

To finish the proof it remains to notice that g leaves V invariant, sends balls to balls,
and one clearly has g(Bh g,e) g(B)h,e and h g B h g(B).
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5.3. For convenience let us summarize the results of this section as follows:

Theorem 5.2. Let F be either R or an ultrametric valued field, and let f be a C
map from an open subset U of Fd to Fn. Then f is nonplanar and good at every
point of U where it is nondegenerate.

6. Maps of posets into spaces of good functions

6.1. Thegoalof this section is to generalize a construction described in [KM] in order
to make it work for functions defined on arbitrary metric spaces. More precisely, we
will work with mappings of partially ordered sets posets) P into spaces of functions
on a metric space X with a measure µ. Given such a mapping, we will mark certain
points see the definition below), and prove an upper estimate Theorem 6.1) for the
measure of the set of “unmarked” points3.

For a posetP, we will denote by l(P) the length ofP, i.e. the number of elements
in a maximal linearly ordered subset of P. If S is a subset of P, we let P(S) be the
poset of elements of P\S comparable with any element of S. Note that one always
has

l P(S) l(P)- l(S). 6.1)

We will fix a metric space X, and consider posets P together with a mapping
from P to the space C(B) of R-valued continuous functions on some subset B of X,
to be denoted by s .s Given such a mapping and positive numbers e we
will say that a point z B is e, .)-marked relative to P if there exists a linearly
ordered subset Sz of P such that

M1) e |.s(z)| for all s Sz;

M2) |.s(z)| for all s P(Sz).

We will denote the set of all such points by e, P). When it does not cause

confusion, we will omit the reference to either P or e, and will simply say that z
is e,.)-marked, or marked relative to P.

Theorem 6.1. Let X be a Besicovitch metric space, µ a uniformly Federer measure
on X, m Z+ and C, a, > 0. Suppose that we are given a poset P, a ball

B B(x, r) in X, and a mapping : P C(B̃ where B̃
def

B(x,3mr), such that
the following holds:

A0) l(P) m;

3A possibility of such a generalization is mentioned in [KM, §6.1]. The paper [KLW] contains a slightly
different presentation of thesame argument, written for the special case of Pbeing the poset of nonzero rational
subspaces of Rm.



Vol. 82 2007) Flows on S-arithmetic homogeneous spaces 541

A1) .s is C, a)-good on B̃ with respect to µ for all s P;
A2) .s µ,B for all s P;
A3) #{s P | |.s(y)| < .} < 8 for all y B̃ n suppµ.

Then one has

µ B \ e, P) mC NXD2µ
m e a

µ(B).

for all e

Proof. We proceed by induction on m. If m 0, the poset P is empty, and for any

z B one can take Sz Ø and check that M1) and M2) are satisfied for all e, .;
thus all points of B are marked. Now takem 1 and suppose that the claim is proved
for all smaller values of m.

Fix C, a, P,B B(x, r) and as in the formulation of the theorem. For any

y B n suppµ define

H(y)
def

{s P | |.s(y)| < .};
this is a finite subset ofPinviewof A3). IfH(y) is empty, y is clearly e, .)-marked
for any positive e: indeed, since |.s(y)| for all s P, one can again take Sy to
be the empty set and check that M1) and M2) are satisfied. Thus one only needs to
consider points y from the set

E
def

{y B n suppµ | H(y) Ø}

{y B n suppµ | there exists an s P with |.s(y)| < .}.
Take y E and s H(y), and define

rs,y
def

sup{t > 0 | .s µ,B(y,t) < .}. 6.2)

It follows from the continuity of functions .s that for small enough positive t one
has .s µ,B(y,t) < hence rs,y > 0. Denote B(y, rs,y) by Bs,y. From A1) it is
clear that Bs,y does not contain B; therefore one has rs,y < 2r. Note also that 6.2)
immediately implies that

.s µ,Bs,y 6.3)

Now for any y E choose an element sy of H(y) such that rsy y rs,y for all
s H(y) this can be done since H(y) is finite). For brevity let us denote rsy y by

ry and Bsy y s.H(y) Bs,y by By. Also let us denote the poset P({sy}) by Py.

6.1.1. The next lemma allows one to show that a point z By will marked relative
to P once it is marked relative to Py. It is proved by a verbatim repetition of the
proof of [KM, Lemma 4.6], yet we do it in full detail here to make the argument
self-contained.
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Lemma 6.2. For e and y E, let z By n supp µ n e, Py) be such that

|.sy z)| e; then z belongs to e, P). Equivalently,

By n supp µ) \ e, P) By \ e, Py) By).sy e 6.4)

Proof. By definition of e, Py), there exists a linearly ordered subset Sy,z of
Py such that

e |.s(z)| for all s Sy,z 6.5)

and

|.s(z)| for all s Py(Sy,z). 6.6)

Put Sz
def

Sy,z {sy}. Then P(Sz) Py(Sy,z); therefore M2) immediately
follows from 6.6), and, in view of 6.5), it remains to check M1) for s sy. The
latter is straightforward: |.sy z)| is not less than e by the assumption and is not
greater than in view of 6.3).

6.1.2. Note that one clearly has ry < 2r, which in particular implies that By
B(x, 3r). We are going to fix some ry strictly between ry and min(2r, 3ry), and

denote B(y,ry by By Clearly one has

.s µ,By
for any y E and s P. 6.7)

Indeed, the definition of ry and 6.2) imply the above inequality for any s H(y),
and it obviously holds if s /. H(y).)

Now observe that Py, By and B̃y
def

B(y, 3m-1r
y satisfy properties

• A0) with m replaced by m - 1, in view of 6.1);

• A2), in view of 6.7);

• A1) and A3) since

B̃y B(y, 3m-1ry B(x, 3m-1ry +r) B x, 2·3m-1
+1)r B(x,3mr) B̃

Therefore one has

µ By \ e, Py) µ By \ e, Py)

m- 1)C NXD2µ m-1 e a
µ(By

Dµ(m- 1)C NXD2µ m-1 e a

µ(By)

6.8)
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y

by the induction assumption and the Federer property of µ. On the other hand, in
view of .sy being C, a)-good on B̃ B one can write

µ By).sy e µ By
.sy e C

e

.sy µ,By

a

µ(By

6.7)
C

e
a

µ(By CDµ
e a

µ(By).

6.9)

Recall that we need to estimate the measure of E \ e, P). For any y E, in
view of 6.4), 6.8) and 6.9) one has

µ By \ e, P) C m - 1)Nm-1
µ + Dµ

e
X D2m-1

a

µ(By)

mCNm-1D2m-1
X µ

e a

µ(By).

6.10)

Now consider the covering {By | y E} of E, choose a countable subset Y of E
such that the multiplicity of the subcovering {By | y Y} is at most NX, and write

y.Y

µ(By) NXµ
y.Y

By NXµ B(x, 3r) NXDµµ(B). 6.11)

Therefore the measure of E \ e, P) is bounded from above by

y.Y
µ By \ e, P) 6.10)= mCNm-1D2m-1

X µ
e a

y.Y
µ(By)

6.11)= mC NXD2µ m e a

µ(B).

7. Primitive submodules of Dm

7.1. We start this section by assuming that

• D is an integral domain, that is, a commutative ring with 1 and without zero
divisors;

• K is the quotient field of D;

• R is a commutative ring containing K as a subring.

We need the following elementary lemma:

Lemma 7.1. Let k, m N, k m, and let .1, .k Km be linearly independent
over K. Then they are linearly independent over R.
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Proof. Let A be the m × k-matrix with columns given by .1, .k. Then there
exists at least one k × k minor B of A with det(B) being a nonzero element of K,
hence invertible in R. By Cramer’s Rule, for any solution ß ß1, ßk) Rk
of Aß 0 one must have det(B)ßi 0 for every i, hence ß 0.

7.2. If is aD-submodule ofRm, let us denote byK resp. R itsK- resp. R-)
linear span inside Rm, and define the rank rk of by

rk(
def

dimK(K 7.1)

For example, one has rk(Dm) m for any m N. If is a D-submodule of Rm
and is a submodule of say that is primitive in if any submodule of of
rank equal to rk( and containing is equal to It is clear that the set of nonzero
primitive submodules of a fixed D-submodule of Rm is a partially ordered set

with respect to inclusion) of length equal to rk(
The next lemma characterizes primitive submodules of Dm:

Lemma 7.2. The following are equivalent for a submodule of Dm:
i) is primitive;
ii) K n Dm;
iii) R n Dm for any commutative ring R containing K as a subring.

Proof. If {0}, the claim is trivial. Otherwise, it is obvious that iii).(ii).(i).
Assuming i) and taking R n Dm, let .1, .k be a basis of K with
k rk( Then .1, .k are linearly dependent over R, hence, in view of
Lemma 7.1, over K. But .1, .k are linearly independent over K, thus belongs
to K therefore the D-module generated by and has rank k. By primitivity
of i.e.

In fact, Lemma 7.2 implies that for any Dm there exists a unique primitive
of the same rank, namely, K n Dm.

7.3. Let us now assume in addition that R is a topological ring, and consider the
topological group GL(m, R) of automorphisms of Rm, i.e. the group of m × m
invertible matrices with entries in R. Any g GL(m, R) maps D-submodules of
Rm to D-submodules of Rm, preserving their rank and the inclusion relation. Let
us introduce the following notation:

M(R, D, m)
def

{g | g GL(m,R), is a submodule of Dm}, 7.2)

and

P(D, m)
def

the set of all nonzero primitive submodules of Dm
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Note that the inclusion relation makes P(D, m) a poset of length m.
We would like to have a way to measure “size” of submodules from the above

collection. Specifically, letussay thata function : M(R, D, m) R+ isnorm-like
if the following three properties hold:

N1) For any M(R, D, m) with and rk( rk( one has

;

N2) there exists C. > 0 such that for any M(R, D, m) and any. /. R one
has +D. C. · D. );

N3) for every submodule of Dm, the function GL(m, R) R+, g g
is continuous.

If is asabove and Rm, we will define to beequal to D. The model
example is given by taking D Z, K Q, R R. Then the set M(R, D, m)
coincides with the set of all discrete subgroups of Rn, and one can define to be

the covolume of in R with v) being equal to the Euclidean norm of a vector

v Rm; in that case one can easily check that N1)–(N3) are satisfied, with C. 1.
In the next section we will do this in a more general context, when R is not a field
anymore.

Now we can apply Theorem 6.1 to the poset P(D, m).

Theorem 7.3. Let X be a Besicovitch metric space, µ a uniformly Federer measure

on X, and letD K Rbe as above, Rbeing a topological ring. Form N, let a

ball B B(x0, r0) X and a continuous map h: B̃ GL(m, R) be given, where

B̃ stands for B(x0, 3mr0). Also let be a norm-like function on M(R,D, m). For
any P(D,m) denote by the function x h(x) on B̃ Now suppose

for some C, a > 0 and 0 < < 1/C. one has

i) for every P(D,m), the function is C, a)-good on B̃ with respect

to µ;
ii) for every P(D, m), µ,B .;
iii) #{ P(D, m) | x) < .} <8 for all x B̃ n suppµ.

Then for any positive e one has

µ x B | h(x) < e for some Dm \ {0} mC NXD2µ
m e a

µ(B).
7.3)

Proof. For simplicity let us denote P(D,m) by P. As was observed above, the
length of P is equal to m, and one immediately verifies that conditions i)–(iii) imply
that P, B and B̃ satisfy properties A1)–(A3) of Theorem 6.1. Thus it suffices to
prove that for any positive e one has

e, P) x B | h(x) e for all Dm \ {0} 7.4)
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Take an e,.)-marked point x B, and let {0} 0 1 · ·· l Dm
be all the elements of Sx {0}, Dm Pick any Dm \ {0}. Then there exists i,
1 i l, such that i \ i-1. From the primitivity of i-1 and Lemma 7.2 it
follows that. /. R i-1, hence g. /. gR i-1 Rg i-1 for any g GL(m, R).
Therefore, if one defines def

D i-1 +D. in view of N2) one has

h(x) C..(h(x) i-1) h(x) 7.5)

Further, let def
K n Dm. It is a primitive submodule containing and of rank

equal to rk( so, by N1),

h(x) h(x) 7.6)

Moreover, it is also contained in i since

K n Dm K n Dm K i n Dm i

Therefore it is comparable to any element of Sx, i.e. belongs to Sx P(Sx). Then
one can use properties M1) and M2) to deduce that

| x)| h(x) min(e, e,

and then, in view of 7.5) and 7.6), conclude that

h(x) h(x) /C..(h(x) i-1) e/C.. e.

This shows 7.4) and completes the proof of the theorem.

8. Discrete submodules of Qm
S

8.1. The goal of this section is to describe a certain class of triples D K R and
construct a norm-like function onM(R, D, m) which is important in applications to
both dynamics and Diophantine approximation.

Let N and take S {p1, p -1,8}, where p1, p -1 are primes. The
possibly empty) subset {p1, p -1} of S will be denoted by Sf To every element

of S we associate the normalized valuation | · |v of Q; in other words, | · |v is the
usual absolute value if v =8, and is defined as in Example 2.6 if v is p-adic. We let

QS be the direct product of all the completions Qv, v S, in which Q is diagonally
imbedded here we use the notation Q8 R), and let

ZS
def

Z
1
p1 p -1

x Q | x Zp for all primes p /. Sf
1
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stand for the ring of S-integers of Q. We also let

ZS,f
def -1

i=1

Zpi and QS,f
def

R × ZS,f

Denote by .v the normalized Haar measure on Qv that is, .8 is the usual
Lebesgue measure on R and .pi is normalized by .pi Zpi 1), and by .S

v.S .v the productmeasureonQS. ElementsofQS willbe denoted asx x(v))v.S

or simply x x(v)), where x(v) Qv. For x of this form, we define the S-adic
absolute value |x| and the content c(x) of x to be the maximum resp. the product)
of all |x(v)|v, v S. Since all the valuations are normalized, one has

.S(xM) c(x).S(M), 8.1)

where x QS and M is a measurable subset of QS.

If m is a natural number, we preserve the same notation .v and .S to denote the
product measure on Qmv S respectively. Elements x x1, xm) of Qmand Qm

S

will be denoted as x x(v)), where x(v) x v)
1 x v)

m Qmv We denote by

· v the usual Euclidean) norm on Rm if v =8, and the sup-norm defined by

x v)
1 x v)

i |x
v)

m v max i |v

if v is non-Archimedean. For x x(v)) in Qm
S

we define the norm x and the

content c(x) of x to be the maximum resp., the product) of all the numbers x(v)) v,

v S. The group GL(m, QS) v.S GL(m,Qv) acts naturally on QmS and one
has

.S(gM) c det(g) .S(M),

where M Qm
S

is any measurable subset of Qm
S g g(v)) GL(m,QS), and

det(g)
def

det(g(v)) is an invertible element of QS.

8.2. Our goal now is to consider discrete ZS-submodules of Qm
S It turns out that

any such is a finitely generated free ZS-module:

Proposition 8.1. Let be a discrete ZS-submodule of Qm
S

Then ZSa1. · · ·
ZSar for some a1, ar Qm

S
such that

va v)
1 a v)

r are linearly independent over Qv for any v S. 8.2)

Furthermore, there exists g GL(m, QS) such that is contained in gZm
S
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Proof. The proposition is trivial if S =8. So assume that S 8 and denote by 0

the intersection of withQmS,f Let p : Qm
S,f Qm8 be thenatural projection. Since

ker(p) ZmS,f is compact and Zm
S,f does not contain nontrivial discrete subgroups,

p( 0) is a free abelian group of rank r m and p( 0) is isomorphic to 0. If x
is any element in then there exists an element of Z*S the group of S-adic units)
such that .x 0. This implies that is a free ZS-module of rank r.

Let ZSa1 ·· · ZSar Suppose that a v)
1 0 for some v S, and let

{.i} be a sequence of S-adic units such that limi.8 |.i|w 0 for all w v. Then

limi.8 .ia1 0, which contradicts the discreteness of ZSa1. Therefore a v)
1 0

for all v S, which proves 8.2) for r 1. To complete the proof we use induction
on r. Assume that r > 1 and 8.2) is true for free modules of rank < r. Shifting

by an appropriate automorphism from GL(m, QS), without loss of generality we
may and will assume that a1 e1, the first vector of the standard basis of Qm Let

S

: Qm
S QmS /QS e1 be the natural homomorphism. Since ZS e1 is a cocompact

lattice in QS e1, we get that is discrete in Qm
S )~= Qm-1

S
By the induction

hypothesis a2)(v), ar v) are linearly independent over Qv for all v, which
completes the proof of 8.2). It remains to observe that the last part of the proposition
immediately follows from 8.2).

Note that it follows from Proposition 8.1 that the rank of as a free module is
equal to rk( as defined in 7.1) with K Q.

8.3. Our next goal is to define the normalized Haar measure on free QS-submodules
of QmS Let L be a free QS-module of rank r generated by a1, ar QmS Then

one can write L v.S Lv, where Lv Qva v)
1 · · · Qva v)

r Let us fix a basis

b1, br of L with the following properties:

if v =8, then b v)
1 b v)

r is an orthonormal basis of Lv, 8.3a)

and

v Zvb v)if v Sf then Lv n Zm
1 + · · · + Zvb v)

r 8.3b)

Then consider the QS-linear map sending the standard basis e1, er of QrS to

b1, br and define the volume on L as the pushforward of .S the normalized
Haar measure on Qr

S
by this map. When it does not lead to confusion, we will denote

this measure on L by .S as well.
Note that the existence of b v)

1 b(v)
r in the case 8.3b) easily follows from

the fact that Zv is a principal ideal domain. Note also that the above definition does
not depend on the choice of the basis b1, br satisfying 8.3a, b), because if
b1, b is another such basis and h GL(r,QS) represents the isomorphism ofr

L~= Qr sending the first basis to the second one, then c(det(h)) 1, which implies
S

that h is measure-preserving.
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For any r 1, m we will also consider the r-th exterior power

r Qm
S v.S

r
Qmv

of Qm
S

which is a free QS-module with the standard basis

{ei1 · · · eir | 1 i1 < · · · < ir m},

S We will keep the notation .v, .S, · vwhere e1, em is the standard basis of Qm
and c(· to denote the measures, the norms and the content on the exterior powers

r
Qmv and r Qm respectively.

S

8.4. Recall cf. [W]) that ZS is a lattice in QS with covolume 1, that is, it is discrete
in QS and the Haar measure induced by .S) of the quotient space is equal to one.
Likewise, Zm

S
is a lattice in Qm

S
with covolume 1. It follows from Proposition 8.1

that the set of discrete ZS-submodules of Qm
S

can be identified withM(QS, ZS, m) as

defined in 7.2). Furthermore, it also follows that any M(QS, ZS, m) is a lattice
in QS The following lemma shows how one can explicitly compute covolumes:

Lemma 8.2. Let ZSa1.· · · ZSar M(QS, ZS, m), where a1, ar Qm
S

Then the covolume cov( of in QS with respect to the volume on L QS
normalized as in §8.3 is equal to

c(a1 · · · ar

Proof. Put L QS define a basis b1, br of L as in 8.3a, b), and then complete

S
Also let hv GL(m, Qv)it to a basis b1, bm) of the whole space Qm

be such that hvb v)
i e v)

i for all 1 i m, where e v)
1 e v)

m is the standard

basis of Qmv It follows from the definition of the measure on L that the map

h: L L), where GL( is measure preserving. Since the
map

h( h
r
h:

r Qm
hv) m, QS),

r Qm preserves the content c on r Qm
S S S

we may reduce
the problem to the case bi ei for all 1 i m. Let GL(r, QS) be such that

ei) ai for all 1 i r. Then since a1 · · · ar det( e1 · · · er we get

cov( cov ZrS) c(det cov(ZrS) c(a1 · · · ar

8.5. Lemma 8.2 immediately implies

Corollary 8.3. For every M(QS, ZS,m), the function GL(m, QS) R+,
g cov(g is continuous.

Corollary 8.4. If M(QS,ZS, m) are such that QS n QS {0}, then

cov( + cov( cov(
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Proof. Using Proposition 8.1, write ZSa1.· · · ZSar and ZSb1. · ··
ZSbr Since

QS + QS QS QS

in view of Lemma 8.2, it is enough to prove that

c(a1 · ·· ar b1 · · · bs) c(a1 · · · ar c(b1 · · · bs

which is easy to verify using the definition of content and the basic properties of the
exterior product.

8.6. In the remaining part of the section we investigate metric properties of discrete
submodules of Qm

S
Let us state the following S-arithmetic version of the classical

Minkowski’s Lemma:

Lemma 8.5. Let M(QS,ZS, m) be of rank r, and let B be a closed ball in QS
with respect to the norm · centered at 0 such that .S(B) 2r cov( Then

n B {0}.

Proof. Since the volume .S on L QS was defined by identifying L with QrS via
the basis 8.3a, b), without loss of generality we can assume that is a lattice in Qr

S

Then we can writeB B8×Bf whereB8
def

BnQr8 andBf
def

Bn v.Sf Qv
r

Note that

.S
1
2B8 × Bf

1

2r .S(B) cov(

Since 1
2B8) × Bf is closed, the above implies that there exist x, y 1

2B8) × Bf
x y, such that x - y This finishes the proof, since clearly x - y B as

well.

8.7. We will also need the following result:

Lemma 8.6. There exists a constantA > 1 depending only on S such that if x Qm
S

and c(x) 0, then there exists Z*
S

such that

A-1
c(x)1/ .x Ac(x)1/

where is the cardinality of S.

Proof. Let
H {(a1, a R+ | a1 · · ·a 1}.

Write S {v1, v }; it is easy to see that the group

{(| |v1, | |v | Z*S}
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is a cocompact lattice in the multiplicative group H. Therefore there exists a constant

A > 1 such that for any ai) H one can find an S-adic unit with

A-1
| |viai A 8.4)

for all i.
S

and c(x) 0. Note that the vector x viLet x x(vi Qm
c(x)1/ is in H, and

one has

.x vi
vi | |vi x vi

vi

and

c(x) c(.x)
for all Z*S This, in view of 8.4), implies the claim.

8.8. Let us denote by S,m the space of all lattices in Qm
S It follows from Lemmas

8.2 and 8.4 that it can also be defined as

S,m {gZm
S | g GL(m, QS)}~= GL(m, QS)/GL(m, ZS).

Corollary 8.7. For any S,m and any > 0, the number of submodules of
with covolume is finite.

Proof. If is a ZS-submodule with rk( r, then r is a ZS-submodule of
rank 1 of the lattice r in r Qm and, in view of Lemma 8.2,S

cov( cov r

Therefore it is enough to prove that the number of rank-one ZS-submodules of is
finite. If ZSa is such a submodule, then in view of Lemma 8.6 the generator a
can be chosen in such a way that

a A.1/

S
the set of all a satisfying the above inequality is finite,Since is discrete in Qm

which proves the corollary.

8.9. Because of lack of an appropriate reference we will prove an S-adic version of
Mahler’s Compactness Criterion. Consider the group

GL1 m, QS)
def

{g GL(m, QS) | c(det(g)) 1},

consisting of .S-preserving linear automorphisms of QmS and let

1
S,m

def

{ S,m | cov( 1}.
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S
is an element of 1

S,m
and its stabilizer in GL(m, QS) coincides withNote that Zm

GL(m, ZS) which is understood to be diagonally imbedded in GL(m, QS). Since

c( 1 forany Z*
S it follows thatGL(m, ZS) is contained inGL1(m, QS). Thus

1
S,m is naturally identified with the homogeneous space GL1(m, QS)/ GL(m, ZS).

Since SL(m, ZS) is a lattice in SL(m, QS)andZ*S is a lattice inGL(1, QS),GL(m, ZS)
is a lattice in GL1(m,QS).

Let us say that a setQof lattices inRm, whereRis a locally compact topological
ring, is separated from 0 if there exists a nonempty neighborhood B of 0 inRm such
that n B {0} for all Q.

Theorem 8.8 Mahler’s Compactness Criterion). A subset Q 1
S,m is bounded if

and only if it is separated from 0.

Proof. The implication. is trivial. In order to prove the converse, note that

S SL(m, QS) and GL(m, ZS) Z*S SL(m, ZS),GL1 m, QS) Q1

S {x QS | c(x) 1}. Since Z*
S

is a cocompact lattice inQ1where Q1
S it is enough

to prove the theorem with 1
S,m replaced by SL(m, QS)/ SL(m, ZS), i.e. with the set

{gZm
S | g SL(m, ZS)}.

It follows from the strong approximation theorem [PR, Theorem 7.12] that

SL(m,QS) SL(m, QS,f SL(m, ZS).

Thus everyg SL(m, QS) can be representedas g gf gl wheregf SL(m, QS,f
and gl SL(m, ZS). One has

gZm
S,f gf Zm

S n Qm
S,f gf Zm 8.5)S n Qm

Let Q̃ SL(m, QS) be such that the set of lattices {gZm
S | g Q̃} is separated

from 0. It follows from 8.5) that

{gf Zm
| g Q̃} is separated from 0 in Qm

S,f 8.6)

Note that SL(m,QS,f SL(m, R) × SL(m, ZS,f and, therefore, every gf
SL(m, QS,f can be written as gf g8gc, where g8 SL(m, R) and gc belongs

to the compact group SL(m,ZS,f It follows from 8.6) that {g8Zm | g Q̃} is
separated from 0. This reduces the proof to the case S 8, that is, to the original
Mahler’s Criterion [PR, Proposition 4.18].

In particular, it follows from Lemma 8.6 and Theorem 8.8 that for all positive e,
the sets Qe defined as in 1.2) are compact.
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9. S-arithmetic quantitative nondivergence

9.1. In this section we apply Theorem 7.3 to the triple D, K, R) of a particular
type. Namely, as in §8, we let K Q, choose a finite set S of valuations | · |v of Q
containing the Archimedean one, and for the rest of this section take D ZS and

R QS. Then for any m N, the setM(QS, ZS, m), as defined in 7.2), is equal to
the set of all submodules of all lattices S,m, where S,m is as defined in 8.5).
Let us now state the following

Lemma 9.1. The function : M(QS, ZS, m) R+ given by cov( with
cov( · as in §8.4, is norm-like, with C. 1.

Proof. Property N1) is straightforward since and QS QS implies
that is a subgroup of of finite index and cov( [ : ] cov( Property
N2) with C. 1 follows from Corollary 8.4 with ZS. Finally, N3) has

already been mentioned as Corollary 8.3.

9.2. Now define a function d : S,m R+ by

d(
def min c(x) | x \ {0}

Note that the minimum is well defined due to Lemma 8.6 and every S,m being
discrete in Qm

S
We will use the following

Lemma 9.2. There exists a constantA > 0 depending only on S and m such that the
following holds: for > 0 and S,m suppose there exists a submodule of
with cov( .; then d( A.1/m.

Proof. Takee > 0 and let B be a ball inQS centered at 0 of radius e with respect to
thenorm · introduced in§8.1). Thenonehas .S(B) const ·er where r rk(

is the cardinality of S, and the constant depends only on S andm. By Lemma 8.5,
has a nontrivial intersection with B whenever const ·er 2r.. This shows how one
can choose A such that and hence is guaranteed to contain a nonzero vector x
with x A1/ .1/r which clearly implies c(x) A.1/r A.1/m.

9.3. As in §7, let us use the notation P(ZS, m) for the set of all nonzero primitive
submodules of Zm

S

Theorem 9.3. Let X be a Besicovitch metric space, µ a uniformly Federer measure
on X, and let S be as above. For m N, let a ball B B(x0, r0) X and a

continuous map h: B̃ GL(m,QS) be given, where B̃ stands for B(x0, 3mr0).
Now suppose that for some C, a > 0 and 0 < < 1 one has
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i) for every P(ZS,m), the function cov h( · is C, a)-good on B̃ with
respect to µ;

ii) for every P(ZS,m), cov h(· µ,B
Then for any positive e one has

µ {x B | d(h(x)Zm
S < e} mC NXD2µ m e a

µ(B). 9.1)

Note that [KLW, Theorem 4.3] is a special case corresponding to S {8}) of
the above theorem.

Proof. To apply Theorem 7.3, one uses Lemma 9.1 which guarantees the norm-like
property of cov(· and Corollary 8.7 which implies condition iii) of Theorem 7.3.
To derive 9.1) from 7.3) it remains to observe that d h(x)Zm < e amounts to the

S
existence of a vector x h(x)Zm

S \ {0} with

cov(ZSx) c(x) < e.

9.4. In order to interpret the above result, let us assume, as it will be the case in many
applications, that the function h takes values in the group GL1(m, QS). Then h(x)ZmS
belongs to 1

S,m for any x, and the inequality d(h(x)Zm
S < e can be equivalently

S /. Qe. This way, Theorem 9.3 estimates, in terms of e, the relativewritten as h(x)Zm
measure of points x B which are mapped, by x h(x)ZmS to the complement of
Qe in 1

S,m
As an application, let us take X, µ and h of a special form. Namely, for every

v S choose dv N, and consider X v.S Qdv
v µ as defined in 1.3),

and a map h hv)v.S : X GL1(m, QS), where each hv is a map from Qdv
v

to GL(m,Qv). We say that h is polynomial or regular) if for every v all matrix
coefficients of hv and its inverse are polynomials equivalently, if every hv is the

restriction of a regular map of algebraic varieties Q̄dv
v GL(m, Q̄v), where Q̄v is

the algebraic closure of Qv).

Theorem 9.4. Let X and h be defined as above. Then there existsa > 0 depending
only on m, dv and the degrees of the maps) such that for every compact set L 1

S,m
one can find positive C0 and t depending only on m, dv, the degrees of the maps hv,
and L) such that Qt L, and the following property holds: for any positive e and
any ball B X one has

{x B | h(x)Zm
S /. Qe} C0ea B) 9.2)

S n Qt Ø. Furthermore, if h(X)Zmwhenever h(B)Zm
S n Qt Ø, then there exists

a proper not of maximal rank) P(ZS, m) such that h(x)(QS h(0)(QS

for all x X.
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Proof. It was mentioned in Example 2.6 that X is Besicovitch, and in Example 2.7
that is uniformly Federer. Using the exterior power representation of Lemma 8.2,
one can easily show that for every P(ZS, m) the function cov h(· has the

form
v.S fv v, where each fv is a polynomial map from Qdv

v to another vector
space over Qv. Every such function is C a -good with uniform C and a due to
Lemma 3.4, Lemma 3.1 c), d) and Corollary 3.3. Thus condition i) of Theorem 9.3
is satisfied with some C, a > 0.

Now let us take C̃
def max mC NXD2 m 1 It follows from Lemma 9.2 and

Theorem 8.8 that there exists t t L) > 0 such that for any submodule of
any L one has cov t Without loss of generality we can assume that

t < 1
2C̃ 1/a Note that L is contained in Qt since by definition of t one has

c(x) cov(ZSx) t for any nonzero element x of any L.
S nQt Ø, it follows from Lemma 9.2 that condition ii)If B is such that h(B)Zm

of Theorem 9.3 is satisfied with t/A)m in place of where A is as in Lemma 9.2).
Therefore one has

S ./ Qe} C̃
eAm

{x B | h(x)Zm

tm

a

B)

for all e tm /Am. Replacing, if necessary, C̃ by a larger number C, we conclude
that 9.2) is valid for all positive e.

S /. Qt for all x X. TakeNow assume that h(x)Zm
def 2C̃ 1/at < 1, write

X 8i 1 Bi where Bi are balls centered at 0 with Bi Bi+1 for all i, and consider

Pi
def

{ P(ZS, m) | cov(h( · Bi < .}.
Then clearlyPi+1 Pi for all i, and all these sets are finite due to Corollary 8.7. We
claim that 8i 1 Pi must be nonempty. Indeed, otherwise one obtains a nonempty
ball B such that cov h( · B for every P(ZS,m). Thus Theorem 9.3
can be applied, and one can conclude that

S ./ Qt } C̃ tB) {x B | h(x)Zm
a

B)
1

2
B),

a contradiction.
Consequently, there exists a proper P(ZS, m) such that cov h(x) <

for all x X. It follows that each of the polynomials fv in the aforementioned
representation for cov h( · is bounded. Therefore fv const for each v, which
implies that h(x)(QS does not depend on x.

We note that to derive Theorem 1.2 from the above theorem, one needs to take

L { } and h of the form x h(x)g, where g GL1(m,QS) is such that
gZmS and observe that h(B)ZmS n Qt is nonempty whenever B contains 0.
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10. Invariant locally finite measures for actions of unipotent groups on homo¬

geneous spaces

10.1. Theorem 9.4 implies results closely related to the structure of orbits and invariant

measures on S-adic homogeneous spaces under the action of subgroups generated

by unipotent elements see [MT3], [Rt4] and [To]).
Let us recall some definitions from [MT3]. As in the previous sections, S is a

finite set of normalized valuations of Q containing the Archimedean one, and QS is
the direct product of all Qv, v S. By a QS-algebraic group G we mean a formal)
direct product

v.S Gv of Qv-algebraic groups Gv. The group
v.S Gv(Qv) will

be denoted by G(QS) and called the group of QS-rational points of G. We will also
use the simpler notations G for G(QS) and Gv for Gv(Qv). If H is another
QSalgebraic group, then a homomorphism : G H is called QS-homomorphism if

is a product of Qv-homomorphisms of algebraic groups .v : Gv Hv, v S. We
preserve the same terminology for the restriction map : G H. By the Zariski
topology onG(respectively, G) we mean the formal product of the Zariski topologies
on Gv respectively, Gv). By a QS-algebraic subgroup of G or simply an algebraic
subgroup of G) we mean a Zariski closed subgroup of G. An element g gv) in G
is unipotent if each component gv Gv is unipotent. A subgroup of G consisting of
unipotent elements is called unipotent.

Up to the end of this section we will denote by a lattice in G. Any subgroup of
G acts on the homogeneous space G/ by left translations.

Let U be a unipotent algebraic subgroup ofG. Then U v.S
Uv, where Uv are

unipotent algebraic subgroups of Gv. Given v S, we denote by expv : Lie(Uv)
Uv the exponential map and by logv exp-1

v the logarithmic map. Also we denote
by Lie(U) the direct product of the Lie algebras Lie(Uv) of Uv, v S, and by

exp: Lie(U) U the direct product of the maps exp S. By a rational)v v
parametrization ofU we mean a product f fv)v.S ofsurjective maps fv : Qdv

v

Uv, v S, such that for everyv S the map logv fv : Qdv
v Lie(Uv) is polynomial

and fv(0) e. If dv is the degree of log fv then d max{dv|v S} is called the
degree of the parametrization f. Clearly exp is a parametrization of U which we call
trivial. We let X v.S Qdv

v and endow it with a product metric as in 2.6) and Haar
measure as in 1.3).

The following theorem generalizes earlier results, which for one-parameter real
groups were proved in [D1], [D2] and for one-parametric ultrametric groups were
announced, with indications of the proof, in [MT3, Theorem 11.4] and [Rt4, Theorem

9.1]:

Theorem 10.1. Let G and be as above, let d be a natural number, and let L be

a compact subset of G/ Then L is contained in a compact L0 with the following
property: givenß > 0 there exists a compactM G/ such that for any y G/
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and any parametrizationf : X U of degree= d of a unipotent algebraic subgroup

U of G one of the following holds:
i) If Uy n L0 Ø and B is a ball in X with f(B)y n L0 Ø then

({x B | f(x)y M})
B)

1- ß. 10.1)

In particular, 10.1) is satisfied if y L and B contains the origin.
ii) If UynL0 Ø, then there exists a proper closed subgroupH ofGcontaining

U such that the orbit Hy is closed and carries a finite H-invariant Borel measure.

10.2. Before proving the theorem we will establish the following result which is well
known in the real case.

Proposition 10.2. Let G and be as in Theorem 10.1, and let R(G) be the solvable
radical of G i.e. R(G) is the direct product of the solvable radicals R(Gv) of Gv,
v S). Then R(G) n is a cocompact lattice in R(G).

Proof. Let be the Zariski closure of in G. In view of the Borel Density Theorem
for QS-algebraic groups see [MT3, Lemma 3.1]) contains all unipotent algebraic
subgroups and all S-split tori of G. Therefore G/ is compact, and without loss of
generality we may and will) assume that is Zariski dense in G. The proposition
will be proved in two steps.

Step 1. First we will prove that R(G) n is a lattice in R(G). Let Ru(G) be the
unipotent radical of G i.e. Ru(G) is the group of all unipotent elements in R(G)).
Denote by : G G/Ru(G), : G G/R(G) and : G/Ru(G) G/R(G)
the natural S-rational homomorphisms. We have Using verbatim an

argument from the proof of a theorem of Zassenhaus see [R, Section 8.14], one
proves the following

Claim: There exists a neighborhood of e in G/Ru(G) such that if K is a bounded
subset in .-1( then K(n) e, where K(0) K and K(n) [K, K(n-1)] for all
n 1.

Nowlet be theHausdorffclosure in G) of thesubgroupgenerated by n
Since n is dense in n the group is open in As usually
in this paper, here and hereafter Y stands for the closure of Y G with respect
to the Hausdorff topology.) Let K be a finite set such that K) In
view of the above claim there exists n0 > 0 such that K(n0) {e}. Therefore
the group generated by K is nilpotent [R, Lemma 8.17], which implies that is
solvable [R, Lemma 8.4]. Since is Zariski dense in G), the Lie algebra of

is solvable and Ad G) -invariant. Therefore Z G) n is open in
where Z G) denotes the center of G). Let H be a maximal semisimple

subgroup of G). Then G) is an almost direct product of H and Z G) Since
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Z G) n is open in H n is a discrete normal subgroup of
Also, H n is Zariski dense in H because the commutator of is a Zariski
dense subgroup of H. Therefore H n is discrete in G) and normalized
by

Assume by contradiction that is not discrete. Then there exists a
neighborhood W of e in and an infinite Zariski closed subgroup L of G) such

that if W is any neighborhood of e contained in W, then the Zariski closure of the
subgroup generated by W coincides with L. Now for every g H n there
exists a neighborhood Wg of e in W which centralizes g. Therefore L centralizes

H n which implies that L is central because H n is Zariski dense

in G)). This contradicts the fact that G) has finite center. Therefore is
discrete and, in view of [R, Theorem 1.13], R(G) n is a lattice in R(G).
Step 2. In order to complete the proof of the proposition, it is enough to prove that if
Gis solvable and is a closedsubgroup ofGsuch that G/ admits finiteG-invariant
measure, then G/ is compact. Recall that the cocompactness of lattices in real
solvable Lie groups is a theorem of G. Mostow, see [R, ch. 3].)

For G and as above, denote G G8 × Gf where Gf v.Sf Gv. Let

a8: G G8 and af : G Gf be the natural projections. As in Step 1, using
the Borel Density Theorem we reduce the proof to the case when is Zariski dense

in G. Let G*f be an open compact subgroup of Gf The group G*f exists because

Gf is a direct product of p-adic Lie groups.) Then G8 × G*f )/ n G8 × G*f
has finite G8 × G*f )-invariant measure, which, in view of the compactness of G*f
and the cocompactness of lattices in real solvable Lie groups, implies that

G8/a8 n G8×G*f is compact and, therefore, G8×G*f )/ n G8×G*f is

compact. Assume for a moment that Gf /af is compact. Then G/G1 is compact,

where G1 f af Since G1 G1 n G8 × G*f we get that G1/ is
def a-1

compact and, therefore, G/ is compact.
So, it remains to prove that if G Gf and is Zariski dense in G, then G/

is compact. Let u denote the group generated by all unipotent algebraic subgroups
contained in Then u is normal inG, and replacingGbyG/ u we reduce theproof
to the case when u {e}. Let P be an open subgroup of G containing Ru(G) and
such that P/Ru(G) is compact. Then P/(P n admits a finite P-invariant measure

and, in view of [MT4, Lemma 1.10], P n Ru(G). Therefore Ru(G) {e}
and G is an abelian group. This proves that the quotient G/ is a locally compact
topological group with finite Haar measure. Therefore G/ is compact.

10.3. Proof of Theorem 10.1. By Proposition 10.2, R(G) n is a cocompact lattice
in R(G). Let N be amaximal subgroup in the class of all normal algebraic subgroups

of G such that N n is a cocompact subgroup of N. Let N be the Zariski closure of
N inG. By the general structure theory of algebraic groups [Bo], H G/N is a QS-
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algebraic group, H
v.S

Hv, where each Hv is a semisimple group and Hv(Qv)
has no compact factors, and there exists a QS-homomorphism : G H where

H H(QS)) such that G) has finite index in H. Denote by Since N n
is cocompact inN, is a lattice inH and the natural map : G/ H/ is proper.
With f as in the formulation of the theorem, note that f is a rational parametrization
for U) of degree depending only on the degree of f and the homomorphism
Therefore without loss of generality we can reduce the proof to the case when every

Gv is a semisimple group without compact factors. Furthermore, we may assume

that is an irreducible lattice in G.
With the above assumptions, let rankS G p.S rankQv Gv be the S-rank of G.

If rankS G 1, then either G is a real rank-one semisimple group and the theorem is
proved in [D2] see also [D3, Remark 3.7], or G is a p-adic Lie group and, therefore,

is a cocompact lattice in G see [T]) and there is nothing to prove. It remains
to consider the case rankSG > 1. In view of Margulis’ Arithmeticity Theorem
[Zi, Theorem 10.1.12] we may assume that G is a Q-algebraic subgroup of SL(m),

G n SL(m, ZS), and, after eventually replacing G by its image under a

Qirreducible representation, we may also assume that G(Q) acts irreducibly on Qm.
Writing y in the form g for some g G and applying Theorem 9.4 to the map

h(x) f(x)g, we get a compact L0 Qt L and constants C, a > 0 such that
for anyt > 0 and any ball B X one has

{x B | f(x)gOm
S Qe} 1 -Cea B)

whenever f(B)y n L0 Ø. Choosing e such that ß Cea, we get a compact

M
def

Qe satisfying 10.1).

If Uy n L0 Ø, then in view of Theorem 9.4 there exists a proper nonzero
vector subspace V Qm such that QSV is invariant under the action of g-1Ug.
We consider Qm diagonally imbedded in Qm

S
which justifies the expression QSV

Let P be the Zariski closure of the stabilizer of V in G(Q) under the natural action
of G(Q) on Qm. Since G(Q) acts irreducibly on Qm, P is a proper Q-algebraic
subgroup of G. Therefore so is the subgroup Pu of P spanned by all unipotent
elements of P. It is easy to see that g-1Ug Pu(QS). By the S-adic version of
Borel–Harish-Chandra theorem [PR, Theorem 5.7], Pu(OS) is a lattice in Pu(QS).
Therefore the group H gPu(QS)g-1 satisfies the requirements of the formulation
of the theorem.

We remark that to derive Theorem 1.2 from the above theorem it suffices to take

K Q, L {y} and, in the case Uy n L0 Ø, choose R such that the intersection
of f B(0,R) with L0 is nonempty.

10.4. Let s be a Haar measure on U. Given a bijective parametrization f : X U,
let f* be the pushforward of to U via f. Note thatf can be chosen in such a way
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that s f* Indeed, if U is abelian, f can be taken to be the trivial parametrization
because exp is an isomorphism of locally compact groups). In the general case, since

U is unipotent and algebraic, there existabelian algebraicsubgroups U1, Us ofU
such that the map : U1 × ·· · ×Us U, u1, us) u1 · · · us is bijective,
and for any i, 1 i < s, the product U1 · · · Ui is a normal subgroup of U and

U1 · · · Ui+1/U1 · · ·Ui is a central subgroup of U/U1 · · · Ui For any j let fj be the
trivial parametrization of the abelian group Uj Then a simple computation shows
that f f1, fs) is such that s f* proving the above claim. Using
the bijective map f we translate the metric from X to U. In view of the preceding
discussions, Theorem 10.1 immediately implies the following

Theorem 10.3. Let G and be as in Theorem 10.1. Then every compact L G/
is contained in a compact L0 with the following property: givenß > 0 there exists a

compact subset M of G/ such that for any y G/ and any unipotent algebraic
subgroup U of G the following is satisfied:

i) If Uy n L0 Ø and B is a ball in U such that f(B)y n L0 Ø, then

s u B | uy M

s(B)
1- ß, 10.2)

where s is a Haar measure on U. In particular, 10.2) holds if y L and e B.
ii) If UynL0 Ø, then there exists a closed proper subgroupH ofGcontaining

U such that the orbit Hy is closed and carries a finite H-invariant Borel measure.

10.5. In order to prove Theorem 1.3 we will need a version of the Birkhoff ergodic
theorem. Let G, H and µ be the same as in the formulation ofTheorem1.3, and let

U be a unipotentalgebraic subgroupofGcontained inH. Letµ A, µa d. be the
decomposition ofµintoU-invariantergodic locallyfinite measures, where A, isa

measure space parametrizing the ergodic components µa. For almost every y G/
there exists a well defined ergodic component µa(y), where a(y) A, whose support
contains y.

Fix an imbedding G GL(m, KT and a maximal unipotent subgroup W

v.T Wv GL(m, KT which contains U. There exists an element g gv)
GL(m, KT such that gWg-1 W, W {x GL(m, KT )| limn.8 g-nxgn e},
and for every v T there exists .v Kv such that |.v|v > 1 and the eigenvalues of
Ad(gv)| Lie(Wv) are pairwise different positive powers of .v. It is easy to see [MT1,
Proposition 2.2] that the sequence Lie(g-iUgi) has a limit Lie(U0) in the
Grassmannian variety Gr(LieW) v.T Gr(LieWv) of LieW, where U0 is a Int(g)-
invariant KT -algebraic subgroup of W. Also it is known [MT1, Proposition 2.8]
that there exists an Int(g)-invariant Zariski closed subset V W such that the maps

U × V W, u, v) uv, and U0 × V W, u0,v) uv, are bijective. Using
the latter map, we let p : W U0 respectively, p : W V be the projection
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of W onto U0 respectively, the projection of W onto V Also put p p|U. Note
that p is a homeomorphism between U and U0. Let p-1 Int(g) p. Then

: U Uacts as an expansion on U and limi.8 .-i(u) e for all u U. In
particular, if B is a relatively compact neighborhood of e in U, then

U
i=0

Bi 10.3)

where B0 B and Bi+1 Bi) for all i 0. Further on we fix a set B as above.

Let u U, e > 0, and let · · be ametric onU. Since.-1 is a contractingmap,
there exists i0 > 0 such that if i > i0 and x Bi then .-i(ux), .-i(x) < e.
Therefore limi.8 s B .-i(uBi) 0, where C D stands for the symmetric
difference between two sets C and D. Since the Jacobian of is constant, we get

lim
i.8

s(Bi uBi)
s(Bi)

lim
i.8

s B .-i(uBi)
s(B)

0. 10.4)

Let us show that there exists a compact L W such that Int(g-i)(Bi) L for
all i. Otherwise, it would follow from the definition of Bi and the Int(g)-invariancy
of U0 and V that there exists a sequence uki Bki such that Int(g-ki p(uki

p(B) for all i and the sequence Int(g-ki p(uki is unbounded. Since Lie(U0)

limi.8 Lie(g-iUgi), the latter implies that U0 n V {e}, a contradiction. We can
choose L such that L L-1. So, if x, y Bi then Int(g-i)(x-1y) L ·L. We have

p Int(g-i x-1y) Int(g-i p(x-1y) p(L · L).

Therefore

i Bi) p-1 p(L · L).-i B-1

Since p-1 p(L · L) is compact, we obtain

sup
i

s(B-1

i Bi)
s(Bi)

sup
i

s .-i(B-1
i Bi)

s(B) < 8. 10.5)

In view of 10.3), 10.4) and 10.5), the following result directly follows from [Te,
Corollary 3.2, Ch. 6] see also [MT3, Proposition 7.1]):

Proposition 10.4. With the above notation and assumptions, let f be a continuous
µ-integrable function on G/ Then

lim
n.8

1

s(Bn) Bn
f gy) ds(g)

G/
f z) dµa(y)(z)
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for µ-almost all y G/ Furthermore, the limit function

f *(y)
def

G/
f z) dµa(y)(z) 10.6)

is µ-integrable and U-invariant.

10.6. We now proceed with the

Proof of Theorem 1.3. In order to prove the theorem, as in the real case considered
in [D1], it is enough to find a function h L1(G/ µ) which is H-invariant and

positive µ-almost everywhere. Indeed, if h is such a function, then the sets

Yi y G/ | h(y) 1
i

satisfy the conditions in the formulation of the theorem.
Among the unipotent algebraic subgroups of G contained in H we fix a maximal

one and denote it by U. It is well known that the minimal normal subgroup of H
containing U coincides with H itself see [Bo]). Therefore, in view of the Mautner
phenomenon for products of real and p-adic Lie groups [MT4, Proposition 2.1],
if f L1(G/ µ) is U-invariant, then there exists an H-invariant µ-integrable
function on G/ which coincides with f almost everywhere. So, it is enough to
prove the theorem for H U.

Let f be a positive continuous µ-integrable function on G/ Applying Proposition

10.4, we get a U-invariant function f * defined by formula 10.6). It is enough
to prove that f * > 0 µ-a.e. Note that

1

s(Bn) Bn
f gy) ds(g)

1

s(B) B
f n g)y ds(g),

where is as in §10.5. From Theorem 10.1 and the facts that s f* for some
rational parametrization f of U see §10.4) and that all .n f have the same degree
because is linear), it follows that there exists a compact M G/ such that for

any positive n
s {g B | .n(g)y M}

s(B)
>

1
2

Since f is positive, the above formula implies that f*(y) > 0µ-a.e., whichcompletes
the proof of the theorem.

Remark 10.5. Using the methods from [MT4] it is easy to see that Theorems 10.1,
10.3, 1.3 and Proposition 10.4 remain valid for the larger class of so-called almost
linear groups, that is, when G is a finite direct product of a connected real Lie group
and finite central extensions of closed linear p-adic groups.
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11. S-arithmetic Diophantine approximation

11.1. In this section we present a motivation for the definitions ofVWA andVWMA
vectors given in the introduction, and state the main Diophantine result of the present
paper, of which Theorem 1.4 is a special case. Here and for the rest of the paper we
fix a set S of cardinality consisting of distinct normalized valuations of Q and not
necessarily containing8) and let

We will interpret elements

y y v))v.S y1, yn)

S
where y(v) y v)of Qn 1 y v)

n Qnv and yi y v)
i QS, as linear forms

S
and will study their values y · q y1q1 + · · · + ynqn at integer pointson Qn

q q1, qn). The approximation properties of our interest will be related to
these values being close in terms of the S-adic absolute value | · | on QS) to integers.
Alternatively, one could consider a dual case when one approximates in terms of the
S-adic norm) y Qn by rational vectors. See [KLW] and [KM, ?] for a discussion

S
of this set-up in the real case.

For y, q as above and for q0 Z, it will be convenient to use the notation

ỹ
def 1,y1, yn) and q̃

def
q0, q1, qn),

so that q0 + y1q1 + · ·· + ynqn q0 + y · q is written as ỹ · q̃. Also, by the absolute
value | · | of integers and the norm · of integer vectors we will always mean those
coming from the infinite valuation. Hopefully it will cause no confusion.

11.2. A natural starting point in the theory of simultaneous Diophantine approximation

is usually a Dirichlet-principle-type result. Let us work it out. The goal is to find
the optimal exponent ß such that for any y QnS and anyN > 0 one is guaranteed

to have two different integer vectors q̃1, q̃2 of norm N such that ỹ · q̃1 and ỹ · q̃2
are at most const(y)N-ß apart.

It turns out that the answer depends on whether or not S contains theArchimedean
valuation v =8. Indeed, note that one has

|ỹ
v)

· q̃|v max( y v) v, 1) 11.1)

for any ultrametric v and any integer vectors q̃. Therefore:

• If all the valuations in S are ultrametric, the 2N + 1)n+1 values of ỹ · q̃ for
all q̃ of norm N are in the ball of radius max( y 1) in QS. The latter can

be partitioned into const ·Nn+1 balls of radius const(y)N-n+1

Thus for any

S
and anyN > 0 one can find q̃ Zn+1 \ {0} with q̃ N andy Qn

|ỹ · q̃| const(y) · N-n+1
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• If v =8, there is clearly no universal upper bound similar to 11.1). However
one can for any given q Zn choose q0 Z such that

|ỹ(8) · q̃|8 |q0 + y (8) · q|8 1.

Thus, taking all q of norm= N, one is only guaranteed to have 2N+1)n values
of ỹ · q̃ in the ball of radius max( y 1) in QS. Partitioning it into const ·Nn
balls of radius const(y)N-n

one gets a nonzero integer vector q̃ with q N
and

|ỹ · q̃| |q0 + y · q| const(y)N-n
for some q0 Z.

Note that the absolute value of q0 above, and hence the norm of q̃, is bounded
from above by const(y)N.

It will be convenient to define

iS
def 1 if8 /. S,

0 if8 S.

Then it follows that for any y QnS the supremum of w > 0 for which there exist
infinitely many q̃ Zn+1 with

|ỹ · q̃| q̃ -w

n+iS. On the other hand, it can be easily shownusing the Borel–Cantelli Lemma that
the above supremum is equal to n+ iS for almost every y Qn with respect to Haar

S

S Thus it is natural to say that y Qnmeasure .S on Qn
S is very well approximable,

or VWA, if the above supremum is strictly bigger than n + iS; in other words, if for
some e > 0 there are infinitely many solutions q̃ Zn+1 to

|ỹ · q̃| q̃ - n+iS 1+e). 11.2)

Note that in the case when8 S, any solution q̃ of 11.2) automatically satisfies

|q0| 1 + n y(8) 8 q 11.3)

and so q̃ on the right-handside of 11.2)can be replaced by q̃ agreeing with 1.4).

11.3. The next step is to define very well multiplicatively approximable, or VWMA,
vectors y QnS To do this, one would like to replace the left-hand side of 11.2) by
the product of norms of all the components of ỹ · q̃, and the norm of q̃ in 11.2) with
the geometric mean of its coordinates. However one needs to be careful and keep in
mind the dichotomy in the Dirichlet-principle argument.

Namely, if8 /. S when iS 0) one can indeed replace q̃ n+1 by + q̃), and
thus define y Qn

S
to beVWMAif for somee > 0 there are infinitely many solutions

q̃ Zn+1 to

c(ỹ · q̃) + q̃)-(1+e). 11.4)
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On the other hand, if8 S it seems tempting to define y to beVWMA if for some

e > 0 there are infinitely many q such that

c(ỹ · q̃) c(q0 + y · q) + q)-(1+e) 11.4

holds for some q0 Z. Indeed, this coincides with the standard definition when
S {8}, cf. [KM]. However it is not hard to see that, whenever S contains both
finite and infinite valuations, for anye > 0 the set of y Qn for which 11.4 admits

S

infinitely many solutions has full measure. Indeed, the trouble here comes from the
fact that an upper estimate for c(ỹ · q)˜ does not imply a bound similar to 11.3), that
is, a bound on |q0| in terms of q. And one can easily show that for any fixed q the set

of y Qn for which there exists
S q0 satisfying 11.4 has full measure.

It follows that in order to achieve a multiplicative analogue of 11.4) in the case

{8} S, one needs to take special precautions in the case when |q0| is much bigger
than the norm of q. Namely, in the case8 S we will define y Qn to be VWMA

S

if for some e > 0 there are infinitely many solutions q to

c(ỹ · q̃) + q)-(1+e)|q0|-
e

+ 11.48)

Put together with 11.4), the latter inequality can be written in the form 1.5), or,
equivalently, in the unified form as

c(ỹ · q̃) + q)-(1+e)|q0|-(iS+e)
+

11.5)

Several remarks are in order. First, note that in the case S {8} 11.48) can be

replaced by 11.4 perhaps with a slightly different value of e: indeed, any solution
of 11.5) will satisfy 11.3), hence |q0|+ is bounded from above by some power of

+ q). Similarly, it can be easily seen that infinitely many solutions to 11.2) imply
infinitely many solutions to 11.5) with the same e if8 /. S, and, in view of 11.3)
and + q) q perhaps with a different e if8 S). And yet,VWMAas defined
above happens to be a zero measure condition. This can be shown directly using a

Borel–Cantelli argument, and it will also be an implication of Theorem 11.1 below.

11.4. Recall that a measure µ on Qn
S

is called extremal resp., strongly extremal) if
µ-almost every point ofQn

S
is notVWA(resp., notVWMA).Here is the main theorem

of the section:

Theorem 11.1. For v S, let Xv be a metric space with a measure µv such that

X v.S Xv is Besicovitch and µ v.S µv is Federer, and let f f v))v.S,

where f v) are continuous maps from Xv to Qnv such that pairs f v), µv) are good
and nonplanar at µv-almost every point of Xv. Thenf*µ is strongly extremal.

It is clear from Theorem 4.3, as well as from Examples 2.6 and 2.7, that Theorem

1.4 is a special case of the above result.
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11.5. Let us also remark that Theorem 11.1 generalizes the main result of [KLW].
Indeed, in the latter paper a certain class of measureson Rn was introduced, and itwas
proved that measures from that class are strongly extremal. Specifically, following
[KLW] let us say that a measure µ on Fn, where F is a locally compact field, is

• nonplanar if µ(L) 0 for any proper affine subspace of Fn;

• decaying if for µ-a.e. y Fn there exist a neighborhood V of y and C, a > 0

such that all affine functions are C, a)-good on V with respect to µ;

• friendly if it is Federer, nonplanar and decaying.

Comparing this with §5.2, one easily observes that µ is decaying if and only if
Id, µ), where Id is the identity map Fn Fn, is good at µ-almost every point. It

is also not hard to see that the nonplanarity of µ forces Id, µ) to be nonplanar at

µ-almost every point the converse is true under the additional assumption that µ is
decaying).

It is now clear that Theorem 11.1 immediately implies

Corollary 11.2. Let µ v.S µv, where µv is a friendly measure on Qnv for every

v S. Then µ is strongly extremal.

Thus [KLW, Theorem 1.1] is a special case of Theorem 11.1. As was mentioned
before, our proof is also a generalization of the argument from [KLW], which, in turn,
generalizes the one from [KM].)

11.6. It is not hard to see that many examples of friendly measures on Rn exhibited
in [KLW] can be constructed on a vector space over arbitrary locally compact valued
field F. For instance, fix a valuation | · | on F inducing the metric “dist” on Fn, and
say that a map h: Fn Fn is a contracting similitude with contraction rate if
0 < < 1 and

dist h(x), h(y) dist(x, y) for all x, y F n

It is known, see [H, §3.1], that for any finite family h1, hm of contracting similitudes

there exists a unique nonempty compact setQ, called the limit set of the family,
such that

Q
m

i=1

hi(Q).

Say that h1, hm as above satisfy the open set condition if there exists an open
subset U Fn such that

hi(U) U for all i 1, m,
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and

i j hi(U) n hj(U) Ø.

J. Hutchinson [H, §5.3] proved4 that if hi i 1, m, are contracting similitudes

with contraction rates .i satisfying the open set condition, and if s > 0 is the
unique solution of i

s
i

1, called the similarity dimension of the family {hi},
then the s-dimensional Hausdorff measureHs of Q is positive and finite. Let us also
say that the family {hi} is irreducible if there does not exist a finite {hi}-invariant
collection of proper affine subspaces of Fn. The proof of [KLW, Theorem 2.3] applies
verbatim and yields

Proposition 11.3. For any completion Qv of Q, let {h1, hm} be an irreducible
family of contracting similitudesofQnv satisfying the open setcondition, s its similarity
dimension, µ the restriction of Hs to its limit set. Then µ is friendly and hence

strongly extremal).

Measures onRn obtained via the aboveconstruction havebeen thoroughly studied;
perhaps the simplest example is given by the log 2

log 3 -dimensional Hausdorff measure

on the Cantor ternary set. Similarly one can consider ultrametric analogues of the
Cantor set, for example let

Q 8k 0 ak3k | ak 1, 2 Z3.

It is a 3-adic version of the Cantor ternary set, which also has Hausdorff dimension
log 2

s and it follows thatalmostallnumbers inQ(with respect to thes-dimensionallog 3
Hausdorff measure) are notVWA.

11.7. We conclude this section with the following modification of Theorem 11.1:

Theorem 11.4. For every v S, let Xv be a metric space with a measure µv such

that X v.S Xv is Besicovitch and µ v.S µv is uniformly Federer, and let

f f v))v.S, where f v) are continuous maps from Xv to Qnv such that for µv-a.e.

xv Xv one can find a ball Bv B(xv, r) Xv with the following properties:

for some Cv, av > 0, any linear combination of 1, f v)
1 f v)

n
is Cv, av)-good on B(xv, 3n+1r) with respect to µv,

11.6)

and
the restrictions of 1, f v)

1 f v)
n to Bvn supp µv

are linearly independent over Qv.
11.7)

Then f*µ is strongly extremal.

4Hutchinson stated his results for the case F R, but the proofs apply verbatim to the case of arbitrary
locally compact valued field.
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Reduction of Theorem 11.1 to Theorem 11.4. Let X and f be as in Theorem 11.1.
First note that, replacing Xv by appropriate neighborhoods of its µv-generic points
for each v, one can without loss of generality assume that µ is uniformly Federer.
Then for any v, since f v), µv) is good at µv-a.e. point, one can for µv-a.e. xv Xv
choose a neighborhood Uv of xv and Cv, av > 0 such that any linear combination of
1,f v)

1 f v)
n is Cv, av)-goodonUv with respect to µv. Further, since f v), µv)

is nonplanar µv-almost everywhere, one can after throwing away points from a null
set) take a ball Bv B(xv, r) such that B(xv, 3n+1r) Uv and 11.7) holds, and the
conclusion follows.

In the next two sections we present the proof of Theorem 11.4, separately
considering the cases of S containing or not containing the Archimedean valuation. In
both cases the core of the proof is a generalization of the correspondence between
real Diophantine approximation and dynamics on real homogeneous spaces.

12. Proof of Theorem 11.4 for8 S

12.1. In order to prove Theorem 11.4, we are going to dynamically interpret the
approximation properties of S-adic vectors defined in the previous section, similarly
to the approach of [KM]. In this section we suppose that all the valuations in S are

ultrametric, that is, S {p1, p } where p1, p are distinct primes. Up to
the end of the section we will work with

S+
def def def

S {8}, R QS+ QS × R, and D OS+ Z 1 1
p1 p

S
we associate a lattice uyDn+1 in Rn+1, where the elementThen to any y Qn

uy GL1(n + 1,R) is defined by

pj
yu

1 y(pj

0 In j 1, u(8)y In+1,

with Ik standing for the k × k identity matrix. Note that the pj-adic components of

vectors from uyDn+1 are of the form ỹ pj ·q̃q
where q̃ Dn+1.

We need to introduce some more notation. For a vector t̃
def

t0, t1, tn)
Rn+1 we denote t1, tn) by t and let

t̃
n

i=0
ti and t

n

i=1

ti 12.1)

this convention will be used throughout the next two sections, so that whenever t
and t, or t̃ and t̃ appear in the same context, 12.1) will be assumed). Then, given t̃
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as above and another vector s s1, s Z+
define gs,t̃ GL(n + 1, R) by

gs,t̃
pj p-sj

j 0
0 In

j 1, gs,t̃ )(8) diag(e-t0, e-t1, e-tn

12.2)
The next lemma shows how a good approximation for y in the sense of 11.1)

gives rise to a translation of uyDn+1 by gs,t̃ for some s, t̃ so that d(gs,t̃uyDn+1) is
small. This allows one to use Theorem 9.3 to derive the needed measure estimate.

Lemma 12.1. Let e > 0, y Qn
S

and q̃ Zn+1 be such that 11.4) holds. For

i 0,1, n define ti > 0 by

|qi |+ + q̃)- e
n+1 eti 12.3a)

and let
e

n + 1)(1 + e)
12.3b)

Then there exists s s1, s Z+
such that

d(gs,t̃uyDn+1 vn + 1e- t̃ 12.3c)

and

j=1

sj

j et̃ <p

j=1

sj+1

j 12.3d)p

Proof. Multiplying equalities 12.3a), we get

e t̃
+ q̃)1+e 12.3e)

and

e-ti
|qi| e-ti

|qi |+
12.3a) + q̃)- e

n+1

12.3be)
e- t̃ i 0, 1, n,

y q̃ 8 gs,t̃)(8)q̃ 8
vn + 1e- t̃hence gs,t̃)(8)u(8)

Now let us define sj j 1, inductively by

sj

j min
et̃

p j-1

i=1 psi
i

1

|ỹ(pj
· q̃|pj

sj+1

j 12.4)< p

where if j 1 we set j-1

i=1 psi

i 1). This, in particular, implies that

|p-sj sj

j |ỹ
pj

· q̃|pj 1j ỹ pj
· q̃|pj p
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for each j Taking into account that |qi |pj 1 for all i and j one concludes that

c(gs,t̃uy q̃) vn + 1e- t̃

It remains to check that inequalities 12.3d) are satisfied. Taking j in 12.4)
immediately implies the lower estimate. To prove the upper estimate, let us consider
two cases:

• If for some j the minimum in 12.4) is equal to the first of the quantities
compared, then clearly

sj+1

je t̃ < p
j-1

i=1

psi

i
j=1

sj+1

jp

• Otherwise, it follows that |ỹ(pj · q̃|pj > p-(sj+1)

j for all j and to derive the
desired estimate it remains to notice that 11.4), in view of 12.3e), can be

rewritten as c(ỹ · q̃) j=1 |ỹ(pj · q̃|pj e-t̃

Corollary 12.2. Assume that y Qn
S

is VWMA. Then for some c, > 0 there are

infinitely many t̃ Zn+1

+
and s Z+

such that

e-(n+1)

j=1

sj

j et̃ <p
j=1

sj+1

j 12.5a)p

and

d(gs,t̃uyDn+1 ce- t̃ 12.5b)

Proof. By definition, for some e > 0 there are infinitely many solutions q̃ Zn+1

of 11.4). Therefore, by the above lemma and with as in 12.3b), there exists
an unbounded set of t̃ Rn+1

+
such that 12.3c) holds for some s Z+

satisfying
12.3d). Denote by [t̃ ] the vector consisting of integer parts of ti then clearly the

ratio of d(gs,t̃uyDn+1) andd(gs,[t̃]
uyDn+1) is bounded from above by some uniform

constant. Thus, replacing t̃ by [t̃ ], for some c > 0 one gets infinitely many solutions

t̃ Zn+1

+
of 12.5b), with et̃ being smaller than before by at most a factor of en+1,

hence 12.5a).

Corollary 12.3. Let X be a Besicovitch metric space and µ a uniformly Federer
measure on X. Suppose we are given a continuous map f : X Qn

S
such that

for µ-a.e. x0 X there exist a ball B B(x0, r) and constants C,a, with the
following property: for any P(D, n + 1) and any s Z+ t̃ Zn+1

+
satisfying

12.5a), one has

the function x cov(gs,t̃uf x) is C, a)-good on B(x0, 3n+1r) w.r.t. µ, 12.6a)
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and
sup

x.Bnsuppµ
cov gs,t̃uf x) 12.6b)

Then f*µ is strongly extremal.

Proof. Applying Theorem 9.3, with h(x) gs,t̃uf x) and m n + 1, we conclude
that

µ {x B | d(gs,t̃uf x)Dn+1 < ce- t̃} n + 1)C NXD2µ n+1 ce- t̃ a

µ(B)

whenever ce- t̃ and 12.5a) holds. Note that for fixed t̃ the number of different
s Z+

satisfying 12.5a) is at most const ·t̃ -1. Therefore the sum over all integer

s, t̃ for which 12.5a) holds) of measures ofsets {x B | d(gs,t̃uf x)Dn+1) < ce- t̃
}

is finite for every c, > 0. An application of the Borel–Cantelli Lemma shows that
for every c, > 0 and µ-a.e. x B, and hence for µ-a.e. x B and all c, > 0,
there areatmost finitelymany integer solutions s, t̃ to 12.5a), 12.5b). Corollary 12.2
then implies that f x) is notVWMA for µ-a.e. x B.

12.2. We are now ready for the

Proof of Theorem 11.4, the case8 S. Recall that we are given the balls Bv Xv,
v S, which will be referred to as B1, B and measures µv on Xv, which we
will call µ1, µ We will take B to be equal to

j=1 Bj recall that we are using
the product metric on X) and show that it satisfies the assumptions of Corollary 12.3.
Thus we need to have explicit expressions for functions x cov gs,t̃uf x)

Using Proposition 8.1 and Lemma 8.2, one can associate to any nonzero submodule

Dn+1 of rank r an element w of r Dn+1) such that cov( c(w) and
cov(gs,t̃uf x) c(gs,t̃uf x)w). It will be convenient to use the standard basis

e0, e1, en of Rn+1, where

i v.S+ e p1)ei e v)
i e p

i e(8)i

for each i 0,1, n. Similarly, we will use the standard basis {eI | I
{0,1, n}} of Rn+1, where we let eI

def
ei1 · · · eir r Rn+1) for

I {i1, ir} {0, n}, i1 < i2 < · · · < ir Thus we can write w as above in
the form w I.{0,...,n} wIeI where wI D.

Now let us see how the coordinates of w as above change under the action of
gs,t̃uf x). Note that:

• u(8)f x) is trivial, and each e(8)I is an eigenvector of gs,t̃)(8) with eigenvalue

e-tI where tI
def

i.I ti ;
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• the action of pj pj pj pj pj pju leaves e0 invariant and sends e to e +f x)e0f x) i i i

i 1, n, and each e
pj
I is an eigenvector of gs,t̃

pj with eigenvalue 1 if
0 /. I and p-sj otherwise; in other words,

gs,t̃uf x)eI pj
p-sj

j e
pj

I if 0 I,
e j i.I ±fpj
I + p-sj pj

i x)e
pj

I.{0}\{i}
otherwise.

12.7)

Therefore one has gs,t̃uf x)w)(8) I e-tIwIe(8)I and

gs,t̃uf x)w)(pj

0/.I
wI e j

pj
I + p-sj

0.I
wI +

i /.I

pj
i x) e±wI.{i}\{0}f pj

I

12.8)
for j 1,

In particular, real components of all the coordinates of gs,t̃uf x)w are constant,

and pj -adic components are linear combinations of 1, f pj
1 f pj

n Condition
12.6a) then immediately follows from Lemma 3.1 b), c), 11.6) and Corollary 3.3.

On the other hand, for any j 1, one can use 11.7) and the compactness of
the unit sphere in Qn+1

pj to find .j > 0 such that for any a a0, a1, an) Qn+1
pj

one has

sup |a0 + a1f
x.Bjnsuppµj

pj
1 x)+ ·· · + anf pj

n x)|pj .j a pj 12.9)

It remains to notice that all the components of w necessarily appear in the second sum

in 12.8) that is, the sum of terms with 0 I Therefore 12.8) and 12.9) imply

sup gs,tuf˜
w)(pj

x) pj .jpj
x.Bjnsuppµj

sj max
I |wI|pj 12.10)

and hence

sup

x.Bnsuppµ
c(gs,t̃uf x)w)

j=1
.jpj I |wI |pj maxsj max

I
e-tI

|wI |8

j=1
.j e-t̃

j=1

pj sj max
I

c(wI
12.5a)

j=1

.j
pj

Condition 12.6b) is thus established, and the theorem follows.
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13. Proof of Theorem 11.4 for8 S

13.1. In this section we suppose that S {p1, p -1,8}, where p1, p -1

are distinctprimes. In this case there is noneed to artificiallyadd the infinite valuation
to S; that is, we will now work with

R
def

QS and D
def

OS Z[
1

p1
1

p -1 ].

The element uy GL1(n + 1,R) can be simply defined by uy
def 1 y

0 In
so that

uyDn+1 ỹ · q̃
q

q̃ Dn+1

The definition 12.2) of the diagonal element gs,t̃ GL(n + 1,R) given in the
previous section will still be valid, except for s now having - 1 components.

Now let us split the set of VWMA vectors into two parts: say that a very well
multiplicatively approximable y Qn

S
is VWMA= if for some positive e there are

infinitely many solutions q̃ to 11.48) satisfying

|q0| 1 + n y(8) 8 q 13.1)

and that it is VWMA> otherwise. Our strategy will be as follows: we will modify
the dynamical approach of the previous section to treat the first case, and use the
conclusion of the “8 /. S” case of Theorem 11.4 to take care of the second case.

Here is a replacement for Lemma 12.1.

S
and q̃ Zn+1 be such that 11.48) and 13.1)Lemma 13.1. Let e > 0, y Qn

hold. For i 1, n define ti > 0 by

|qi |+ + q)- e

n+1 eti 13.2a)

and let
e

n + 1 + ne
13.2b)

Then there exist s s1, s -1) Z -1

+
and t0 R such that

d(gs,t̃uyDn+1 vn + 1e- t 13.2c)

-t t0 t + ln 1 + 2n y(8) 8 13.2d)

and

-1

j=1

sj

j et̃ <p
-1

j=1

sj+1

j 13.2e)p
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Proof. As in the proof of Lemma 12.1, we consider the product of equalities 13.2a),
namely

1+
n

n+1 e 13.2f)et
+ q)

and then write

e-ti|qi| e-ti
|qi |+

13.2a) + q)- e

n+1

13.2bf
e- t i 1, n. 13.2g)

After that define t0 by

e-t0 def min et e- t

|ỹ(8) · q̃|8
13.3)

y q̃ 8
vn + 1e- tIt follows that |e-t0ỹ(8) · q̃|8 e- t hence gs,t̃)(8)u(8)

The lower estimate in 13.2d) is immediate from 13.3), while the upper estimate

clearly holds if the minimum in 13.3) is equal to et and otherwise one has

e- t

e-t0

|q0 + y(8) · q|8 13.1)

e- t

1 + 2n y(8) 8 q 13.2g)

e-t

1 + 2n y(8) 8
Now that all the components of t̃ are chosen, we can define sj j 1, - 1, as

in 12.4). After that one can verify, following the lines of the proof of Lemma 12.1,
that

pj
y q̃ pj max pgs,t̃

pj u
sj

j |ỹ
pj

· q̃|pj 1 1

for each j so that c(gs,t̃uy q̃) vn + 1e- t and that inequalities 13.2e) are satisfied.

Corollary 13.2. Assume that y QnS is VWMA=. Then for some c0, c, > 0 there

+
and s Z -1are infinitely many t̃ Z × Zn

+
satisfying

-t - 1 t0 t + c0, 13.4a)

e-(n+1) -1

j=1

sj

j e t̃ <p
-1

j=1

sj+1

j 13.4b)p

and

d(gs,t̃uyDn+1 ce- t 13.4c)

Proof. By definition, for somee > 0 there are infinitely many solutions q̃ to 11.48)
and 13.1). Therefore, by the above lemma and with as in 13.2b), there exists an

unbounded set of t Rn
+

such that inequalities 13.2c)–(13.2e) hold for some t0 R
and s Z -1

+
The rest of the proof of Corollary 12.2 applies verbatim.
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Corollary 13.3. Let X be a Besicovitch metric space and µ a uniformly Federer
measure on X. Suppose we are given a continuous map f : X Qn

S
with the

following property: for µ-a.e. x0 X there exist a ball B B(x0, r) and constants
C, a, c0 such that conditions 12.6a), 12.6b) hold for any P(D, n + 1) and
any s Z -1

+ t Z × Zn+ satisfying 13.4a), 13.4b). Then f x) is not VWMA= for
µ-a.e. x X.

Proof. An application of Theorem 9.3, again with h(x) gs,t̃uf x) and m n + 1,
yields

µ {x B | d(gs,t̃uf x)Dn+1 < ce- t
} n+ 1)C NXD2µ n+1 ce- t a

µ(B)

whenever ce- t and 13.4a, b) hold. Now observe that for fixed t the number of
different t0 Z and s Z -1

+
satisfying 13.4a, b) is at most const ·t -1. Therefore

for any c, > 0 the sum over all integers s, t̃ for which inequalities 13.4a, b) hold)
of measures of sets {x B | d(gs,tuf t

˜ x)Dn+1) < ce- } converges. As before,
an application of the Borel–Cantelli Lemma shows that for µ-a.e. x B there are
at most finitely many integer solutions s, t̃ to 13.4a)–(13.4c) for any c, > 0.
Corollary 13.2 then implies that f x) is notVWMA= for µ-a.e. x B.

13.2. Nowlet usstate a lemma showing that y beingVWMA> has some implications
to the Diophantine properties of its “finite part” y(v)

v.Sf

Lemma 13.4. Assume that y y(v)
v.S

is VWMA>; then y(v)
v.Sf

is VWMA.

Proof. By assumption, there exist infinitely many solutions q̃ of 11.48) for which
13.1) fails. For each of them one can write

|ỹ(8) · q̃|8 |q0 + y(8) · q|8 |q0| - n y(8) 8 q

|q0|-
n y(8) 8

1 + n y(8) 8
|q0|

|q0|+
1 + n y(8) 8

Therefore one has

v.Sf
|ỹ v)

· q̃|v
c(ỹ · q̃)

|ỹ(8) · q̃|8 + q)-(1+e)|q0|-
e

+ · 1 + n y (8) 8 |q0|-
1

+

1 + n y(8) 8 + q̃)-(1+e),

which finishes the proof modulo a slight change of e.
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13.3. Finally we are ready for the

Proof of Theorem 11.4, the case8 S. Applying the case “8 /. S” of Theorem

11.4 to the map f v))v.Sf we obtain that the pushforward of
v.Sf µv by

f v))v.Sf must be strongly extremal, which, in view of Lemma 13.4, implies that

f x) is notVWMA> for µ-a.e. x X. Thus, as before, it suffices to take

B

v.S

Bv
-1

j=1

Bj × B8 and µ
v.S

µv
-1

j=1

µj × µ8,

and check that the assumptions of Corollary 13.3 are satisfied by means of writing
downexplicitexpressions for functions x cov gs,t̃uf x) This againboilsdown
to the computation of components of gs,t̃uf x)w, where w I.{0,...,n} wIeI

r Dn+1).
Since therewasno change in theultrametriccomponents ofgs,t̃ anduf x), formula

12.7) is still valid. Furthermore, an expression for the Archimedean components
turns out to be similar to 12.7):

gs,t̃uf x)eI)(8)
e-tI e(8)

I if 0 I,
I + i.I ±e-tI.{0}\{i}f (8)e-tI e(8)

i x)e(8)
I.{0}\{i}

otherwise.

Therefore one has 12.8) for j 1, - 1, and, in addition,

gs,t̃uf x)w)(8)
0/.I

I +wIe-tI e(8)

0.I
e-tI wI +

i /.I
i x) e(8)

I±wI.{i}\{0}f(8)

We see that real resp. pj-adic) components of all the coordinates of gs,t̃uf x)w
are linear combinations of 1, f(8)1 f (8)n resp. 1,f pj

1 f pj
n Condition

12.6a) then immediately follows from Lemma 3.1(b), c), 11.6) and Corollary

3.3. On the other hand, an argument identical to that of the previous section
shows that for every j 1, - 1 there exists .j > 0 such that 12.10) holds,
and also that there exists .8 > 0 such that

sup gs,t̃uf x)w)(8) 8 .8 min
x.B8nsuppµ8 0.I I |wI |8 .8e-t̃ maxe-tI max

I |wI |8.

Therefore

sup

x.Bnsuppµ
c(gs,t̃uf x)w)

-1

j=1
.jpj I |wI |pj .8e-t̃ maxsj max

I |wI|8

.8
-1

j=1
.j e-t̃ -1

j=1

pj sj max
I

c(wI
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13.4b) .8
-1

j=1

.j
pj

This implies 12.6b) and shows that f x) is not VWMA= for µ-a.e. x X, thus
finishing the proof of the theorem.

14. More on S-arithmetic Diophantine approximation

14.1. Extensions of Q. It seems to be a natural task to extend the metric
Diophantine approximation results proved in this paper to the framework of an arbitrary
number field K. Indeed, the main quantitative nondivergence estimate of the paper
Theorem 9.3) can be rather straightforwardly generalized to the setting of maps from

Besicovitch metric spaces into GL(m, KS), where K is a finite extension of Q, S is a

finite set of its normalized valuations containing all theArchimedean ones, and KS is
the direct product of completions Kv of K over v S. See the earlier version [KT]
of the present paper for more detail. Similarly one can mimic the presentation of
§§11–13 to define very well approximable elements of Kn

S
and prove that those form

anull set with respect to pushforwards of Haar measure by products of nondegenerate
maps.

However, understanding multiplicative approximation over an arbitrary number
field turns out to be more complicated5. Indeed, if K has more than one infinite
valuation, the group of units of the ring of integers ofK is infinite, which complicates
the definition ofVWMA vectors and makes proofs of the corresponding results more
delicate. The case of an arbitrary number field will be treated in a forthcoming paper.

14.2. Khintchine-type theorems. Another way to generalize the Diophantine setup

of thispaperwouldbe to replace the right-handside of 1.4) byan arbitrary function
of q or q̃ With the notation of §1.4, let us introduce the following definition:
for a non-increasing function : N 0,8), say that y Qn is .-approximable

S

if there are infinitely many solutions q̃ q0, q1, qn) Zn+1 to

|q0 + q · y|
q̃ if8 /. S,
q if8 S.

As in the case of 1.4), it is easy to check using the Borel–Cantelli Lemma that .-a.e.

y Qn is not .-approximable whenever the series
S

8k 1 kn.(k) if8 /. S,
8k 1 kn-1.(k) if8 S

14.1)

5except when K is an imaginary quadratic extension of Q cf. [DK]), in which case the proof of the analogs
of our results can be carried out without major changes
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converges, and using the methods of [L] it should be possible to prove that .-a.e.

y Qn
S

is .-approximable if the above series diverges. Similar questions then arise
regarding measures other than in particular, volume measures on nondegenerate
smooth manifolds or, in the case > 1, their products.

In recent years the case S {8} has been completely understood, see [BKM,
Be] for the convergence case and [BBKM] for the divergence case. That is, the
convergence divergence) of 14.1) was shown to imply that almost no almost all)
points on nondegenerate submanifolds of Rn are .-approximable. Combining the
approach of the present paper with the methods of [BKM] and [BBKM] respectively,

it seems plausible that both convergence and divergence cases can be proved for f *
as in Theorem 1.4. Note that when S {p}, both cases were recently established for
the curve 1.6) [BBK] and for .-a.e. nondegenerate f : Zp Z2p which is normal in

the sense of Mahler [BK]. The convergence case for nondegenerate curves in Z3p was
treated by E. Kovalevskaya in [Ko1], [Ko2], and in another paper [Ko3] she extended
the method of [BK] to obtain a result involving both p-adic and infinite valuations.
Note also that the paper [BKM] contains amore general in particular, multiplicative)
version of the convergence case for nondegenerate submanifolds of Rn, and it would
be interesting to see whether the S-arithmetic set-up can be treated in a similar way.

14.3. Analogues of other results over R. Since the introduction [KM] of the
dynamical approach to Diophantine approximation on manifolds, various extensions
and generalizations of the method have been found. We expect that many of the
ideas developed recently for Diophantine approximation over R can be applied in the
non-Archimedean setting. Specifically we would like to propose two conjectures, in
which Qv stands for an arbitrary completion of Q.

Conjecture IS Inheritance for subspaces). Let L be an affine subspace of Qnv and

let f : Qdv L be a Ck map which is nondegenerate in6 L at .-a.e. point. Suppose

that the volume measure on L is extremal resp. strongly extremal); then so is f *

This was proved in [K2] for v 8, and in addition explicit necessary and

sufficient conditions, involving coefficients of linear functions parametrizingL, were
found for the volume measure on L to be extremal strongly extremal). There should
be no major difficulties in extending these results to the non-Archimedean case.

Conjecture FP Friendliness of pushforwards). Let µ be a self-similar measure on

the limit set of an irreducible family of contracting similitudes of Qdv satisfying the
open set condition see §11.6), and let f : Qdv Qnv be a smooth enough map which
is nondegenerate at µ-a.e. point. Then f *µ is strongly extremal.

6that is, the linear part of L is spanned by partial derivatives of f
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The case v =8 of theabove conjecture is one of the main results of [KLW]. Note
that a key step of the proof, see [KLW, Proposition 7.3], crucially involves the Mean
Value Theorem, and for its non-Archimedean analogue one would need to come up

with a replacement, perhaps similarly to our approach to Proposition 4.2.
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