Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 82 (2007)

Artikel: Centralisateurs d'éléments dans les PD(3)-paires
Autor: Castel, Fabrice

DOl: https://doi.org/10.5169/seals-98892

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-98892
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 82 (2007), 499-517 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Centralisateurs d’éléments dans les PD(3)-paires

Fabrice Castel

Résumé. On établit pour les centralisateurs dans une PD(3)-paire des résultats analogues a
ceux connus pour les centralisateurs dans un groupe fondamental de variété de dimension 3.
Comme dans le cas des groupes fondamentaux de variétés de dimension 3, la preuve de ces
résultats repose sur une décomposition JSJ pour les PD(3)-paires obtenue a 1’aide de la théorie
des voisinages algébriques réguliers de Scott et Swarup.
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1. Introduction

Un groupe a dualité de Poincaré de dimension n est un groupe ayant des propriétés
homologiques analogues a celles du groupe fondamental d’une variété de dimension
n fermée et asphérique. Plus précisément un groupe G est dit a dualité de Poincaré de
dimension n (en abrégé : groupe PD(n))s’il vérifie les trois propriétés suivantes : G est
de type FP, pour tout entier i # n H'(G, ZG) = 0 et H"(G, ZG) est infini cyclique
en tant que groupe abélien. Le groupe G est dit orientable lorsque 'action de G
sur H" (G, ZG) est triviale, non orientable sinon. Une définition antérieure différente
mais équivalente ( voir le chapitre VIII de [6] pour une preuve de cette équivalence) de
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groupe PD(n) estdonnée dans [2]. Un groupe PD(n) est nécessairement de génération
finie, de dimension cohomologique » (et donc sans torsion) et n’a qu’un bout [2].

Un groupe PD(2) est toujours isomorphe au groupe fondamental d’une surface
fermée (voir [12]). Pour n > 4, M. Davis [9] a construit des groupes PD(n) qui ne sont
pas de présentation finie et ne peuvent donc pas &tre des groupes fondamentaux de
variétés fermées de dimension n. La question de savoir si un groupe PD(3) est toujours
le groupe fondamental d’une variété fermée de dimension 3 reste ouverte. Cependant,
C. B. Thomas a montré dans [31] qu'un groupe PD(3) résoluble est isomorphe au
groupe fondamental d’une variété¢ de dimension 3. Plus récemment, B. Bowditch a
montré dans [5] qu’un groupe PD(3) possédant un sous-groupe normal infini cyclique
est isomorphe au groupe fondamental d’une variété de Seifert de dimension 3. Ce
théoréme et un théoreme de R. Bieri et J. A. Hillman [4] impliquent qu’un groupe
PD(3) contenant un sous-groupe sous-normal de présentation finie est isomorphe au
groupe fondamental d’une variété fermée de dimension 3.

Une paire de groupes (G, €2), est la donnée d’un groupe G et d’un ensemble
2 de sous-groupes de G. Le double de la paire (G, 2) est le groupe obtenu en
amalgamant deux copies de G l¢ long des éléments de 2. Une PD(n)-paire (G, 2)
est une paire de groupes telle que le double de G le long de €2 est un groupe PD(n) (si
Q2 = ¥ on demande que G soit PD(r)). Une PD(n)-paire (G, £2) est donc I’analogue
algébrique du groupe fondamental d’une varniété M compacte, asphérique, dont les
groupes fondamentaux des composantes connexes du bord s’injectent dans I1; (M)
et correspondent aux €léments de €2. Cette définition implique ([3] et [1]) qu’une
PD(n)-paire (G, €2) vérifie les propriéiés suivantes : le groupe G est sans torsion, de
dimension cohomologique n — 1 lorsque 2 # @, n’a qu'un seul bout, et €2 est un
ensemble fini de sous-groupes PD(n — 1) de G.

Pour une PD(3)-paire, (G, Q2), avec 2 = {1, ..., Q,}, on introduit la termi-
nologie suivante :

Definition 1. (1) La paire (G, ©2) est dite de type Seifert s’il existe une variété de
Seifert M de dimension 3 compacte et connexe, dont le bord est composé de n
composantes connexes S1,. . .,5,, et un isomorphisme ¢ entre G et I'1; (M) vérifiant
la propriété suivante ; pour tout 1 <i < n, ¢(€2;) est conjugué a Iy (S;).

(2) Si aucun €lément virtuellement abélien de €2 n’est d’indice fini dans G et si
chaque sous-groupe de G abélien libre de rang 2 est conjugué dans G a un sous-groupe
de €2, la paire (G, €2) est dite atoroidale.

Un des principaux résultats sur la structure d’une variété M de dimension 3, com-
pacte, connexe et irréductible, découle du théoreme de décomposition JSJ le long de
tores incompressibles. Ce théoreme implique que [1; (M) admet une décomposition
en graphe de groupes dans laquelle :

— les groupes associés aux arétes de 1 sont virtuellement abéliens libres de rang 2.
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— les groupes associés aux sommets de I" sont soit de type Seifert, soit atoroidaux.

— chaque sous-groupe virtuellement abélien libre de I' est conjugué dans un des
groupes associé a un sommet de I".

Le théoreme de décomposition JSJ a été¢ moniré par W. H. Jaco, P. Shalen ([18]) et
K. Johannson ([19]) dans le cas des variétés dites Haken. Sa preuve dans le cas général
découle des résultats de P. Scott ([27]), G. Mess ([25]) , P. Tukia (|32]), D. Gabai
([13]), A. I. Casson et D. Jungreis ([7]), qui caractérisent les variéiés irréductibles
ayant un groupe fondamental atoroidal.

Dans le chapitre VI de [18] Jaco et Shalen utilisent le théoreme de décomposition
JST pour décrire la structure du centralisateur d’un élément du groupe fondamental
d’une variéié Haken de dimension 3. Ce résultat montre en particulier que si la variété
M est Haken, le centralisateur d’un élément de 1 (M ) est toujours de génération finie.
I1s montrent également que si M est Haken, pour tout couple (a, b) d’éléments de
I, (M) la relation abPa~! = b? implique que |p| = |g].

Le butde cet article est de démontrer des résultats analogues dans une PD(3)-paire.
Plus précisément on démontre les deux résultats suivants :

Théoreme 1. Soit (G, 2) une PD(3) paire. Soit h un élément non trivial de G. Posons
C = Cg(h), ou Cg(h) désigne le centralisateur de h dans G. Si h n’est pas infiniment
divisible, alors C est nécessairement d’un des trois types suivants .

(1) C estinfini cycligue.

(2) C est abélien libre de rang 2 ou isomorphe au groupe fondamental d’une
bouteille de Klein.

(3) C estconjugué aunsous-groupe d’indice auplus 2 d’un des morceaux de Seifert
de la décomposition JSJ de G.

Si h est infiniment divisible alors C fixe un sommet atoroidal de la décomposition
JSJ de G et C contient un sous-groupe d’indice 2 isomorphe a un sous-groupe non
cyclique des rationnels additifs.

Théoréme 2. Soir G un groupe PD(3). Soient a et b deux éléments de G. Si a et b
sont liés par une relation du type abPa=' = b2 | alors |p| = |q|.

Remarques. (1) P. Shalen a montré ([28]) que le groupe fondamental d une variétd
Haken M ne contient pas d’élément infiniment divisible. Cette preuve utilise 1’exis-
tence d’une hiérarchie de Haken pour M. La question de savoir si un groupe PD(3)
G contient un élément infiniment divisible reste ouverte, méme si & est le groupe
fondamental d’une variété fermée et atoroidale de dimension 3. Dans ce dernier cas,
notons que si la conjecture de géométrisation est vraie, [Ty (M) ne contient pas d’élé-
ment infiniment divisible. L’éventuelle présence d'un élément infiniment divisible
dans G empéche d’affirmer que le centralisateur dans ¢ d’un élément non trivial est
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toujours de génération finie. C’est pourquoi le théoreme de structure des centralisa-
teurs reste plus précis dans le cadre topologique des variétés Haken que dans le cadre
des groupes PD(3).

(2) Le théoreme 2 généralise un résultat de M. Kapovitch et B. Kleiner affirmant
qu’un groupe de Baumslag—Solitar B, , de présentation (a, b; ab?a! = b9) ne
s’injecte pas dans un groupe PD(3) lorsque |p| # |g]| (voir section 9 de [20]). La
preuve du théoréme 2 utilise leur résultat. Dans le cas des groupes fondamentaux
de variété de dimension 3, le théoreme 2 a €€ montré par P. H. Kropholler [22] et
indépendamment par P. B. Shalen [29].

Tout comme dans le cas des variétés de dimension 3, 1a preuve de ces résultats
s’appuie sur un théoreme de décomposition JISJ pour les PD(3)-paires obtenue 4 I’ aide
de la théorie des voisinages algébriques réguliers de P. Scott et G. A. Swarup ( voir
chapitre 2 ).

2. Décomposition JSJ pour les PD(3)-paires

Soit (G, £2) une PD(3)-paire. Dans cette section on donne la définition de décompo-
sition JSJ de la paire (G, 2) et on explique brievement comment obtenir une telle
décomposition a ’aide de la théorie des voisinages algébriques réguliers de Scott et
Swarup ([26]).

Soit & un groupe et 1" un graphe de décomposition de . On rappelle que I' est
dit minimal lorsque 1’arbre de Bass—Serre T associ€ a I' ne contient aucun sous-arbre
propre G-invariant. Un sommet v de 1" est dit redondant lorsqu’il vérifie les deux
propriétés suivantes :

— v est de valence 2.

— si e estune aréte de 1" incidente a v, I’inclusion du groupe associ€ a e dans le
groupe associé a v est un isomorphisme.

Soit (G, 2) une PD(3)-paire. On suppose que G admet une décomposition en
un graphe fini I de groupes, adapté a €2 (i.e. tel que chaque sous-groupe de €2 est
conjugué dans un des groupes de sommets de '), et telle que les groupes associés aux
arCtes de I' sont abéliens libres de rang 2. Soit T I’arbre de Bass—Serre associ¢ a I
et p la projection usuelle de T sur I'. Soit v un sommet de 7'. Soit G, le stabilisateur
dans G de v. Alors le théoréme 8.4 de [3] implique que G, est le groupe de base
d’une PD(3)-paire (G, ©24). Lorsque cette PD(3)-paire est de type Seifert (resp.
atoroidale), on dira que v est Seifert (resp. atoroidal).

Definition 2 (décomposition JSJ). Soit (G, ) une PD(3)-paire. Soit I un graphe
minimal de décomposition de G en graphe de groupes, adapté a 2. On dit que I' est
une décomposition JSI de 1a PD(3)-paire (G, £2) s’1] vérifie les propriéiés suivantes :
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— 0) I' n’a pas de sommets redondants.

1) La PD(3)-paire de groupes associée a chaque sommet de I' est soit de type
Seifert, soit atoroidale.

2) Les groupes associ€s aux arétes de I" sont virtuellement abéliens libres de
rang 2.

3) Chaque sous-groupe abélien libre de rang 2 de G est conjugué a un sous-
groupe d’un des groupes de sommet de I'.

On peut maintenant énoncer le théoreme de décomposition JST d’une PD(3)-paire :

Théoréeme 3. Soit (G, 2) une PD(3)-paire. Il existe une décomposition JSJ de (G, €2).
De plus, deux décompositions JSJ de (G, Q) sont G-isomorphes.

Preuve. On prouve d’abord ce théoreme dans le cas ou G est un groupe PD(3). Le
cas des PD(3) paires (G, £2) dont le bord €2 est non vide s’en déduit en amalgamant
a G, le long de chaque élément €2; de €2, le groupe fondamental d’une variété de
dimension 3 atoroidale et acylindrique ayant un bord connexe et incompressible.
Pour une telle variété Mg, le groupe fondamental IT; (€’;) de la composante connexe
du bord ©'; de Mg, s’injecte dans TT; (Mg, ) et est malnormal dans IT;(Mg,). Le
produit amalgamé ainsi obtenu est un groupe PD(3) dont la décomposition JSJ induit
une décomposition JSJ de G.

On suppose donc que G est un groupe PD(3). Le théoréme 12.5 de [26] con-
venablement adapt€ au cas des groupes PD(3) ( suivant les indications données par
Scott et Swarup ) montre I’existence d’une décomposition de ¢ en un graphe fini de
groupes I'' vérifiant, entre autres, les propriétés suivantes :

(1) Les sommets de I'" sont de deux types ; les sommet de type Vp et les sommets
de type Vi. De plus deux sommets de méme type ne peuvent &tre adjacents.

(2) Les groupes d’arétes de I" sont virtuellement abéliens libres de rang 2.

(3) Tout sous-groupe abélien libre de rang 2 de G admet un sous-groupe d’indic/e
fini conjugué dans G a un sous-groupe du groupe d’un sommetde type Vo de I .

(4) Les sommets de type Vi de I sont simples dans le sens ou la décomposition r
ne peut étre raffiné en scindant un sommet de ce type le long d’un sous-groupe
virtuellement abélien libre de rang 2.

Cette décomposition de G sera appelée décomposition de Scott et Swarup de G.
Le théoréme de Bowditch [5], le théoréme 2 de [15], et les méthodes de Dunwoody et
Swenson [11], permettent de montrer que les paires de groupes associées aux sommets
de type Vp de I sont de type Seifert. Soit I' Ie graphe de décomposition de & obtenu
a partir de I en supprimant les sommets de type Vp pour lesquels ’inclusion des
groupes d’artes dans le groupe de sommet est un isomorphisme. Le reste de la preuve
du théoreme de décomposition JSJ d’un groupe PD(3) consiste a établir les points
suivants :
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— Les sommets simples de I sont atoroidaux.

— Lessous-groupes abéliens libres de rang 2 de G sont conjugués dans des groupes
de sommets de I'.

— Le graphe I' a un nombre minimal de sommets Seifert.

— Toute décomposition de & vérifiant les propriéiés 1) a 3) de la définition 2 et
possédant un nombre minimal de sommets Seifert est G-isomorphe a I'.

Pour les détails complets de cette preuve, nous renvoyons au chapitre 4 de [§]
(voir aussi la section 12 de [26]). O

Le théoréme 3 a été établi par Kropholler [21] dans le cadre de PD(n)-paires,
n > 2 vérifiant I’hypothese supplémentaire (max-c) que toute suite croissante de
centralisateurs est stationnaire. Cependant certains groupes PD(4) ne vérifient pas
cette hypothése ([16]). Il découle de nos résultats que toutes les PD(3)-paires posse-
dent la propriét¢ max-c (cf proposition 3).

C. T. C. Wall a établi le théoreéme 3 dans le cas des groupes PD(3) de présentation
finie [33]. Sa preuve repose sur le théoreme du tore algébrique de Dunwoody et
Swenson [11] et le théoreme de décomposition JSJ de Dunwoody et Sageev [10]
pour les groupes de présentation finie.

3. Centralisateurs dans une PD(3)-paire

Dans cette section, on utilise la décomposition JSJ donnée par le théoreme 3 pour
démontrer les théoremes 1 et 2.

3.1. Centralisateurs dans une PD(3)-paire atoroidale. Lebutdecette sous-section
est de montrer la proposition suivante :

Proposition 1. Soit (G, Q) une PD(3) paire atoroidale et orientable. Soit h un élément
de G. Alors le centralisateur de h dans G est un sous-groupe abélien de G, maximal
pour la propriété d’étre abélien.

On rappelle la définition suivante de morphisme de paires que 1’on trouve dans [3].

Definition 3 (morphisme de paire). Soient (G, €2) et (H, A) des paires de groupes,
avec 2 = {Q;,i € It et A = {A;,j € J}. Un morphisme de paires entre (G, €2)
et (H, A) consiste en la donnée d’un homomorphisme ¢ de G dans H et d’une
application 7 de I dans J tels que ¢(€2;) € Ay pourtouti € I,.

La définition suivante généralise au cas relatif la notion de degré entre groupes
PD(n) introduite dans [17].
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Definition 4. Soient (G, Q) et (H, A) des PD(n)-paires orientables et ¢ unhomomor-
phisme de paires de (G, 2) dans (H, A). L’homomorphisme ¢, de H, (G, Q2; Z) = Z
dans H,(H, A; Z) ~ Z mduit par ¢ est appellé degré de ¢.

Lemme 1. Soient (G, Q) et (H, A) des PD(n)-paires orientables et ¢ un homomor-
phisme de paires de (G, 2) dans (H, A). Si @ est de degré non nul, alors l'image
p(G) de G par ¢ est d’indice fini dans H.

Preuve. Lorsque les groupes G et H sont PD(n), le résultat vient du lemme 1 de [17].
Lorsque les bords des PD(n)-paires (G, €2) et (H, A) sont non vides, notons par ¢
I’homomorphisme naturel induit par ¢ allant du double D () de la paire (G, €2) dans
le double D(H ) de la paire (f1, A). Un argument standard utilisant les suites exactes
de Mayer—Vietoris relatives montre que si ¢ est de degré non nul alors ¢ est de degré
non nul entre les groupes PD(n) D(G) et D(H). Cela implique que ¢(D(G)) est
d’indice fini dans D(f1) et donc que ¢(() est d’indice fini dans @ (7). O

Le résultat suivant de R. Bieri (corollaire 8.9 de [1]) sera utilis€ a plusieurs reprises
dans la suite.

Proposition 2. Soir C un groupe de dimension cohomologique 2, de génération finie
et non abélien. Soit Z(C) le centre de C. Si Z(C) n’est pas trivial alors Z(C) est
nécessairement infini cycligue et le quotient de C par Z(C) est "extension d’un
groupe libre par un groupe fini. O

Definition 5. Soient &G un groupe et H et K des sous-goupes de G.

(1) On dit que H et K sont commensurables lorsque f1 N K est d’indice fini dans
HetK.

(2) Le commensurateur de A dans G, noté¢ Commg (H ), est le sous-groupe de G
défini dela maniére suivante : Commg () = {g € G tels que gl g~ et H soient
commensurables}.

La preuve des lemmes 2 et 3 a été suggérée par P. Scott.

Lemme 2. Soit (G, Q) une PD(3)-paire atoroidale et orientable. Soit Q1 un sous-
groupe abélien libre de rang 2 de G appartenant a 2. Pour tout élément g de G
n’appartenant pas @ 21, 21 N ngg‘l est trivial.
Preuve. Supposons le contraire. Si €21 M gQ1¢~ 1 est abélien libre de rang 2, g €
Commg (€21). D’apres le lemme 2.2 de [24], Commg (€21) = €21. Le résultat est donc
vrai dans ce cas.

Si 2 NgQig~! = L est infini cyclique, appellons ¢ un générateur de L. Quitte
a remplacer €21 et g€ ¢~! par des sous-groupes d’indice fini, on peut supposer que
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Qy/Let (g2 g~ ") /L sontinfinis cycliques et qu’il existe a € Q2 eth € gQ1g ! tels
que 21 est engendré par a et ¢ et que g21¢~ ! est engendrd par b et c. Le centre du
sous-groupe Z de G engendré par Q21 et 21271 estinclus dans Comme(€21) = €
et dans Commg (gQ1g~ 1) = gQ1g7! et est done égal a L. Par construction, Z n’est
pas libre. Comme le bord de la PD(3)-paire ((, €2) est non vide, Z est de dimen-
ston cohomologique 2. La proposition 2 implique alors que le quotient de Z par L
est I’extension d’un groupe libre par un groupe fini. Ce groupe libre n’est ni trivial,
sans quoi Z serait infini cyclique, ni infini cyclique, sans quoi Z serait virtuellement
résoluble et donc, d’apres la classification des groupes résolubles de dimension co-
homologique 2 donnée dans [14], Z serait abélien libre de rang 2. Comme Z est
engendré par a, b et ¢, le groupe quotient Z/L est engendré par les projetés a et b
de a et b dans Z /L. Des puissances suffisamment grandes de a" et de b engendrent
donc un sous-groupe libre a deux générateurs de Z /L. Quitte a remplacer a et b par
a™ et b™, on peut donc supposer que @ et b engendrent un sous-groupe libre i deux
générateurs de Z/ L.

Posons S = Q1 =7 (¢Q127 ). Le groupe S s’1dentifie au groupe fondamental de
la variété de Seifert M obtenue en prenant le produit d’un disque a deux trous par un
cercle. Cette identification peut toujours étre effectuée de telle sorte que I’homomor-
phisme naturel ¢ de S dans G applique isomorphiquement les groupes fondamentaux
H et K de deux des trois bords de M sur Q; et (gQ212~"). Soit P le groupe fondamen-
tal du troisiéme bord de M et A = {H, K, P}. La paire (S, A) est une PD(3)-paire.
On considere deux cas ;

Cas 1. p(P) est infini cycligue. Soient ¢ un générateur de HnKetae HetheK
les préimages de a et b dans H et K. Par construction on a ¢(&) = ¢. Soit p € P
tel que p et & engendrent P. Comme &, b et ¢ engendrent S, on peut écrire  comme
un mot m (&, b)e*, o m(a, b) désigne un mot non trivial en a et b. Comme ¢(P) est
infini cyclique et engendré par ¢, on a dans Z une relation de la forme m(a, b) = cf,
Cette relation se projette dans Z/L en une relation de la forme m(a, b) = 1 ce qui
contredit le fait que a et b engendrent un sous-groupe libre de Z/L. Le cas 1 n’est
donc pas possible.

Cas 2. g0(13) est abélien libre de rang 2. Dans ce cas, comme la paire (G, £2) est
atoroidale, ¢ réalise une injection de P dans un conjugué¢ d’un sous-groupe de 2.
Notons respectivement par P et P les restrictions de ¢ a H et K. Considérons
I’isomorphisme « de H dans K défini par : «(h) = (p‘1|gHg71(g.go|ﬁ(I;).g_1). Re-
marquons que si ¢ = gp‘ll ;(c), alors «(¢) = ¢. Soit " 'extension HNN obtenue
a partir de S en amalgamant HakK au moyen de 1’isomorphisme « et P’ I’image
de P par I’inclusion naturelle de S dans S’. Le théoréme 8.4 de [3] montre que la

paire (5, P ) est une PD(3)-paire. Appellons ¢ la lettre stable correspondant a cette
extension HNN. Comme la paire (G, 2) est atoroidale, 1’application ¢ de S’ dans
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G appliquant la base S de S sur ¢(S) et 1 sur g est un morphisme de paires entre
(s }3’) et (G, ). Comme de plus 7.6.6~! = w(&) = &, & est dans le centre de S’ et
le théoréme 2 de [15] implique que S’ est isomorphe au groupe fondamental d’une
variété de Seifert obtenue a partir de M en recollant les bord correspondant a et
K au moyen d'un homéomorphisme induisant «. D’apres la proposition 1.1 de [3],
le morphisme de paire v induit le diagramme commutatif suivant de suites exactes
relatives ( les modules de coefficients sont tous isomophes a Z considéré comme
S’-module et G-module trivial) :

P« ~ 84 ~ s
b H3(S') > Hy(S', P’y > Hy (D) ——> Hy(S") —> - --

p/ 5/ l'/

s H3(G) — H3(G, ) ——> Hp(Q) ——> Hy(G) —> - - -

Dans ce diagramme on a les identifications suivantes : H3(S") ~ H3(G) =~ 0,
H3(S', Py ~ H3(G, Q) >~ Z, Hy(P') =~ Z et Hy(Q2) >~ Z" (avec n égal au nombre
de composantes de Q). Comme ¢ (P') = (p(f)), r réalise une injegtion de P’ dans le
conjugué d’un élément de €. L’homomorphisme induit ¢+, de H>(P") dans H>($2) est
donc non trivial. Comme le diagramme ci-dessus est commutatif, cela implique que
I’application v, de H3(S’, P’ ) dans Hx(G, Q) est non triviale. L’ homomorphisme
est donc de degré non nul. Le lemme 1 montre que v (S”) est d’indice fini dans G. En
particulier ¢ (S”) est le groupe de base d’une PD(3)-paire et comme v (S”) a un centre
non trivial, cette PD(3)-paire est isomorphe au groupe fondamental d’une variét€ de
Seifert de dimension 3. Donc G est également isomorphe au groupe fondamental
d’une variété de Seifert de dimension 3. Cela contredit le fait que la paire (G, €2) est
atoroidale. Aucun des deux cas précédents n’est donc possible. On en conclut que
Q1N gQie~! nest pas infini cyclique. O

Lemme 3. Soit (G, Q) une PD(3)-paire atoroidale et orientable. Soient H et K des
sous-groupes abéliens libres de rang 2 de G. On suppose que H N K contient un
sous-groupe infini cyclique. Alors il existe un sous-groupe J de G, abélien libre de
rang 2, tel que H et K soient tout deux des sous-groupes de J.

Preuve. Comme (G, €2) estatoroidale, il existe des éléments g1 et g2 de G et des sous-
groupes €21 et §2; appartenant au bord © de la paire (G, Q) tels que H € g1Q1217!
et K € 222827 L. Si 1 = Q2, le lemme 2 implique que g1~ 'g2 € € et donc que
les groupes H et K sont inclus dans g1£21g1_1 = 22821 g2—1 = J. Le résultat est vrai
dans ce cas. On peut donc supposer que €27 et €27 sont distincts. Quitte a remplacer
dans 2 le sous-groupe Q1 par g12121 " et le sous-groupe 22 par g2$22g2 ! on peut
supposer que H € Qqetque K € Q. Soit L = H N K. Si L est abélien libre de
rang 2, le lemme 2.2 de [24] implique le résultat.
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On suppose donc que L. = H N K est infini cyclique engendré par I’élément c.
Quitte a remplacer f1 et K par des sous-groupes d’indice finis, on peut supposer que
H/L et K/L sont infinis cycliques et qu’il existe a € H et b € K tels que H est
engendré par a et ¢ et que K est engendré par b et c. Posons Z le sous-groupe de &
engendré par I7 et K. En utilisant la proposition 2 de la méme maniere que dans le
lemme 2, on peut supposer que les projections a et b de a et b dans Z /L engendrent
un sous-groupe libre a deux générateurs.

Posons S = [ % K. Le groupe S s’identifie au groupe fondamental de la variéeé
de Seifert M obtenue en prenant le produit d’un disque a deux trous par un cercle.
Cette identification peut toujours &tre effectuce de telle sorte que I'homomorphisme
naturel ¢ de S dans G applique isomorphiquement les groupes fondamentaux HetK
de deux des trois bords de M sur H et K. Soit P le groupe fondamental du troisieme
bordde M et A = {ﬁ, K, 13}. Comme go(ﬁ) contient L, (p(ﬁ) n’est pas trivial.

On considere deux cas ;

Cas 1. p(P) est infini cyclique. On montre comme dans le cas 1 du lemme 2 que ce
cas n’est pas possible en construisant une relation non triviale dans le sous-groupe

libre de Z /L engendré par @ et b.

Cas 2. (p(P) est abélien libre de rang 2. Dans ce cas, comme la paire (G, €2) est
atoroidale, il existe g € G et Q3 € Q tel que p(P ) = gQag!. Si 3 = O ousi
Q3 = 22 le lemme 2 implique que ¢(S) < 21 ou que ¢(S) € Q1. Comme @(95)
contient f7 et K cela implique que €21 = €27 ce qui est impossible. Quitte a remplacer
dans © le sous-groupe 23 par le sous-groupe g€23g ! on peut donc supposer que ¢
définit un morphisme de paires entre (S, A) et (G, Q). Considérons le diagramme
commutatif de suites exactes relatives suivant ( les modules de coefficients sont tous
isomophes a Z considéré comme S-module et G-module trivial) :

e HR(S) e HR (S, A) > HO(A) > Hy(S) — -+

JQO* J(P* l@* l(/’*
P 8, i

= I (G) —> H3(G, Q) —— I (Q) —— I (G) —— -

Comme H3(S) ~ Hi(G) =~ 0, H3(S, A) ~ H3(G, Q) ~ Z, Hy(A) =~ Z° et
> (§2) ~ Z" (avec n égal au nombre de composantes de €2), ce diagramme devient :

|
+ s
T

| 73| Hy(S)—— -+

0 Z

l@* l% l(l)* ifﬁ*
i s ./

0 :

: — 7" Hy(G) —— - - -

I
..
I

Comme ¢ injecte H et K dans Q et Q», I’application induite ¢, de Hy(A) dans
H;>(€2) est non triviale. Considérons :
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— eun générateur de H3(S; A)
— aun générateur de H3(G; €2)
— e1, e, ez une base de H2(A)
— aiy, ..., d, une base de H>($2).

On suppose de plus que les notations sont telles que e et e2 correspondent aux
eénérateurs de H> (A ) donnés par HetKet que aq etap correspondent aux générateurs
de I1>(€2) donnés par 2; et €23. En particulier ¢, (e1) et ¢, (ez) sont des multiples de
a1 et de az. Comme de plus (p(]s) n’est pas infini cyclique, ¢ injecte P dans 5 et
on peut donc également supposer que ¢, (e3) est un multiple de a3. En particulier ¢,
induit un homomorphisme injectif de H»(A) dans H>(€2). Comme le diagramme est
commutatif, cela n’est pas possible si le degré de ¢ est nul. Donc le degré de ¢ n’est
pas nul et le lemme 1 montre que ¢(S) est d’indice fini dans G. Cela implique comme
dans le lemme 2 que G est isomorphe au groupe fondamental d’une variété de Seifert
de dimension 3, ce qui contredit le fait que la PD(3)-paire (G, 2) est atoroidale. On
en déduit que le cas 2 n’est pas possible, d’ou le résultat. O

Preuve de la proposition 1. Soient ay, az, deux éléments de G commutant avec 4. Il
faut montrer que aj et ap commutent. On va considerer trois cas.

Cas 1. Les groupes (a1, h) et {az, h) sont tout deux abéliens libres de rang 2. Le
lemme 3 nous assure alors que a; commute avec as.

Cas 2. Le groupe (ay, h) est abélien libre de rang 2 et le groupe {az, h) est infini
cycligue. Le conjugué de (ap, h) par a; est alors le groupe (apajas ', k) qui est
aussi abélien libre de rang 2. D’apres le lemme 3, ces 2 groupes sont commensu-
rables. On en déduit que ap € Commg ({a1, #)). Comme (a1, &) est conjugué dans
un des sous-groupes du bord €2 de la paire (G, 2), le lemme 2.2 de [24] montre que
Commyg ({aq, h)) est PD(2). Comme la paire (G, €2) est orientable, Commg ({aq, h})
ne peut €tre isomorphe au groupe fondamental d une bouteille de klein. On en déduit
que Commg ({a, h}) est abélien libre de rang 2 et a1 commute avec ap.

Cas 3. Les groupes (a1, h) et {ap, h) sont tous deux infinis cycligues. Considérons
le groupe C = {(ay,az, h). S1 C n’est pas abélien, C vérifie les hypotheses de la
proposition 2. On en déduit que C aun centre infini cyclique engendré par un élément ¢
et que C/(t) est’extension d’un groupe libre L par un groupe fini. Le groupe L n’est
pas trivial sinon (t) serait d’indice fini dans C et C serait infini cyclique et donc
abélien. On en déduit que le groupe C/(t) posséde un élément d’ordre infini x”. Si x
est un antécédent de x” dans C, (x, 1) est abélien libre de rang 2. Comme aj, a; et x
commutent avec 7, le cas 2 successivement appliqué aux groupes {(x, /), (a1, h) et
{(x, h), {az, h) montre que x commute avec a1 et az. Donc x appartient au centre ()
de C ce qui contredit le choix de x qui se projette dans C/(¢) sur un lément d’ordre
infini. Donc C est abélien.

Le fait que C soit maximal pour la propriété d’étre abélien dans G est évident. O
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3.2. Centralisateurs dans une PD(3)-paire. Dans cette sous-section, on donne
une preuve du théoreme 1.

Lemmed. Soit (G, Q2) une PD(3)-paire dans laquelle G n’est pas un groupe virtuelle-
ment abélien libre de rang 3. Soit I la décomposition JSJ de G. On suppose I non
réduite a un sommet. Soit T ’arbre de Bass—Serre associé¢ a . Soit y un chemin dans
T. Alors si les stabilisateurs de chacune des arétes de y ont un élément non trivial h
en commun, la longueur de y est inférieure ou égale a 2.

Preuve. Remarquons qu’aucun sommet intérieur a ¥ ne peut &tre atoroidal, sinon,
d’apres le lemme 3, les arétes de ce sommet stabilisées par 4 auraient des stabilisa-
teurs commensurables. Cela contredirait le corollaire A1 du théoreme A de [23] qui
assure que si G se scinde au dessus de sous-groupes PD(2) Set S" et si S et S’ sont
commensurables, alors S = 8. Supposons maintenant que 2 sommets intérieurs a et
b de y soient adjacents et Seifert. Soient (7, et Gy, les stabilisateurs de ces sommets.
Comme /£ est commun a deux sous-groupes €21 et €22 de G, associés a des arétes de T
incidentes a a, i est un élément du sous-groupe normal infini cyclique de G,. Sinon
21 et 27 auraient en commun £ et un élément du sous-groupe normal infini cyclique
de G, et seraient donc commensurables. Cela contredirait a nouveau le corollaire Al
du théoreme A de [23]. L"élément & de G est donc commun au sous-groupe normal
infini cyclique de G, et au sous-groupe normal infini cyclique de Gp. Le sous-groupe
(G4, Gyp) engendré par G, et G a donc un sous-groupe normal infini cyclique en-
gendré par un élément c. Comme (G, Gy ) est le produit amalgamé de G, etde Gy, le
long d’un élément de leurs bords, (G, Gp) est donc un groupe de type Seifert. Soient
ga et gp des éléments de G, et G, n’appartenant pas au sous-groupe normal infini
cyclique de (G, Gp). Alors g,.gp Ou (24.25)% commute avec ¢ et n’est conjugué
dans aucun groupe de sommet de la décomposition JSJ I' de G. Cela contredit la
propriété 3) de la définition 2. Le chemin y contient donc au plus deux arétes. O

Lemme 5. Soit (G, 2) une PD(3)-paire admertant une décomposition JSJ non friv-
iale. Soit h un élément non trivial de G et C := Cg(h) son centralisateur dans G.
Alors si h fixe un sommet v de arbre de Bass—Serre T associé a la décomposition
JSJ de G, C fixe un sommet de T

Preuve. La preuve découle de I’ affirmation suivante :

Affirmation. Si a est un élément de C alors a fixe un sommet v’ de T situé a une
distance inférieure ou égale a 2 de v.

Preuve. St {a, h) est infini cyclique, 1l existe un &lément ¢ de G et des entiers » et
m tels que : " = a et t™ = h. En particulier " fixe le sommet v de T'. L’élément
t fixe donc un sommet v’ de 7. Cela implique que 4 fixe les sommets v et v’ de T'.
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Le lemme 4 assure alors que v’ est a distance au plus 2 de v. L’affirmation est donc
vraie dans le cas ou (a, &) est infini cyclique.

Si {a, h) est abélien libre de rang 2, la propriété 3) de la définition 2 assure que
{a, h) fixe un sommet v’ de T'. L’argument précédent assure donc a nouveau que v’
s¢ trouve a distance au plus 2 de v. Cela termine la preuve de I’affirmation. O

Pour tout a € C on a alors : d(v,a(v)) < d(v,v) +d(v, a(v)) < d(v,v) +
d(a(v”), a(v)) < 4. On en déduit que C déplace v a distance bornée de lui méme et
donc que C fixe un sommet de T. O

Nous donnons maintenant la preuve du théoreme 1.

Preuve du théoreme 1. On peut supposer que G n’est pas virtuellement abélien libre
de rang 3, sans quoi le résultat est connu. De plus quitte & passer a un sous-groupe de
G d’'indice au plus 2, on peut supposer que la paire (G, €2) est orientable. Si C n’est
pas abélien, 1l existe deux éléments a; et a; de C quine commutent pas. En particulier,
le groupe K engendré par ap,az et i satisfait les hypothéses de la proposition 2. Le
centre de K est donc infini cyclique engendré par un €lément ¢ et le groupe quotient
K /{c) est I'extension d’un groupe libre L par un groupe fini. Comme K n’est pas
abélien, L n’est pas trivial et contient donc un élément non trivial x. En particulier le
groupe (x, ¢) est abélien libre de rang 2 et, comme / est une puissance de ¢, le groupe
{(x, h) est également abélien libre de rang 2. La propriété 3) de la définition 2 montre
que A fixe un sommet de ’arbre de Bass—Serre T associé a la décomposition JSJ I’
de G. Le lemme 5 implique alors que C fixe un sommet v de 7. Comme C n’est pas
abélien v est de Seifert. Les propositions 11.4.5 et I1.4.7 de [18] montrent alors que C
est conjugué a un sous-groupe d’indice au plus 2 d’un des morceaux de Seifert de la
décomposition JSJ de G.

S1 C est abélien et si C n’est pas infini cyclique, la classification des groupes
résolubles de dimension cohomologique 2 donnée dans [14] permet de conclure.

Pour montrer la derniére affirmation du théoréme, supposons % infiniment divisi-
ble. Si 4 ne fixe aucun sommet de I'arbre de Bass—Serre T associé a la décomposition
IST de G, h a un axe invariant unique, A, sur lequel 2 agit par translation avec
la longueur de translation [(7) = d(x, hx) > 0 ou x désigne un élément quel-
conque de A. Cette longueur de translation est additive, ¢’est a dire vérifie 1"8galité
[(h") = n x I(h) pour chaque entier »n. Si & est infiniment divisible, pour chaque
entier m, il existe un élément a de G tel que ¢ = h. On aurait alors [ (h) = m x [(a)
et [(h) serait infini. C’est absurde. I’élément /4 de G fixe donc un sommet de 7. Le
lemme 5 montre alors que C fixe un sommet v de 7. Ce sommet n’est pas Seifert car
cela contredirait le fait qu’aucun groupe fondamental de variété de Seifert ne con-
tient d’élément infiniment divisible ([28]). On en déduit que v est atoroidal et donc
d’apres la proposition 1 que C est abélien. La classification des groupes résolubles
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de dimension cohomologique 2 donnée dans [14] montre que C est isomorphe a un
sous-groupe non cyclique des rationels additifs. O

Corollaire 1. Soir (G, 2) une PD(3)-paire dans laquelle G n’est pas virtuellement
abélien libre de rang 3. Soit H un sous-groupe de G non virtuellement abélien et
a centre non trivial . Alors H est conjugué a un sous-groupe d’un des morceaux de
Seifert de la décomposition JST de G. En particulier, H est un groupe de variété de
Seifert de dimension 3.

Preuve. Soient h, un élément non trivial du centre de H, et Ci(h) le centralisateur
de /i dans G. Comme H € Cg(h) et comme H n’est pas virtuellement abélien, le
théoreme 1 montre que Cg(h) est nécessairement conjugué a un des morceaux de
Seifert de la décompostion JSJ de G. O

3.3. Propriété max-c. Le but de cette section est de montrer la proposition 3 qui
assure que toutes les PD(3)-paires possédent la propriét¢ max-c. Remarquons que
Kropholler a prouvé dans [22] que les groupes fondamentaux de variété de dimen-
sion 3 possedent cette propriété.

Definition 6 (propriété max-c). On dit qu'un groupe G posséde la propriété max-c
lorsque toute suite croissante {0} # Cg(Xq1) € -+ € Ca(X,) € -+ - de centralisa-
teurs de sous-ensembles X1, ..., X,. ... de G devient stationnaire.

Proposition 3. Soif (G, Q) une PD(3) paire. Alors G posséde la propriété max-c.

Preyve. Quitte a passer a un sous-groupe d’indice 2 de & on peut se contenter de
montrer le résultat dans le cas ou la paire (G, €2) estorientable. Si G est virtuellement
abélien libre de rang 3, G est le groupe fondamental d’une variété de dimension 3 et
possede donc la propriété max-c ([22]). On considere la décomposition JST de . On
distingue deux cas.

Cas 1. La décomposition JSJ de G est triviale : elle n’est composée que d’un sommer
Seifert ou atoroidal. Si ce sommet est Seifert alors G est isomorphe au groupe fon-
damental d’une variété de Seifert de dimension 3 et possede donc la propriété max-c
d’apres [22].

On suppose donc le sommet atoroidal. Considérons une suite croissante {0} #
Ce(X1) € -+ € Cg(Xy) € -+ de centralisateurs de sous-ensembles de G. On
montre quepourtoutz) € X1,Cg(X1) = Cg(hy). Nlestclairque Cg(X1) € Cg(hy).
Soit x un élément de X distinct de A1 et g un élément non trivial de Cg(X1). Alors
g commute avec x et iy, Donc x et Ay sont des ¢léments de Cg(g). D’apres la
proposition 1, Ci(g) est abélien donc x commute avec /1 et comme Cg(hy) est
abdlien tout élément de &G commutant avec 47 commute avec x. Donc Cg(h1) C
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Cg(X1). On montre de la méme maniere que pour tout n, si ki, € X, alors Cq(X,) =
Cg(hy). Lasuite croissante {0} = Cg(X1) € - € C(X,) € - - - devientdonc une
suite {0} #= Cg(hy) € --- € Cg(hy) --- . Comme G est atoroidal, la proposition 1
implique que les centralisateurs d’éléments dans G sont abéliens et maximaux pour la
propriété d’€tre abélien. La suite Cg(h1) € - € Cg(hy) € - -- estdonc constante.
Donc G possede la propriété max-c.

Cas?2. Ladécomposition JSJ de G a au moins une aréte. Dans ce cas appelons 7' 1”arbre
de Bass—Serre associé a la décomposition JSJ de G. Considérons une suite croissante
{0} #Cs(X1) € --- € Cu(X,) € --- de centralisateurs de sous-ensembles de G,

Affirmation. A partir d’un certain rang les C(X,) ne sont pas infinis cycliques.

Preuve. Si chacun de ces centralisateurs est infini cyclique, et si une infinité de
ces inclusions sont strictes, alors I’ensemble A = UieN Cg(X;) est un sous-groupe
abélien de génération infinie de G. Comme A n’est pas de dimension cohomologique 3
sans quoi il serait de génération finie, ni de dimension cohomologique 1, sans quoi
il serait libre, A est de dimension cohomologique 2. D’apres la classification des
groupes résolubles de dimension cohomologique 2 donnée dans [14], A estisomorphe
a un sous-groupe non cyclique des rationnels additifs et posseéde donc un élément
infiniment divisible 4. Tout les groupes Cg (X;), i € N, seront donc contenus dans le
centralisateur d’un élément / infiniment divisible dans G. D’apres le théoreme 1 1a
suite d’inclusions Cg(X1) € --- € Cg(X,) € - -+ a donc licu dans le conjugué du
stabilisateur d’un des sommets atoroidaux de la décomposition JSJ de G. D apres le
cas 1 ¢’est impossible. O

[’affirmation permet de supposer que Cg(X1) n’est pas infini cyclique. D apres
le théoréme 1, pour chaque entier n, Cg(X,) fixe donc un sommet v, de 7. Si vy
est atoroidal et si Cg (X 1) contient un élément infiniment divisible /4, alors la suite
d’inclusions {0} # Cg(X1) € - € C(X,) € -+ alieu dans le centralisateur de
h et donc dans le stabilisateur d’un sommet de T d’apres le théoréme 1 et le lemme 5.
Elle est donc stationnaire d’aprés le cas 1.

On peut donc supposer que Cg (X 1) ne contient pas d’éléments infiniment divisible
ce qui implique que Ci(X 1) contient un sous-groupe abélien libre de rang 2. On
en déduit que chaque Cs(X,) contient le méme sous-groupe H abélien libre de
rang 2. Supposons que la suite (v, )nen de sommets de 7' ne soit pas stationnaire et
considérons le plus petit entier m pour lequel le sommet de vy, fixé par Ca (X,y,) est
distinctde vy. Alors H fixe vy et vy,. Le corollaire Al du théoréme A de [24] implique
alors que v, est adjacent a vy et que pour tout n € N, v,41 est égal 2 vy ou A vyy,.
Quitte a remplacer la suite d’inclusions {0} # Cg(X1) € --- € Cg(Xy,) € --- par
une sous-suite, on peut donc considerer que tous les C(X,) fixent le sommet vq
de T. D’apres le cas 1, la suite croissante {0} # Cg(X1) € -+ € Ca(X,) < -~
devient alors stationnaire. O
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Remarque. Il découle de Kropholler [22] que le plus petit rang a partir duquel la suite
d’inclusions {0} # Cg(X1) € --- € Cg(X,) C -- - est stationnaire est inférieur ou
égal a 16.

3.4. Commensurateurs dans une PD(3)-paire. On donne maintenant une preuve
du théoréme 2.

Preuve du théoreme 2. Supposons |p| # |g|. Posons H = {(a, b). La preuve du
théoreme consiste a montrer que H admet une présentation de la forme (x, y; yxy~l =
y™). Cela contredit le résultat de Kapovich et Kleiner [20] qu’aucun groupe de
Baumslag—Solitar non trivial (i.e. de présentation (@, b; abPa~' = b?) avec |p| #
lg|) ne peut étre réalisé comme sous-groupe d’un groupe PD(3).

Les deux faits importants suivants sont dus a Kropholler [22].

Fait 1. Commy(h) = H. En effet la relation ab?a—! = b? implique que a €
Commg (b). Donc Commyg (b) = H. Pour chaque g dans 7 il existe donc un entier
p(g) etun entier ¢ (g) tel que gh?® g~ = pe&)

Fait 2. L’application ¥, H N (O, x) qui A g associe \%\ est un homomor-
phisme.
En effet :

hgh?@PW) g=1p =1 _ (popp(8) g=1p=1)7M)

— (th(g)h—l)p(h)

_ (hbp(h)h_1)q(g)

— p2ha(g)

donc W (hg) = ¥ (h)W(g). De plus W est non trivial car par hypothese |p| # |g|.

Affirmation 1. /1 fixe un sommer de ’arbre de Bass—Serre T associé a la décompo-
sition JSJ de G.

Preyve. Remarquons dans un premier temps que b fixe un sommet v de 7. Sinon
la théorie de Bass—Serre implique que » a un axe invariant, A, sur lequel b agit par
translation avec la longueur de translation /() = d(x,bx) # 0 ou x € A. Cette
longueur de translation est additive et invariante par conjugaison de telle sorte que
[(b") = |n| x I(b) et I{aba™") = 1(b). Appliquées a b ces propriétés impliquent
[(abPa™") = [(b7) c’est a dire | p| x 1(b) = |g| x I(b) et donc |p| = |¢| contraire-
ment i I’hypothese. Pour chaque élément ¢ de H on a : d(g~ 1 (v), b?® g~ (v)) =
d(v, ebP g~ 1(v)) = d(v, b?®v) = 0. Donc, bP® fixe ¢~ (v). Comme bP'8) £
{e} fixe v et g~!(v) le lemme 4 implique que g~'(v) est A distance au plus 2 de v.
Donc H envoie v dans un voisinage borné de v. Le groupe H fixe donc un sommet
deT. O
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Le stabilisateur de ce sommet ne peut pas &tre de type Seifert car d’apres le
théoreme VI.2.1 de [18], dans un groupe fondamental de varié¢té de Seifert aucune
paire d’éléments ne peut vérifier de relation de Baumslag—Solitar non triviale. Le
sommet v est donc atoroidal. Considérons I’homomorphisme \V défini ci-dessus.

Affirmation 2. ker(\V) est abélien.

Preuve. Sig € ker(W), alors gh?®) g1 = pP(8) oy gh?® g1 = p=P{&  Donc soit
g commute avec bP'& soit gZ commute avec b8, Dans le second cas, le groupe
engendré par les éléments b? (), g et g2 aun centre non trivial contenant g2. Il est done
inclus dans le centralisateur de g2 dans G,. Comme G, est atoroidal la proposition 1
implique que ce centralisateur est abélien et donc que g commute avec bP(8), Si g;
et g» sont deux éléments de ker ¥, g; commute avec bP81) et g, commute avec
b?(&2) Donc g1 et g; appartiennent a Cg, (bP'817(82)) qui est abélien. Donc g1 et g2
commutent et ker (W) est abélien. O

Puisque b € ker(W), Im(\W) est engendrée par W (a). Comme par hypothese W
est non triviale, W(a) # 1. Le groupe Im(W¥) est donc infini cyclique. Donc H est
une extension d’un groupe abélien par un groupe infini cyclique. En particulier H est
résoluble. Le groupe H ne peut pas étre de dimension cohomologique 3, sinon d’apres
[30] H serait PD(3), donc d’indice fini dans G, et d’apres [31] G serait isomorphe
au groupe fondamental d’une variété de dimension 3. Cela contredirait le fait ( [22]
et [29]) qu’un tel groupe ne contient aucun sous-groupe de Baumslag—Solitar non
trivial. Comme H n’est pas de dimension cohomologique 1 sans quoi il serait libre,
I est de dimension cohomologique 2. La classification des groupes résolubles de
dimension cohomologiques 2 [14] et I’hypothese |p| # |g| montrent que [ admet
nécessairement une présentation de la forme (x, y; yxy b= ymy, O

Les théoremes 1 et 2 permettent de donner une description précise du commen-
surateur d’un élément non trivial dans une PD(3)-paire.

Proposition 4. Soit (G, Q) une PD(3)-paire. Soit h un élément non trivial de G.
Alors si h est non infiniment divisible Commg (h) est nécessairement d’un des quatre
fypes suivants :
(1) Commg (h) est infini cyclique.
(2) Commg (h) est abélien libre de rang 2 ou isomorphe au groupe fondamental
d’une bouteille de Klein.

(3) Commg (h) est isomorphe au groupe fondamental d’une variété de Seifert de
dimension 3.

Si h est infiniment divisible, Commg (h) contient un sous-groupe d’indice au
plus 2 isomorphe a un sous-groupe non cyclique des rationnels additifs.
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Preuve. Soita un élément de Commy; (/4) distinct de 2. Par définition de Commg; (/1)
il existe des entiers p(a) et g(a) tels que a et 7 sont liés par une relation du type
ah?@a=1 = p29 D’aprés le théoréme 2 | p(a)| = |g(a)|. Onen déduit que soita €
Ci (hP'9) soit a? € Cg(hP'@). D aprés la proposition 3 la suite de centralisateurs
Co(h) € Cg(h*) - C Cg(h?) - - - eststationnaire. Il existe donc un entier p tel que
pour tout a € Commg (h) on ait soit a € Cg(h?) soit a> € Cg(h?). Le théoréme 1
permet de conclure. O
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