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Centralisateurs d’éléments dans les PD(3)-paires

Fabrice Castel

Résumé. On établit pour les centralisateurs dans une PD(3)-paire des résultats analogues à

ceux connus pour les centralisateurs dans un groupe fondamental de variété de dimension 3.
Comme dans le cas des groupes fondamentaux de variétés de dimension 3, la preuve de ces

résultats repose sur une décomposition JSJ pour les PD(3)-paires obtenue à l’aide de la théorie
des voisinages algébriques réguliers de Scott et Swarup.
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1. Introduction

Un groupe à dualité de Poincaré de dimension n est un groupe ayant des propriétés
homologiques analogues à celles du groupe fondamental d’une variété de dimension

n fermée et asphérique. Plus précisément un groupe G est dit à dualité de Poincaré de

dimensionn en abrégé :groupePD(n)) s’il vérifie les troispropriétés suivantes :Gest
de type FP, pour tout entier i n Hi(G, ZG) 0 et Hn(G,ZG) est infini cyclique
en tant que groupe abélien. Le groupe G est dit orientable lorsque l’action de G
sur Hn(G, ZG) est triviale, non orientable sinon. Une définition antérieure différente
mais équivalente voir le chapitreVIII de [6] pour une preuve de cette équivalence) de
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groupe PD(n) estdonnée dans [2].Un groupe PD(n) est nécessairement de génération
finie, de dimension cohomologique n et donc sans torsion) et n’a qu’un bout [2].

Un groupe PD(2) est toujours isomorphe au groupe fondamental d’une surface
fermée voir [12]). Pourn 4, M. Davis [9] a construit des groupesPD(n)qui ne sont
pas de présentation finie et ne peuvent donc pas être des groupes fondamentaux de
variétés ferméesde dimension n. Laquestion de savoir siun groupe PD(3) est toujours
le groupe fondamental d’une variété fermée de dimension 3 reste ouverte. Cependant,
C. B. Thomas a montré dans [31] qu’un groupe PD(3) résoluble est isomorphe au
groupe fondamental d’une variété de dimension 3. Plus récemment, B. Bowditch a

montré dans [5] qu’ungroupe PD(3) possédant un sous-groupe normal infini cyclique
est isomorphe au groupe fondamental d’une variété de Seifert de dimension 3. Ce
théorème et un théorème de R. Bieri et J. A. Hillman [4] impliquent qu’un groupe
PD(3) contenant un sous-groupe sous-normal de présentation finie est isomorphe au
groupe fondamental d’une variété fermée de dimension 3.

Une paire de groupes G, est la donnée d’un groupe G et d’un ensemble
de sous-groupes de G. Le double de la paire G, est le groupe obtenu en

amalgamant deux copies de G le long des éléments de Une PD(n)-paire G,
est une paire de groupes telle que le double de G le long de est un groupe PD(n) si

Ø on demande que G soit PD(n)). Une PD(n)-paire G, est donc l’analogue
algébrique du groupe fondamental d’une variété M compacte, asphérique, dont les
groupes fondamentaux des composantes connexes du bord s’injectent dans 1(M)
et correspondent aux éléments de Cette définition implique ([3] et [1]) qu’une
PD(n)-paire G, vérifie les propriétés suivantes : le groupe G est sans torsion, de

dimension cohomologique n - 1 lorsque Ø, n’a qu’un seul bout, et est un

ensemble fini de sous-groupes PD(n - 1) de G.
Pour une PD(3)-paire, G, avec { 1, n}, on introduit la

terminologie suivante :

Definition 1. 1) La paire G, est dite de type Seifert s’il existe une variété de

Seifert M de dimension 3 compacte et connexe, dont le bord est composé de n
composantes connexes S1,. Sn, et un isomorphisme entre G et 1(M) vérifiant
la propriété suivante : pour tout 1 i n, i) est conjugué à 1(Si).

2) Si aucun élément virtuellement abélien de n’est d’indice fini dans G et si
chaquesous-groupe deGabélien libre de rang 2 estconjugué dansGàun sous-groupe
de la paire G, est dite atoroïdale.

Un des principaux résultats sur la structure d’une variétéM de dimension 3,
compacte, connexe et irréductible, découle du théorème de décomposition JSJ le long de

tores incompressibles. Ce théorème implique que 1(M) admet une décomposition
en graphe de groupes dans laquelle :

– les groupes associés aux arêtes de sont virtuellement abéliens libres de rang 2.
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– les groupesassociés aux sommets de sont soit de type Seifert, soit atoroïdaux.

– chaque sous-groupe virtuellement abélien libre de est conjugué dans un des

groupes associé à un sommet de

Le théorème de décomposition JSJ a été montré parW. H. Jaco, P. Shalen ([18]) et

K. Johannson ([19]) dans le cas desvariétés dites Haken.Sa preuve dans le cas général
découle des résultats de P. Scott ([27]), G. Mess ([25]) P. Tukia ([32]), D. Gabai

([13]), A. J. Casson et D. Jungreis ([7]), qui caractérisent les variétés irréductibles
ayant un groupe fondamental atoroïdal.

Dans le chapitreVI de [18] Jaco et Shalen utilisent le théorème de décomposition
JSJ pour décrire la structure du centralisateur d’un élément du groupe fondamental
d’une variété Haken de dimension 3. Ce résultat montre en particulier que si la variété

M est Haken, le centralisateur d’un élément de p1(M) est toujours degénération finie.
Ils montrent également que si M est Haken, pour tout couple a, b) d’éléments de

1(M) la relation abpa-1 bq implique que |p| |q|.
Le butde cet article estde démontrer des résultats analoguesdansunePD(3)-paire.

Plus précisément on démontre les deux résultats suivants :

Théorème 1. Soit G, une PD(3) paire. Soit h unélément non trivial deG.Posons

C CG(h), où CG(h) désigne le centralisateur de h dansG. Si h n’estpas infiniment
divisible, alors C est nécessairement d’un des trois types suivants :

1) C est infini cyclique.

2) C est abélien libre de rang 2 ou isomorphe au groupe fondamental d’une
bouteille de Klein.

3) C est conjugué à un sous-groupe d’indice au plus 2 d’un des morceaux de Seifert
de la décomposition JSJ de G.

Si h est infiniment divisible alors C fixe un sommet atoroïdal de la décomposition
JSJ de G et C contient un sous-groupe d’indice 2 isomorphe à un sous-groupe non
cyclique des rationnels additifs.

Théorème 2. Soit G un groupe PD(3). Soient a et b deux éléments de G. Si a et b
sont liés par une relation du type abpa-1 bq alors |p| |q|.

Remarques. 1) P. Shalen a montré ([28]) que le groupe fondamental d’une variété
Haken M ne contient pas d’élément infiniment divisible. Cette preuve utilise l’existence

d’une hiérarchie de Haken pour M. La question de savoir si un groupe PD(3)
G contient un élément infiniment divisible reste ouverte, même si G est le groupe
fondamental d’une variété fermée et atoroïdale de dimension 3. Dans ce dernier cas,

notons que si la conjecture de géométrisation est vraie, 1(M) ne contient pas d’élément

infiniment divisible. L’éventuelle présence d’un élément infiniment divisible
dans G empêche d’affirmer que le centralisateur dans G d’un élément non trivial est
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toujours de génération finie. C’est pourquoi le théorème de structure des centralisateurs

reste plus précis dans le cadre topologique des variétés Haken que dans le cadre
des groupes PD(3).

2) Le théorème 2 généralise un résultat de M. Kapovitch et B. Kleiner affirmant
qu’un groupe de Baumslag–Solitar Bp,q de présentation a, b; abpa-1 bq ne

s’injecte pas dans un groupe PD(3) lorsque |p| |q| voir section 9 de [20]). La
preuve du théorème 2 utilise leur résultat. Dans le cas des groupes fondamentaux
de variété de dimension 3, le théorème 2 a été montré par P. H. Kropholler [22] et

indépendamment par P. B. Shalen [29].

Tout comme dans le cas des variétés de dimension 3, la preuve de ces résultats
s’appuiesur un théorèmede décomposition JSJ pour lesPD(3)-pairesobtenue à l’aide
de la théorie des voisinages algébriques réguliers de P. Scott et G. A. Swarup voir
chapitre 2

2. Décomposition JSJ pour les PD(3)-paires

Soit G, une PD(3)-paire. Dans cette section on donne la définition de décomposition

JSJ de la paire G, et on explique brièvement comment obtenir une telle
décomposition à l’aide de la théorie des voisinages algébriques réguliers de Scott et

Swarup ([26]).
Soit G un groupe et un graphe de décomposition de G. On rappelle que est

dit minimal lorsque l’arbre de Bass–Serre T associé à ne contient aucun sous-arbre
propre G-invariant. Un sommet v de est dit redondant lorsqu’il vérifie les deux
propriétés suivantes :

– v est de valence 2.

– si e est une arête de incidente à v, l’inclusion du groupe associé à e dans le

groupe associé à v est un isomorphisme.

Soit G, une PD(3)-paire. On suppose que G admet une décomposition en

un graphe fini de groupes, adapté à i.e. tel que chaque sous-groupe de est

conjugué dans un des groupes de sommets de et telle que les groupes associés aux
arêtes de sont abéliens libres de rang 2. Soit T l’arbre de Bass–Serre associé à
et p la projection usuelle de T sur Soit v un sommet de T Soit Gv le stabilisateur
dans G de v. Alors le théorème 8.4 de [3] implique que Gv est le groupe de base

d’une PD(3)-paire Gv, v). Lorsque cette PD(3)-paire est de type Seifert resp.
atoroïdale), on dira que v est Seifert resp. atoroïdal).

Definition 2 décomposition JSJ). Soit G, une PD(3)-paire. Soit un graphe
minimal de décomposition de G en graphe de groupes, adapté à On dit que est

une décomposition JSJ de la PD(3)-paire G, s’il vérifie les propriétés suivantes :
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– 0) n’a pas de sommets redondants.
– 1) La PD(3)-paire de groupes associée à chaque sommet de est soit de type

Seifert, soit atoroïdale.
– 2) Les groupes associés aux arêtes de sont virtuellement abéliens libres de

rang 2.
– 3) Chaque sous-groupe abélien libre de rang 2 de G est conjugué à un

sousgroupe d’un des groupes de sommet de

Onpeut maintenanténoncer le théorèmede décompositionJSJ d’unePD(3)-paire :

Théorème 3. Soit G, unePD(3)-paire. Il existeune décompositionJSJde G,
De plus, deux décompositions JSJ de G, sont G-isomorphes.

Preuve. On prouve d’abord ce théorème dans le cas où G est un groupe PD(3). Le
cas des PD(3) paires G, dont le bord est non vide s’en déduit en amalgamant
à G, le long de chaque élément i de le groupe fondamental d’une variété de

dimension 3 atoroïdale et acylindrique ayant un bord connexe et incompressible.
Pour une telle variétéM i le groupe fondamental 1( i) de la composante connexe
du bord i de M i s’injecte dans 1(M i

et est malnormal dans 1(M i Le
produit amalgamé ainsi obtenu est un groupe PD(3) dont la décomposition JSJ induit
une décomposition JSJ de G.

On suppose donc que G est un groupe PD(3). Le théorème 12.5 de [26]
convenablement adapté au cas des groupes PD(3) suivant les indications données par

Scott et Swarup montre l’existence d’une décomposition de G en un graphe fini de

groupes vérifiant, entre autres, les propriétés suivantes :
1) Les sommets de sont de deux types ; les sommet de type V0 et les sommets

de type V1. De plus deux sommets de même type ne peuvent être adjacents.

2) Les groupes d’arêtes de sont virtuellement abéliens libres de rang 2.

3) Tout sous-groupe abélien libre de rang 2 de G admet un sous-groupe d’indice
fini conjugué dansGà un sous-groupe du groupe d’un sommet de type V0 de

4) Les sommets de type V1 de sont simples dans le sens où la décomposition
ne peut être raffiné en scindant un sommet de ce type le long d’un sous-groupe
virtuellement abélien libre de rang 2.

Cette décomposition de G sera appelée décomposition de Scott et Swarup de G.
Le théorème de Bowditch [5], le théorème 2 de [15], et les méthodes de Dunwoody et

Swenson [11], permettentde montrer que lespairesde groupes associées aux sommets
de type V0 de sont de type Seifert. Soit le graphe de décomposition de G obtenu
à partir de en supprimant les sommets de type V0 pour lesquels l’inclusion des

groupes d’arêtesdans le groupe de sommet est un isomorphisme. Le reste de la preuve
du théorème de décomposition JSJ d’un groupe PD(3) consiste à établir les points
suivants :



504 F. Castel CMH

– Les sommets simples de sont atoroïdaux.

– Lessous-groupes abéliens libres derang2deGsont conjuguésdansdes groupes
de sommets de

– Le graphe a un nombre minimal de sommets Seifert.

– Toute décomposition de G vérifiant les propriétés 1) à 3) de la définition 2 et

possédant un nombre minimal de sommets Seifert est G-isomorphe à

Pour les détails complets de cette preuve, nous renvoyons au chapitre 4 de [8]
voir aussi la section 12 de [26]).

Le théorème 3 a été établi par Kropholler [21] dans le cadre de PD(n)-paires,

n 2 vérifiant l’hypothèse supplémentaire max-c) que toute suite croissante de
centralisateurs est stationnaire. Cependant certains groupes PD(4) ne vérifient pas

cette hypothése ([16]). Il découle de nos résultats que toutes les PD(3)-paires possèdent

la propriété max-c cf proposition 3).
C. T. C. Wall a établi le théorème 3 dans le cas des groupes PD(3) de présentation

finie [33]. Sa preuve repose sur le théorème du tore algébrique de Dunwoody et

Swenson [11] et le théorème de décomposition JSJ de Dunwoody et Sageev [10]
pour les groupes de présentation finie.

3. Centralisateurs dans une PD(3)-paire

Dans cette section, on utilise la décomposition JSJ donnée par le théorème 3 pour
démontrer les théorèmes 1 et 2.

3.1. CentralisateursdansunePD(3)-paire atoroïdale. Lebutde cettesous-section
est de montrer la proposition suivante :

Proposition1. Soit(G, unePD(3)paireatoroïdaleet orientable. Soit hunélément
de G. Alors le centralisateur de h dans G est un sous-groupe abélien de G, maximal
pour la propriété d’être abélien.

On rappelle la définition suivante demorphisme depairesque l’on trouve dans [3].

Definition 3 morphisme de paire). Soient G, et H, des paires de groupes,
avec { i, i I} et { j, j J}. Un morphisme de paires entre G,
et H, consiste en la donnée d’un homomorphisme de G dans H et d’une
application p de I dans J tels que i) p(i) pour tout i I

La définition suivante généralise au cas relatif la notion de degré entre groupes

PD(n) introduite dans [17].



Vol. 82 2007) Centralisateurs d’éléments dans les PD(3)-paires 505

Definition 4. Soient G, et H, desPD(n)-pairesorientableset un homomorphisme

de paires de G, dans H, L’homomorphisme .* deHn(G, ; Z) Z
dans Hn(H, ; Z) Z induit par est appellé degré de

Lemme 1. Soient G, et H, des PD(n)-paires orientables et un homomorphisme

de paires de G, dans H, Si est de degré non nul, alors l’image
G) de G par est d’indice fini dans H.

Preuve. Lorsque les groupesGetH sont PD(n), le résultat vient du lemme 1 de [17].
Lorsque les bords des PD(n)-paires G, et H, sont non vides, notons par ˜
l’homomorphisme naturel induit par allant du double D(G) de la paire G, dans
le double D(H) de la paire H, Un argument standard utilisant les suites exactes
de Mayer–Vietoris relatives montre que si est de degré non nul alors ˜ est de degré

non nul entre les groupes PD(n) D(G) et D(H). Cela implique que ˜ D(G)) est

d’indice fini dans D(H) et donc que G) est d’indice fini dans H).

Le résultat suivantde R. Bieri corollaire 8.9 de [1]) serautilisé àplusieurs reprises
dans la suite.

Proposition 2. Soit C un groupe de dimension cohomologique 2, de génération finie
et non abélien. Soit Z(C) le centre de C. Si Z(C) n’est pas trivial alors Z(C) est

nécessairement infini cyclique et le quotient de C par Z(C) est l’extension d’un
groupe libre par un groupe fini.

Definition 5. Soient G un groupe et H et K des sous-goupes de G.

1) On dit que H et K sont commensurables lorsque H n K est d’indice fini dans

H et K.
2) Le commensurateur de H dans G, noté CommG(H), est le sous-groupe de G

définide la manièresuivante : CommG(H) {g G tels que gHg-1 et H soient

commensurables}.

La preuve des lemmes 2 et 3 a été suggérée par P. Scott.

Lemme 2. Soit G, une PD(3)-paire atoroïdale et orientable. Soit 1 un
sousgroupe abélien libre de rang 2 de G appartenant à Pour tout élément g de G
n’appartenant pas à 1, 1 n g 1g-1 est trivial.

Preuve. Supposons le contraire. Si 1 n g 1g-1 est abélien libre de rang 2, g
CommG( 1). D’après le lemme 2.2 de [24], CommG( 1) 1. Le résultat est donc
vrai dans ce cas.

Si 1 n g 1g-1 L est infini cyclique, appellons c un générateur de L. Quitte
à remplacer 1 et g 1g-1 par des sous-groupes d’indice fini, on peut supposer que
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1/L et g 1g-1)/L sont infinis cycliques et qu’il existe a 1 et b g 1g-1 tels
que 1 est engendré par a et c et que g 1g-1 est engendré par b et c. Le centre du

sous-groupe Z de G engendré par 1 et g 1g-1 est inclus dans CommG( 1) 1

et dans CommG(g 1g-1) g 1g-1 et est donc égal à L. Par construction, Z n’est
pas libre. Comme le bord de la PD(3)-paire G, est non vide, Z est de dimension

cohomologique 2. La proposition 2 implique alors que le quotient de Z par L
est l’extension d’un groupe libre par un groupe fini. Ce groupe libre n’est ni trivial,
sans quoi Z serait infini cyclique, ni infini cyclique, sans quoi Z serait virtuellement
résoluble et donc, d’après la classification des groupes résolubles de dimension
cohomologique 2 donnée dans [14], Z serait abélien libre de rang 2. Comme Z est

engendré par a, b et c, le groupe quotient Z/L est engendré par les projetés a et b

de a et b dans Z/L. Des puissances suffisamment grandes de na et de b
m

engendrent
donc un sous-groupe libre à deux générateurs de Z/L. Quitte à remplacer a et b par

an et bm, on peut donc supposer que a et b engendrent un sous-groupe libre à deux
générateurs de Z/L.

Posons S 1 *L g 1g-1). Le groupe S s’identifie au groupe fondamental de
la variété de Seifert M obtenue en prenant le produit d’un disque à deux trous par un
cercle. Cette identification peut toujours être effectuée de telle sorte que l’homomorphisme

naturel de S dansGapplique isomorphiquement les groupes fondamentaux

H̃ etK̃ de deux des trois bords deM sur 1 et g 1g-1). Soit P̃ le groupe fondamental

du troisième bord de M et {H̃ K̃ P̃} La paire S, est une PD(3)-paire.
On considère deux cas :

Cas 1. P̃ est infini cyclique. Soient c̃ un générateur de H̃ n K̃ et ã H̃ et b̃ K̃
les préimages de a et b dans H̃ et K̃ Par construction on a c̃ c. Soit p̃ P̃
tel que p̃ et c̃ engendrent P̃ Comme ã b̃ et c̃ engendrent S, on peut écrire p̃ comme
un mot m(ã b̃ c̃n, où m(ã b̃ désigne un mot non trivial en ã et b̃ Comme P̃ est

infini cyclique et engendré par c, on a dans Z une relation de la forme m(a, b) ck.

Cette relation se projette dans Z/L en une relation de la forme m(a, b) 1 ce qui
contredit le fait que a et b engendrent un sous-groupe libre de Z/L. Le cas 1 n’est
donc pas possible.

Cas 2. P̃ est abélien libre de rang 2. Dans ce cas, comme la paire G, est

atoroïdale, réalise une injection de P dans un conjugué d’un sous-groupe de

Notons respectivement par
|H̃

et
|K̃

les restrictions de à H̃ et K̃ Considérons

l’isomorphisme a de H̃ dans K̃ défini par : a(h̃ .-1
|gHg-1(g.

|H̃
h̃).g-1).

Remarquons que si c̃ .-1

|H̃
c), alors a(c̃) c̃. Soit S l’extension HNN obtenue

à partir de S en amalgamant H̃ à K̃ au moyen de l’isomorphisme a et P̃ l’image
de P̃ par l’inclusion naturelle de S dans S Le théorème 8.4 de [3] montre que la

paire S P̃ est une PD(3)-paire. Appellons t la lettre stable correspondant à cette
extension HNN. Comme la paire G, est atoroïdale, l’application de S dans
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G appliquant la base S de S sur S) et t sur g est un morphisme de paires entre

S P̃ et G, Comme de plus t.c̃ t-1 a(c̃) c̃, c̃ est dans le centre de S et

le théorème 2 de [15] implique que S est isomorphe au groupe fondamental d’une
variété de Seifert obtenue à partir de M en recollant les bord correspondant à H̃ et

K̃ au moyen d’un homéomorphisme induisant a. D’après la proposition 1.1 de [3],
le morphisme de paire induit le diagramme commutatif suivant de suites exactes
relatives les modules de coefficients sont tous isomophes à Z considéré comme
S -module et G-module trivial) :

·· · H3(S p*

.*

H3(S P̃
d*

.*

H2(P̃
i*

.*

H2(S

.*

· ··

·· · H3(G)
p* H3(G,

d
* H2(

i* H2(G) · ··

Dans ce diagramme on a les identifications suivantes : H3(S H3(G) 0,

H3(S P̃ H3(G, Z, H2(P̃ Z et H2( Zn avec n égal au nombre

de composantes de Comme P̃ P̃ réalise une injection de P̃ dans le

conjuguéd’un élément de L’homomorphisme induit .* deH2(P̃ dansH2( est
donc non trivial. Comme le diagramme ci-dessus est commutatif, cela implique que

l’application .* de H3(S P̃ dans H3(G, est non triviale. L’homomorphisme
est donc de degré non nul. Le lemme 1 montre que S est d’indice fini dans G. En
particulier S est le groupe de base d’une PD(3)-paire et comme S a un centre
non trivial, cette PD(3)-paire est isomorphe au groupe fondamental d’une variété de

Seifert de dimension 3. Donc G est également isomorphe au groupe fondamental
d’une variété de Seifert de dimension 3. Cela contredit le fait que la paire G, est
atoroïdale. Aucun des deux cas précédents n’est donc possible. On en conclut que

1 n g 1g-1 n’est pas infini cyclique.

Lemme 3. Soit G, une PD(3)-paire atoroïdale et orientable. Soient H et K des

sous-groupes abéliens libres de rang 2 de G. On suppose que H n K contient un
sous-groupe infini cyclique. Alors il existe un sous-groupe J de G, abélien libre de

rang 2, tel que H et K soient tout deux des sous-groupes de J

Preuve. Comme G, est atoroïdale, il existedes élémentsg1 etg2 deGet des
sousgroupes 1 et 2 appartenant au bord de la paire G, tels que H g1 1g1-1

et K g2 2g2-1. Si 1 2, le lemme 2 implique que g1-1g2 1 et donc que

les groupes H et K sont inclus dans g1 1g1-1
g2 1g2-1 J Le résultat est vrai

dans ce cas. On peut donc supposer que 1 et 2 sont distincts. Quitte à remplacer
dans le sous-groupe 1 par g1 1g1-1 et le sous-groupe 2 par g2 2g2-1 on peut
supposer que H 1 et que K 2. Soit L H n K. Si L est abélien libre de

rang 2, le lemme 2.2 de [24] implique le résultat.
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On suppose donc que L H n K est infini cyclique engendré par l’élément c.

Quitte à remplacer H et K par des sous-groupes d’indice finis, on peut supposer que

H/L et K/L sont infinis cycliques et qu’il existe a H et b K tels que H est
engendré par a et c et que K est engendré par b et c. Posons Z le sous-groupe de G
engendré par H et K. En utilisant la proposition 2 de la même manière que dans le

lemme 2, on peut supposer que les projections a et b de a et b dans Z/L engendrent
un sous-groupe libre à deux générateurs.

Posons S H *L K. Le groupe S s’identifie au groupe fondamental de la variété
de Seifert M obtenue en prenant le produit d’un disque à deux trous par un cercle.
Cette identification peut toujours être effectuée de telle sorte que l’homomorphisme
naturel de S dansGapplique isomorphiquement les groupes fondamentaux H̃ etK̃
de deux des trois bords deM sur H et K. Soit P̃ le groupe fondamental du troisième
bord de M et {H̃ K̃ P̃ } Comme P̃ contient L, P̃ n’est pas trivial.

On considère deux cas :

Cas 1. P̃ est infini cyclique. On montre comme dans le cas 1 du lemme 2 que ce

cas n’est pas possible en construisant une relation non triviale dans le sous-groupe

libre de Z/L engendré par a et b.

Cas 2. P̃ est abélien libre de rang 2. Dans ce cas, comme la paire G, est
atoroïdale, il existe g G et 3 tel que P̃ g 3g-1. Si 3 1 ou si

3 2 le lemme 2 implique que S) 1 ou que S) 1. Comme S)
contientH etK cela implique que 1 2 ce qui est impossible. Quitte à remplacer
dans le sous-groupe 3 par le sous-groupe g 3g-1 on peut donc supposer que
définit un morphisme de paires entre S, et G, Considérons le diagramme
commutatif de suites exactes relatives suivant les modules de coefficients sont tous

isomophes à Z considéré comme S-module et G-module trivial) :

· · · H3(S) p*

.*

H3(S, d*

.*

H2( i*

.*

H2(S)

.*

· · ·

· · · H3(G)
p* H3(G,

d
* H2(

i* H2(G) · · ·

Comme H3(S) H3(G) 0, H3(S, H3(G, Z, H2( Z3 et

H2( Zn avec n égal au nombre de composantes de ce diagramme devient :

· · · 0 p*

.*

Z d*

.*

Z3 i*

.*

H2(S)

.*

· · ·

· · · 0
p* Z

d
* Zn

i* H2(G) · · ·

Comme injecte H̃ et K̃ dans 1 et 2, l’application induite .* de H2( dans

H2( est non triviale. Considèrons :
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– e un générateur de H3(S;
– a un générateur de H3(G;
– e1, e2, e3 une base de H2(
– a1, an une base de H2(
On suppose de plus que les notations sont telles que e1 et e2 correspondent aux

générateurs deH2( donnés parH̃ etK̃ et quea1 et a2 correspondent auxgénérateurs
de H2( donnés par 1 et 2. En particulier .*(e1) et .*(e2) sont des multiples de

a1 et de a2. Comme de plus P̃ n’est pas infini cyclique, injecte P̃ dans 3 et

on peut donc également supposer que .*(e3) est un multiple de a3. En particulier .*
induit un homomorphisme injectif de H2( dans H2( Comme le diagramme est

commutatif, cela n’est pas possible si le degré de est nul. Donc le degré de n’est
pas nul et le lemme 1montre que S) est d’indice fini dansG. Cela implique comme
dans le lemme 2 que G est isomorphe au groupe fondamental d’une variété de Seifert
de dimension 3, ce qui contredit le fait que la PD(3)-paire G, est atoroïdale. On
en déduit que le cas 2 n’est pas possible, d’où le résultat.

Preuve de la proposition 1. Soient a1, a2, deux éléments de G commutant avec h. Il
faut montrer que a1 et a2 commutent. On va considèrer trois cas.

Cas 1. Les groupes a1, h et a2, h sont tout deux abéliens libres de rang 2. Le
lemme 3 nous assure alors que a1 commute avec a2.

Cas 2. Le groupe a1,h est abélien libre de rang 2 et le groupe a2, h est infini
cyclique. Le conjugué de a1, h par a2 est alors le groupe a2a1a2-1, h qui est
aussi abélien libre de rang 2. D’après le lemme 3, ces 2 groupes sont commensurables.

On en déduit que a2 CommG( a1,h Comme a1,h est conjugué dans

un des sous-groupes du bord de la paire G, le lemme 2.2 de [24] montre que

CommG( a1, h est PD(2). Comme la paire G, est orientable, CommG( a1,h
ne peut être isomorphe au groupe fondamental d’une bouteille de klein. On en déduit
que CommG( a1, h est abélien libre de rang 2 et a1 commute avec a2.

Cas 3. Les groupes a1, h et a2, h sont tous deux infinis cycliques. Considérons
le groupe C a1,a2,h Si C n’est pas abélien, C vérifie les hypothèses de la

proposition 2.On endéduit queC aun centre infini cycliqueengendré par un élémentt
et que C/ t est l’extension d’un groupe libre L par un groupe fini. Le groupe L n’est
pas trivial sinon t serait d’indice fini dans C et C serait infini cyclique et donc
abélien. On en déduit que le groupe C/ t possède un élément d’ordre infini x Si x
est un antécédent de x dans C, x,t est abélien libre de rang 2. Comme a1, a2 et x
commutent avec t le cas 2 successivement appliqué aux groupes x, h a1,h et

x, h a2, h montre que x commute avec a1 et a2. Donc x appartient au centre t
de C ce qui contredit le choix de x qui se projette dans C/ t sur un élément d’ordre
infini. Donc C est abélien.

Le faitqueC soit maximal pour la propriété d’êtreabélien dansGestévident.
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3.2. Centralisateurs dans une PD(3)-paire. Dans cette sous-section, on donne
une preuve du théorème 1.

Lemme4. Soit(G, unePD(3)-paire dans laquelleGn’estpasungroupe virtuellement

abélien libre de rang 3. Soit la décomposition JSJ de G. On suppose non
réduite à un sommet. Soit T l’arbre de Bass–Serre associé à Soit un chemin dans

T Alors si les stabilisateurs de chacune des arêtes de ont un élément non trivial h
en commun, la longueur de est inférieure où égale à 2.

Preuve. Remarquons qu’aucun sommet intérieur à ne peut être atoroïdal, sinon,
d’après le lemme 3, les arêtes de ce sommet stabilisées par h auraient des stabilisateurs

commensurables. Cela contredirait le corollaire A1 du théorème A de [23] qui
assure que si G se scinde au dessus de sous-groupes PD(2) S et S et si S et S sont

commensurables, alors S S Supposons maintenant que 2 sommets intérieurs a et

b de soient adjacents et Seifert. Soient Ga et Gb les stabilisateurs de ces sommets.
Comme h est commun à deux sous-groupes 1 et 2 deGa associés à des arêtesde T
incidentes à a, h est un élément du sous-groupe normal infini cyclique de Ga. Sinon

1 et 2 auraient en commun h et un élément du sous-groupe normal infini cyclique
de Ga et seraient donc commensurables. Cela contredirait à nouveau le corollaireA1
du théorème A de [23]. L’élément h de G est donc commun au sous-groupe normal
infini cyclique deGa et au sous-groupe normal infini cyclique deGb. Le sous-groupe

Ga,Gb engendré par Ga et Gb a donc un sous-groupe normal infini cyclique
engendré par un élément c. Comme Ga, Gb est le produit amalgamé deGa et deGb le
long d’un élément de leurs bords, Ga, Gb est donc un groupe de type Seifert. Soient

ga et gb des éléments de Ga et Gb n’appartenant pas au sous-groupe normal infini
cyclique de Ga, Gb Alors ga.gb ou ga.gb)

2 commute avec c et n’est conjugué
dans aucun groupe de sommet de la décomposition JSJ de G. Cela contredit la

propriété 3) de la définition 2. Le chemin contient donc au plus deux arêtes.

Lemme 5. Soit G, une PD(3)-paire admettant une décomposition JSJ non
triviale. Soit h un élément non trivial de G et C := CG(h) son centralisateur dans G.
Alors si h fixe un sommet v de l’arbre de Bass–Serre T associé à la décomposition
JSJ de G, C fixe un sommet de T

Preuve. La preuve découle de l’affirmation suivante :

Affirmation. Si a est un élément de C alors a fixe un sommet v de T situé à une
distance inférieure ou égale à 2 de v.

Preuve. Si a, h est infini cyclique, il existe un élément t de G et des entiers n et

m tels que : tn a et tm h. En particulier tm fixe le sommet v de T L’élément

t fixe donc un sommet v de T Cela implique que h fixe les sommets v et v de T
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Le lemme 4 assure alors que v est à distance au plus 2 de v. L’affirmation est donc
vraie dans le cas où a, h est infini cyclique.

Si a,h est abélien libre de rang 2, la propriété 3) de la définition 2 assure que

a, h fixe un sommet v de T L’argument précédent assure donc à nouveau que v
se trouve à distance au plus 2 de v. Cela termine la preuve de l’affirmation.

Pour tout a C on a alors : d(v, a(v)) d(v, v + d(v a(v)) d(v, v +
d(a(v a(v)) 4. On en déduit que C déplace v à distance bornée de lui même et

donc que C fixe un sommet de T

Nous donnons maintenant la preuve du théorème 1.

Preuve du théorème 1. On peut supposer que G n’est pas virtuellement abélien libre
de rang 3, sans quoi le résultat est connu. De plus quitte à passer à un sous-groupe de

G d’indice au plus 2, on peut supposer que la paire G, est orientable. Si C n’est
pas abélien, il existe deux éléments a1 et a2 deC quine commutentpas. En particulier,
le groupe K engendré par a1,a2 et h satisfait les hypothèses de la proposition 2. Le
centre de K est donc infini cyclique engendré par un élément c et le groupe quotient

K/ c est l’extension d’un groupe libre L par un groupe fini. Comme K n’est pas

abélien, L n’est pas trivial et contient donc un élément non trivial x. En particulier le

groupe x,c est abélien libre de rang 2 et, comme h est une puissance de c, le groupe

x, h est également abélien libre de rang 2. La propriété 3) de la définition 2 montre
que h fixe un sommet de l’arbre de Bass–Serre T associé à la décomposition JSJ

de G. Le lemme 5 implique alors que C fixe un sommet v de T Comme C n’est pas

abélien v est de Seifert. Les propositions II.4.5 et II.4.7 de [18] montrent alors que C
est conjugué à un sous-groupe d’indice au plus 2 d’un des morceaux de Seifert de la

décomposition JSJ de G.
Si C est abélien et si C n’est pas infini cyclique, la classification des groupes

résolubles de dimension cohomologique 2 donnée dans [14] permet de conclure.
Pour montrer la dernière affirmation du théorème, supposons h infiniment divisible.

Si h ne fixe aucun sommet de l’arbre de Bass–Serre T associé à la décomposition
JSJ de G, h a un axe invariant unique, A, sur lequel h agit par translation avec

la longueur de translation l(h) d(x, hx) > 0 ou x désigne un élément
quelconque de A. Cette longueur de translation est additive, c’est a dire vérifie l’égalité

l(hn) n × l(h) pour chaque entier n. Si h est infiniment divisible, pour chaque
entier m, il existe un élément a de G tel que am h. On aurait alors l(h) m×l(a)
et l(h) serait infini. C’est absurde. L’élément h de G fixe donc un sommet de T Le
lemme 5 montre alors que C fixe un sommet v de T Ce sommet n’est pas Seifert car
cela contredirait le fait qu’aucun groupe fondamental de variété de Seifert ne
contient d’élément infiniment divisible ([28]). On en déduit que v est atoroïdal et donc
d’après la proposition 1 que C est abélien. La classification des groupes résolubles
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de dimension cohomologique 2 donnée dans [14] montre que C est isomorphe à un

sous-groupe non cyclique des rationels additifs.

Corollaire 1. Soit G, une PD(3)-paire dans laquelle G n’est pas virtuellement
abélien libre de rang 3. Soit H un sous-groupe de G non virtuellement abélien et

à centre non trivial Alors H est conjugué à un sous-groupe d’un des morceaux de
Seifert de la décomposition JSJ de G. En particulier, H est un groupe de variété de
Seifert de dimension 3.

Preuve. Soient h, un élément non trivial du centre de H, et CG(h) le centralisateur
de h dans G. Comme H CG(h) et comme H n’est pas virtuellement abélien, le

théorème 1 montre que CG(h) est nécessairement conjugué à un des morceaux de
Seifert de la décompostion JSJ de G.

3.3. Propriété max-c. Le but de cette section est de montrer la proposition 3 qui
assure que toutes les PD(3)-paires possédent la propriété max-c. Remarquons que
Kropholler a prouvé dans [22] que les groupes fondamentaux de variété de dimension

3 possèdent cette propriété.

Definition 6 propriété max-c). On dit qu’un groupe G possède la propriété max-c
lorsque toute suite croissante {0} CG(X1) ·· · CG(Xn) · · · de centralisateurs

de sous-ensembles X1, Xn, de G devient stationnaire.

Proposition 3. Soit G, une PD(3) paire. Alors G possède la propriété max-c.

Preuve. Quitte à passer à un sous-groupe d’indice 2 de G on peut se contenter de

montrer le résultat dans le cas où la paire G, est orientable. SiGest virtuellement
abélien libre de rang 3, G est le groupe fondamental d’une variété de dimension 3 et

possède donc la propriété max-c ([22]). On considère la décomposition JSJ de G. On
distingue deux cas.

Cas 1. La décomposition JSJ de G est triviale : elle n’est composée que d’un sommet

Seifert ou atoroïdal. Si ce sommet est Seifert alors G est isomorphe au groupe
fondamental d’une variété de Seifert de dimension 3 et possède donc la propriété max-c
d’après [22].

On suppose donc le sommet atoroïdal. Considérons une suite croissante {0}
CG(X1) · · · CG(Xn) · · · de centralisateurs de sous-ensembles de G. On
montrequepour tout h1 X1,CG(X1) CG(h1). Il estclairqueCG(X1) CG(h1).
Soit x un élément de X1 distinct de h1 et g un élément non trivial de CG(X1). Alors
g commute avec x et h1. Donc x et h1 sont des éléments de CG(g). D’après la

proposition 1, CG(g) est abélien donc x commute avec h1 et comme CG(h1) est

abélien tout élément de G commutant avec h1 commute avec x. Donc CG(h1)
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CG(X1). On montre de la même manière que pour tout n, si hn Xn alors CG(Xn)
CG(hn). La suite croissante {0} CG(X1) · · · CG(Xn) · · · devient donc une

suite {0} CG(h1) · · · CG(hn) · · · Comme G est atoroïdal, la proposition 1

implique que les centralisateurs d’éléments dansGsont abéliens et maximaux pour la

propriété d’être abélien. La suite CG(h1) · · · CG(hn) · · · est donc constante.

Donc G possède la propriété max-c.

Cas 2.LadécompositionJSJ deGaaumoinsune arête.Dans ce cas appelons T l’arbre
de Bass–Serre associé à la décomposition JSJ de G. Considérons une suite croissante

{0} CG(X1) · · · CG(Xn) · · · de centralisateurs de sous-ensembles de G.

Affirmation. À partir d’un certain rang les CG(Xn) ne sont pas infinis cycliques.

Preuve. Si chacun de ces centralisateurs est infini cyclique, et si une infinité de
ces inclusions sont strictes, alors l’ensemble A i.N CG(Xi) est un sous-groupe
abélien degénération infiniedeG.CommeAn’est pasde dimension cohomologique 3
sans quoi il serait de génération finie, ni de dimension cohomologique 1, sans quoi
il serait libre, A est de dimension cohomologique 2. D’après la classification des

groupes résolubles de dimension cohomologique2donnée dans [14], Aest isomorphe
à un sous-groupe non cyclique des rationnels additifs et possède donc un élément
infiniment divisible h. Tout les groupes CG(Xi), i N, seront donc contenus dans le

centralisateur d’un élément h infiniment divisible dans G. D’après le théorème 1 la

suite d’inclusions CG(X1) · · · CG(Xn) · ·· a donc lieu dans le conjugué du
stabilisateur d’un des sommets atoroïdaux de la décomposition JSJ de G. D’après le
cas 1 c’est impossible.

L’affirmation permet de supposer que CG(X1) n’est pas infini cyclique. D’après
le théoréme 1, pour chaque entier n, CG(Xn) fixe donc un sommet vn de T Si v1
est atoroïdal et si CG(X1) contient un élément infiniment divisible h, alors la suite
d’inclusions {0} CG(X1) · · · CG(Xn) · · · a lieu dans le centralisateur de

h et donc dans le stabilisateur d’un sommet de T d’après le théorème 1 et le lemme 5.
Elle est donc stationnaire d’après le cas 1.

Onpeut donc supposer queCG(X1) necontient pasd’éléments infinimentdivisible
ce qui implique que CG(X1) contient un sous-groupe abélien libre de rang 2. On
en déduit que chaque CG(Xn) contient le même sous-groupe H abélien libre de
rang 2. Supposons que la suite vn)n.N de sommets de T ne soit pas stationnaire et

considérons le plus petit entier m pour lequel le sommet de vm fixé par CG(Xm) est

distinct de v1. Alors H fixe v1 et vm. Le corollaireA1 du théorèmeA de [24] implique
alors que vm est adjacent à v1 et que pour tout n N, vn+1 est égal à v1 ou à vm.
Quitte à remplacer la suite d’inclusions {0} CG(X1) · · · CG(Xn) · · · par
une sous-suite, on peut donc considèrer que tous les CG(Xn) fixent le sommet v1
de T D’après le cas 1, la suite croissante {0} CG(X1) · · · CG(Xn) · · ·
devient alors stationnaire.
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Remarque. Il découle de Kropholler [22] que le plus petit rang à partir duquel la suite
d’inclusions {0} CG(X1) · ·· CG(Xn) · ·· est stationnaire est inférieur ou

égal à 16.

3.4. Commensurateurs dans une PD(3)-paire. On donne maintenant une preuve
du théorème 2.

Preuve du théorème 2. Supposons |p| |q|. Posons H a, b La preuve du

théorème consisteàmontrerqueH admetune présentationde la forme x,y; yxy-1

ym Cela contredit le résultat de Kapovich et Kleiner [20] qu’aucun groupe de
Baumslag–Solitar non trivial i.e. de présentation a,b;abpa-1 bq avec |p|
|q|) ne peut être réalisé comme sous-groupe d’un groupe PD(3).

Les deux faits importants suivants sont dus à Kropholler [22].

Fait 1. CommH(b) H. En effet la relation abpa-1 bq implique que a

CommH(b). Donc CommH(b) H. Pour chaque g dans H il existe donc un entier

p(g) et un entier q(g) tel que gbp(g)g-1 bq(g)

Fait 2. L’application H - Q+,×) qui à g associe p(g)
q(g)

est un homomorphisme.

En effet :

hgbp(g)p(h)g-1h-1
hgbp(g)g-1h-1 p(h)

hbq(g)h-1 p(h)

hbp(h)h-1 q(g)

bq(h)q(g),

donc hg) h) g). De plus est non trivial car par hypothèse |p| |q|.
Affirmation 1. H fixe un sommet de l’arbre de Bass–Serre T associé à la décomposition

JSJ de G.

Preuve. Remarquons dans un premier temps que b fixe un sommet v de T Sinon
la théorie de Bass–Serre implique que b a un axe invariant, A, sur lequel b agit par

translation avec la longueur de translation l(b) d(x, bx) 0 où x A. Cette
longueur de translation est additive et invariante par conjugaison de telle sorte que

l(bn) |n| × l(b) et l(aba-1) l(b). Appliquées à b ces propriétés impliquent

l(abpa-1) l(bq c’est à dire |p| × l(b) |q| × l(b) et donc |p| |q| contrairement

à l’hypothèse. Pour chaque élément g de H on a : d(g-1(v), bp(g)g-1(v))
d(v, gbp(g)g-1(v)) d(v, bq(g)v) 0. Donc, bp(g) fixe g-1(v). Comme bp(g)

{e} fixe v et g-1(v) le lemme 4 implique que g-1(v) est à distance au plus 2 de v.
Donc H envoie v dans un voisinage borné de v. Le groupe H fixe donc un sommet
de T
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Le stabilisateur de ce sommet ne peut pas être de type Seifert car d’après le

théorème VI.2.1 de [18], dans un groupe fondamental de variété de Seifert aucune
paire d’éléments ne peut vérifier de relation de Baumslag–Solitar non triviale. Le
sommet v est donc atoroïdal. Considérons l’homomorphisme défini ci-dessus.

Affirmation 2. ker( est abélien.

Preuve. Si g ker( alors gbp(g)g-1 bp(g) ou gbp(g)g-1 b-p(g) Donc soit
g commute avec bp(g) soit g2 commute avec bp(g). Dans le second cas, le groupe
engendrépar les élémentsbp(g),g etg2 a uncentre non trivial contenant g2. Il est donc
inclus dans le centralisateur de g2 dans Gv. Comme Gv est atoroïdal la proposition 1

implique que ce centralisateur est abélien et donc que g commute avec bp(g). Si g1
et g2 sont deux éléments de ker g1 commute avec bp(g1) et g2 commute avec
bp(g2). Donc g1 et g2 appartiennent à CGv bp(g1)p(g2)) qui est abélien. Donc g1 et g2
commutent et ker( est abélien.

Puisque b ker( Im( est engendrée par a). Comme par hypothèse
est non triviale, a) 1. Le groupe Im( est donc infini cyclique. Donc H est

une extension d’un groupe abélien par un groupe infini cyclique. En particulier H est
résoluble. Le groupeH ne peut pas être dedimension cohomologique 3,sinon d’après
[30] H serait PD(3), donc d’indice fini dans G, et d’après [31] G serait isomorphe
au groupe fondamental d’une variété de dimension 3. Cela contredirait le fait [22]
et [29]) qu’un tel groupe ne contient aucun sous-groupe de Baumslag–Solitar non
trivial. Comme H n’est pas de dimension cohomologique 1 sans quoi il serait libre,
H est de dimension cohomologique 2. La classification des groupes résolubles de

dimension cohomologiques 2 [14] et l’hypothèse |p| |q| montrent que H admet
nécessairement une présentation de la forme x, y;yxy-1 ym

Les théorèmes 1 et 2 permettent de donner une description précise du commensurateur

d’un élément non trivial dans une PD(3)-paire.

Proposition 4. Soit G, une PD(3)-paire. Soit h un élément non trivial de G.
Alors si h est non infiniment divisible CommG(h) est nécessairement d’un des quatre
types suivants :

1) CommG(h) est infini cyclique.

2) CommG(h) est abélien libre de rang 2 ou isomorphe au groupe fondamental
d’une bouteille de Klein.

3) CommG(h) est isomorphe au groupe fondamental d’une variété de Seifert de
dimension 3.

Si h est infiniment divisible, CommG(h) contient un sous-groupe d’indice au
plus 2 isomorphe à un sous-groupe non cyclique des rationnels additifs.
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Preuve. Soit a un élément de CommG(h) distinct de h. Par définition de CommG(h)
il existe des entiers p(a) et q(a) tels que a et h sont liés par une relation du type
ahp(a)a-1 hq(a). D’après le théorème 2 |p(a)| |q(a)|. On en déduit que soit a

CG(hp(a)) soit a2 CG(hp(a)). D’après la proposition 3 la suite de centralisateurs

CG(h) CG(h2) · · · CG(hq · · · est stationnaire. Il existe donc un entier p tel que

pour tout a CommG(h) on ait soit a CG(hp) soit a2 CG(hp). Le théorème 1

permet de conclure.
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