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Topologie locale des espaces de feuilletages en surfaces des variétés
fermées de dimension 3

Audrey Larcanché

Résumé. Dans cet article, on montre que, sur toute variété fermée et orientable de dimension 3,
deux feuilletages de codimension 1 qui sont orientables, tendus et suffisamment proches sont
homotopes parmi des feuilletages présentant (en général) des composantes de Reeb.

Classification mathématique par sujets. 53C12, 57D30.

Mots clefs. Feuilletage tendu, composante de Reeb, homotopie.

1. Introduction

Btant donnés deux feuilletages F1 et F» de méme dimension ¢ sur une variété M,
peut-on déformer continiment #1 en 53 ? Si une telle déformation existe, les champs
de plans tangents 7 ¥ et T 5> sont homotopes dans I’ensemble des sous-fibrés de
dimension d de T'M. Mais cette condition n’est pas clairement suffisante : pour
gtre tangent a un feuilletage, un champ de plans sur M doit vérifier une condition
d’intégrabilité dite de Frobenius ([12], pp. 163-171) et on ne sait pas st parmi les
homotopies de T F1 a T F,, 'une d’elles est constamment intégrable.

Dans la suite, on se place sur une variété M fermée, orientable et de dimension 3
sauf mention contraire. Tous les objets considérés seront de classe C™ et on notera
F1 (M) T’espace des feuilletages orientables de codimension 1 sur M muni de la
topologie C* (voir §2.1).

Théoreme 1. Soit F un feuilletage tendu de F1(M) (voir §2.5). Alors, il existe un
voisinage V(F) de F dans F1(M) tel que pour tout feuilletage F' dans V(F), on
peut trouver une application continue f: [0,1] — F1(M) telle que f(0) = F er
f() =¥,

Ce résultat ne nous permet pas de dire si1’espace des feuilletages transverses a une
fibration en cercles est localement connexe par arcs puisque les feuilletages considérés
au cours de I'homotopie ne restent pas dans V (F') par construction. En particulier,
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le théoreme ne répond pas a la conjecture de Rosenberg selon laquelle ’espace des
feuilletages de codimension 1 du tore T* transverses # la fibration naturelle de T® sur
T? est connexe par arcs (voir §3.4). Toutefois, on a un peu plus que le théoréme 1 :

Théoréeme 2. Soit F un feuilletage tendu sur M. 1l existe un voisinage V(¥ ) de ¥
dont Uinclusion dans 1 (M) est homotope a une application constante (cependant,
cette homotopie n’est pas une rétraction a priori).

Enfin, le théoreme 2 prend une forme plus globale dans un cas particulier intéres-
sant. Supposons que M estI’espace total d une fibration localement triviale en cercles
sur une surface de Riemann fermée de genre g > 1 et supposons vérifiée 'inégaliré
de Milnor—-Wood |x (M)| < 2g —2 ou x (M) estla classe d’Euler du fibré — ceci pour
que I’espace F des feuilletages de M (ransverses aux fibres ne soit pas vide. Alors,
onale

Théoréeme 3. F est homotope d un point dans F1(M).

Plan de cet article. Au paragraphe 2 on fait quelques rappels utiles. Dans une
troisieme partie on motive le probleme par quelques exemples. La section 4 contient
la construction-clef de ce travail ; elle consiste a trouver une section continue de
I"application @ qui associe a un feuilletage du tore solide sa trace sur le bord dudit
tore. Ceci se fait en adaptant une construction de Thurston qui fournissait, par une
méthode un peu différente, une section a priori discontinue de 0. Au paragraphe 5,
on prouve d’abord le théoreme 3 puis le théoreme 2. Les deux preuves empruntent le
mé&me chemin, mais dans la seconde il y a des difficultés supplémentaires a lever car
on contrdle moins la géoméirie de F et plus du tout celle de M.

Remerciements. Je tiens a remercier tout particulierement Michel Belliart qui m’a
prodigué de nombreux conseils et encouragements au cours de la rédaction de cet
article. Je tiens également a remercier le referee dont les suggestions ont grandement
contribué a améliorer la premiére version de cet article. Pour les mémes raisons, je
remercie également Christian Bonatti et Patrice Le Calvez, rapporteurs de ma these
dont cet article est extrait.

2. Préliminaires

Dans cette section, on décrit les outils principaux utilisés dans la preuve de nos
théorémes.

2.1. Topologie des espaces de feuilletages. Notons (1 (m) la grassmannienne des
plans de T;,(M) et G1(M) le fibré en grasmanniennes au-dessus de M obtenu en
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associant a tout plan tangent a M son point base (ce fibré est localement trivial et
a pour groupe de structure GL(3, R)). Etant donné un feuilletage ¥ de M, on peut
lui associer son champ tangent TF qui est une section de G1(M) et ’application
F = TF estinjective. Identifiant 'y (M) a son image par celle-ci, dans la suite,
on munit F1 (M) de la topologie induite par son inclusion dans I’espace des sections
C de G1(M) muni de la topologie de Whitney. Le fait suivant, que nous utiliserons
régulierement, est alors évident :

Fait. Soit K un compactde M. Au-dessus de K donnons-nous un champ continu k —
Tk, soit de droites, soit de plans tangent(e)s a M. Alors, ['ensemble des feuilletages
F e F1(M) tels gque T F soit transverse a ti en tout point de K est un ouvert de
Fi(M).

2.2. Voisinages tubulaires feuilletés. Nous rappelons rapidement le fait suivant :

Proposition 2.2.1. Si t est une courbe fermée simple transverse a un feuilletage
de F1 (M), tout voisinage tubulaire assez petit de © s’identifie & v x D* par un
difféomorphisme envoyant les feuilles sur les disques {x} x D?

Remarque 2.2.2. C’est une particularité des feuilletages orientables en surfaces de
codimension 1 : lorsque M est une variéié de dimension » munie d’un feuilletage
F de codimension g et N une sous-variété fermée de dimension g transverse a F,
il existe bien un voisinage tubulaire U de N dans M et une fibration p de U sur N
de fibre R"~7 tels que F coincide avec la fibration sur U ; cependant, cette fibration
n’est plus en général triviale et U n’est donc plus homéomorphe au produit de R*~¢
par N (cette propriété n’a lieu que si le fibré normal & N dans M est trivial).

2.3. Un probleme de lissage. Soient M une variété fermdée orientable de dimension
n et 2 une hypersurface fermée transversalement orientable intérieure a M. Munis-
sons M d’un champ de vecteurs auxiliaire X de classe C* partout transverse 2 X (un
tel champ existe bien puisque le fibré normal 2 = dans M est trivial). Notons & (¢, x)
I’'tmage de x par le flot de X au temps 7. S1 P est une partie quelconque de M et sir
est un réel strictement positif, nous convenons de noter P’ la partie &(] — r, r[x P)
de M. Fixons enfin un réel £ > 0 ; le lemme suivant nous sera utile :

Lemme 2.3.1. Soit T [’ensemble des feuilletages transversalement orientables,
transverses a % et de codimension 1 sur M. Soit Tx le sous-ensemble de T dont les
feuilletages sont invariants par le flot local de X sur X°. Alors, il existe une applica-
tion continue h: [0,1] x & — T telle que pour touwt ¥ € T, onait h(0, F) = F
eth(l, ¥) € Tx.

Preuve. Définissons d’abord une homotopie auxiliaire de M. Pour cela, nous intro-
duisons une fonction p de [—2¢, 2¢] dans lui-méme, impaire, croissante, de classe
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C™ telle que p(s) = O pours € [—e,¢], p'(s) > Opour |s| €le,2¢e] et p(s) = s
au voisinage de —2¢ et 2¢. Ensuite, pour ¢ € [0, 1] et x € M, posons ¢;(x) = x si
xeM -3 et (P(s,¥)) = Pl —1)s +1p(s), y) six = P(s, y) € T avec
v e Xets € [—2¢g, 2¢]. L'application (¢, x) — ¢ (x) est notre homotopie auxiliaire.

Pour ¢ € [0, 1[, I’application ¢; : M — M est un difféomorphisme de classe C™.
Or, ¥ est transversalement orientable donc 1l existe une forme de Pfaff «g qui le
définit. Pour tout 1 € [0, 1[, la forme différenticlle a} = ¢, (g ) est sans singularité
et intégrable ; elle définit donc un feuilletage #; de codimension 1 qui ne dépend
que de ¥ et en dépend contintiment. Pour 1 = 1, ¢1 ?’est plus un difféomorphisme,

mais nous pouvons quand méme définir la forme «g = @[ (oy) et constater que

cette forme est non-singuliere : en effet, elle ’est en dehors de X° car ¢ est un
difféomorphisme sur M — X° ; et en restriction 4 2°, on constate que a},y coincide
avec le tiré en arriere de la restriction (non singulieére) de oy a X par la projection
$(s,y) > y de XF sur X. Puisque a}g est non singuliére, cette forme (qui est
intégrable car image inverse d’une forme o qui ’est) définit un feuilletage 71 qui
est dans 'y par construction. L’application A(t, ¥) = F; a donc les propriétés

annoncées. O

Remarque 2.3.2. Ce résultat estencore vrai lorsque la variété est 4 bord et % au bord
de M : 1l suffit de prendre le champ X rentrant dans M et de considérer son demi-flot
positif P.

Dans la suite de ce travail, nous aurons a appliquer le lemme 2.3.1 plusieurs fois de
suite relativement a des hypersurfaces >, ..., 2, de M qui ne seront pas disjointes.
Nous faisons dans ce but la remarque suivante :

Remarque 2.3.3. Soit » > 0O et soit P une partie de M. Soit Tp; la partie de
J formée par les feuilletages auxquels X est tangent en tout point de P* (nous
supposons cette partie non vide). Alors, si A > 3¢, le champ X est encore tangent a
tous les feuilletages de i2(1, T p ;) entout pointde P ; autrement dit, on a I’'inclusion
h(1,Tp3:) CTpe.

Preuyve. Soit ¥ € Tp, avec A > 3¢. Pour tout p € P, I'intervalle de X-orbite
[ =[D(—A, p), P(A, p)]esttangenta F par hypothese. Par construction, I’intervalle
de X-orbite J = ¢ (I) sera tangent a ~(1, ). Mais, notre définition de ¢; fait que
Jalaforme [P(a — A, p), P(B+ A, p)], ou« et B sont des réels qui dépendent de p
et appartiennent a [—2¢, 2¢]. Aussi, puisque A > 3e,ona[P(—¢, p), Ple, p)] C J;
autrement dit, U'intervalle {p}® est tangent a A(1, F). O

Nous remarquons encore que I’homotopie que nous venons de construire ne dé-
pend pas réellement de X, mais uniquement de la donnée au signe prés de ce champ,
ce qui nous servira par la suite.
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2.4. Feuilletages de T transverses aux paralleles de T2. Pour fixer les idées, nous
identifions le cercle S' a R/ 7 via le paramétrage naturel de celui-ci donné par w
exp(2imw). Sur le disque D? := {z € C : |z| < 1}, nous introduisons les coordonnées
polaires définies par z = r exp(2iz0) ; sur le tore-surface T (identifié a S! x Sh),
nous notons (¢, ) les coordonnées canoniques ; enfin sur le tore solide T := D? x S!,
dont Ie bord est identifié & T2, nous utilisons les deux paramétrages produits (r, 6, @)
et (z, w) de maniere systématique. Ces notations sont fixées pour toute la suite. Nous
introduisons encore la premiere projection 7 (r, 6, w) = (r,6) de T sur D2

<o)

Les fibres de 7 sont traditionnellement appelées paralleles de T. 11 est utile de
remarquer, vu ¢e qui suit, que si F est un feuilletage de T transverse aux parallles,
alors ¥ estun feuilletage en disques. En effet, (cf. [5]), on a plus généralement :

Théoréme (Ehresmann). Soir 7 : E — B une fibration localement triviale de fibre
I compacte er soit ¥ un feuilletage de E transverse aux fibres de m. Alors, F
est conjugué a la suspension d’une représentation de m1(B) dans le groupe des
diffeomorphismes de F.

Remarque 2.4.1. Par contre, si 7: E — B est une fibration localement triviale a
fibre non-compacte, les feuilletages de E transverses aux fibres de = n’auront pas
nécessairement pour feuilles des revétements de la base ; dans [11], Hector a méme
construit un feuilletage  de R 2 feuilles denses transverses aux verticales.

Revenons a ce qui nous occupe. Ici, B = D? étant contractile, toute suspension
de base B est triviale. En particulier, un feuilletage de T fransverse aux paralleles ne
peut pas avoir n’importe quelle trace au bord de 'T. Ceci est a comparer au résultat
suivant ([20]) :

Théoréme (Thurston). Soit F un feuilletage en courbes de T2, transverse aux pa-
ralleles de T?. Alors, ¥ peut se prolonger en un feuilletage de 'T.
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Considérons ensuite I’espace & des feuilletages de codimension 1 de T qui sont
transverses aux paralleles ; notons Fq celui dont les feuilles sont les fibres de la
deuxiéme projection (r, 6, w) — w de T sur S!. Nous utiliserons le résultat suivant :

Lemme 2.4.2. F est homéomorphe au groupe topologique des difféomorphismes
du tore solide dans lui-méme qui sont fibrés au-dessus de ’identité de D? et égaux d
Uidentité sur {0} x S, ce groupe étant muni de la topologie C*.

Preuve. Notons (Y, id7) le groupe topologique des difféomorphismes en question,
pointé en son élément neutre. A tout élément f de ce groupe on peut associer le
feuilletage f (Fo) € F ,image par f de Fo. Cette application de (Y, idT) dans1’espace
pointé (&, i) est clairement continue et injective. Réciproquement, soit F € &
et soit (z, w) € T avec z = re'?. Considérons un chemin ¢: [0, 1] — D? joignant
0 a z et relevons ¢ dans la feuille de ¥ qui passe par (0, @) de maniere a obtenir un
chemin ¢, ,,. Comme D? est contractile, le point ¢ 2.0 (1) ne dépend pas du choix de ¢
mais seulement de z, w et & dont il dépend contindment. Nous pouvons alors poser
f#(z, w) = (2, ¢;,(1)) pour obtenir une application  + fg continue, réciproque
de celle f +— f(Fp) définie plus haut; ce qui prouve la bijectivité et la bicontinuité
de celle-ci. O

Corollaire 2.4.3. Notons F . l'ensemble des feuilletages de T qui appartiennent a
F et cotncident avec Fo sur un tore intérieur Iy ;= {(r,0,w) € T:0<r <e}deT
Ol E € ](), %[ Il existe alors une application continue h de [0, 1] x & dans & relle
que :

(1) pour ¥ e F, h(0, F)y=F eth(l,F) e &,
(1) le feuilletage h(t, ) reste le méme hors de T2, pendant que t varie.

Preuve. Comme on le constate facilement, I’ homéomorphisme décrit au lemme 2.4.2
associe a F . le sous-groupe Y, de Y des difféomorphismes de T de la forme (z, @) —
(z, p(z, w)), ou @ — @(z, ) est un difféomorphisme du cercle dépendant de z et
coincidant avec I'identité pour |z] < &. Nous allons donc construire plutdt, ce qui
revient au méme, une application continue £ de [0, 1] x ¥ dans ¥ ayant les propriétés
suivantes :

(1) pour ¢ € Y, h(0, p) =g eth(l, ) € Y ;
(2) lafonction h(t, @) reste la méme sur la partie de T définie par |z| > 2e.

Considérons une application « de classe C* de [0, 1] dans [0, 1] telle que «(u) =0
pour u < geto(u) = u pour u > 2¢e, Nous posons simplement /(z, ¢)(r, 0, w) =
p((1 —H)r+ta(r), 0, w) et par construction, cette application possede les propriéiés
requises. O

La remarque suivante est analogue a la remarque 2.3.3 :
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Remarque 2.4.4. Soit K un compact contenu dans T. Pour tout point x := (z, @) €
K, notons D,)C‘ le disque horizontal {(z’, ») : |z — 2’| < A} de centre k et de rayon A.
Posons V}{“ = ex D?. Supposons qu’un feuilletage F € F coincide avec Fp sur
V};. Si A > 3¢, alors A(1, F) coincide encore avec Fo sur V.

2.5. Composantes de Reeb et feuilletages tendus. La notion de composante de
Reeb est centrale en théorie des feuilletages (voir [19] pour la définition). Mais, nous
aurons besoin d’une notion plus forte introduite par Gabai dans [7] :

Définition 2.5.1. Un feuilletage F est tendu si pour toute feuille F de F il existe
une courbe fermée yr transverse a ¥ qui rencontre F.

On a la caractérisation suivante :

Fait 2.5.2. Un feuilletage ¥ est tendu si et seulement si il existe une transversale
Jermée y qui rencontre chaque feuille.

On voit qu'un feuilletage tendu est sans composante de Reeb. Par contre, un
feuilletage sans composante de Reeb n’est pas nécessairement tendu. Par exemple,
si on munit T? x S! du feuilletage produit d’une composante de Reeb de T2 par
S!, on obtient un feuilletage de T> ayant une feuille torique et il n’existe pas de
transversale fermée qui rencontre cette feuille dans T3, Cependant, ce feuilletage
est nécessairement sans composante de Reeb puisqu’aucune de ses feuilles n’est
homéomorphe 3 R?. I existe méme des variétés ([4]) qui admettent des feuilletages
sans composante de Reeb mais pas de feuilletages tendus (toutefois, lorsque la variété
est atoroidale, un feuilletage est tendu si et seulement si il est sans composante de
Reeb). Dans la suite, nous utiliserons la propriété suivante des feuilletages tendus :

Fait 2.5.3. Tout arc transverse a un feuilletage tendu se prolonge en une courbe
fermée simple transverse au feuilletage ([7]).

2.6. Difféomorphismes du cercle. Pour prolonger 4 T tout feuilletage de T? trans-
verse aux paralleles, nous utiliserons des résultats classiques sur la conjugaison a des
rotations des difféomorphismes de S! préservant ’orientation. A une telle applica-
tion f, Poincaré associe de fagcon continue un élément o ( f) de st appelé nombre de
rotation de f. Rappelons qu’un nombre « est diophantien s’il existe ¢ > Oetd > 1

tels que pour tous (p., ¢) € Z2 nonnuls, |go — p| > cq~2.

Théoreme. Il existe un ensemble A de mesure fotale tel que fout difféomorphisme
f e Diff_?_o(Sl) de nombre de rotation « € A soit C™-conjugué a la rotation R,
(Herman [13)]). De fait, A est 'ensemble de tous les nombres diophantiens (Yoccoz

[23]).
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Ce théoreme fournit un résultat particulierement intéressant sur la “forme” des
difféomorphismes ([13], p. 127} :

Corollaire 2.6.1 (Décomposition des difféomorphismes du cercle). Soit ; un nombre
diophantien. Tout difféomorphisme f € Diffj’f(Sl) s écrit de facon unigue comme
f =RipogoR,og T avec M f) € S! et g un difféomorphisme de S' tel que
2(0) = 0. De plus, Uapplication f — (A, g) est continue pour la C™-topologie.

Pour des raisons techniques, il sera préférable pour nous de passer au revétement
universel de Diff_io(S1 ), noté D®(S). Celui-ci s’identifie au groupe des difféomor-
phismes f de classe C* de la droite réelle tels que f — idp soit Z-périodique. Ce
groupe est contractile et pour r € [0, 1] et f € D> (SY), nous noterons f? le difféo-
morphisme de R qui & x associe zx + (1 — £) f(x). Le chemin t — f! € D>®(S!)
dépend continiment de f et relie f 4 idp. En relévement a D>(S"), le corollaire
précédent devient :

Corollaire 2.6.2 (Décomposition des €léments de D> (SY). Soit i un nombre dio-
phantien et soit f un élément de D> (SY) relevant le dl]j”eOmorphzsme f de ’énoncé
précédent. Alors f s°écrit de facon unique sous la forme f = ?»( £ ° goT,og =

on Ty désigne la translation Ti(x) = x + k de R et g est un élément de DOO(Sl)
Jixant 0. De plus, g reléve g, la classe de )L( f) modulo 1 est A(f) et U'application
f > (A(f), &) est continue pour la topologie C*™.

3. Homotopies de feuilletages : exemples

Dans cette partie, on considere sur quelques exemples le probleme général consistant
a homotoper deux feuilletages de méme dimension sur une variété fermée M quin’est
provisoirement plus supposée de dimension 3.

3.1. Le cas particulier des feuilletages de dimension 1. Nous soulignons rapide-
ment que s1 F est de dimension un, notre probleme devient élémentaire : en effet,
tout fibré en droites de classe C™ sur M est intégrable, et donc, deux feuilletages en
courbes sont homotopes si et seulement si leurs champs tangents le sont. En particu-
lier,

Proposition 3.1.1. L’espace des feuilletages en courbes de M, s’il n’est pas vide, est
localement contractile.

Soit en particulier un feuilletage orientable en courbes £o de T? ; parce que cela
nous servira dans la suite, nous allons expliciter une rétraction dans F; (T?) d’un
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voisinage V de Fg surle point { ¢ }. Comme nous le disions, la donnée d’un feuilletage
en courbes de T et celle de son champ de tangentes sont équivalentes ; aussi, soit dg le
champ de tangentes de . Nous supposons que T? est muni d’une structure conforme
auxiliaire (¢’est-a-dire que son fibré tangent est muni d une structure de fibré en droites
complexes, de groupe C* = GL(1, €)). Notons également U le groupe multiplicatif
{z € C* . |z| = 1}. Soit 41 un champ de droites sur T? : il existe une unique fonction
© de classe € de T? dans U/ (41} telle que la droite 4y ( p) au-dessus de p soit pour

tout p € T? I’image de la droite do(p) par I’élément ©(p) € U/ (41} (rappelons
que U/ (+1} agit simplement transitivement sur I’ensemble des droites vectorielles
réelles de €). Nous prenons pour V e voisinage de dp composé des champs de droites
dp pour lesquels ® admet une détermination de la forme O(p) = exp(if(p)) avecf a
valeurs dans ] — %, % [ Etant donné d1 dans V, nous définissons maintenant le champ
de tangentes h(t, d1)(p) = exp(i(1 —1)8(p))dy(p) ; celui-ci dépend continiiment de
dy pour la topologie C°, et nous avons h(t, dy) € V, h(0,dy) =dy et h(l,dy) = dy
comme souhaité.

Remarque 3.1.2. Dans notre description de I’homotopie % ci-dessus, nous pouvons
remplacer la structure conforme choisie en premier lieu par la structure conjuguée a
celle-ci (ce qui renverse I’ orientation de T? canoniquement induite par cette structure
conforme) ; il est 4 noter que si nous faisons ce changement, 1’homotopie £ obtenue
reste la méme.

3.2. Cas de grande codimension. Le fait que des feuilletages aient des champs de
plans tangents homotopes ne suffit pas pour assurer que les feuilletages sont homo-
topes : sur des spheres suffisamment grandes il existe des feuilletages non homotopes
de codimension au moins 10 dont les champs de plans tangents sont homotopes ([14]).
Le probleme reste ouvert pour les feuilletages de codimension 1.

3.3. Feuilletages minimaux sur ']I‘i. Soit A une matrice de SL(2, Z) telle que
tr(A) > 2. Ceci implique que A possede deux valeurs propres réelles A; > 1 >
A2 avec Athy = 1. Soient vi(}) et v2(5) des vecteurs propres de A pour Aq et Ao
respectivement. Soient les champs de vecteurs suivants sur R3:. X, = Al_z(a, b, 0),
Xo =%y “e,d,0), X3 = (0,0, 1) etsoit T" le groupe des transformations de R3 dela
forme ((x, v), z) > (A" (x+p, y+q), z+n) avecn, p, g des entiers relatifs. L action
de I" préserve X1, X2, X3 ; d’autre part, le quotient R/ T estune variété différentielle
compacte classiquement notée 'IFE;. Dans la mesure ou les X; sont invariants par [', ils
induisent sur 'IFE1 des champs de vecteurs Y1, Y2, Y3 partout transverses et satisfaisant
aux conditions [Y1, Y2] = 0, [V}, ¥Y3] =« Y et [Ys, ¥3] = —« Y avec k = In(Aq).
Le champ de plans (Y7, ¥») engendré par les champs commutants Yy et Yo est
tangent aux fibres de la fibration en tores sur le cercle de T3, donnée par I’ application

T (x,v,2) —> z mod 1.
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Les deux champs de plans (Y1, Y3) et (Y2, ¥3) sont tangents a deux feuilletages
transverses entre eux et transverses aux fibres de m, et notés respectivement F1 et 53
dans la suite (voir [10] pour plus de détails). Il est facile de montrer que T #1 et T
sont des champs homotopes, et méme que ¥ et F; et le feuilletage F¢ par fibres
de 7 sont tous trois homotopes dans IE‘l(']I'i). Par exemple, homotopons 1 a Fp : 1l
suffit de constater que le champ de plans (Y7, t¥2 + (1 — £)¥3) reste constamment
intégrable et relie 7' F7 et 7' Fq. Ceci étant, d’apres un théoréme de Ghys et Sergiescu
(110]), les feuilletages F3 et F7 sont C*-stables :

Théoreme (Ghys—Sergiescu). Tout feuilletage transversalement orientable et sans
Jeuille compacte sur Tf{ est conjugué a 1 ou a .

Or, les feuilletages F1 et £2 ne sont conjugués entre eux que si la matrice A est
conjuguée a son inverse dans GL(2, Z). Il existe donc des fibrés pour lesquels 3 et
F1 ne sont pas conjugués (par exemple, pour A = (4 1) (cf. [3])). Nous pouvons
alors obtenir sur les homotopies de #7 a F2 un renseignement intéressant au moins
dans le cas ou #1 et 2 ne sont pas conjugueés :

Proposition 3.3.1. Si F; est une homotopie de ¥, a 5, alors pour au moins une
valeur de t, ¥, a une feuille rorigue.

Preuve. En effet, comme ¥ est C*-stable (ce qui est une propriété ouverte et in-
variante par conjugaison), 'ensemble des € [0, 1] pour lesquels £+ est conjugué a
F1 estun ouvert 01 de [0, 1] qui est non vide car il contient 0. De méme, 1’ensemble
des T pour lesquels F; est conjugué a F5 est un autre ouvert non vide O, de [0, 1].
Puisque #7 et F> sont ici supposés non-conjugués, O et O, sont disjoints ; aussi,
par connexité, leur réunion ne peut pas étre [0, 1] et il existe donc 7 € [0, 1] tel que
Fr n’est plus conjugué a 'un des feuilletages modeles. Par le théoreme de Ghys—
Sergiescu, 7 a donc une feuille compacte. Si F; a une composante de Reeb, nous
sommes renseignés ; sinon pour toute feuille compacte F, le groupe w1 (F) s’ injecte
dans celui de ’]I"i1 qui est résoluble. Par suite, le groupe fondamental de la feuille com-
pacte est résoluble et elle est donc homéomorphe a une sphere ou a un tore (seules
surfaces compactes orientables de w1 résoluble). D’apres le théoreme de stabilité de
Reeb, on peut exclure le cas de la sphere dans lequel le feuilletage serait produit sur
la variété §? x S!. m

Remarque 3.3.2. On peut en fait montrer que tout feuilletage F proche de #1 (ou
F2) lui est 1sotope et aussi que F et F2 ne sont jamais isotopes. La preuve de ce
résultat n’a pas sa place dans cet article et paraitra donc ailleurs.

3.4. Conjecture de Rosenberg. On attribue la conjecture suivante a Harold Rosen-
berg ([8], p. 39) :
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Conjecture. 1espace H'!(Z?, Difff_"(Sl)) des homomorphismes de Z? 2 valeurs
dans Diff$® (S1) est localement contractile.

Par suspension, elle contient 1’énoncé suivant en termes de feuilletages :

Conjecture. Soit 7: T> — T2 la fibration naturelle de T sur T2. L’espace des
feuilletages transverses a cette fibration est localement connexe par arcs.

En fait, il s’agit d’un cas particulier d’un probléme qui n’est simple qu’en appa-
rence |

Question. Soient M et N deux variéiés compactes. I’ ensemble des feuilletages trans-
verses au fibré trivial w: M x N — N est-il localement connexe par arcs ?

Pour étudier rapidement cette question, introduisons le groupe G des difféomor-
phismes de M qui sont isotopes a I’identité et munissons-le de la topologie C.
Choisissons aussi un point-base ng sur N. Soit 1 le groupe de difféomorphismes
de M x N qui sont fibrés sur I'identité de N, qui fixent chaque point de la fibre de
ng et dont la restriction a chaque fibre de 7 est dans G. On peut montrer que H est
localement contractile. Ensuite, /7 agit de fagon naturelle sur ’espace & des feuille-
tages de dimension dim(N) de M x N qui sont transverses aux fibres ; on vérifie
sans peine que F est un I -fibré principal dont la base s’identifie de fagon plus ou
moins canonique a une certaine partie de I’espace Hom(zr1 (V), &) (voir [5] et aussi la
preuve du théoréme 4 ci-dessous). La topologie de Hom(1 (N), G) et cellede & sont
donc fortement lides. On peut certes déterminer la structure de Hom(r1(N), &) dans
certains cas tres particuliers : par exemple, lorsque 71 (N ) n’a que des morphismes
triviaux dans G, ou plus généralement, lorsque tous ces morphismes se factorisent
par un groupe fini ([6], [16], [22]), ou au contraire lorsque 1 (N) est libre, auquel
cas, Hom(7{(N), G) est isomorphe a G” ou r est le rang de 771 (N ). Mais en dehors
de ces cas tres particuliers, on ne connait pratiquement rien de Hom(zy (N), G) ; et
rappelons que pour N de dimension suffisante, r1 (N) peut &tre n’importe quel groupe
de présentation finie !

4. Prolongement au tore solide des feuilletages du tore-surface

Notons 8 I’espace des feunilletages en surfaces de T qui sont transverses a son bord T?
et transverses aux paralleles de celui-ci, sans Etre forcément transverses aux paralleles
a I’intérieur de T. Définissons également 1’espace € des feuilletages en courbes de T?
qui sont transverses aux paralleles. Il y a donc une application naturelle 9: 8 — €
qui 2 un feuilletage de T associe le feuilletage induit sur son bord T2. Dans [20],
Thurston a montré 1’existence d’une application s: € — 4 telle que 0 o s = ide.
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Dans cette section, on se propose de montrer que s peut €tre continue. On a vu au
paragraphe 2.4 qu'un feuilletage ¥7 de T proche du feuilletage en disques Fy est
lui-méme en disques (car ses feuilles sont des revétements de D?). Cependant, tout
feuilletage du tore T2 proche du feuilletage en cercles 3 Fo n’est pas nécessairement
en cercles (1l peut méme Etre a feuilles denses). Ainsi, il n’existe pas de section
continue s de d au-dessus d’un voisinage de o £y telle que s (0 Fp) = Fo. Néanmoins,
on a le résultat suivant :

Théoreme 4. ] existe une section continue s: € — 8 de 0.
Le but de cette section est de prouver ce résultat.

4.1. Principe de construction de s. Soit ¥ un feuilletage de T? transverse aux
paralleles. Lorsque ce feuilletage est défini par une forme fermée, il s’étend en un
feuilletage de T possédant une composante de Reeb. Dans un premier temps, nous
nous inspirons de ce résultat de Reeb ([19]) pour construire une section s” continue au-
dessus de ’espace € des feuilletages de T? dont 1’application de premier retour sur le
parallele 6 = 0O est une rotation. Ensuite, remarquons que si on prive T de I’'intérieur
de deux ftores solides disjoints, on obtient une variété difféomorphe a P x S! ol
P (pour “pantalon”) est la variété obtenue en privant le disque D? de deux petits
disques ouverts disjoints. Désignons par C, Cp et C2 les composantes du bord de P.
Partant d’un feuilletage ¥ € € de T2, on construira d’abord un prolongement

P

<0

P x S!. Par construction, ce prolongement tracera sur les tores C7 x S et C; x S!
(convenablement identifiés 2 T?) des feuilletages qui seront dans € et qu’on pourra
donc étendre a 1’aide de la section s’ précédemment construite a I’intérieur de ces
tores.

4.2. Notations. Continuons de noter (r, 0, @) ou (z, @) les coordonnées usuelles
sur le tore solide T.
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Notation 4.2.1. Définissons deux tores solides T et T» par
T (o ol = h) e o= {cer: -2 s )

La variété obtenue en privant T de I'intérieur de T; U Ty est notée W. Elle est
difféomorphe au produit P x S! ot P est le disque unité privé des petits disques
ouverts {z e D? : |z 4+ 5| < Llet{zeD?: |z - 1| < 5}

Nous aurons besoin d’un point-base sur D? : pour fixer les idées, nous prenons
zo = 1. Nous utiliserons également des voisinages de sécurité pour traiter de certains
problémes de recollement ; aussi nous fixons & € 0, 5[ et

Notation 4.2.2. Nous notons T¢ le voisinage tubulaire suivant du bord de T :
T :={(r,0,w) :r >1—¢g}.
De méme, nous notons W¢ le e-voisinage du bord de W dans W,

Sur W#, nous introduisons un champ de vecteurs transverse au bord et tangent
aux disques horizontaux :

Notation 4.2.3. En notant 7 = x + iy € D?, le champ R est défini par

r% pour tout (r, 8, @) € T°

Ropow =1 (x— 32 + y% au e-voisinage de C1 x S

(x 4 %)% + y% au e-voisinage de (; x S!
Nous appellons R le champ radial sur W*,

Comme nous considérons beaucoup d’espaces de feuilletages différents, 11 n’est
pas inutile d’en récapituler la liste.

Notation 4.2.4. Nous notons :

— 4 l'espace des feuilletages en surfaces de T qui sont transverses a son bord
T? et transverses aux paralleles de celui-ci, sans étre forcément transverses aux
paralleles a I’'intérieur de T ;

— @ I’espace des feuilletages en courbes de T? qui sont transverses aux paralldles ;

— @q I’espace des feuilletages de T? dont ’application de premier retour sur le
parallele 6 = 0 est une rotation ;

— & l’espace des feuilletages en surfaces de T qui sont en disques ;

— ‘W D’espace des feuilletages de W transverses aux paralleles et invariants par R
sur W*#,
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Introduisons maintenant les groupes topologiques suivants qui seront tous munis
de la topologie C™ :

— H(T?) le groupe des difféomorphismes de T? qui sont isotopes a I’identité,
fibrés au-dessus de ids et fixent 7 ~1(z0) point par point ;

— H(T) le groupe des difféomorphismes de T qui sont isotopes a I’identité, fibrés
au-dessus de idp,, invariants par R sur T et fixent 7 ~!(z¢) point par point ;

— H(W) le groupe des difféomorphismes de W qui sont isotopes a I’ identité, fibrés
au-dessus de id p, invariants par R sur W¢ et fixent 7 ~!(zo) point par point ;

— Ho(T) (resp. Ho(W))le sous-groupe de H(T) (resp. H(W)) des difféomorphis-
mes qui fixent T® point par point.

Enfin, nous choisissons deux lacets basés en zo dans P :

Notation 4.2.5. Les lacets y; et y; sont définis par :

— (1) := glint pour ¢ € [0, 17;
_ yz(t) — {ezmt pOU,I'I = [(1)’ %3] U [%’ 1]’
i(2—4r) pourt e[z, 5]

De cette maniere, les groupes fondamentaux 1™ := m (S, zo)etI'y := m1(P, 7o) sont
engendrés respectivement par [y1] et {[y1], [y2]} ou [y; ] désigne 1a classe d’homotopie
du lacet y;. De plus, I'1 s’identifie a un sous-groupe de 1';.

Enfin, pour i = 1, 2, nous notons A; 1’espace des morphismes de groupes de I';
dans D> (Sh.

4.3. Quelques propriétés. Nos définitions font que A et A sont homéomorphes
a D®(Sh) et D*(SY) x D>®(S!) respectivement. De méme, H(T?) et les quatre
autres espaces “H (-)” sont homéomorphes a des espaces d”applications convenables
(par exemple, H(T?) est homéomorphe a I’espace d’applications de classe C™ entre
espaces pointés de (SL, zo) dans (D*°(SY), idp)). On déduit facilement de 12 le lemme
suivant

Lemme 4.3.1. Les sept espaces suivants sont contractiles : A1, Ay, H (T2), H(T),
Hy(T), H(W) et Hy(W).

La théorie des suspensions, due a Ehresmann ([5]), décrit la structure de 1’espace
des feuilletages transverses aux fibres d’une fibration localement triviale de fibre
compacte. Elle permet dans notre cas d’obtenir le résultat suivant (qui a vrai dire ne
découle pas directement de [5] ; mais la déduction est relativement triviale et donc
laissée au lecteur) :
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Lemme 4.3.2. Les applications suivantes sont des fibrations principales :
— Hole: € — A1, de groupe H(T?);
— Holw: W — A, de groupe H(W);
— Holg,: €y —> R, de groupe H(T?).

De plus, & est homéomorphe a H(T) — ce qui est une autre facon de dire que F est
un H(T)-fibré principal sur un point.

Par ailleurs, certains de nos groupes topologiques sont li€s par des morphismes
naturels.

Lemme 4.3.3. Les suites suivantes sont exactes :

(Sw) lidy} — Ho(W)—= H(W) % 1 (T2) — {idp2}

(ST) {idr} —— Ho(T)—— H(T) — H(T*) — {idp2}

ou rest et resy sont les morphismes naturels de restriction des difféomorphismes de
T ou de W & la composante de bord T?.

Le seul point non évident dans le lemme 4.3.3 est la surjectivité des applications
rest et resy ; mais nous allons construire des sections continues de ces morphismes
car nous en aurons besoin ensuite.

Notation 4.3.4. Nous notons exty et exty les sections de resy et resT construites
ci-dessous. Nous notons S une section du fibré a base contractile ' W — Aj.

N.B. Nous ne prétendons pas que exty et exty soient des morphismes de groupes !

Construction de exty et extr. Soit h un élément de H (T?). Nous allons construire
un élément extt de H(T) qui fixera chaque point (z, @) tel que |z| < = ; de ce fait, la
restriction extw (#) de ext a W appartiendra a [/ (W).

Soit &: [0, 1] — [0, 1] une fonction décroissante de classe C™ telle que I'on ait
a(r)y =1sir < % eta(r)y =0sir > 2 Mettons le difféomorphisme 7 sous la
forme h(6, w) = (A, po(w)) avec gy € D1ff°°(Sl) ce qui est possible car £ est fibré
au-dessus de idg1. Comme de plus £ est isotope A idg, on peut relever ¢y a D™ (SHen
un difféomorphisme que I’on notera encore ¢y et tel que ¢y = i1dg. Ensuite, posons

extr(r, 0, w) := (.0, o2 ()

ol la notation “(pg( ) ot celle “ £ de 1a section 2.6. Comme Vg S gl = idp dés
quer < %, cette formule a un sens méme pour r = 0, et elle définit bien un élément

de H (T) qui fixe les points pour lesquels r < %. O
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4.4. Tourbillonnement de Reeb équivariant. Nous allons maintenant construire
une section continue s” de 8 au-dessus d’un certain espace de feuilletages €. Pour
éviter toute confusion, nous soulignons que cette section 7’est pas encore la section s
cherchée, mais un outil permettant de la construire. Nous utiliserons le tourbillonne-
ment de Reeb ([19]). On doit a ce dernier le résultat suivant :

Lemme4.4.1. Soit F unfeuilletage de T? défini par une forme différentielle fermée c.
Alors F se prolonge en un feuilletage ¥, du tore solide.

Nous nous en inspirons pour prouver la

Proposition 4.4.2. I existe une section s': Co — & de 9 ainsi qu’une application
continue h': [0, 1] x F — F(T) telle que (O, F) = F, (1, F) = s o dF et
pourtoutt, Ok’ (1, F) =0F.

Preuve. Appliquons le lemme 4.3.2 et faisons correspondre a tout ¥ € €y le réel
Az etle difféomorphisme /¢ tels que h}l (F) soit le feuilletage de T? défini par la
forme fermée dw — A ¢d6. Ensuite, nous introduisons des fonctions p et ¢ de classe
C® de I'intervalle [0, 1] a valeurs dans [0, 1] telles que ci-dessous.

l— I

0" b C 1 0 a b 1
Définissons la forme différenticlle suivante sur T ;

Broi=0 =) - (L —p(r) (do—rd0)+(1 —@@)) p(r)-dr +¢r)-do.

On vérifie sans peine que B, s’intégre en un feuilletage 4, de T qui posseéde une
composante de Reeb et admet £ ¢ (F) pour trace au bord. Par ailleurs, le difféomor-
phisme extr(/ ) de T admet / & pour restriction 2 T? par construction. Nous posons
maintenant s’ (F) := extr(hg)($, ) et obtenons bien une application s” de €g dans
8 telle que @ o s = ideg,.

I1 nous reste a construire /', Soit ¥ € F et associons 4 F 1'unique élément
Hy de H(T) tel que Hy (Fo) = F (I'existence de Hyz découle du lemme 4.3.2).
Puisque Hg et extyp(rest(Hg)) ont par définition le méme projeté sur H (T2), on
peut ensuite définir un unique H 32 e Hp(T) telque Hy = H g oextr(rest(Hg)) en
vertu du lemme 4.3.3. De plus, selon le lemme 4.3.1, le groupe Hy('T) est contractile ;
introduisons une rétraction R(z, -) de Hy(T) sur {idt}. Enfin, pour tout ¢ € [0, 1], on
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vérifie par un calcul direct que la forme n, := ¢ - o+ (1 — 1) - dw est non-singuliere et
intégrable. Elle définit donc un feuilletage que 1’on peut noter ¥; car Fy correspond
effectivement au feuilletage de T en disques horizontaux ; on a ausst F1 = Go. Nous
définissons maintenant 4’(¢, ) comme suit :

— pour t € [0, 5], (¢, F) := R(2t, HY) o extr(rest(Hg))(Fo),
— pour ¢ € [3, 1], W'(t, F) 1= extr(rest(Hz ) (Fa_1).

Clairement, les deux définitions coincident pour ¢ = % ; tout aussi clairement, A’
est une application continue. On constate encore que /2'(0, F) = F et K'(1, F) =
s'(8F). Enfin, on a constamment

N (t, F) = d(RGnf (2t, 1), H) o extr(rest(Hy ) (Faup2i—1,0))
= 1e8T(Hy#)0(Faup2e—1,00) =TtesT(Hz)dFo = 0F. O

Remarquons en passant que par construction, le feuilletage s'(F) est invariant
par le champ radial sur T¢, ce qui nous servira par la suite.

4.5. Prolongement & P x S!. Fixons un nombre diophantien z et prolongeons
maintenant tout feuilletage ¥ de € a W.

Comme € est un fibré principal de base A1 (lemme 4.3.2), on peut associer a ¥
un élément de Aj ¢’est-a-dire un morphisme I'y — D>®(SH. Notons f# I’image
de [y1] par ce morphisme. D’apres le théoreme d’Herman (corollaire 2.6.2), il existe
MF) e Retg € D®(SH qui dépendent continiment de f¢ et tels que ¢ =
T]&(.(F) 0ogo TPL o] g_l,

Définissons une représentation pg de 'y dans D>(sh par pz([y1]) = f# et
pg ([v21) = Ty (#) ; par construction py dépend continiment de F .

Par ailleurs, il existe une section continue S: Ay — ‘W (notation 4.3.4). Par
conséquent, le feuilletage S(p) dépend continiiment de F et trace sur C x S! ~ T?
un feuilletage ayant la méme holonomie que # mais qui ne coincide pas nécessai-
rement avec £ . Néanmoins, selon le lemme 4.3.2, 1l existe un unique ¢lément noté
he € H(T?) tel que ¥ = h#(S(pg)). Soit Fw le feuilletage de W défini par
extw (he)(S(ps)); par construction, il dépend continiiment de F et a pour trace F
sur T2. L application Sy : # +— Fy est donc un prolongement continu de # a W

De plus, d’apres la remarque 2.3.3, on peut supposer sans perte de généralité que
le feuilletage Fw est invariant par le champ radial R sur W*.

4.6. Construction de s. Nous allons maintenant prolonger £y a Ty et Tz grice a
la proposition 4.4.2. Les points 71 = —Tz gt z2 = % sont au bord respectivement de
(1 et Cy. Choisissons librement dans P un chemin ¢ de zg 4 z; et un chemin ¢, de
7o 4 2. Ceci de sorte que, en notant y; et y, les géndrateurs naturels de 71 (C;, z;),

: | 1 . : N —1_
les chemins y, ~ et y; *y; soient respectivement homotopes a ¢; “y,cp et ey yyc1.
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Nous rappelons que 'image de [y1] par la représentation d’holonomie de £ a éié
décomposée dans D> (S1 sous la forme TygyogoTyo g L

Introduisons maintenant des applications de @ dans D™ (S!). Pour k = 1 ou 2,
pour ¥ € @ et pour wy € S!, le chemin ¢y, se reléve de fagon unique en un chemin
c’gy’wo au-dessus de ¢, tracé le long de ¥ et issu de (2o, wp). Lextrémité de ce
chemin est un point au-dessus de z;, que nous noterons (zx, @i (wg)). L’ application
qui,a F € @, associe I’élément ¢ de Diff* (S1) est clairement continue. Par ailleurs,
les lemmes 4.3.1 et 4.3.2 impliquent que € est contractile et on peut donc relever
F > ¢ en une application # > hy de @ dans D™ (S!).

Soit # ! le feuilletage que trace Fy sur le bord de Ty etsoit &7 ledifféomorphisme

suivant de T sur T : & (z, @) = (757 — 3. h1 © g(@)).
Proposition 4.6.1. Le feuilletage G1 := (CIDf yUFELY) est dans €@,

Preuve. Par définition, le feuilletage 1 est dans € donc son image par Hole est
un morphisme de 'y dans D>®(SH. Notons ¢ I’image du générateur 'yl_l par ce
morphisme. Or, par construction de ¢, ona ¢ = g lo hl_l orohyogouirest
I’application d’holonomie de Fy associée au lacet y;. Ceci étant, dans 71 (P, zg), on
a [yl’ ] = [clyl_lyzcl_ 1] par choix de cj. A son tour, ¢ se décompose donc comme
suit : ¢r = hy o Holw (Fw, yl_l) o Holw (Fw, y2) o hl_l. Or, par construction de Fy
nous avons : Holw (Fw, y2) = Ty et Holw (F, yl_l) =gol_,o0 g lo T_;%).
Finalement, ¢ = 7_,, qui est bien une translation. O

Soit £ 2 le feuilletage que trace Fy surle bord de T5 et soit CIDf ledifféomorphisme
suivant de T sur Ty : &3 (z, w) = (%z + %, ha(w)). On vérifie de méme que 'on a
la

Proposition 4.6.2. Le feuilletage G, = (CI){V Y U(F ) est dans Co.

Nous prolongeons donc Fw a T tout entier, en comblant Ty par d)ff (s"(G1))
ou s’ est 1a section de 1a proposition 4.4.2. Notons s(F) le feuilletage ainsi obtenu.
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Par construction, I’application ¥ +— s(¥') est continue. De plus, pour tout £, le
feuilletage s (F') obtenu a la fin de cette construction est de classe C* sauf peut-&tre
au voisinage de €7 x S uCy x st (car 11 s’obtient en recollant des feuilletages
transverses a ces deux tores et définis de chaque cbté ; on pourrait donc craindre
une absence de différentiabilité transverse a nos deux tores). Mais, heureusement, au
voisinage de C; x S! (i = 1, 2) s(F) est invariant par le champ radial (de classe C™
et transverse 2 C; x S1) donc s(F) est aussi régulier que sa trace sur C; x S!, qui est
bien de classe C*. Par conséquent, le théoréme 4 a bien lieu.

4.7. Homotopie de & a s(3(F)) pour F € F. Rappelons qu’on désigne par Fo
le feuilletage en disques horizontaux ¢’est-a-dire dont les feuilles sont les fibres de la
deuxi®me projection (r, ¢, w) — « de T sur S'.

Proposition 4.7.1. Il existe une application continue h: [0, 1] x F — F1(T) avec
les propriétés suivantes - h(0, F) = F, h(1, F) = s o 0F et pour tout t € [0, 1],
hit, F)lte = Ft=.

Preuve. Soit ¥ € . Comme ce feuilletage est en disques topologiques, sa repré-
sentation d’holonomie dans D> (S!) est 'identité. De plus, en la décomposant selon
le théoréme d’Herman, nous avons g = idr ¢t A(F ) = —u. Enfin, nous définissons

encore des difféomorphismes & de T sur T; par &7 (z, @) = (%z 4 (_Tl)i, hi(w)).

— Pour ¢ € [0, %], appliquons le lemme 2.3.1 4 Ty et T» de fagon a rendre F

invariant par le champ radial sur un e-voisinage de ces tores. De méme, grice a
la remarque 2.3.3, nous effectuons la méme opération sur T¢.

— Pourt € [%,%

Flr, a $i(s’ o 8(1)5_1(5’7|Ti)). Comme F a &té rendu invariant par le champ
radial sur un e-voisinage de T;, il n’y a pas de probleme de recollement. Notons
F’ le feuilletage ainsi obtenu et remarquons que 0F ' = 9.F .

—~ Pour? € [3. 3],1atrace de ¥’ surle bord T? de T est dans laméme H (T%)-orbite
que 0 Fp donc il existe by € H(T?) tel que 3F " = hy(0Fp). D apres la défini-
tion 4.3.4, on peut étendre /1 & en un difféomorphisme exty (7 ) de W. Remar-
quons qu’alors F'|w etextw (h#)(Fo|w) ontle méme projeté sur H (T?) donc il
existe ununique €lément HY € Ho(W) telque F'|w = HY oextw (hs)(Folw).
Or, d’apres la lemme 4.3.1, le groupe Ho(W) est contractile donc il existe un
chemin de H }Q a I’identité dans Hy(W). Nous pouvons alors homotoper /|y
au feuilletage exty (74 )(Folw) ; désignons par Fy, , la famille de feuilletages
sur W ainsi obtenue. De plus, remarquons que la réprésentation d’holonomie
de ¥’ ne varie pas; par ailleurs, nous pouvons encore définir le difféomor-
phisme CIDf " qui dépend continiiment de F” |w.. On peut vérifier comme a la

], appliquons la proposition 4.4.2 et homotopons le feuilletage

proposition 4.6.1 que I'image par (&7 )~! du feuilletage Fy, ,|o7, reste dans
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€g ce qui nous permet de prolonger continfiment #y, , a I'intérieur de T; par
fradd %
&F (" 0 (DT )TUFY, Jam)).

— Pour ¢t € [%, 1], il nous reste a homotoper Fy a son image par s o d; vu la
construction précédente, nous obtiendrons alors 1’homotopie pour ¥ € F.
Notons pg la représentation triviale de 'y dans D™ S et py 1a représentation
correspondant 2 p1([y11) = idp et p1([y2]) = T—p.

Introduisons également la représentation p4; 3 correspondanta o ([y1]) = idp et
o([»]) = —(4r—3) . Rappelons qu’a la fin de I’ étape précédente, la restriction
de F'a W s’écrit exty (hs)(Folw) ¢’ est-a-dire exty (h#)(S(pp)) ou S est la
section continue introduite au paragraphe 4.3.4. Nous terminons I"homotopie sur
W par extw (h#)(S(par—3)). De la méme fagon que précédemment, on vérifie
qu’on peut prolonger ce feuilletage continiment a I’intérieur des tores T; par
une formule analogue.

Nous obtenons ainsi une homotopie de ¥ as c dF pour ¥ € F. O

5. Preuve des théorémes B et C

Nous allons commencer par montrer le théoreme 3 ; les 1dées majeures de la preuve
du théoréme 2 seront déja présentes, mais sous une forme simplifiée.

5.1. Preuve du théoreme C. Pour I'instant, M estun fibré en cercles 7 : M — %,
dont la base est une surface fermée de genre g > 1. Par hypothése, 1'espace & des
feuilletages de M qui sont transverses aux fibres de 7 est non vide. Choisissons une
immersion ¢ du tore solide T dans M envoyant les paralleles {(r, 6)} x S! de T sur
des fibres de mr. Par application du corollaire 2.4.3, pour gy > 0 assez petit, on peut

~

homotoper & a une partie ¥ ¢ de lui-méme dont tous les feuilletages coincident avec
p(Fo) sur ¢(Tey).

I1 nous reste a homotoper & ¢ a un point dans Fy(M). Appelons champ radial
(cf. 2.3) un champ de classe C™ sur M dont la restriction a4 ¢(T) est I'image par ¢
du champ raa—r sur T. D’autre part, définissons une submersion » de T dans M par la
formule ¥ (r, 6, w) = @(e1r, 8, w). Pour &1 > 0 assez petit et pour £ > 0 assez petit,
dépendant de g¢ et de g1, nous voyons que que chaque feuilletage de & ¢ est invariant
par le champ radial sur ¥°, ot X est la surface o(T5H c M.

La surface X sépare M ;notons W := ¢(T)et N := M — W les deux sous-variétés
compactes de M dont % constitue le bord. Alors N est encore fibrée en cercles par =
sur une surface S, qui est le complémentaire dans X, d’un disque ouvert. Or, on sait
que le groupe fondamental I" d’une surface telle que S, est libre a 2g générateurs ;
aussi, pour tout groupe topologique contractile G, on a Hom(I", G) =~ G?¢ qui est lui
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aussi contractile. Soit maintenant ¢ 1’espace des feuilletages de N qui sont transverses
a X, transverse aux fibres de 7 et invariants par le champ radial sur X N V.

Lemme 5.1.1. § est un fibré principal de base Hom(T", D> (SY)) et de fibre le groupe
G des difféeomorphismes de N qui sont fibrés sur Uidentité de S,, invariants par le
champ radial au voisinage de X et égaux a Uidentité en restriction a une certaine
Jibre Fy arbitrairement choisie.

Preuve. Constatons que la fibration qu’induit 7z sur N est triviale (ce fait classique
vient de ce que les fibrés orientables en cercles sont caractérisés par leur classe d”Euler
qui appartient a H?(B,Z) ou B est la base du fibré ; or, HZ(Sg, Z) = 0 car Sg se
rétracte sur un bouquet de cercles). Une fois cette constation faite, le résultat voulu
découle de [5]. O

Puisque G et Hom(T", D>(S1)) sont contractiles, § est lui aussi contractile (le fait
que G soit contractile se prouve comme au lemme 4.3.1). Considérons maintenant
une rétraction /2 de G sur un point. Pour ¢ € [0, 1] etpour & dans & g, nous définirons
un feuilletage #; en décrivant ses restrictions & W eta N ; celles-ci seront transverses
a X, égales en restriction a cette surface, invariantes par le champ radial sur X° et se
recolleront donc en un feuilletage global sur M. La définition de ¥; est la suivante :

~ Sit [0, 1], alors H(t, ) = F sur N et H(t, F) = ho(2t, F) sur W ol hg
désigne ’homotopic de & a s o d(F ) définie a la section 4.7.

— Sit e [, 1], alors H(t, ) = h(2t — 1, F) sur N ; ce fevilletage trace sur le
bord de X un feuilletage en courbes 0 H (f, ¥ ) que nous prolongeons dans W
par s(dH (t, F)).

On constate sans peine que cette application /' constitue 1’homotopie voulue de
F o aun point dans F1 (M) ; ce qui acheve la preuve du théoreme 3.

5.2. Vers le théoreme B. Pour prouver le théoréme 2, nous avons délimité une
partic N de M sur laquelle il est facile d’homotoper les feuilletages considérés, et
nous sommes ensuite parvenus a prolonger les homotopies au complémentaire W de
N dans M du faitque W estune (réunion de) copie(s) de T. Comme les feuilletages a
homotoper étaient transverses aux fibres de 7, la construction était particulierement
simple et n’utilisait qu’un seul “tube” W =~ T. Dans le cas général, il nous faudra
gtre plus méticuleux ; par ailleurs, nous ne pouvons plus régler aussi facilement le
probleme de lissage au bord des “tubes” et il nous faudra construire un succédané du
“champ radial”.

Soit désormais M une variété fermée orientable de dimension 3 et ¥ un feuilletage
tendu de codimension 1 sur M. Selon Thurston ([20], voir aussi [2]), il existe une
“bonne” triangulation K de M. Les propriétés qui nous intéressent sont les suivantes :

— F est transverse aux arétes de K,
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— tout simplexe o de K est homéomorphe a la boule fermée de dimension 3
feuilletée par les surfaces de niveau z = constante.

Nous prouvons maintenant le théoréme 2 en quatre étapes :

— mise en coincidence préliminaire de # est de ses voisins au voisinage du 1-sque-
lette de K, ceci pour contourner les probléemes de lissage au bord des simplexes ;

— définition des copies de T dans M dont la réunion jouera le role de W ;
— définition de 1’objet qui jouera le réle du champ radial X ;

— construction de ’homotopie a partir de ces données.

5.3. Premicre étape. Soit K'!le 1-squelette de K etsoits > Ounréel “suffisamment
petit” (notion qui sera précisée au lemme 5.3.1). Enfin, soit V le e-voisinage de K
dans M relativement a une métrique riemannienne auxiliaire lisse sur M fixée pour
la suite.

Lemme 5.3.1. Soit 'V Uespace des feuilletages de M qui coincident avec & sur V.
Si e = 0 est assez petit, alors, il existe un voisinage U de F dans F1(M) er une
application continue Hy de [0, 1] x U dans F1 (M) tels que Uon ait H1(0, §) = G et
(1, 4) € 'V pour tout § € U. De plus, on peut choisir Hh pour avoir Hi(t, ¥ ) =
F pour toutt € [0, 1].

Preuve. 1.1dée étant voisine de celle employée au lemme 2.3.1, nous nous contente-
rons d’une preuve rapide. Soit 1 une aréte de K1, Soit &: D? x [—2¢,1+2¢] > M
une immersion d un ¢ylindre dans M. On peut choisir @ pour que ® ({0} x[0, 1]) = L.
Soit ¢: [0, 1] — R une application de classe C* telle que ([0, 3]) = {0}, ¢ est
strictement croissante sur ]%, 1] et p(x) = x pour x > % Soit également v : [—2s,
1 4 2¢e] — [0, 1] une application C™ telle que W ([—2¢,e]U[1 +&,1 4+ 2¢]) = {0}
et ([0, 1]) = {1}. Pour ¢ € [0, 1], nous notons f; 'application C* de M dans
lui-méme qui coincide avec I’identité hors de I'image de & et s’écrit ® o v o d~! en
restriction a cette image, avec t(r, 6, x) = (1 —H)ep(x))r +t(x)e(r), 0, x). Nous
posons pour tout fevilletage § transverse a ({0} x [—2¢, 14-2¢]), H(t, ) = f7(G)
et comme au lemme 2.3.1, bien que f; ne soit un difféomorphisme que pour ¢ < 1,
ceci définit une homotopie de ¢ a un feuilletage qui coincide avec £ au voisinage
de I.

11 suffit d’effectuer cette construction aréte apres aréte car chaque étape préserve
le résultat de 1’étape précédente. O

Remarque. On n’a pas encore utilisé que le feuilletage ¥ est tendu.

Dans 1a suite, nous supposerons que les feuilletages coincident avec F sur V.
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5.4. Construction des “tubes”. Nous introduisons maintenant ce qui généralise la
partie N de M dans la preuve du théoréme 3. Nous considérons un petit voisinage V'
du 2-squelette K2 de K dont nous préciserons le choix plus tard (proposition 5.5.2).

Proposition 5.4.1. [l existe un entier N et des plongements (¢ )1<i<n de T dans M
avec les propriéiés suivantes :

— M est la réunion de V' et des ¢; (T) ;

— le bord de chaque ¢; (T) est dans V' ;

— les ¢; ('T) sont disjoints;

— pour touti € {1,..., N}, onagbi_l(fic’) = 4

— les ¢; (1) ne coupent K? qu’en des points de V.

Preuve. Prenons pour N le nombre de 3-simplexes de K et ordonnons ceux-ci de

fagcon quelconque : of,. X .,afv. Pour tout 1, il existe un homéomorphisme ; de la

boule unité B> de R? sur o tel que v, ' (F) soit le feuilletage de B> par les disques
horizontaux. Nous lissons ; vers I'intérieur de af et obtenons un plongement lisse
vl de B? dans Oi3 ayant les propriétés suivantes :

— M est laréunion de V’ et des o/ (B%);

— le bord de chaque ¢; (B?) estdans V';

— ce bord ne rencontre pas K ;

— (] Yy (F) estle feuillletage de B3 par disques horizontaux.

Nous supprimons ensuite deux “calottes” au voisinage des poles de B> pour faire de
son image un cylindre feuilleté en disques et ceci nous fournit une immersion ¢; de
[—&, ] x D? dans M telle que ¢; a son image incluse dans intéricur de 053 el son
bord dans V’.

Ensuite, considérons I’arc ¢; ([—&, €] x {0}). On peut le prolonger en une courbe
de Jordan J; transverse a & car ce feuilletage est tendu. De plus, la partie de J; qu
prolonge ¢; ([—e, £] x {0}) peut &tre prise dans V' car V' est un voisinage de K ’
([20]). Précisément, apres avoir d’abord reliés ¢; (—e¢, 0) et ¢; (e, 0) a ce que Thurston
appelle les points “haut” ¢; (top) et “bas” b; (bottom) de ai3, on peut relier b; a t; par
un chemin tracé le long de K2,

Perturbons d’abord chaque J; de fagon a ce qu’il ne rencontre les 2-simplexes de
K? qu’en des points de V et qu’il ne rencontre aucun ¢; (B*). En effet, chaque arc de
J; qui rencontre un 2-simplexe o2 relie entre cux deux points A et B du bord de o2 ;
on peut d’abord “pousser” 1’arc AB de J; a I'intérieur de I'un des deux 3-simplexes
bordés par o2 en gardant fixes ces extrémités, aprés quoi toute nouvelle perturbation
gardera cet arc éloigné de la partie de o2 qui n’est pas dans V. En outre, comme la
dimension de M est suffisamment grande, on peut supposer les J; disjoints apres les
avoir encore perturbés un peu.

Nous choisissons maintenant un voisinage tubulaire Wi0 de chaque J;, ce voisinage
étant contenu dans V/ U ¢ ([—e, ¢] x D?) et tous ces voisinages étant suffisamment
petits pour que les réunions Wi0 U ¢i ([—&, &] x D?) soient disjointes. Nous lissons le
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tore topologique WiO U ¢;([—e, e] x D?) pour obtenir un voisinage tubulaire de J; ;
par construction, ce voisinage peut &tre paramétré par une application ¢; qui a toutes
les propriétés requises. O

5.5. Le champ radial. Appelons géodésique feuilletée toute courbe paramétrée par
sa longueur d’arc x (1) qui est tangente a F et qui est dans sa feuille une géodésique
(pour la métrique induite sur celle-ci par la métrique auxiliaire dont nous avons muni
M). Soiti € {1,..., N}. Pour tout point xg de X; := ¢ (T?), il existe une unique
géodésique feuilletée x () telle que :

— ¢! (x(1)) estnormaleen ¢ ' (xp) 2 la feuille passant par ¢, (xo) du fevilletage

en courbes qui est la trace de ¢, ! (F) sur T?;

— x(0) = xg et x(¢) rentre dans ¢; (T) pour ¢t > 0.
De plus, si g; > 0 est assez petit, I’application 6; (¢, xo) = x(¢) de | — 2¢;, 2¢;[x Z;
dans M sera un plongement. Nous désignons par X; un champ de classe C™ sur M,
partout tangent 3 F et qui coincide avec d6; () sur0; ([—¢;, &1 x i) ; X; est appelé
champ radial de la surface ;.

Rappelons que les feuilletages ¢ que nous considérons sont dans V ¢’est-a-dire
coincident avec & sur le voisinage V du 1-squelette. Grice au lemme 2.3.1, 1l vient :

Proposition 5.5.1. 1] existe un voisinage & de & dans 'V ef une application continue
Hy de [0,1] x & dans 'V telle que Hyr(t, F) = F, H2(0,4) = G et Hx(1, G) soit
invariant par X; sur un certain voisinage V" de la réunion des ¥; = o (T?) (ce
voisinage ne dépendant pas de ).

Preuve. Fixonsun e > 0 tel que ¢ < min(eq, ..., ex). Pouri € {1, ..., N}, notons
T Tespace des feuilletages de M qui sont transverses au tore X; et appliquons le
lemme 2.3.1 a’hypersurface %; : il existe une application continue /; : [0, 1] x T —
T telle que pour tout feuwlletage § dans 77, £;(0,9) = G et h;(1,4) € T; est
invariant par le flot local de X; sur le voisinage %7 de %; défini dans le lemme 2.3.1.
Si on choisit & assez petit, les voisinages X7 de ¥; seront disjoints car les surfaces

2 = ¢;(T) le sont. Posons & = fV:l Ti (V. Cet ensemble est non vide car il
contient F par construction des ¢; ; ¢’est un voisinage de ¥ dans V. Définissons
maintenant une application I/ de [0, 1] x & — Vpar Ha(t, %) = (Nt —i+1,4)
pour t € [%, lﬁ] et § € & Comme les X; sont disjoints, le résultat obtenu pour
t € [%, IN] n’est pas modifié lors des étapes ultéricures. ’application H> ainsi

définie présente bien les propriétés voulues. O

Bien sir, on peut prendre V” aussi petit que 1’on veut ; en particulier, on supposera
que V" ne rencontre K2 qu’en des points de V.

De la méme manicre, partant d’un 2-simplexe aiz de K2, nous pouvons définir
sur un voisinage V/ de o*i2 un champ de vecteurs Y; partout tangent a ¥ et partout
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transverse a oiz. Si nous rendons un feuilletage § de V invariant par ¥; sur V/ al’aide
du lemme 2.3.1, la trace de § au voisinage du bord de crl.z n’est pas modifide, car ledit
bord étant dans V, ladite trace est déja égale a ¥ a son voisinage. Si nous effectuons
cette modification pour tout ¢ dans V et successivement pour tout criz dans K2, et si
le voisinage V/ de criz a &té pris assez petit, nous obtenons :

Proposition 5.5.2. I] existe un voisinage &' de ¥ dans 'V et une application continue
Hs de [0, 1] x & dans VY telle que H3(t, F) = F, H3(0,6) = G et H3(1, G) soit
invariant par chague Y; sur V'. En particulier, la trace du feuilletage H3(1, G.) sur le
voisinage V' du 2-squelette est entierement déterminée par sa trace sur K2.

5.6. Preuve du théoréme B. Nous définissons le voisinage X de F des feuilletages
G tels que ¢ € U (lemme 5.3.1), H;(1,4) € &' (défini a la proposition 5.5.2),
Hx(1, Hi(1,4)) € 8(déﬁniﬁlapropositionS.S.l)etqbi_l(Hg(l, Hx(1, Hi(1,8)))) €
F pour tout .

Soit G quelconque dans I’espace X' := Hy (1, Ha(1, Hi(1, X))), auquel le voisi-
nage X de ¥ esthomotope par construction. Nous définissons maintenant une famille
a un parametre (G;):<c(0,1] de feuilletages telle que G0 = § et que §1 ne dépende pas
de G ; d’autre part, il sera clair que %, dépend a la fois continiment de ¢ et de § :
I’application (1, §) — G, de [0, 1] x X’ dans F; (M) constituera donc une homotopie
de X’ a un point et nous aurons le théoréme 2. Ceci se fait en deux étapes.

Etape 1. Dans le tbe ¢;(T), on homotope § au feuilletage ¢; (s(a(fp;l(g,)))) en
utilisant la proposition 4.7.1.

Etape 2. Cette étape se fait en trois temps

« En premier lieu, nommons §? le feuilletage en courbes que trace § sur ’intérieur
K?—K!de K?. Alasection 3.1, onamentionné I’existence d’une homotopie t — G2
de 62 sur 2. Il nous faut maintenant prolonger cette homotopie de K> — K!' a M
toute entiere.

« Etendons d’abord I’homotopie sur le voisinage V' du 2-squelette. Soit G; le
feuilletage de V'’ obtenu en saturant 9% par le champ radial Y; au voisinage de chaque
2-cellule o de K2 et qui coincide avec ¥ sur V N V', Par construction, §, définit

bien un feuilletage de V” tout entier car V/ = V | J;L; V/. En outre, nous constatons
qu’au voisinage de K2, ce feuilletage coincide bien avec § lorsque ¢ = 0 et avec 7
lorsque r = 1.

Nous appelons ensuite ;' le feuilletage de V' obtenu en rendant §; invariant par
le champ radial de chaque surface X; sur V" (cf. lemme 2.3.1). Puisque  est dans X/,
nous voyons que sur le complémentaire de la réunion des tubes ¢; (T), le feuilletage
¢ coincide avec § ; d’autre part, sur ce méme complémentaire, 47 coincide avec
¥ car il s’obtient en saturant la trace de ¥ sur K2 par un champ transverse 3 K2 et
tangent a ¥ .
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* [l existe clairement un unique feuilletage global 4, de M ayant les propriétés
suivantes :
— sur le complémentaire des tubes ¢; (T) (qui est contenu dans V), ce feuilletage
coincide avec 4/ ;
— dans chaque tube ¢;(T), ce feuilletage a une restriction égale a ’image par
¢p; os o qbi_l de sa trace sur %;.
Soulignons que pour ¢+ = 0 ce feuilletage est égal a4 § et que pour ¢+ = 1 il ne dépend
plus de &. Ceci conclut donc la construction et la preuve du théoreme 2.

6. Conclusion

Les résultats présentés ici s appliquent uniquement aux feuilletages tendus ; le pro-
bléme reste ouvert lorsque le feuilletage ne 1’est pas. Par ailleurs, le cas de la dimension
et de la codimension supérieure reste a étudier mais il nous semble d’une difficulté
extréme.
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