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Arakelov theory of even orthogonal Grassmannians

Harry Tamvakis*

Abstract. We study the Arakelov intersection ring of the arithmetic scheme OG which para-
metrizes maximal isotropic subspaces in an even dimensional vector space, equipped with the
standard hyperbolic quadratic form. We give a presentation of the ring CH(OG) (when OG(C)
1s given its natural invariant hermitian metric) and formulate an ‘arithmetic Schubert calculus’
which extends the classical one for the cohomology ring of OG. Our analysis leads to a com-
putation of the Faltings height of OG with respect to its fundamental embedding in projective
space, and a comparison of the resulting formula with previous ones, due to Kaiser and Kohler
[KK] and the author [T3], [T4].

Mathematics Subject Classification (2000). Primary 14G40; Secondary 14M15, 05EQ.
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1. Introduction

In this paper we continue the author’s study of the arithmetic intersection theory of
projective schemes X defined over the ring of integers whose fiber at infinity is a
homogenecous space of a complex Lie group. The theory is most explicit when X(C)
is a hermitian symmetric space of compact type. In this case, the Arakelov Chow
group CH(%) of Gillet and Soulé [GS1] admits a natural ring structure, which is the
focus of our attention here.

The compact irreducible hermitian symmetric spaces have been classified by
[, Cartan [C]. Among them, the most interesting families are the type A Grassman-
nians and the maximal isotropic Grassmannians in the other classical Lie types. The
papers [GS2], [Mal], [T2] and [T3] studied the Arakelov Chow ring of Grassmannians
(in type A) and the Lagrangian Grassmannian (in type C), respectively. We consider
here the case of the even orthogonal Grassmannian OG = OG(n 41, 2n + 2), which
parametrizes (one family of) isotropic subspaces of dimension » 4+ 1 in a (2n 4 2)-
dimensional vector space equipped with a smooth quadratic form, over any base field.

*The author was supported in part by NSF grants DMS-0296023 and DMS-0401082.
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Although similar to the Lagrangian case, as we shall see, the analogous theory for
OG is substantially more difficult.

The key ingredient used in these works is the theory of characteristic classes for
algebraic vector bundles equipped with hermitian metrics [BC], [GS2]. Indeed, there
is a tautological short exact sequence of hermitian vector bundles over OG

€:0 S E 0 0,

and the arithmetic Chern classes ¢; of @ = S* together with the harmonic forms
on OG(C) generate CH(OG). We now have to deal with the following three main
problems: (i) find a presentation of CH(OG) in terms of generators and relations, (ii)
determine an arithmetic Giambelli formula which gives polynomials in the genera-
tors which represent ‘arithmetic Schubert classes’, and (iii) describe algorithms for
computing the structure constants in the multiplication table of CH(OG); this is the
arithmetic Schubert calculus (compare with [KT, §1]).

If A,+1 denotes the ring of symmetric functions in # 4 1 variables, then we have
an arithmetic characteristic class map

®: Appp —> CHOG); f —> f(S).

The crucial fact 1s that ¢ 1s multiplicarive; this implies that the same polynomials
in the Chern classes of S* that solve the Giambelli problem in cohomology may
be used to define the arithmetic Schubert classes. Moreover, since P is an algebra
homomorphism, it may be used, together with a presentation of the Arakelov Chow
ring CH(OG), to understand the products of Schubert classes in CH(OG), following
[T2], [T3].

The added difficulty here is that there is an extra relation in the standard presenta-
tion of CH(OG), when compared to the Chow ring of the Lagrangian Grassmannian.
According to Borel [Bo], the ring CH(OG) 1s generated by the Chern classes of S
modulo the relations (i) ¢(S)c(S*) = 1 and (ii) ¢,41(S*) = 0. In the arithmetic
setting, the Whitney sum relation (i) becomes

&(S) - (8 =1+ (0,38,

where (&) is a Bott—Chern form for the exact sequence &, which may be evaluated as
in the works cited previously. However, the second relation implies that the arithmetic
top Chern class &,41(S*) is the class of a harmonic differential form in CH(OG),
whose computation is more challenging. To solve this problem, we first show that the
desired form is a constant r,, times the class of the Chern form ¢, (S). The exact value
of r, 1s determined 1n §5, by comparing the formula for the Faltings height of OG
derived from the arithmetic Schubert calculus with the more complicated expression
for the same height in [T4, Thm. 6]. We note that the latter formula was obtained
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using a result of Kaiser and Kohler [KK], proved by completely different methods,
in addition to our work [T3] in the Lagrangian case.

The results of this paper were announced at the International Conference on
Arakelov Geometry in Luminy in May of 2002. The author is grateful to Vincent
Maillot and Christophe Soulé for their efforts in organizing this stimulating event.
Thanks are also due to Ira Gessel and Guoce Xin for their help with the proof of the
hypergeometric identity in Proposition 2, and to the anonymous referee for a careful
reading of the manuscript.

2. The Arakelov Chow ring CH(OG)

Let k be any field, E a vector space over k of dimension 2n + 2, and leteq, ..., ex,42
be a basis of unit coordinate vectors in 2. Define a hyperbolic quadratic form g on
E by setting, for any vector v = ) xje;,

Ggly) = X Xoppa+ XoXoppy 4+ = K1 ¥nge-

The scheme of g-isotropic subspaces of maximal dimension # 4 1 splits into 2 con-
nected components, which are SO(2x 4 2) orbits; subspaces V and V' lie in the same
orbit (or family) if dim(V N V) = (n + 1) (mod 2). The orthogonal Grassmannian
O0G = OG(n + 1, 2n 4 2) 1s the scheme which 1s 1somorphic to the component
containing Span{ey, ..., ¢,41}, over any base field k. This is a smooth Chevalley
scheme over Spec Z, which admits a cellular decomposition induced by the Bruhat
decomposition of SO(2r + 2) (seee.g. [J, §13]).

We also let £/ denote the trivial vector bundle of rank 2n + 2 over OG and S the
rank » + 1 tautological subbundle of E. Using the quadratic form ¢, we can identify
the quotient bundle E/S with S*. We thus have a universal short exact sequence

€:0 S & S* 0

of vector bundles over OQG.

For any abelian group M, we let M 1= M ey Z[%] According to Borel [Bo], the
Chow ring CH(OG) 1 1s presented as a quotient of the polynomial ring in the Chern
classes of S* modulo the relations

(D) e(S)e(ST =1, (i) cap1(S7) =0.

Relation (1) comes from the Whitney sum formula applied to &, while (i1) may be
understood as follows. Let 1 be a hyperplane in £ such that the restriction of g to
M is non-degenerate. As H contains no isotropic subspace of dimension n + 1, the
sequence of vector bundles over OG

0—SNH—S—LE/H—0 (1)
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is exact. Since the line bundle . = E/H is trivial, we deduce that c,11(S) =
cp(SN H)er(L) = 0in CH(OG).

Letx = {X1, ..., Xp+1}denote the Chernroots of $*. Each symmetric polynomial
¢ in the {x;} corresponds to a characteristic class ¢ (S*) in CH(OG). In terms of the
root variables {x; }, observe that relation (i) above may be written as [ [, (1 —xiz) =1.1t
follows that we can express CH(OG) 1asa quotient of the ring Z 1 [X1, ..., Xpp1]0H

modulo the relations
(1) ek(xz) =0, 1<k<n, (i) ep+1(X) =X1 - Xpp1 =0,

where e (x?) 1= ex(x. ..., x;,;) denotes an clementary symmetric function in the
squares of the root variables. Note thatnot all of the above root variables are necessary
in order to obtain a presentation. Indeed, setting x,4+1 = 0 realizes CH(OG) Lasa

quotient of the ring Z 1 [X1,..., %] modulo the relations ek(x%, cee xﬁ) = 0, for
1 < k < n. However, the ‘extra’ root variable will be important in the arithmetic
setting.

We next give an analogous presentation of the Arakelov Chow ring CH(OG) 1 the
beginning of our analysis follows that of [Ma], [T1], [T3]. Endow the trivial bundle
E(C) over OG(C) with a (trivial) hermitian metric /2 compatible with the quadratic
form g (i.e., such that the real part of # is the symmetric bilinear form on E(C)
induced by ¢). The metric / induces metrics on the bundles S, S*, and & becomes a
sequence of hermitian vector bundles

&:0 S E S* 0.

The Kihler form wog = ¢1(S*)/2 turns OG(T) into a hermitian symimetric space
with compact presentation

0G(C) = SO(2n +2)/Un + 1).

Let G = (OG, wog) denote the corresponding Arakelov variety, in the sense of
[GST1].

The Chow ring CH(OG) and the ring Harm(OGp) of real wgg-harmonic differ-
ential forms on OG(C) are related by natural isomorphisms

CH(OG) ®z R = Harm(OGp) = H*(0G(C), R), (2)

where the third ring H*(OG(C), R) is cohomology with real coefficients.

Elements in the Arakelov Chow group CH? (OG) are represented by arithmetic
cycles (Z, gz), where Z is a codimension p cycle on OG and gz is a current of type
(p — 1, p — 1) such that the current dd°gz + 8z(c) is represented by a differential
form in Harm? ¥ (OGp). Since the homogeneous space OG admits a natural cellular
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decomposition, it follows that for each p, the exact sequence of [GS1, §3.3.5] is of
the form

0 — Harm?~17=1(0Gy) % CHP (OG) - CHZ(0G) — 0,  (3)
where the maps « and ¢ are defined by

a(n) =(0,n) and §(Z,gz)="Z.

Summing (3) over all p gives the sequence

0 —> Harm(OGp) — CH(OG) —> CH(0G) —> 0. @)

For any symmetric polynomial ¢, we will also require the differential forms ¢ (S*)
in Harm(OGp ) given by Chern—Weil theory, and the arithmetic characteristic classes
$(§*) in CH(OG). As in [T2], [T3], we agree that symmetric functions ¢ (x) and
i (x) in the formal root variables x = {X{, ..., X,11} and x = {x1, ..., x,} denote
arithmetic classes q@(g*) and characteristic forms v (S*), respectively. The latter are
identified, via the inclusion a, with elements in CH(OG).

Consider the abelian group

A=Z1[%1, ..., %01 IV S Rxq, ..., x, ]
2

We adopt the notational convention that & denotes & & 0, 8 denotes O @ S and any
product [ ] «; B, denotes 0 @ [] «;B;, and define a product - in A by imposing the
relations & - B = «ff and B; - B = 0. In the first of these relations, the specialization
@ — o means that we remove the ‘hats’ from all the variables x; and set the extraneous
variable x,41 equal to zero. Define the harmonic numbers ¥, by

1 1
Jerzl—i———i—..._l__
2 r

and let p,(x) = > x/ denote the r-th power sum in the variables x;.
Consider the following two sets of relations in A:

Ri: (x> =0, 1<k<n,
. _ . 1
Ryt er(®) = (=D oty 1pu1(x), 1<k <n, ep1(R) = > Hnen(x),

where ej denotes the k-th elementary symmetric function in the indicated variables.
Let 4 denote the quotient of the graded ring A by the relations R and R».

Theorem 1. There is a unique ring isomorphism
b A — CH(E)%

such that B B
P (er(x)) = i (S™).,  Pler(x)) = c(SH).
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Proof. The initial part of the argument is similar to that in [T2, Thm. 1], so we will
outline the essential points. The inclusion and projection morphisms

Rlxy, ...l —> A = Zy[f1, - dpga
induce an exact sequence of abelian groups:
0 —> RIx1, ..o 5]/ (R1) —> A = Zyldr, 17/ (R2) — 0 (5)

where the relations R are defined by
Ry ex(3) =0, 1<k<n, ep(®) =0.

To show that ® is an isomorphism one uses the isomorphisms (2), the relations (1),
(i1) in CH(OG) L and the five lemma to identify the short exact sequences (4) and

(5) (as in loc. cit.). Our definition of the product - agrees with the CH(G)-module
structure of the square zero ideal Harm(Gp) <— CH(G) (see [GS1]).
The first set of n relations in K> come from the equation

&(S) - &(S*) =1+ E(8).

Here &(&) is the image in CH(G) of the Bott—Chern form of the exact sequence & for
the total Chern class (see [BC] and [GS2]). According to [T1, Prop. 3], we have

&(8) = (=173t pj_1(S%)

for all ;j; note that Ej(g) vanishes when j is odd. If we express the two previous
equations using root notation we obtain

4 52 k-1
ep(X7, s Xy0q) = (1) Hok_1p2k—1(x1, . . ., Xp)

for 1 < k < n. These are the first set of relations in R>.
The last relation in [R3 is new, and is equivalent to the equation

~ R 1 Tk
Cnp1(S7) = Eﬂncn(s ). (6)
We first claim that there is a constant r,, such that

Ent1(S*) = rpen(SY). (7)

To see this, observe that &, 1(S*) lies in Ker(¢ ), and hence is the image (under a) of a
linear combination of harmonic forms of degree 2n on OG(C). These harmonic forms
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are Poincaré dual to Schubert classes on OG; hence ¢,,41 (E*) 18 a linear combination
of Schubert forms 1, = 7, (S*) (see §3.2).

Next, consider the natural inclusion j : OG(n, 2rn) — OG(n+1, 2rn+2) obtained
by writing the vector space E = k** @ k*. The bundle j*S splits as an orthogonal
directsum S, &L, where S,, is the tautological hermitian vector bundle over OG(n, 2n)
and L is a trivial hermitian line bundle. Tt follows that j*¢,,1(S*) = 0. The point
now is that each Schubert form t; of degree 21 on OG(n + 1, 2n 4 2) restricts (o a
corresponding (non-zero) Schubert form t; on OG(n, 2n), with the exception of the

special Schubert form ¢n (S*), which vanishes when restricted to OG(n, 2n). This
proves the above claim (7). More work is required to obtain the precise value of the
constant r,, ; we will do this after we study arithmetic Schubert calculus on OG. O

Remark. As in [T3, §2], the relations R and R, may be expressed in the form

n
Ri: []a—xh =1,
i=1

" n+1 1 s
R ﬂ(l—)?jztz)'(l-l-%(x,f)):l’ qijzaﬂnnxi

where ¢ is a formal variable (note that R} uses the multiplication in A). Here

n

dale, ) = LZ (log(l +xi0)  log(l —xit)) .

Zi—l 1+ x;t 1 — x;t

We next give a presentation of CH(OG) and CH(OG) with integer coefficients.
For this, we will use the special Schubert classes t; and t;, defined by

1 L, =
l’kZECk(S*), 1<k<n and sziék(S*), l<k<n+1

The Chow ring CH(OG) is a quotient of the polynomial ring Z[tq, ..., 7,] modulo
the relations
k—1
T2 (D tigptiop + (— D =0
p:l
forall 1 < k < n (this presentation for the cohomology ring may be derived e.g. from

[P, §6]). To obtain the analogous presentation of CH(OG), as above, we ideﬂfy the
7;’s with the images under the map a of the special Schubert forms in CH(OG).
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Theorem 2. The ring CH(OG) is presented as a quotient of the polynomial ring

Z[T1, ...y Tpa1 | ®R[1y, ..., T, ] (With the aforementioned product) modulo the rela-
tions
k—1
T2 (P rrgptiop + (— Doy =0
p=1

for all k < n, together with the arithmetic relations

k—1

) . ) 1

%2 +2 ) (—DP Thtpthp + (— D o = = Hua del(rici jea1 - (8)
p=1

and 1
fn-i—l = Eﬂn Ty.

7 . % % ’ o . . ’ i i .
Here {‘L’ij} is a matrix with T ;= J Tlgj—i and T = Tipj—i fori > 1,

Proof. The left hand side of equation (8) is related to e;(£7) by the formula

nt+1 n+1 nt+1
(1 +23° fknk) ~ (1 +22(—1)’kan’“) =TT - &2, ©)
k=1 k=1 i=1

where 7 is a formal variable. Expanding both sides of (9) and equating terms of like
degree gives

k—1 k

. . . (=DF

B2 +2 ) (=D Tk pth-p + (—1) o = — e (5. (10)
p=1

Relation R equates the right hand side of (10) with —1 #y_1 par_1(x). We now
use the formula from [M, Ex. 1.2.8] which expresses the power sums as a polynomial
in the elementary symmeiric functions. This gives

p2r—1(x) = det(t{ 1<, j<2k—1-

The rest of the relations in the theorem are clear. O

3. Arithmetic Schubert calculus

3.1. P -polynomials. We will require the basic facts about partitions and their Young
diagrams which were used in [T3]. A partition A = (Aq, ..., A,) with distinct non-
zero parts A; is called stricr. The length £(X) 1s the number of non-zero parts A;,
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and the weight |x| = > ;. Each partition A is identified with its Young diagram of
boxes, and this is used to define the containment relation A O p for partitions. We let
Dy, denote the set of strict partitions A with A1 < »n. The shifred diagram of a strict
partition A, denoted 4(1), is obtained by shifting the i-th row of the diagram of A
i — 1 squares to the right, for each i > 1 (see Figure 1). For A O pu, the shifted skew
diagram S(x/p) is obtained by removing the boxes in 4(x) from those of £().

Figure 1. A and 8(1) for A = (4,2, 1).

The P -polynomials of Pragacz and Ratajski [PR] will be useful in our description
of Schupert calculus on NOG. Let X = (Xy, ..., X,;) be an n-tuple of variables and
define Po(X) = 1 and P;(X) = ¢;(X)/2 for each i > 0. For nonnegative integers
i, Jwithi > j, set

j—1
P j(X) = P(X)Pi(X) 42 (—=DFP (X)) P (X)) + (=1 Py (X),
k=1
and for any partition A of length £ = £(A), not necessarily strict, define
P.(X) = Pfaffian[ P, ;, (X)]1<i< <.
where r 1s the smallest even integer such that r = £(2).
These polynomials are related to the @-polynomials used in [13] by the equation

P(X) =270, (X). (11)

If A/, denotes the Z-algebra generated by the polynomials P, (X) forall » € D,, then
Ay, is isomorphic to the ring A, = Z[X 1*» of symmetric polynomials in X, and the
set {P5(X) | 21 < n}is a free Z-basis of AJ,. Tt follows that there exist integers ffu,
independent of #, such that

PuX) Pu(X) =) S, Po(X). (12)

The corresponding coefficients e} u in the expansion of the product @ A (X) é n(X)
are related to the ffu by the equation

exﬂ s zﬁ(k)%-ﬁ(ﬂ)—ﬂ(v)ffw
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There are explicit combinatorial rules (involving signs in general) for comput-
ing the integers ffﬂ, which follow from corresponding formulas for decomposing
products of Hall-Littlewood polynomials. When A, o and v are strict partitions,
the f)l’u are classical Schubert structure constants for OG(n + 1, 2n + 2), and hence
nonnegative.

Recall that a skew Young diagram g /A s a horizontal strip if it has at most one box
in each column. Define the connected components of such a diagram by specifying
that two boxes are connected if they share a vertex or an edge. We then have the
following Pieri type formula for A strict:

P(X) Pr(X) = 2N P (x), (13)
[

where the sum is over all partitions ¢ D A with || = |A| + &k such that p/A 1S a
horizontal strip, and N (A, p) 1s one less than the number of connected components
of p/A. In particular, we have

P(X)Py(X) = Py (X) (14)

forall A € D,,.
In [T3, Prop. 1] we proved a combinatorial formula for the product Q7 (X)¥,
which implies that

PN = 3" gt Px). (15)
|A|=N

Here g” denotes the number of proper standard tableaux of shape A, in the sense of
[T3, §3]. We say that a standard tableau 7" on A is proper if for each position (i.;)
of a box in A, there 18 an odd number of entries of 7 which (1) lie in positions (k, j)
for some k£ > i and (ii) are less than the (i, j + 1) entry (the condition is vacuous if
X has no box in the (i, j + 1) position). In case A is strict, g* counts the number of
standard tableaux of shape 4(4), and is given by an explicit formula due to Schur [S]
(see also [M, Ex. IT1.8.12]):

o Tl =2y

= ni Al ni<j()ki +)¥j). (16)

3.2. Classical theory. We review here the classical Schubert calculus which de-
scribes the multiplicative structure of CH(OG) with respect to the basis of Schu-
bert classes, following [P, §6]. We agree that 7;(x) will denote P;(x), where
X = {X1,..., Xy} are the Chern roots of the vector bundle S* (we have set the last
root variable x,41 = 0 here). Similar conventions are used when dealing with P-
polynomials in the other two kinds of root variables discussed in §2.
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The abelian group CH(OG) is freely generated by the Schubert classes 7;(x) =
75, (S™), for all strict partitions x in D,,. Recall that 7; (x) is the class of the codimension
|x| Schubert variery X;,, defined as follows: if {e;} 1s the basis of £ chosen in §2 and
It = Span {eq, ..., e) then X, parametrizes the set

[V € OGKk) | Sm(V N Fyyi_p,) =i for 1 <i <00}

over any base field k.
The formulas in §3.1 give the following multiplication rules in CH(OG): for any
two partitions i, ;0 € Dy,

nEE = Y fLniE; (17)

veDy,

the non-negative integers ff’u are the structure constants in CH(OG). When p = k&
is a single integer then 7, (x) = 7 (x) is a special Schubert class, and (17) specializes
to the following Pieri rule (due to Hiller and Boe [HB]):

nmx) =y 2N, (x) (18)

the sum over all (strict) partitions ;0 O A with |p| = |A| + &k such that @ /A 18
a horizontal strip, with N (A, ;) defined as in §3.1. Since OG(C) is a hermitian
symmetric space, (17) and (18) are valid on the level of harmonic differential forms
on OG(C).

3.3. Schubert calculus in CH(OG). We are now ready to extend the classical
Schubert calculus described in §3.2 to CH(OG). An edge-connected skew diagram
y is called a rim hook if it contains no 2 x 2 square; the height ht(y) of » is one less
than the number of rows it occupies. We define, in the context of shifted diagrams, a
double rim 10 be the skew diagram formed by the union of two rim hooks which both
end on the main diagonal A = {(i,1) | 1 > 0}. Each double rim § = « U # is a union
of two non-empty edge-connected pieces; « consists of the diagonals of length two
in & (which are parallel to A) and f = § ~ « is a rim hook. In this case we say that
the double rim is of type (% ||, |£]); a double rim of type (2, 3) appears in Figure 2.
For any such double rim é and for any single rim hook vy, let

8(8) = (_1)|Ot|/2+ht(ﬁ)2 and £(y) = (_1)ht(1/)'

Define p (n) to be the partition (n, n—1, ..., 1), so that D, consists of those strict
partitions A with A C p(n). Following [T3, §4.2], we let £, be the set of non-strict
partitions A with A7 < » such that exactly one non-zero part r, of A occurs more
than once, and further, r;, occurs 2 or 3 times. In addition, let £/ be the set of strict
partitions of the form (n + 1, &), where A" C p(n — 1). Define a map

E,UE, — Dy: A+ A
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as follows: if A € Ej, let 2 be A minus two of the repeated parts r;, and if A =
(n+ 1,01, let 2 = (n, A"). For example, if n = 6, » = (6,5,5,5,2), and p =
(7,5,2),then A = 1 = (6, 5, 2).

Suppose that » € E, and p € D, are two Young diagrams with || = [A] — 1.
We say that there is a shifted hook operation from A to p if the shifted skew diagram
£(j/1) is a rim hook or double rim (with 2r; — 1 boxes). If A € E!, we say that
there is a row operation from A to p if ;o = A. A mixed operation from » € E, U E)
to ;. € Dy is a shifted hook operation (if A € E,) or a row operation (if A € £/ ) from
A to p. Figure 2 illustrates three mixed operations to the partition (5, 3, 2), when
n=>5.

I

Figure 2. One row and two shifted hook operations to (5, 3, 2).

It is clear that there is at most one mixed operation from A to p; it determines an
integer ¢, € {==1, &2} defined by

__eorteswsay itae k.
S B if % e £
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and a rational number 9/ by

on _ |38t 1 i A € En,
Ly, if A € Ej.

If there is no mixed operation from 2 to  then set %' = 0.

Next we define the arithmetic structure constants ﬂVM: forany v € E, and A,
strict such that |v| = |A| + || — 1 let

fﬂlju: Z ﬁgffu (19)

pelb, UL,

where the ff ., are defined by (12). Observe that only partitions o such that there is a
mixed operation from p to v contribute to the sum (19).

Theorem 3. (a) Ler p be an integer between 0 and (”H) + 1. Each element 7 €
CH? (OG) has a unique expression

g Z CATA(JE)+ Z '}/)Lfl(x)’

)\.EDn AEDFI
[Al=p [A|=p—1

where ¢; € Zand y;, € R.
(b) For & and v in D, we have the multiplication rules

n@E @ = Y L@+ Y fn),

ve Dy veDy
[v|=[A]+] ] [v]=[A]+ ] =1

L) @ = Y fm),

UEDﬂ
[VI=|2]+]p]

n(x) - 7,(x) =0.
Proof. 'The argument is similar to the proof of [13, Thm. 2], and we will discuss the
main points here. First, we use the morphism e: CH(OG) — CH(OG) defined by

e(13(x)) = 7,(x) (for each & € D,) to split the exact sequence (4). We thus obtain
an isomorphism of abelian groups

CH(OG) = CH(OG) & Harm(OGp),

proving the statement in part (a). By the definition, the 7; (x) for A € D, are the
arithmetic Schubert classes.
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The only difficulty in part (b) lies in proving the first equality. We use the fact
that the arithmetic characteristic class map is an algebra homomorphism; this gives
the identity

nE) @) = ) @+ Y S (20)
ve Dy peEnUE,(l
vI=Irl+lel | pI=IA1+ el

All of the classes 1, (x) which appear in the second sum in (20) lie in the image of
a: Harm(OGpr) — CH(OG), and it remains to equate them with explicit harmonic
forms on OG(C). This is done in the following result.

Proposition 1. For partitions » € E, U E}, we have

nE) =) 85 x), (21)

the sum over all v € D, thar can be obtained from & by a mixed operation. If
Ag Dy UE,UE thent)(x) =0,

Proof. Tor A € [E,, the relation (11) between P- and Q-polynomjals and [T3,
Eq. (18)] give

(1!
4

here we have used the first set of relations in Ry of §2. The following rule for
multiplying a P-polynomial by a power sum p,(x) with r odd in Harm(OGgp) is
derived from [T3, Eq. (19)]:

1
n(#) = 775(%) cep, (£%) = Hor, —1 P2, —1(X)T5.(x); (22)

Pr(0)Tu(x) =2 e(8(v/u))7y (%), (23)

the sum over all strict v O p with |v| = || 4 r such that £(v/u) 1s a rim hook or a
double rim. One now combines (22) with (23) to prove (21) in the case when A € ;.

IfA=(n+1,1") € E, weuse equation (14) twice and the last relation in Ry to
obtain

T(X) = Tap1 (%) T (%) = SHaTa(x) - T () = S Hamy ().
Finally, the fact that Im(a) is a square zero ideal in CH(OG) implies that for all

partitions A with A ¢ D, U E, U E/, we have 7, (x) = 0. This completes the proof
of the proposition. O

To finish the proof of Theorem 3, substitute (21) in the second sum in (20) and
gather like terms. O
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The Pieri formula (13) is used to obtain the following special case of Theorem 3:

Corollary 1 (Arithmetic Pieri rule). Let C(X, k) be the set of partitions 1 O A with
|pe| = |A| + k such that /i is a horizontal strip. Then for & € D, we have

@) = Y 2V @) + 3 (Y 2V 00 )n ),

3 I

where the first (classical) sum is over p € D, N C(A, k) and the second sum is over
vand pwith p € (E, U El) N C(A, k).

4. The Faltings height of OG

In this section, we use arithmetic Schubert calculus to compute the Faltings height
of OG with respect to its fundamental embedding in projective space. This is the
embedding given by the generator L of Pic(OG) with e1(L) = 71(S*). In geometry
the degree of OG(k) (for any field k) with respect to L = @ (1) is given by

deg1y (0G(k)) = g™, (24)

This 1s a direct consequence of equation (15). The Falungs height [F] of OG under
its fundamental embedding is an arithmetic analogue of the geometric degree (24).
The natural invariant metric on projective space induces a hermitian metric on L.

The height of G with respect to L = @(1) is the number
htg,,,(0G) = deg(é1(O(1)" | 0G) = deg(r{ (+)). (25)

Here the arithmetic degree map deg is defined as in [BGS] and d = ("3 + 1is the
absolute dimension of OG. We have an equation

tld(-f) = Wy Tp(n) (x) = wy Tp(n)(g*)

in CH(OG), for some rational number w,,. The height (25) is then given by

1 = wy,

The last equality holds because 7, ;) (S*) is dual to the class of a point on OG(C).

Theorem 4. The height of the orthogonal Grassmannian G with respect to o (1) is

given by
1 _ 1 _
htg,, (0G) =35 > (=120 g1 4 7 7 g thet=l - (26)
0<a+2b<n
a,b=0

where 8;; Is the Kronecker delta.
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Proof. We recall the fundamental set of diagrams & (n) from [T3, §5]. First, we agree
that a single rim hook £ which ends on the main diagonal of a shifted diagram is a
double rim of type (O, |#]). Then

En)={la,bly|a.b >0, 0<a+2b <n}

where [a, b], denotes the unique diagram A € E, of weight 4 such that $(p(n)/x)
is a double rim of type (a, 2b 4+ 1). For example, one has

€4) ={10,0l4, [1,0l4, [2,014, [3, 014, [0, 114, [1, 1]4}
=14,3,2,1,1), (4,3,2,2), (4,3,3,1),
4,4,2,1), (4,2,2,2,1), (3,3,3,2)}.

The partitions in &(n) are exactly those which admit a shifted hook operation to
p(n). Moreover, (n 4+ 1, p(n — 1)) is the unique partition with a row operation to
p(n). We now use equation (15) and Proposition 1 to obtain

@ = Y gn@) + " ) ()
LEEM)

1 _
= Z glﬁf(n)fp(n)(x) . 5 Jen g(ﬂ+l,f0(ﬂ 1))tp(n)(x)~
re&(n)

The sum 1n the last equation is evaluated exactly as in the proof of [ T3, Thm. 3], and
we obtain formula (26). O

It is clear from equation (26) that htg(l) (O@G) is a number in Zi’; 1 ﬁZ.

Examples. If n = 1, 0G(2,4) = P! and the formula gives htam(OGQ, 4)) =
For n = 2 we have €(2) = {[0, 0], [1, 0]z} = {(2,1, 1), (2, 2)} and the relevant
numbers are gD =2 022 =1 and ¢3!V = 2. Theorem 4 now gives

L
2.
g

1 1 13
ht5,,(0G(3, 6)) = E(}{’1 + J3) + S ==

which coincides with the Faltings height of P?, as expected. The case of n = 3 gives
the height of the six dimensional quadric OG(4, 8). The required g numbers are

g(3,2,1,1) — 8, 8(3,2,2) = 3, 8(3,3,1) — 4, g(2,2,2,1) =1, g(4,2,1) — F.

It follows that

181
(0G4, 8)) =24 +3H3 +2H5 = —

htﬁ(l) 5
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This agrees with the known result from [CM, Cor. 2.2.10]. Finally, when n = 4 we
find (using the computer program Magma) that

g(4a3’231>1) — 88’ g(4a3’2>2) — 30’ g(4’3>331) — 36’ g(4>432>1) — 41’
g(4,2>2,2,1) =22 g(3,3,3,2) =8, g(5,3,2>1) — 66,

and therefore

1
htg,,,(0G(5,10)) = 5(445991 1936, 4 33364 + 2835 + 41 36).

5. A comparison of height formulas

In this section we finish the proof of Theorem 1 by computing the exact value of the
constant r, in (7). This will be done by comparing the height formula derived in the
last section with the corresponding formula from [T4]. If we substitute r; in place of
F, /2 1 the last relation R; of §2 and carry out the subsequent analysis in §3 and
§4, we arrive at the following formula for the height of OG under its fundamental
embedding:

htg,,(0G) = Z (=1)P27%0 Hy, oy 00 4 22 glatlpt=1) 7

0<a+2b <A
a,b>=0

For each a, » = 0 with a 4+ 2b < n, let {a, b}, denote the partition in D, whose

setof parts is {1, ..., n} ~ {a + 2b + 1, a}. The more complicated formula for the
Faltings height of OG obtained in [T4, Thm. 6] states that
nd 1 _
hig,(0G) = —&”™ + = > (=D"27° Haap011 &1
O<a+2b<n
a,bz0
1 (—1)42=%0 d
EETD e ol OIS L
Oga;%na—k + a-—+ 2o+

Subtracting (27) from the previous equation, we obtain

—8,
1 o) _y, gr+1on=1) 5 L ‘ gl (28)
2 = a+b+1 \2a+2b+2

a,b=0
We are fortunate that all of the g numbers in (28) are indexed by strict partitions, and
hence may be computed using formula (16). This gives

d
= gp(ﬂ) (29)

(n+1,p(—1)) _
& 2
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and, setting (s, f) = (a +2b + 1, a),

d (a.b) d s —1 (n+s){n+1)! o)
g tin = g,
s+r+1 s +t+1D) s+t (s+D)!stel(n—5)(n —1)!

(30)
Using (29) and (30) in (28), we deduce that the desired equation r, = #,/2 1s
equivalent to the identity displayed in the next Proposition.

Proposition 2.

(—1)! §—1t (n4+ ) (n+1)! _ 1
2 s+1+1D2 s+t (s+0!stet(n—s)l(n —1)! =H gt Al

O<lf<s<n
s+t odd

Proof. 1eta, denote the left hand side of (31). For n > 1, we have

_, (D s =D =1+ n—1+0)
an =1 =2 ) GHi+12G+0lstln—5)(n—1)

O<r<s<n
s+ odd

Hence it will suffice to prove that, for n > 1,

g Z (1Y s—Dn—14+!m—1+0 :i(l_i)‘
s+Ht+D2G+)st!n—s)n—0! 2n 2n

0<t<s<n
s+t odd

We now substitute s = « — ¢ in the above summand and express the sum over ¢ using
hypergeometric notation. Observe that this introduces an extraneous term of 1/x?

when u = —1. We obtain the equation
1) .
The identity from [B, §4.3, (3)] for a well-poised 5 F4 implies that

. _ _ 1 — 1, u
4F3(_ i, 1_ u/2, ’2 n_ 1) _ ( Li)nl(z ‘: 2)11’ 32)
u/2, 1 —u+n,1—u—n (U (7 _ 7)”

where (x), = x(x +1)---(x + n — 1) is the Pochhammer symbol. Now substitute
(32) into the previous formula for S, set u = 2v — 1, and express the result as a
hypergeometric series. We obtain that

1).

ul’(n +u) ( —u, 1 —u/2, —n, n

S+— = F
e %dnr(u+2)2r(n+1—u)4 N—u/2, l—utn 1—u—n

1
By —Hy —5

1. 1

4n25—|—l:3F2(
2
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The 3 F> transformation formula

_ _ i — _ o _
3F2( n,a,b‘1>:(c @) ( a)”st( noa,at+b—c—d+1 n‘1>

c, d () (d)y a—d+1—n,a—c+1—n
witha = —1/2,b =n,c=1,and d = 1/2 gives
i, — i - . —1. -1
3F2(n’ S 1) = (%)n '3F2( Tl 1)
L3 ($n —n, =3 =1
S
:(2n—i—1)'2F1( {2 1):2}1,
-1 -
where the last equality follows by Gauss’s hypergeometric theorem. Therefore
g 1 1
C 2n 4n?’

as desired.
Guoce Xin has pointed out a different proof of (31), using a variant of Zeilberger’s
creative telescoping method [PWZ, §6]. Let

(—1)! s —1 (n+s)!(n+1!
(s+t+D2 s+t G+ n—5)!(n—1)

Fn,s, t) =

Applying Zeilberger’s algorithm, one shows that the second difference
A*Fin,s,0) = Fn+2,5,1) —2Fn+1,5,0)+ Fn,s,1)
satisfies
A*F(n,s,0) = Gn,s,t) — G(n,s + 1,0) + H(n,s,t) — H(n,s,t + 1), (33)

where

G(nst)—(_l)té ¥ (n+ ) (n+1)!
T NS G0 2 — ) (2 — 1)!

and
B 1 (n+s)(n+1t)!

Ns+t@s+Dsttl(n+2—sn+2—-1)!
Here N = (n+ 1)(n + 2) and

Hn,s, 1) = (—1)

A=N>1+20—)N+ (1 —0)(s>+1);
B=N?1(2s* -2 —dst + s + ON + (¢ — 1)(25° + 5%t — 5% + 1% +51).
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Equation (33) is checked by dividing both sides by F(n, s, t), and verifying the
resulting identity of rational functions. Let b, = 2n — #,. To prove (31), it suffices

to show that
202, = A2, = — (34)
n n N .
Equation (34) is proved by summing (33) over all s, with O < 5,7 < n + 2 and

noting that
1

(G(n,s,1)+ H(n,s,1))]s=1=0 = & O
Remark. It would be interesting to have a direct computation of the constant r,,, for
instance by evaluating the Bott—Chern form of the exact sequence (1), or an analogous
sequence over isotropic flag bundle of £ — OG. Although more elementary than
the above comparison of heights, the combinatorial analysis required by such a direct
approach appears difficult.
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