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Topologie locale des espaces de feuilletages en surfaces des variétés
fermées de dimension 3

Audrey Larcanché

Résumé. Dans cet article, on montre que, sur toute variété fermée et orientable de dimension 3,
deux feuilletages de codimension 1 qui sont orientables, tendus et suffisamment proches sont
homotopes parmi des feuilletages présentant en général) des composantes de Reeb.

Classification mathématique par sujets. 53C12, 57D30.

Mots clefs. Feuilletage tendu, composante de Reeb, homotopie.

1. Introduction

Étant donnés deux feuilletages F1 et F2 de même dimension d sur une variété M,
peut-on déformer continûment F1 en F2 Si une telle déformation existe, les champs
de plans tangents T F1 et T F2 sont homotopes dans l’ensemble des sous-fibrés de
dimension d de TM. Mais cette condition n’est pas clairement suffisante : pour
être tangent à un feuilletage, un champ de plans sur M doit vérifier une condition
d’intégrabilité dite de Frobenius ([12], pp. 163–171) et on ne sait pas si parmi les

homotopies de T F1 à T F2, l’une d’elles est constamment intégrable.
Dans la suite, on se place sur une variété M fermée, orientable et de dimension 3

sauf mention contraire. Tous les objets considérés seront de classe C8 et on notera

F1(M) l’espace des feuilletages orientables de codimension 1 sur M muni de la

topologie C8 voir §2.1).

Théorème 1. Soit F un feuilletage tendu de F1(M) voir §2.5). Alors, il existe un
voisinage V F de F dans F1(M) tel que pour tout feuilletage F dans V F on

peut trouver une application continue f : [0, 1] F1(M) telle que f 0) F et

f 1) F

Ce résultatne nous permet pas de dire si l’espace des feuilletages transverses à une

fibrationen cercles est localementconnexe par arcs puisque les feuilletages considérés
au cours de l’homotopie ne restent pas dans V F par construction. En particulier,
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le théorème ne répond pas à la conjecture de Rosenberg selon laquelle l’espace des

feuilletages de codimension 1 du tore T3 transverses à la fibration naturelle de T3 sur
T2 est connexe par arcs voir §3.4). Toutefois, on a un peu plus que le théorème 1 :

Théorème 2. Soit F un feuilletage tendu sur M. Il existe un voisinage V F de F
dont l’inclusion dans F1(M) est homotope à une application constante cependant,
cette homotopie n’est pas une rétraction a priori).

Enfin, le théorème 2 prend une forme plus globale dans un cas particulier intéressant.

Supposons queM est l’espace total d’une fibration localement triviale en cercles
sur une surface de Riemann fermée de genre g 1 et supposons vérifiée l’inégalité
de Milnor–Wood | M)| 2g- 2 où M) est la classe d’Euler du fibré – ceci pour
que l’espace F des feuilletages de M transverses aux fibres ne soit pas vide. Alors,
on a le

Théorème 3. F est homotope à un point dans F1(M).

Plan de cet article. Au paragraphe 2 on fait quelques rappels utiles. Dans une

troisième partie on motive le problème par quelques exemples. La section 4 contient
la construction-clef de ce travail ; elle consiste à trouver une section continue de
l’application qui associe à un feuilletage du tore solide sa trace sur le bord dudit
tore. Ceci se fait en adaptant une construction de Thurston qui fournissait, par une

méthode un peu différente, une section a priori discontinue de Au paragraphe 5,
on prouve d’abord le théorème 3 puis le théorème 2. Les deux preuves empruntent le
même chemin, mais dans la seconde il y a des difficultés supplémentaires à lever car
on contrôle moins la géométrie de F et plus du tout celle de M.

Remerciements. Je tiens à remercier tout particulièrement Michel Belliart qui m’a
prodigué de nombreux conseils et encouragements au cours de la rédaction de cet

article. Je tiens également à remercier le referee dont les suggestions ont grandement
contribué à améliorer la première version de cet article. Pour les mêmes raisons, je

remercie également Christian Bonatti et Patrice Le Calvez, rapporteurs de ma thèse

dont cet article est extrait.

2. Préliminaires

Dans cette section, on décrit les outils principaux utilisés dans la preuve de nos

théorèmes.

2.1. Topologie des espaces de feuilletages. Notons G1(m) la grassmannienne des

plans de Tm(M) et G1(M) le fibré en grasmanniennes au-dessus de M obtenu en
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associant à tout plan tangent à M son point base ce fibré est localement trivial et

a pour groupe de structure GL(3,R)). Étant donné un feuilletage F de M, on peut
lui associer son champ tangent T F qui est une section de G1(M) et l’application
F T F est injective. Identifiant F1(M) à son image par celle-ci, dans la suite,
on munit F1(M) de la topologie induite par son inclusion dans l’espace des sections

C8 de G1(M) muni de la topologie de Whitney. Le fait suivant, que nous utiliserons
régulièrement, est alors évident :

Fait. SoitK uncompact deM.Au-dessus deK donnons-nous un champ continu k
tk, soit de droites, soit de plans tangent(e)s à M. Alors, l’ensemble des feuilletages

F F1(M) tels que TkF soit transverse à tk en tout point de K est un ouvert de

F1(M).

2.2. Voisinages tubulaires feuilletés. Nous rappelons rapidement le fait suivant :

Proposition 2.2.1. Si t est une courbe fermée simple transverse à un feuilletage
de F1(M), tout voisinage tubulaire assez petit de t s’identifie à t × D2 par un
difféomorphisme envoyant les feuilles sur les disques {*} × D2.

Remarque 2.2.2. C’est une particularité des feuilletages orientables en surfaces de
codimension 1 : lorsque M est une variété de dimension n munie d’un feuilletage

F de codimension q et N une sous-variété fermée de dimension q transverse à F
il existe bien un voisinage tubulaire U de N dans M et une fibration p de U sur N
de fibre Rn-q tels que F coïncide avec la fibration sur U ; cependant, cette fibration
n’est plus en général triviale et U n’est donc plus homéomorphe au produit de Rn-q

par N cette propriété n’a lieu que si le fibré normal à N dans M est trivial).

2.3. Un problème de lissage. SoientM une variété fermée orientable de dimension

n et une hypersurface fermée transversalement orientable intérieure à M.
MunissonsM d’un champ de vecteurs auxiliaire X de classe C8 partout transverse à un

tel champ existe bien puisque le fibré normal à dansM est trivial). Notons t,x)
l’image de x par le flot de X au temps t. Si P est une partie quelconque de M et si r
est un réel strictement positif, nous convenons de noter Pr la partie ] - r,r[×P)
de M. Fixons enfin un réel e > 0; le lemme suivant nous sera utile :

Lemme 2.3.1. Soit T l’ensemble des feuilletages transversalement orientables,
transverses à et de codimension 1 sur M. Soit TX le sous-ensemble de T dont les

feuilletages sont invariants par le flot local de X sur e. Alors, il existe une application

continue h: [0, 1] × T T telle que pour tout F T on ait h(0, F F
et h(1, F TX.

Preuve. Définissons d’abord une homotopie auxiliaire de M. Pour cela, nous
introduisons une fonction de [-2e, 2e] dans lui-même, impaire, croissante, de classe
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C8 telle que s) 0 pour s [-e, e], s) > 0 pour |s| .]e, 2e] et s) s

au voisinage de -2e et 2e. Ensuite, pour t [0, 1] et x M, posons .t x) x si
x M - 2e et .t( s, y)) 1- t)s + t.(s),y) si x s, y) 2e avec

y et s [-2e,2e]. L’application t,x) .t x) est notre homotopie auxiliaire.
Pour t [0, 1[, l’application .t : M M est un difféomorphisme de classe C8.

Or, F est transversalement orientable donc il existe une forme de Pfaff aF qui le

définit. Pour tout t [0, 1[, la forme différentielle at
F := .*t aF est sans singularité

et intégrable ; elle définit donc un feuilletage Ft de codimension 1 qui ne dépend
que de F et en dépend continûment. Pour t 1, .1 n’est plus un difféomorphisme,
mais nous pouvons quand même définir la forme a1F := .*1(aF et constater que

cette forme est non-singulière : en effet, elle l’est en dehors de e car .1 est un

difféomorphisme sur M - e ; et en restriction à e, on constate que a1F coïncide
avec le tiré en arrière de la restriction non singulière) de aF à par la projection

s,y) y de e sur Puisque a1F est non singulière, cette forme qui est

intégrable car image inverse d’une forme aF qui l’est) définit un feuilletage F1 qui
est dans TX par construction. L’application h(t, F Ft a donc les propriétés
annoncées.

Remarque 2.3.2. Ce résultat est encore vrai lorsque la variété est à bord et au bord
deM : il suffit de prendre le champ X rentrant dansM et de considérer son demi-flot
positif

Dans la suite de ce travail, nousauronsà appliquer le lemme 2.3.1 plusieurs foisde

suite relativement à des hypersurfaces 1, n deM qui ne seront pas disjointes.
Nous faisons dans ce but la remarque suivante :

Remarque 2.3.3. Soit > 0 et soit P une partie de M. Soit TP, la partie de

T formée par les feuilletages auxquels X est tangent en tout point de P. nous
supposons cette partie non vide). Alors, si 3e, le champ X est encore tangent à

tous les feuilletages de h(1, TP, en tout point de Pe ; autrement dit, on a l’inclusion
h(1,TP,3e) TP,e.

Preuve. Soit F TP, avec 3e. Pour tout p P, l’intervalle de X-orbite

I [ - p), p)]est tangentàF par hypothèse. Par construction, l’intervalle
de X-orbite J .1(I sera tangent à h(1,F Mais, notre définition de .1 fait que

J a la forme [ a- p), ß + p)], où a et ß sont des réels qui dépendent de p
et appartiennent à [-2e, 2e]. Aussi, puisque 3e, on a [ -e, p), e,p)] J ;
autrement dit, l’intervalle {p}

e est tangent à h(1,F
Nous remarquons encore que l’homotopie que nous venons de construire ne

dépend pas réellement de X, mais uniquement de la donnée au signe près de ce champ,
ce qui nous servira par la suite.
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2.4. Feuilletages de T transverses aux parallèles de T2. Pour fixer les idées, nous
identifions le cercle S1 à R/Z via le paramétrage naturel de celui-ci donné par

exp(2ip.). Sur le disque D2 := {z C : |z| 1}, nous introduisons les coordonnées
polaires définies par z r exp(2ip.) ; sur le tore-surface T2 identifié à S1 × S1),

nous notons les coordonnées canoniques ; enfin sur le tore solide T := D2×S1,
dont le bord est identifié à T2, nous utilisons les deux paramétrages produits r,
et z, de manière systématique. Ces notations sont fixées pour toute la suite. Nous
introduisons encore la première projection p(r, r, de T sur D2.

r

Les fibres de p sont traditionnellement appelées parallèles de T. Il est utile de

remarquer, vu ce qui suit, que si F est un feuilletage de T transverse aux parallèles,
alors F est un feuilletage en disques. En effet, cf. [5]), on a plus généralement :

Théorème Ehresmann). Soit p : E B une fibration localement triviale de fibre

F compacte et soit F un feuilletage de E transverse aux fibres de p. Alors, F
est conjugué à la suspension d’une représentation de p1(B) dans le groupe des

difféomorphismes de F.

Remarque 2.4.1. Par contre, si p : E B est une fibration localement triviale à

fibre non-compacte, les feuilletages de E transverses aux fibres de p n’auront pas

nécessairement pour feuilles des revêtements de la base ; dans [11], Hector a même
construit un feuilletage F de R3 à feuilles denses transverses aux verticales.

Revenons à ce qui nous occupe. Ici, B D2 étant contractile, toute suspension
de base B est triviale. En particulier, un feuilletage de T transverse aux parallèles ne

peut pas avoir n’importe quelle trace au bord de T. Ceci est à comparer au résultat
suivant ([20]) :

Théorème Thurston). Soit F un feuilletage en courbes de T2, transverse aux
parallèles de T2. Alors, F peut se prolonger en un feuilletage de T.
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Considérons ensuite l’espace F des feuilletages de codimension 1 de T qui sont

transverses aux parallèles ; notons F0 celui dont les feuilles sont les fibres de la
deuxième projection r, de T sur S1. Nous utiliserons le résultat suivant :

Lemme 2.4.2. F est homéomorphe au groupe topologique des difféomorphismes
du tore solide dans lui-même qui sont fibrés au-dessus de l’identité de D2 et égaux à
l’identité sur {0} × S1, ce groupe étant muni de la topologie C8.

Preuve. Notons Y, idT) le groupe topologique des difféomorphismes en question,
pointé en son élément neutre. À tout élément f de ce groupe on peut associer le

feuilletagef F0) F imageparf deF0. Cette applicationde Y, idT) dans l’espace
pointé F F0) est clairement continue et injective. Réciproquement, soit F F
et soit z, T avec z rei. Considérons un chemin c: [0,1] D2 joignant
0 à z et relevons c dans la feuille de F qui passe par 0, de manière à obtenir un

chemin c̃z, Comme D2 est contractile, le point c̃z, 1) ne dépend pas du choix de c
mais seulement de z, et F dont il dépend continûment. Nous pouvons alors poser

fF z, z, c̃z, 1)) pour obtenir une application F fF continue, réciproque
de celle f f F0) définie plus haut ; ce qui prouve la bijectivité et la bicontinuité
de celle-ci.

Corollaire 2.4.3. Notons Fe l’ensemble des feuilletages de T qui appartiennent à

F et coïncident avec F0 sur un tore intérieur Te := {(r, T : 0 r e} de T
où e 0, 1

2 Il existe alors une application continue h de [0, 1] × F dans F telle
que :

i) pour F F h(0, F F et h(1, F Fe ;

ii) le feuilletage h(t, F reste le même hors de T2e pendant que t varie.

Preuve. Comme on le constate facilement, l’homéomorphisme décrit au lemme 2.4.2
associe àFe le sous-groupe Ye de Y des difféomorphismesde T de la forme z,
z, z, où z, est un difféomorphisme du cercle dépendant de z et

coïncidant avec l’identité pour |z| e. Nous allons donc construire plutôt, ce qui
revient au même, une application continue h de [0, 1]×Y dans Y ayant les propriétés
suivantes :

1) pour Y h(0, et h(1, Ye ;
2) la fonction h(t, reste la même sur la partie de T définie par |z| 2e.

Considérons une application a de classe C8 de [0, 1] dans [0, 1] telle que a(u) 0
pour u e et a(u) u pour u 2e. Nous posons simplement h(t, r,

1-t)r +ta(r), et par construction, cette application possède les propriétés
requises.

La remarque suivante est analogue à la remarque 2.3.3 :
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Remarque 2.4.4. Soit K un compact contenu dans T. Pour tout point x := z,
K, notons D.k le disque horizontal {(z : |z- z | .} de centre k et de rayon

K := x.K D.Posons V x Supposons qu’un feuilletage F F coïncide avec F0 sur
VK Si 3e, alors h(1,F coïncide encore avec F0 sur V e

K

2.5. Composantes de Reeb et feuilletages tendus. La notion de composante de

Reeb est centrale en théorie des feuilletages voir [19] pour la définition). Mais, nous
aurons besoin d’une notion plus forte introduite par Gabai dans [7] :

Définition 2.5.1. Un feuilletage F est tendu si pour toute feuille F de F il existe
une courbe fermée .F transverse à F qui rencontre F.

On a la caractérisation suivante :

Fait 2.5.2. Un feuilletage F est tendu si et seulement si il existe une transversale
fermée qui rencontre chaque feuille.

On voit qu’un feuilletage tendu est sans composante de Reeb. Par contre, un
feuilletage sans composante de Reeb n’est pas nécessairement tendu. Par exemple,
si on munit T2 × S1 du feuilletage produit d’une composante de Reeb de T2 par
S1, on obtient un feuilletage de T3 ayant une feuille torique et il n’existe pas de

transversale fermée qui rencontre cette feuille dans T3. Cependant, ce feuilletage
est nécessairement sans composante de Reeb puisqu’aucune de ses feuilles n’est
homéomorphe à R2. Il existe même des variétés ([4]) qui admettent des feuilletages
sans composante deReeb mais pas de feuilletages tendus toutefois, lorsque la variété
est atoroïdale, un feuilletage est tendu si et seulement si il est sans composante de
Reeb). Dans la suite, nous utiliserons la propriété suivante des feuilletages tendus :

Fait 2.5.3. Tout arc transverse à un feuilletage tendu se prolonge en une courbe
fermée simple transverse au feuilletage ([7]).

2.6. Difféomorphismes du cercle. Pour prolonger à T tout feuilletage de T2 transverse

aux parallèles, nous utiliserons des résultats classiques sur la conjugaison à des

rotations des difféomorphismes de S1 préservant l’orientation. À une telle application

f Poincaré associe de façon continue un élément f de S1 appelé nombre de

rotation de f Rappelons qu’un nombre a est diophantien s’il existe c > 0 et d 1
tels que pour tous p,q) Z2 non nuls, |qa - p| > cq-d

Théorème. Il existe un ensemble A de mesure totale tel que tout difféomorphisme

f Diff8+ S1) de nombre de rotation a A soit C8-conjugué à la rotation Ra
Herman [13]). De fait, A est l’ensemble de tous les nombres diophantiens Yoccoz

[23]).
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Ce théorème fournit un résultat particulièrement intéressant sur la “forme” des

difféomorphismes ([13], p.127) :

Corollaire 2.6.1 Décomposition desdifféomorphismes du cercle). Soitµunnombre
diophantien. Tout difféomorphisme f Diff8+ S1) s’écrit de façon unique comme

f R.(f g Rµ g-1 avec f S1 et g un difféomorphisme de S1 tel que

g(0) 0. De plus, l’application f g) est continue pour la C8-topologie.

Pour des raisons techniques, il sera préférable pour nous de passer au revêtement
universel de Diff8+ S1), noté D8(S1). Celui-ci s’identifie au groupe des difféomorphismes

f de classe C8 de la droite réelle tels que f - idR soit Z-périodique. Ce

groupe est contractile et pour t [0, 1] et f D8(S1), nous noterons ft le
difféomorphisme de R qui à x associe tx + 1- t)f x). Le chemin t f t D8(S1)
dépend continûment de f et relie f à idR. En relèvement à D8(S1), le corollaire
précédent devient :

Corollaire 2.6.2 Décomposition des éléments de D8(S1)). Soit µ un nombre
diophantien et soit f̃ un élément de D8(S1) relevant le difféomorphisme f de l’énoncé
précédent. Alors f̃ s’écrit de façon unique sous la forme f̃ T.̃ f g̃ Tµ g̃-1

où Tk désigne la translation Tk(x) x + k de R et g̃ est un élément de D8(S1)

fixant 0. De plus, g̃ relève g, la classe de ˜ f modulo 1 est f et l’application

f̃ ˜ f g̃ est continue pour la topologie C8.

3. Homotopies de feuilletages : exemples

Dans cette partie, on considère sur quelques exemples le problème général consistant
à homotoper deux feuilletages de même dimension surune variété ferméeM qui n’est
provisoirement plus supposée de dimension 3.

3.1. Le cas particulier des feuilletages de dimension 1. Nous soulignons rapidement

que si F est de dimension un, notre problème devient élémentaire : en effet,
tout fibré en droites de classe C8 sur M est intégrable, et donc, deux feuilletages en
courbes sont homotopes si et seulement si leurs champs tangents le sont. En particulier,

Proposition 3.1.1. L’espace des feuilletages en courbes deM, s’il n’est pas vide, est

localement contractile.

Soit en particulier un feuilletage orientable en courbes F0 de T2 ; parce que cela
nous servira dans la suite, nous allons expliciter une rétraction dans F1(T2) d’un
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p2

voisinageV deF0

p2

sur lepoint {F0}. Commenous ledisions, la donnée d’un feuilletage
en courbesde T2 et celle de son champ de tangentes sont équivalentes ;aussi, soit d0 le
champ de tangentes deF0. Nous supposons que T2 est muni d’une structure conforme
auxiliaire c’est-à-dire queson fibré tangentestmuni d’unestructure de fibréen droites
complexes, de groupe C* GL(1, C)). Notons également U le groupe multiplicatif

{z C* : |z| 1}. Soit d1 un champ de droites sur T2 : il existe une unique fonction
de classe C8 de T2 dans

U/{±1}
telle que la droite d1(p) au-dessus de p soit pour

tout p T2 l’image de la droite d0(p) par l’élément p) U/{±1}
rappelons

que
U/{±

agit simplement transitivement sur l’ensemble des droites vectorielles
réelles deC).

1} Nous prenons pour V le voisinage de d0 composé des champs de droites

d1 pour lesquels admet une détermination de la forme p) exp(i.(p)) avec à

valeurs dans - Étant donné d1 dans V nous définissons maintenant le champ
de tangentes h(t, d1)(p) exp(i(1- t) p))d0(p) ; celui-ci dépend continûment de

d1 pour la topologie C8, et nous avons h(t, d1) V h(0, d1) d1 et h(1, d1) d0
comme souhaité.

Remarque 3.1.2. Dans notre description de l’homotopie h ci-dessus, nous pouvons
remplacer la structure conforme choisie en premier lieu par la structure conjuguée à

celle-ci ce qui renverse l’orientation de T2 canoniquement induite par cette structure
conforme) ; il est à noter que si nous faisons ce changement, l’homotopie h obtenue
reste la même.

3.2. Cas de grande codimension. Le fait que des feuilletages aient des champs de
plans tangents homotopes ne suffit pas pour assurer que les feuilletages sont homotopes

: sur des sphères suffisamment grandes il existe des feuilletages non homotopes
de codimensionau moins 10 dont les champs de plans tangents sont homotopes ([14]).
Le problème reste ouvert pour les feuilletages de codimension 1.

3.3. Feuilletages minimaux sur T3
A Soit A une matrice de SL(2, Z) telle que

tr(A) > 2. Ceci implique que A possède deux valeurs propres réelles .1 > 1 >
.2 avec .1.2 1. Soient v1

a et v2
c des vecteurs propres de A pour .1 et .2b d

respectivement. Soient les champs de vecteurs suivants sur R3 : X1 .-z
1 a, b,0),

X2 .-z
2 c, d,0), X3 0, 0, 1) et soit le groupe des transformations de R3 de la

forme x, y), z) An(x+p, y+q),z+n) avecn,p, q des entiers relatifs. L’action
de préserve X1, X2, X3 ; d’autre part, le quotient R3/ est une variété différentielle
compacte classiquement notée T3

A
Dans la mesure où les Xi sont invariants par ils

induisent sur T3
A

des champs de vecteurs Y1, Y2, Y3 partout transverses et satisfaisant
aux conditions [Y1, Y2] 0, [Y1, Y3] .Y1 et [Y2, Y3] -.Y2 avec ln(.1).

Le champ de plans Y1, Y2 engendré par les champs commutants Y1 et Y2 est

tangent aux fibres de la fibration en tores sur le cercle de T3
A

donnée par l’application

· x, y, z)
p- z mod 1.
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Les deux champs de plans Y1, Y3 et Y2, Y3 sont tangents à deux feuilletages
transverses entre eux et transverses aux fibres de p, et notés respectivement F1 et F2
dans la suite voir [10] pour plus de détails). Il est facile de montrer que T F1 et T F2
sont des champs homotopes, et même que F1 et F2 et le feuilletage F0 par fibres
de p sont tous trois homotopes dans F1(T3

A
Par exemple, homotopons F1 à F0 : il

suffit de constater que le champ de plans Y1, tY2 + 1- t)Y3 reste constamment
intégrable et relie T F1 et T F0. Ceci étant, d’après un théorème de Ghys et Sergiescu
([10]), les feuilletages F2 et F1 sont C8-stables :

Théorème Ghys–Sergiescu). Tout feuilletage transversalement orientable et sans

feuille compacte sur T3
A est conjugué à F1 ou à F2.

Or, les feuilletages F1 et F2 ne sont conjugués entre eux que si la matrice A est

conjuguée à son inverse dans GL(2,Z). Il existe donc des fibrés pour lesquels F2 et

F1 ne sont pas conjugués par exemple, pour A 4 9
7 16 cf. [3])). Nous pouvons

alors obtenir sur les homotopies de F1 à F2 un renseignement intéressant au moins
dans le cas où F1 et F2 ne sont pas conjugués :

Proposition 3.3.1. Si Ft est une homotopie de F1 à F2, alors pour au moins une
valeur de t Ft a une feuille torique.

Preuve. En effet, comme F1 est C8-stable ce qui est une propriété ouverte et
invariante par conjugaison), l’ensemble des t [0, 1] pour lesquels Ft est conjugué à

F1 est un ouvert O1 de [0,1] qui est non vide car il contient 0. De même, l’ensemble
des t pour lesquels Ft est conjugué à F2 est un autre ouvert non vide O2 de [0, 1].
Puisque F1 et F2 sont ici supposés non-conjugués, O1 et O2 sont disjoints ; aussi,
par connexité, leur réunion ne peut pas être [0, 1] et il existe donc t [0, 1] tel que

Ft n’est plus conjugué à l’un des feuilletages modèles. Par le théorème de Ghys–
Sergiescu, Ft a donc une feuille compacte. Si Ft a une composante de Reeb, nous
sommes renseignés ; sinon pour toute feuille compacte F, le groupe p1(F s’injecte
dans celui de T3

A
qui est résoluble. Par suite, le groupe fondamental de la feuille

compacte est résoluble et elle est donc homéomorphe à une sphère ou à un tore seules

surfaces compactes orientables de p1 résoluble). D’après le théorème de stabilité de
Reeb, on peut exclure le cas de la sphère dans lequel le feuilletage serait produit sur
la variété S2 × S1.

Remarque 3.3.2. On peut en fait montrer que tout feuilletage F proche de F1 ou

F2) lui est isotope et aussi que F1 et F2 ne sont jamais isotopes. La preuve de ce

résultat n’a pas sa place dans cet article et paraîtra donc ailleurs.

3.4. Conjecture de Rosenberg. On attribue la conjecture suivante à Harold Rosenberg

([8], p. 59) :
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Conjecture. L’espace H1(Z2, Diff8+ S1)) des homomorphismes de Z2 à valeurs
dans Diff8+ S1) est localement contractile.

Par suspension, elle contient l’énoncé suivant en termes de feuilletages :

Conjecture. Soit p : T3 T2 la fibration naturelle de T3 sur T2. L’espace des

feuilletages transverses à cette fibration est localement connexe par arcs.

En fait, il s’agit d’un cas particulier d’un problème qui n’est simple qu’en
apparence :

Question. SoientM etN deuxvariétés compactes. L’ensemble des feuilletages
transverses au fibré trivial p : M × N N est-il localement connexe par arcs

Pour étudier rapidement cette question, introduisons le groupe G des difféomorphismes

de M qui sont isotopes à l’identité et munissons-le de la topologie C8.
Choisissons aussi un point-base n0 sur N. Soit H le groupe de difféomorphismes
de M × N qui sont fibrés sur l’identité de N, qui fixent chaque point de la fibre de

n0 et dont la restriction à chaque fibre de p est dans G. On peut montrer que H est

localement contractile. Ensuite, H agit de façon naturelle sur l’espace F des feuilletages

de dimension dim(N) de M × N qui sont transverses aux fibres ; on vérifie
sans peine que F est un H-fibré principal dont la base s’identifie de façon plus ou

moins canonique à une certainepartie de l’espaceHom(p1(N), G) voir [5]et aussi la
preuvedu théorème 4 ci-dessous). La topologie de Hom(p1(N),G)et celle deF sont
donc fortement liées. On peut certes déterminer la structure de Hom(p1(N),G) dans

certains cas très particuliers : par exemple, lorsque p1(N) n’a que des morphismes
triviaux dans G, ou plus généralement, lorsque tous ces morphismes se factorisent
par un groupe fini ([6], [16], [22]), ou au contraire lorsque p1(N) est libre, auquel
cas, Hom(p1(N), G) est isomorphe à Gr où r est le rang de p1(N). Mais en dehors
de ces cas très particuliers, on ne connaît pratiquement rien de Hom(p1(N), G) ; et

rappelons que pourN de dimension suffisante, p1(N) peut êtren’importe quel groupe
de présentation finie

4. Prolongement au tore solide des feuilletages du tore-surface

Notons S l’espace des feuilletages en surfaces de T qui sont transverses à son bord T2
et transverses aux parallèles decelui-ci, sans être forcément transverses aux parallèles
à l’intérieur de T. Définissons également l’espace C des feuilletages en courbes de T2
qui sont transverses aux parallèles. Il y a donc une application naturelle : S C
qui à un feuilletage de T associe le feuilletage induit sur son bord T2. Dans [20],
Thurston a montré l’existence d’une application s : C S telle que s idC.
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Dans cette section, on se propose de montrer que s peut être continue. On a vu au

paragraphe 2.4 qu’un feuilletage F1 de T proche du feuilletage en disques F0 est

lui-même en disques car ses feuilles sont des revêtements de D2). Cependant, tout
feuilletage du tore T2 proche du feuilletage en cercles F0 n’est pas nécessairement
en cercles il peut même être à feuilles denses). Ainsi, il n’existe pas de section
continue s de au-dessus d’un voisinage de F0 telle que s(.F0) F0. Néanmoins,
on a le résultat suivant :

Théorème 4. Il existe une section continue s : C S de

Le but de cette section est de prouver ce résultat.

4.1. Principe de construction de s. Soit F un feuilletage de T2 transverse aux
parallèles. Lorsque ce feuilletage est défini par une forme fermée, il s’étend en un
feuilletage de T possédant une composante de Reeb. Dans un premier temps, nous
nous inspirons de ce résultat de Reeb ([19]) pour construire une sections continue
audessusde l’espaceC0 des feuilletages deT² dont l’applicationde premier retour sur le
parallèle 0 est une rotation. Ensuite, remarquons que si on prive T de l’intérieur
de deux tores solides disjoints, on obtient une variété difféomorphe à P × S1 où

P pour “pantalon”) est la variété obtenue en privant le disque D2 de deux petits
disques ouverts disjoints. Désignons par C, C1 et C2 les composantes du bord de P.
Partant d’un feuilletage F C de T2, on construira d’abord un prolongement à

+

P

C

C1 C2

z0

P × S1. Par construction, ce prolongement tracera sur les tores C1 × S1 et C2 × S1

convenablement identifiés à T2) des feuilletages qui seront dans C0 et qu’on pourra
donc étendre à l’aide de la section s précédemment construite à l’intérieur de ces

tores.

4.2. Notations. Continuons de noter r, ou z, les coordonnées usuelles
sur le tore solide T.
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Notation 4.2.1. Définissons deux tores solides T1 et T2 par

T1 := z, : 2z +
1

10 et T2 := z, :
1

2z- 1
10
1

La variété obtenue en privant T de l’intérieur de T1 T2 est notée W. Elle est

difféomorphe S1

ouverts
au produit P × où P est le disque unité

z D2 : z +
1 1 et {z D2 : z- 1 1

privé des petits disques

2 10 2 10

Nous aurons besoin d’un point-base sur D2 : pour fixer les idées, nous prenons

z0 1. Nous utiliserons également des voisinages de sécurité pour traiter de certains
problèmes de recollement ; aussi nous fixons e 0, 1 et10

Notation 4.2.2. Nous notons Te le voisinage tubulaire suivant du bord de T :

Te := {(r, : r 1- e}.

De même, nous notons We le e-voisinage du bord de W dans W.

Sur We, nous introduisons un champ de vecteurs transverse au bord et tangent
aux disques horizontaux :

Notation 4.2.3. En notant z x + iy D2, le champ R est défini par

R(r, :=
r pour tout r, Te

r
x - 1

2 y
au e-voisinage de C1 × S1

x + y
x +

1
2 y

au e-voisinage de C2 × S1
x + y

Nous appellons R le champ radial sur We.

Comme nous considérons beaucoup d’espaces de feuilletages différents, il n’est
pas inutile d’en récapituler la liste.

Notation 4.2.4. Nous notons :

– S l’espace des feuilletages en surfaces de T qui sont transverses à son bord
T2 et transverses aux parallèles de celui-ci, sans être forcément transverses aux
parallèles à l’intérieur de T ;

– C l’espace des feuilletages en courbes de T2 qui sont transverses aux parallèles;
– C0 l’espace des feuilletages de T2 dont l’application de premier retour sur le

parallèle 0 est une rotation ;

– F l’espace des feuilletages en surfaces de T qui sont en disques;
– W l’espace des feuilletages de W transverses aux parallèles et invariants par R

sur We.
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Introduisons maintenant les groupes topologiques suivants qui seront tous munis
de la topologie C8 :

– H(T2) le groupe des difféomorphismes de T2 qui sont isotopes à l’identité,
fibrés au-dessus de id S1 et fixent p-1(z0) point par point;

– H(T) le groupe des difféomorphismes de T qui sont isotopes à l’identité, fibrés
au-dessus de idD2 invariants par R sur Te et fixent p-1(z0) point par point ;

– H(W) le groupe des difféomorphismesdeW qui sont isotopes à l’identité, fibrés
au-dessus de idP invariants par R sur We et fixent p-1(z0) point par point;

– H0(T) resp. H0(W)) le sous-groupe de H(T) resp. H(W)) des difféomorphismes

qui fixent Te point par point.

Enfin, nous choisissons deux lacets basés en z0 dans P :

Notation 4.2.5. Les lacets .1 et .2 sont définis par :
– .1(t) := e2ipt pour t 0, ;[ 1]

e2ipt pour t 0, 1
– .2(t) :=

4 14
3

4
3
4i(2- 4t) pour t 1

Decettemanière, les groupes fondamentaux 1 := p1(S1, z0) et 2 := p1(P, z0) sont
engendrésrespectivement par [.1]et{[.1],[.2]} où [.i]désigne la classed’homotopie
du lacet .i De plus, 1 s’identifie à un sous-groupe de 2.

Enfin, pour i 1,2, nous notons i l’espace des morphismes de groupes de i
dans D8(S1).

4.3. Quelques propriétés. Nos définitions font que 1 et 2 sont homéomorphes
à D8(S1) et D8(S1) × D8(S1) respectivement. De même, H(T2) et les quatre
autres espaces “H(· ” sont homéomorphes à des espaces d’applications convenables
par exemple, H(T2) est homéomorphe à l’espace d’applications de classe C8 entre

espaces pointés de S1, z0) dans D8(S1), idR)). On déduit facilement de là le lemme
suivant :

Lemme 4.3.1. Les sept espaces suivants sont contractiles : 1, 2, H(T2), H(T),
H0(T), H(W) et H0(W).

La théorie des suspensions, due à Ehresmann ([5]), décrit la structure de l’espace
des feuilletages transverses aux fibres d’une fibration localement triviale de fibre
compacte. Elle permet dans notre cas d’obtenir le résultat suivant qui à vrai dire ne

découle pas directement de [5] ; mais la déduction est relativement triviale et donc
laissée au lecteur) :
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Lemme 4.3.2. Les applications suivantes sont des fibrations principales :

– HolC : C -. 1, de groupe H(T2);
– HolW : W -. 2, de groupe H(W);
– HolC0 : C0 -. R, de groupe H(T2).

De plus, F est homéomorphe à H(T) – ce qui est une autre façon de dire que F est

un H(T)-fibré principal sur un point.

Par ailleurs, certains de nos groupes topologiques sont liés par des morphismes
naturels.

Lemme 4.3.3. Les suites suivantes sont exactes :

SW) {idW} H0(W) H(W)
resW

H(T2) {idT2}

ST) {idT} H0(T) H(T)
resT

H(T2) {idT2}

où resT et resW sont les morphismes naturels de restriction des difféomorphismes de
T ou de W à la composante de bord T2.

Le seul point non évident dans le lemme 4.3.3 est la surjectivité des applications
resT et resW ; mais nous allons construire des sections continues de ces morphismes
car nous en aurons besoin ensuite.

Notation 4.3.4. Nous notons extW et extT les sections de resW et resT construites
ci-dessous. Nous notons S une section du fibré à base contractileW 2.

N.B. Nous ne prétendons pas que extW et extT soient des morphismes de groupes

Construction de extW et extT. Soit h un élément de H(T2). Nous allons construire
un élément extT de H(T) qui fixera chaque point z, tel que |z|

4 ; de ce fait, la5
restriction extW(h) de extT à W appartiendra à H(W).

Soit a: [0, 1] [0,1] une fonction décroissante de classe C8 telle que l’on ait

a(r) 1 si r 4
5 et a(r) 0 si r 9

10 Mettons le difféomorphisme h sous la

forme h( avec Diff8+ S1) ce qui est possible car h est fibré
au-dessus de idS1 Comme de plus h est isotope à idR, on peut relever àD8(S1) en

un difféomorphisme que l’on notera encore et tel que .0 idR. Ensuite, posons

extT(r, := r, a(r)

” est celle “f t” de la section 2.6. Comme a(r) .1où la notation “ a(r) idR dès

que r 4
5 cette formule a un sens même pour r 0, et elle définit bien un élément

de H(T) qui fixe les points pour lesquels r 4
5
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4.4. Tourbillonnement de Reeb équivariant. Nous allons maintenant construire
une section continue s de au-dessus d’un certain espace de feuilletages C0. Pour
éviter toute confusion, nous soulignons que cette section n’est pas encore la section s

cherchée, mais un outil permettant de la construire. Nous utiliserons le tourbillonnement

de Reeb ([19]). On doit à ce dernier le résultat suivant :

Lemme 4.4.1. SoitF un feuilletagedeT2 défini par une forme différentielle ferméea.
Alors F se prolonge en un feuilletage Fa du tore solide.

Nous nous en inspirons pour prouver la

Proposition 4.4.2. Il existe une section s : C0 S de ainsi qu’une application
continue h : [0, 1] × F F1(T) telle que h 0, F F h 1, F s F et

pour tout t h t, F F

Preuve. Appliquons le lemme 4.3.2 et faisons correspondre à tout F C0 le réel

.F et le difféomorphisme hF tels que h-1
F F soit le feuilletage de T2 défini par la

forme fermée d.- .F d.. Ensuite, nous introduisons des fonctions et de classe

C8 de l’intervalle [0, 1] à valeurs dans [0,1] telles que ci-dessous.

1 1

1 0 b0 1b c a

Définissons la forme différentielle suivante sur T :

ß. := 1 - r)) · 1 - r)) · d. - .d.)+ 1- r)) · r) · dr + r) · d..
On vérifie sans peine que ß. s’intègre en un feuilletage G.F de T qui possède une

composante de Reeb et admet hF F pour trace au bord. Par ailleurs, le difféomorphisme

extT(hF de T admet hF pour restriction à T2 par construction. Nous posons
maintenant s F := extT(hF G.F et obtenons bien une application s de C0 dans

S telle que s idC0

Il nous reste à construire h Soit F F et associons à F l’unique élément

HF de H(T) tel que HF F0) F l’existence de HF découle du lemme 4.3.2).
Puisque HF et extT(resT(HF ont par définition le même projeté sur H(T2), on
peut ensuite définir un unique H0F H0(T) tel que HF H0F extT(resT(HF en

vertu du lemme 4.3.3. De plus, selon le lemme 4.3.1, le groupe H0(T) est contractile;
introduisons une rétraction R(t, · de H0(T) sur {idT}. Enfin, pour tout t [0, 1], on
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vérifie par un calcul direct que la forme .t := t ·ß0+(1-t) ·d. est non-singulière et

intégrable. Elle définit donc un feuilletage que l’on peut noter Ft car F0 correspond
effectivement au feuilletage de T en disques horizontaux ; on a aussi F1 G0. Nous
définissons maintenant h t, F comme suit :

– pour t 0, 1
2 h t,F := R(2t, H0F extT(resT(HF F0),

– pour t 1
2 1 h t,F := extT(resT(HF F2t-1).

Clairement, les deux définitions coïncident pour t 1
2 ; tout aussi clairement, h

est une application continue. On constate encore que h 0, F F et h 1,F
s F Enfin, on a constamment

h t,F R(inf(2t, 1),H0F extT(resT(HF Fsup(2t-1,0)))

resT(HF Fsup(2t-1,0)) resT(HF F0 F

Remarquons en passant que par construction, le feuilletage s F est invariant
par le champ radial sur Te, ce qui nous servira par la suite.

4.5. Prolongement à P × S1. Fixons un nombre diophantien µ et prolongeons
maintenant tout feuilletage F de C à W.

Comme C est un fibré principal de base 1 lemme 4.3.2), on peut associer à F
un élément de 1 c’est-à-dire un morphisme 1 D8(S1). Notons fF l’image
de [.1] par ce morphisme. D’après le théorème d’Herman corollaire 2.6.2), il existe

F R et g D8(S1) qui dépendent continûment de fF et tels que .F
T.(F g Tµ g-1.

Définissons une représentation .F de 2 dans D8(S1) par .F ([.1]) fF et

.F ([.2]) T.(F ; par construction .F dépend continûment de F
Par ailleurs, il existe une section continue S : 2 W notation 4.3.4). Par

conséquent, le feuilletage S(.F dépend continûment de F et trace sur C ×S1 T2
un feuilletage ayant la même holonomie que F mais qui ne coïncide pas nécessairement

avec F Néanmoins, selon le lemme 4.3.2, il existe un unique élément noté

hF H(T2) tel que F hF S(.F Soit FW le feuilletage de W défini par

extW(hF S(.F ; par construction, il dépend continûment de F et a pour trace F
sur T2. L’application SW : F FW est donc un prolongement continu de F à W

De plus, d’après la remarque 2.3.3, on peut supposer sans perte de généralité que

35

le feuilletage FW est invariant par le champ radial R sur We.

4.6. Construction de s. Nous allons maintenant prolonger FW à T1 et T2 grâce à

la proposition 4.4.2. Les points z1 -2 et5 z2 sont au bord respectivement de

C1 et C2. Choisissons

21

librement dans P un chemin c1 de z0 à z1 et un chemin c2 de

z0 à z2. Ceci de sorte que, en notant et les générateurs naturels de p1(Ci, zi),
les chemins -1

2 et -1
1 .2 soient respectivement homotopes à c-1

2 2 c2 et c-1
1 1 c1.
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.1

c1

z1 z2 z0

.2

.1 .2

c2

Nous rappelons que l’image de [.1] par la représentation d’holonomie de F a été

décomposée dans D8(S1) sous la forme T.(F g Tµ g-1.

Introduisons maintenant des applications de C dans D8(S1). Pour k 1 ou 2,
pour F C et pour .0 S1, le chemin ck se relève de façon unique en un chemin

ckF .0
au-dessus de ck, tracé le long de F et issu de z0, .0). L’extrémité de ce

chemin est un point au-dessus de zk, que nous noterons zk, .k(.0)). L’application
qui, àF C,associe l’élément.k deDiff8+ S1) est clairement continue. Par ailleurs,
les lemmes 4.3.1 et 4.3.2 impliquent que C est contractile et on peut donc relever

F .k en une application F hk de C dans D8(S1).

SoitF 1 le feuilletage que traceFW sur leborddeT1 etsoit F1 le difféomorphisme
suivant de T sur T1 : F1 z, 1

2,h1 g(10z- 1

Proposition 4.6.1. Le feuilletage G1 := F1 )-1(F 1) est dans C0.

Preuve. Par définition, le feuilletage G1 est dans C donc son image par HolC est

un morphisme de 1 dans D8(S1). Notons l’image du générateur -1
1 par ce

morphisme. Or, par construction de G1, on a g-1 h-1
1 h1 g où est

l’application d’holonomie de FW associée au lacet 1 Ceci étant, dans p1(P, z0), on

a [ 1] [c1.-1
1 .2c-1

1 ] par choix de c1. À son tour, se décompose donc comme

suit : h1 HolW(FW, -1
1 HolW(FW, .2) h-1

1 Or, par construction de FW

nous avons : HolW(FW, .2) T.(F et HolW(F -1
1 g T-µ g-1

T- F
Finalement, T-µ qui est bien une translation.

SoitF 2 le feuilletage que traceFW sur leborddeT2 etsoit F2 le difféomorphisme
suivant de T sur T2 : F2 z, 1

2, h2( On vérifie de même que l’on a
10z +

1

la

Proposition 4.6.2. Le feuilletage G2 F2 )-1(F 2) est dans C0.

k s Gk))Nous prolongeons donc FW à T tout entier, en comblant Tk par F

où s est la section de la proposition 4.4.2. Notons s(F le feuilletage ainsi obtenu.
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Par construction, l’application F s(F est continue. De plus, pour tout F le

feuilletage s(F obtenu à la fin de cette construction est de classe C8 sauf peut-être
au voisinage de C1 × S1 C2 × S1 car il s’obtient en recollant des feuilletages
transverses à ces deux tores et définis de chaque côté ; on pourrait donc craindre
une absence de différentiabilité transverse à nos deux tores). Mais, heureusement, au

voisinage de Ci ×S1 i 1, 2) s(F est invariant par le champ radial de classe C8
et transverse à Ci ×S1) donc s(F est aussi régulier que sa trace sur Ci ×S1, qui est

bien de classe C8. Par conséquent, le théorème 4 a bien lieu.

4.7. Homotopie de F à s(.(F pour F F Rappelons qu’on désigne par F0
le feuilletage en disques horizontaux c’est-à-dire dont les feuilles sont les fibres de la

deuxième projection r, de T sur S1.

Proposition 4.7.1. Il existe une application continue h: [0, 1] × F F1(T) avec
les propriétés suivantes : h(0, F F h(1, F s F et pour tout t [0, 1],
h(t, F )|Te F |Te

Preuve. Soit F F Comme ce feuilletage est en disques topologiques, sa
représentation d’holonomie dans D8(S1) est l’identité. De plus, en la décomposant selon
le théorème d’Herman, nous avons g idR et F -µ. Enfin, nous définissons

encore des difféomorphismes F
i de T sur Ti par F

i z, 1
2 hi(10 z+ (-1)i

– Pour t 0, 1
4 appliquons le lemme 2.3.1 à T1 et T2 de façon à rendre F

invariant par le champ radial sur un e-voisinage de ces tores. De même, grâce à

la remarque 2.3.3, nous effectuons la même opération sur Te.

– Pour t 1
2 appliquons la proposition 4.4.2 et homotopons le feuilletage4
1

F |Ti à i(s -1

i F |Ti Comme F a été rendu invariant par le champ
radial sur un e-voisinage de Ti il n’y a pas de problème de recollement. Notons

F le feuilletage ainsi obtenu et remarquons que F F
– Pour t

1 3 la trace deF sur le bord T2 de T est dans la mêmeH(T2)-orbite2 4
que F0 donc il existe hF H(T2) tel que F hF F0). D’après la définition

4.3.4, on peut étendre hF en un difféomorphisme extW(hF de W. Remarquons

qu’alorsF |W et extW(hF F0|W) ont le même projeté surH(T2) donc il
existe ununique élémentH0F H0(W) tel queF |W H0F extW(hF F0|W).
Or, d’après la lemme 4.3.1, le groupe H0(W) est contractile donc il existe un

chemin de H0F à l’identité dans H0(W). Nous pouvons alors homotoper F |W
au feuilletage extW(hF F0|W); désignons par FW,t la famille de feuilletages
sur W ainsi obtenue. De plus, remarquons que la représentation d’holonomie
de F ne varie pas; par ailleurs, nous pouvons encore définir le difféomorphisme

F
i qui dépend continûment de F |W,t On peut vérifier comme à la

proposition 4.6.1 que l’image par F
i )-1 du feuilletage FW,t |.Ti reste dans
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C0 ce qui nous permet de prolonger continûment FW,t
à l’intérieur de Ti par

F
i )-1(FW,t|.Tii s F

4 1 il nous reste à homotoper F0 à son image par s ; vu la– Pour t
3

construction précédente, nous obtiendrons alors l’homotopie pour F F
Notons .0 la représentation triviale de 2 dans D8(S1) et .1 la représentation
correspondant à .1([.1]) idR et .1([.2]) T-µ.
Introduisonségalement la représentation .4t-3 correspondant à .([.1]) idR et

.([.2]) -(4t-3)µ. Rappelons qu’à la fin de l’étape précédente, larestriction
de F à W s’écrit extW(hF F0|W) c’est-à-dire extW(hF S(.0)) où S est la
sectioncontinue introduiteau paragraphe 4.3.4. Nous terminons l’homotopiesur

W par extW(hF S(.4t-3)). De la même façon que précédemment, on vérifie
qu’on peut prolonger ce feuilletage continûment à l’intérieur des tores Ti par
une formule analogue.

Nous obtenons ainsi une homotopie de F à s F pour F F

5. Preuve des théorèmes B et C

Nous allons commencer par montrer le théorème 3 ; les idées majeures de la preuve
du théorème 2 seront déjà présentes, mais sous une forme simplifiée.

5.1. Preuve du théorème C Pour l’instant, M est un fibré en cercles p : M g

dont la base est une surface fermée de genre g 1. Par hypothèse, l’espace F des

feuilletages de M qui sont transverses aux fibres de p est non vide. Choisissons une

immersion du tore solide T dans M envoyant les parallèles {(r, .)}× S1 de T sur
des fibres de p. Par application du corollaire 2.4.3, pour e0 > 0 assez petit, on peut
homotoper F à une partie F 0 de lui-même dont tous les feuilletages coïncident avec

F0) sur Te0

Il nous reste à homotoper F 0 à un point dans F1(M). Appelons champ radial
cf. 2.3) un champ de classe C8 sur M dont la restriction à T) est l’image par

du champ r r
sur T. D’autre part, définissons une submersion de T dans M par la

formule r, e1r, Pour e1 > 0 assez petit et pour e > 0 assez petit,
dépendant de e0 et de e1, nous voyons que que chaque feuilletage de F 0 est invariant
par le champ radial sur e, où est la surface T2) M.

La surface sépareM ; notonsW := T) etN := M-W les deuxsous-variétés
compactes de M dont constitue le bord. Alors N est encore fibrée en cercles par p
sur une surface Sg qui est le complémentaire dans g d’un disque ouvert. Or, on sait
que le groupe fondamental d’une surface telle que Sg est libre à 2g générateurs;
aussi, pour tout groupe topologique contractile G, on a Hom( G) G2g qui est lui
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aussi contractile. SoitmaintenantGl’espace des feuilletages deN quisont transverses

à transverse aux fibres de p et invariants par le champ radial sur e
n N.

Lemme 5.1.1. G est un fibré principal de base Hom( D8(S1)) et de fibre le groupe

G des difféomorphismes de N qui sont fibrés sur l’identité de Sg, invariants par le
champ radial au voisinage de et égaux à l’identité en restriction à une certaine
fibre F0 arbitrairement choisie.

Preuve. Constatons que la fibration qu’induit p sur N est triviale ce fait classique

vient deceque les fibrés orientables encerclessont caractériséspar leur classe d’Euler
qui appartient à H2(B, Z) où B est la base du fibré; or, H2(Sg, Z) 0 car Sg se

rétracte sur un bouquet de cercles). Une fois cette constation faite, le résultat voulu
découle de [5].

PuisqueGet Hom( D8(S1)) sontcontractiles, G est lui aussi contractile le fait
que G soit contractile se prouve comme au lemme 4.3.1). Considérons maintenant
une rétraction h deGsur un point. Pour t [0, 1]et pour F dansF 0, nous définirons
un feuilletage Ft en décrivant ses restrictions àW et à N ; celles-ci seront transverses
à égales en restriction à cette surface, invariantes par le champ radial sur e et se

recolleront donc en un feuilletage global sur M. La définition de Ft est la suivante :

– Si t 0, 1 alors H(t, F F sur N et 2t, sur où
2 H(t, F h0( F W h0

désigne l’homotopie de F à s F définie à la section 4.7.

– Si t 1
2

1 alors H(t,F h(2t - 1, F sur N ; ce feuilletage trace sur le
bord de un feuilletage en courbes H(t, F que nous prolongeons dans W
par s(.H(t, F

On constate sans peine que cette application H constitue l’homotopie voulue de

F 0 à un point dans F1(M) ; ce qui achève la preuve du théorème 3.

5.2. Vers le théorème B. Pour prouver le théorème 2, nous avons délimité une

partie N de M sur laquelle il est facile d’homotoper les feuilletages considérés, et

nous sommes ensuite parvenus à prolonger les homotopies au complémentaire W de

N dansM du fait queW est une réunion de) copie(s) de T. Comme les feuilletages à

homotoper étaient transverses aux fibres de p, la construction était particulièrement
simple et n’utilisait qu’un seul “tube” W T. Dans le cas général, il nous faudra
être plus méticuleux ; par ailleurs, nous ne pouvons plus régler aussi facilement le
problème de lissage au bord des “tubes” et il nous faudra construire un succédané du

“champ radial”.
Soit désormaisM unevariété ferméeorientablede dimension 3 etF un feuilletage

tendu de codimension 1 sur M. Selon Thurston ([20], voir aussi [2]), il existe une

“bonne” triangulationK deM. Lespropriétés qui nous intéressent sont les suivantes :
– F est transverse aux arêtes de K,
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– tout simplexe s de K est homéomorphe à la boule fermée de dimension 3
feuilletée par les surfaces de niveau z constante.

Nous prouvons maintenant le théorème 2 en quatre étapes :

– mise encoïncidence préliminaire deF est de ses voisins au voisinage du 1-squelette

deK, ceci pour contourner les problèmes de lissage au bord des simplexes;
– définition des copies de T dans M dont la réunion jouera le rôle de W ;

– définition de l’objet qui jouera le rôle du champ radial X ;

– construction de l’homotopie à partir de ces données.

5.3. Première étape. SoitK1 le 1-squelette deK etsoite > 0un réel “suffisamment
petit” notion qui sera précisée au lemme 5.3.1). Enfin, soit V le e-voisinage de K1
dans M relativement à une métrique riemannienne auxiliaire lisse sur M fixée pour
la suite.

Lemme 5.3.1. Soit V l’espace des feuilletages de M qui coïncident avec F sur V
Si e > 0 est assez petit, alors, il existe un voisinage U de F dans F1(M) et une

application continue H1 de [0, 1] ×U dans F1(M) tels que l’on ait H1(0, G) G et

H1(1, G) V pour tout G U. De plus, on peut choisir H1 pour avoir H1(t,F
F pour tout t [0, 1].

Preuve. L’idée étant voisine de celle employée au lemme 2.3.1, nous nous contenterons

d’une preuve rapide. Soit I une arête de K1. Soit : D2 ×[-2e, 1+ 2e] M
une immersion d’un cylindre dansM. On peutchoisir pour que {0}×[0, 1]) I
Soit .: [0, 1] R une application de classe C8 telle que 0, 13 {0}, est

strictement croissante sur 13 1 et x) x pour x 2
3 Soit également : [-2e,

1 + 2e] [0, 1] une application C8 telle que .([-2e,e] [1 + e, 1 + 2e]) {0}
et .([0, 1]) {1}. Pour t [0, 1], nous notons ft l’application C8 de M dans

lui-même qui coïncide avec l’identité hors de l’image de et s’écrit t -1 en
restriction à cette image, avec t(r, x) 1- t) x))r + t.(x) r), x). Nous
posons pour tout feuilletage G transverse à {0}×[-2e, 1+ 2e]), H(t, G) f *t G)
et comme au lemme 2.3.1, bien que ft ne soit un difféomorphisme que pour t < 1,
ceci définit une homotopie de G à un feuilletage qui coïncide avec F au voisinage
de I

Il suffit d’effectuer cette construction arête après arête car chaque étape préserve
le résultat de l’étape précédente.

Remarque. On n’a pas encore utilisé que le feuilletage F est tendu.

Dans la suite, nous supposerons que les feuilletages coïncident avec F sur V
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5.4. Construction des “tubes”. Nous introduisons maintenant ce qui généralise la

partie N deM dans la preuve du théorème 3. Nous considérons un petit voisinage V
du 2-squelette K2 de K dont nous préciserons le choix plus tard proposition 5.5.2).

Proposition 5.4.1. Il existe un entier N et des plongements fi)1=i=N de T dans M
avec les propriétés suivantes :

– M est la réunion de V et des fi(T) ;
– le bord de chaque fi(T) est dans V ;
– les fi(T) sont disjoints;
– pour tout i {1, N}, on a f-1

i F F0 ;
– les fi(T) ne coupent K2 qu’en des points de V

Preuve. Prenons pour N le nombre de 3-simplexes de K et ordonnons ceux-ci de
façon quelconque : s31 s3

N Pour tout i, il existe un homéomorphisme .i de la

i tel que.-1
i F soit le feuilletage de B3 par les disquesboule unité B3 de R3 sur s3

horizontaux. Nous lissons .i vers l’intérieur de s3
i et obtenons un plongement lisse

i de B3 dans s3
i ayant les propriétés suivantes :

– M est la réunion de V et des
i

B3) ;
– le bord de chaque .i(B3) est dans V ;
– ce bord ne rencontre pas K2 ;
– i)-1(F est le feuillletage de B3 par disques horizontaux.

Nous supprimons ensuite deux “calottes” au voisinage des pôles de B3 pour faire de

son image un cylindre feuilleté en disques et ceci nous fournit une immersion fi de

[-e, e] × D2 dans M telle que fi a son image incluse dans l’intérieur de s3i et son

bord dans V
Ensuite, considérons l’arc fi([-e, e] × {0}). On peut le prolonger en une courbe

de Jordan Ji transverse à F car ce feuilletage est tendu. De plus, la partie de Ji qui
prolonge fi([-e,e] × {0}) peut être prise dans V car V est un voisinage de K2
([20]). Précisément, après avoir d’abord reliés fi(-e, 0) et fi(e, 0) à ce que Thurston
appelle les points “haut” ti top) et “bas” bi bottom) de s3i on peut relier bi à ti par

un chemin tracé le long de K2.
Perturbons d’abord chaque Ji de façon à ce qu’il ne rencontre les 2-simplexes de

K2 qu’en des points de V et qu’il ne rencontre aucun fj(B3). En effet, chaque arc de

Ji qui rencontre un 2-simplexe s2 relie entre eux deux points A et B du bord de s2 ;
on peut d’abord “pousser” l’arc AB de Ji à l’intérieur de l’un des deux 3-simplexes
bordés par s2 en gardant fixes ces extrémités, après quoi toute nouvelle perturbation
gardera cet arc éloigné de la partie de s2 qui n’est pas dans V En outre, comme la
dimension de M est suffisamment grande, on peut supposer les Ji disjoints après les

avoir encore perturbés un peu.
Nous choisissons maintenantunvoisinage tubulaireW0i dechaque Ji ce voisinage

étant contenu dans V fi([-e, e] × D2) et tous ces voisinages étant suffisamment
petits pour que les réunions W0

i fi([-e, e] ×D2) soient disjointes. Nous lissons le
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tore topologique W0
i fi([-e, e] × D2) pour obtenir un voisinage tubulaire de Ji ;

par construction, ce voisinage peut être paramétré par une application fi qui a toutes
les propriétés requises.

5.5. Le champ radial. Appelons géodésique feuilletée toute courbe paramétrée par
sa longueur d’arc x(t) qui est tangente à F et qui est dans sa feuille une géodésique
pour la métrique induite sur celle-ci par la métrique auxiliaire dont nous avons muni

M). Soit i {1, N}. Pour tout point x0 de i := fi(T2), il existe une unique
géodésique feuilletée x(t) telle que :

– f-1
i x(t))est normale en f-1

i x0)à la feuille passant par f-1
i x0) du feuilletage

en courbes qui est la trace de f-1

i F sur T2 ;
– x(0) x0 et x(t) rentre dans fi(T) pour t > 0.

De plus, si ei > 0 est assez petit, l’application .i t, x0) x(t) de ] - 2ei 2ei[× i
dans M sera un plongement. Nous désignons par Xi un champ de classe C8 sur M,
partout tangent à F et qui coïncide avec d.i t

sur .i([-ei, ei] × i); Xi est appelé

champ radial de la surface i
Rappelons que les feuilletages G que nous considérons sont dans V c’est-à-dire

coïncident avec F sur le voisinage V du 1-squelette. Grâce au lemme 2.3.1, il vient :

Proposition 5.5.1. Il existe un voisinage E de F dans V et une application continue

H2 de [0, 1] × E dans V telle que H2(t,F F H2(0,G) G et H2(1, G) soit
invariant par Xi sur un certain voisinage V de la réunion des i fi(T2) ce

voisinage ne dépendant pas de G).

Preuve. Fixons un e > 0 tel que e < min(e1, eN). Pour i {1, N}, notons

Ti l’espace des feuilletages de M qui sont transverses au tore i et appliquons le
lemme 2.3.1à l’hypersurface i : ilexiste une applicationcontinue hi : [0, 1]×Ti
Ti telle que pour tout feuilletage G dans Ti hi(0, G) G et hi(1, G) Ti est

invariant par le flot local de Xi sur le voisinage e

i de i défini dans le lemme 2.3.1.

Si on choisit e assez petit, les voisinages e
i de i seront disjoints car les surfaces

i fi(T) le sont. Posons E N
i=1 Ti V. Cet ensemble est non vide car il

contient F par construction des fi ; c’est un voisinage de F dans V. Définissons
maintenant une application H2 de [0,1] ×E V par H2(t,G) hi(Nt - i + 1, G)
pour t i-1

N
i
N

et G E. Comme les e

i sont disjoints, le résultat obtenu pour

t i-1
N

i
N

n’est pas modifié lors des étapes ultérieures. L’application H2 ainsi
définie présente bien les propriétés voulues.

Bien sûr, on peutprendre V aussi petitque l’on veut; en particulier, on supposera

que V ne rencontre K2 qu’en des points de V
De la même manière, partant d’un 2-simplexe s2i de K2, nous pouvons définir

sur un voisinage Vi de s2i un champ de vecteurs Yi partout tangent à F et partout
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i Si nous rendons un feuilletage G de V invariant par Yi sur Vi
à l’aidetransverse à s2

du lemme 2.3.1, la trace de G au voisinage du bord de s2i n’est pas modifiée, car ledit
bord étant dans V ladite trace est déjà égale à F à son voisinage. Si nous effectuons
cette modification pour tout G dans V et successivement pour tout s2

i dans K2, et si
le voisinage Vi

de s2i a été pris assez petit, nous obtenons :

Proposition 5.5.2. Il existe un voisinage E de F dansV et une application continue

H3 de [0, 1] × E dans V telle que H3(t, F F H3(0, G) G et H3(1,G) soit
invariant par chaque Yi sur V En particulier, la trace du feuilletage H3(1, G) sur le
voisinage V du 2-squelette est entièrement déterminée par sa trace sur K2.

5.6. Preuve du théorème B. Nous définissons le voisinageXde F des feuilletages
G tels que G U lemme 5.3.1), H1(1, G) E défini à la proposition 5.5.2),

H3(1, H1(1,G)) E définià laproposition 5.5.1)etf-1
i H2(1, H3(1, H1(1, G))))

F pour tout i.
Soit G quelconque dans l’espaceX : H2(1,H3(1, H1(1, X))), auquel le

voisinageXdeF est homotope parconstruction. Nous définissons maintenantune famille
à un paramètre Gt t.[0,1]

de feuilletages telle que G0 G et que G1 ne dépende pas
de G ; d’autre part, il sera clair que Gt dépend à la fois continûment de t et de G :
l’application t,G) Gt de [0, 1]×X dans F1(M) constituera donc une homotopie
de X à un point et nous aurons le théorème 2. Ceci se fait en deux étapes.

Étape 1. Dans le tube fi(T), on homotope G au feuilletage fi(s(.(f-1
i G)))) en

utilisant la proposition 4.7.1.

Étape 2. Cette étape se fait en trois temps :
En premier lieu, nommons G2 le feuilletage en courbes que trace G sur l’intérieur

K2-K1 deK2.Àla section 3.1, on amentionné l’existence d’une homotopie t G2t

de G2 sur F 2. Il nous faut maintenant prolonger cette homotopie de K2 - K1 à M
toute entière.

Étendons d’abord l’homotopie sur le voisinage V du 2-squelette. Soit Gt le
feuilletage de V obtenu en saturant G2t par le champ radial Yi au voisinage de chaque
2-cellule s2

i
de K2 et qui coïncide avec F sur V n V Par construction, Gt définit

bien un feuilletage de V tout entier car V V N
i=1 Vi

En outre, nous constatons

qu’au voisinage de K2, ce feuilletage coïncide bien avec G lorsque t 0 et avec F
lorsque t 1.

Nous appelons ensuite Gt le feuilletage de V obtenu en rendant Gt invariant par

le champ radialde chaque surface i sur V cf. lemme2.3.1). Puisque G est dansX
nous voyons que sur le complémentaire de la réunion des tubes fi(T), le feuilletage
G0 coïncide avec G ; d’autre part, sur ce même complémentaire, G1 coïncide avec

F car il s’obtient en saturant la trace de F sur K2 par un champ transverse à K2 et

tangent à F
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Il existe clairement un unique feuilletage global Gt de M ayant les propriétés
suivantes :

– sur le complémentaire des tubes fi(T) qui est contenu dans V ce feuilletage
coincide avec Gt ;

– dans chaque tube fi(T), ce feuilletage a une restriction égale à l’image par

fi s f-1
i

de sa trace sur i
Soulignons que pour t 0 ce feuilletage est égal à G et que pour t 1 il ne dépend
plus de G. Ceci conclut donc la construction et la preuve du théorème 2.

6. Conclusion

Les résultats présentés ici s’appliquent uniquement aux feuilletages tendus ; le
problèmereste ouvert lorsque le feuilletagene l’estpas. Parailleurs, le cas de ladimension
et de la codimension supérieure reste à étudier mais il nous semble d’une difficulté
extrême.
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