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Pincement spectral en courbure de Ricci positive

Jérôme Bertrand

Résumé. Dans cet article, nous démontrons que sur les variétés riemanniennes de dimension n
vérifiant Ric n - 1)g et pour k dans {1, n + 1}, la ke valeur propre du laplacien est
proche de n si et seulement si la variété contient une partie Gromov–Hausdorff proche de la

sphère Sk-1. Pour k n + 1, nous obtenons une nouvelle preuve des résultats de Petersen et

Colding qui montrent que pour de telles variétés, la n + 1)e valeur propre est proche de n si et

seulement si la variété est Gromov–Hausdorff proche de la sphère de dimension n.

Abstract. We show that for n-dimensional manifolds with Ric n - 1)g and for k in

{1, n + 1}, the k-th eigenvalue for the Laplacian is close to n if and only if the manifold

contains a subset which is Gromov–Hausdorff close to the sphere Sk-1. For k n+ 1, this
gives a new proof of results of Colding and Petersen which show that the n + 1)-th eigenvalue
is close to n if and only if the manifold is Gromov–Hausdorff close to the n-sphere.

Codes AMS 2000). 53C20, 58J50.

Mots-clés. Géométrie riemannienne, pincement, distance de Gromov–Hausdorff.

Introduction

Dans cet article, nous considérons les variétés riemanniennes connexes, compactes

M,g) de dimension n dont la courbure de Ricci vérifie l’inégalité Ric n - 1)g.
On note Mn l’ensemble des classes d’isométrie) de ces variétés. Sur Mn, la sphère

canonique Sn, gcan) réalise l’extrémum de plusieurs invariants riemanniens.

Théorème 1 ([15], [3], [14], [5], [16]). Tout élément M, g) deMn vérifie

diam(M) p, vol(M) vol(Sn .1(M) n,

où .1(M) désigne la première valeur propre non nulle) du laplacien de M,g)
agissant sur les fonctions. De plus, dans chaque inégalité, l’égalité n’a lieu que si la
variété M,g) est isométrique à la sphère canonique.

L’objet de cet articleest de caractériser les variétés appartenant àMn dont le début

du spectre est presque minimal c’est-à-dire proche de n). De nombreux auteurs se
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sont intéressés à cette question de la presque égalité aussi appelée pincement) pour
des invariants riemanniens comme le volume ou le diamètre. Nous rappelons
cidessous quelques-uns de ces résultats, qui ont plus particulièrement motivé ce travail.
Le premier d’entre eux est que la première valeur propre non nulle) du laplacien
d’un élément deMn est proche de n si et seulement si le diamètre de cette variété est

proche de p la condition nécessaire est due à S.Y. Cheng [5], la condition suffisante
à C. Croke [8]). Plus précisément, l’équivalence est la suivante :

Théorème 2 ([5], [8]). Pour tout réel positif e, il existe un réel positif tel que tout
élément M, g) de Mn pour lequel diam(M) > p - respectivement .1(M) <
n + vérifie .1(M) < n + e respectivement diam(M) > p - e).

Dans la suite, nous écrirons simplement « est proche de » pour ce type d’équivalence.

En 1996, T. Colding a démontré des résultats de pincement faisant intervenir la
distance de Gromov–Hausdorff nous renvoyons à [11] pour la définition de cette
distance) :

Théorème 3 ([7], [6]). Pour tout élément M, g) deMn, les propriétés suivantes sont

équivalentes :
1) vol(M) est proche de vol(Sn),

2) rad(M) est proche de p,
3) dGH(M,Sn) est proche de 0,

oùrad(M) est le plus petit rayond’une boule recouvrantM et dGH désigne la distance
de Gromov–Hausdorff.

Par la suite, P. Petersen a obtenu une nouvelle condition équivalente faisant
intervenir le spectre du laplacien. Rappelons que sur la sphère canonique Sn, la première
valeur propre non nulle n est de multiplicité n + 1.

Théorème 4 ([17]). Pour tout élément M, g) de Mn, les conditions suivantes sont

équivalentes :
1) rad(M) est proche de p,
2) .n+1(M) est proche de n.

Pour énoncer le résultat principal de cet article, nous avons besoin de la définition
suivante.

Définition 1. Soit M,g) un élément deMn, k un entier positif et un nombre réel
positif ou nul. La variété M, g) vérifie la propriété Pk( s’il existe k couples de

points x1,y1), xk, yk) dans M2, vérifiant pour tout i dans {1, k},

d(xi, yi) > p -
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et pour tout i, j distincts dans {1, k},

d(xi, xj -
p
2 <

Dans cet article, nous démontrons le

Théorème 5. Soit k dans {1, n + 1}. Pour tout élément M, g) de Mn, les
propriétés suivantes sont équivalentes :

1) .k(M) est proche de n,

2) M, g) vérifie la propriété Pk( pour proche de 0,

3) M, g) contient une partie Ak telle que dGH(Ak,Sk-1) est proche de 0.
De plus, si la troisième propriété est satisfaite, la partie Ak vérifie également une

propriété de « presque convexité » Nous renvoyons à la proposition 4.5 pour plus de

détails.

Lorsque k 1, l’énoncé du théorème 5 se ramène à celui du théorème 2. Lorsque

k n + 1, notre démonstration fournit en particulier une nouvelle preuve de la

propriété

.n+1(M) proche de n, implique dGH(M, Sn proche de 0, 1)

autrement dit, on peut prendre An+1 M dans l’énoncé ci-dessus.
Sous leshypothèses du théorème 4,P.Petersen montreégalementque l’application

f1,...,fn+1)

f2
1 +···+f2

n+1

est une approximation de Gromov–Hausdorff de M sur la sphère

canonique, où les fi)1=i=n+1 sont les fonctions propres associées à .i(M))1=i=n+1

et normalisées par analogie avec le cas de la sphère. Une étape importante de la
démonstration de P. Petersen de l’implication 1) est de prouver que l’application
est surjective. Pour cela P. Petersen montre que le degré de est non nul1. Dans

notre cas, il n’y a pas de raison pour que la partie Ak soit une variété de dimension
k - 1 et donc on ne peut pas appliquer un argument de degré. Nous utilisons à la
place un lemme de Toponogov L2 initialement introduit par T. Colding dans [7] mais
contrairement à T. Colding nous ne fixons pas des conditions au bord pour l’équation
différentielle sous-jacente mais des conditions initiales de Cauchy. Ceci nous permet
d’obtenirune nouvellepreuve du résultat de C. Croke etmême d’obtenir un lien précis
entre la fonction propre et les points à distance presque p voir la proposition 3.2). Le
contrôle de la condition initiale sur la dérivée est une conséquence d’une estimation
du gradient d’une fonction propre due à P. Li et S. T. Yau.

Cet article est organisé de la manière suivante. Dans la deuxième section, nous
donnons les estimations sur les fonctions propres qui nous seront nécessaires pour

1P. Petersen a reconnu avoir commis une erreur dans sa démonstration de la surjectivité [18], la preuve du
théorème 5 donne en particulier une preuve complète de la propriété 1).
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démontrer le théorème 5, nous présentons également le lemme de Toponogov L2
lemme 1.6) et l’utilisation que nous allons en faire. Dans la troisième section, nous

démontrons qu’un élément de Mn vérifiant la propriété Pk( pour petit a

nécessairement k valeurs propres proches de n. La quatrième section est consacrée à la
réciproque. Dans la dernière partie nous montrons que la condition 1) implique la

condition 3), ce qui termine la preuve du théorème 5 puisque la condition 3) implique
clairement la condition 2).

1. Résultats préliminaires

Soit p 1 un nombre réel et h appartenant à Lp(M). On note

h Lp
1

volM M
hp dx

1

p

On utilisera la définition usuelle pour la norme L8.
On notera t e), r(e), e), etc de manière générique, toute quantité positive

ne dépendant que de e et de la dimension n de la variété, dont la limite quand e tend
vers 0 est 0.

Enfin, toute fonction propre f de valeur propre proche de n sera normalisée par
analogie avec le cas de la sphère, par

1
volM M

f 2 1

n + 1
2)

Les fonctions propresde Sn, gcan) associées à la valeurpropre n sont les fonctions
cos dx, avec x appartenant à Sn et dx la fonction distance au point x. En particulier,
elles vérifient

cos2 dx + |. cos dx|
2 1, 3)

1

vol(Sn) Sn

cos2 dx
1

n + 1

Sur une variété deMn admettant des valeurs propres proches de n, on a l’estimation
suivante due à P. Li :

Proposition 1.1 ([13]). Soit Mn,g) une variété riemannienne compacte de dimension

n dont la courbure de Ricci vérifie Ric n - 1)g. Soit f une combinaison
linéaire de fonctions propres du laplacien sur M,g)

f
k

i=1
aifi
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avec k un entier non nul et fi .ifi pour tout i dans {1, k}.
Supposons que pour tout i dans {1, k},

.i n + e

avec e > 0, alors

f 2
+ |df |

2
L8 1 + t e))(n + e + 1) f 2

L2

où t(e) est une fonction croissante ne dépendant que de n et telle que

lime.0 t(e) 0.

Remarque 1.2. En particulier si f est une fonction propre de valeur propre non nulle

n + e et si 1 f 2 1
volM M n+1 on obtient pour tout x dans M,

f 2 x) + |df |
2 x) 1 + t(e),

volM M f 2
+ |df|

2 .+1donc comme 1

n+1 on en déduit que 3) est « stable » pour la

norme L1 :
1

volM M
|f2

+ |df |
2 - 1| t(e).

D’autre part, si l’on supposee < 1 alors il existe une constante C(n) ne dépendant
que de la dimension n de M, telle que

f 2
+ |.f |

2
L8 C(n), 4)

nous utiliserons implicitement cette propriété par la suite.

La preuve de ce type d’inégalité est essentiellement classique, elle repose sur une

inégalité de Sobolev et le procédé d’itération de Moser. Nous renvoyons à [10] et

à [2, lemme 1.4] pour une démonstration dans ce cas particulier. Une conséquence
de cette proposition est qu’un élément de Mn admet au plus n + 1 valeurs propres
proches de n.

Corollaire 1.3 ([10]). Il existe une constante C(n) > 0 telle que pour tout élément

M,g) deMn,

.n+2(M) n + C(n).

Une autre propriété caractéristique des fonctions cos dx sur la sphère Sn, gcan)
est qu’elles sont solutions de l’équation

Hess f + fgcan 0.

Un résultat de M. Obata [16] montre que ce sont les seules solutions parmi les fonctions

régulières définies sur un élément M, g) de Mn. Cependant, à l’aide de la

formule de Bochner, on montre voir par exemple [7], page 178) la
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Proposition 1.4. Il existe une constante C(n) telle que tout élément M, g) de Mn
pour lequel n .1(M) n + e, vérifie l’inégalité

Hess f + fg L2 C(n)e
1
2 f L2

où f est une fonction propre associée à .1(M).

Remarque 1.5. Il existe des éléments de Mn non homéomorphes à la sphère dont
la première valeur propre est arbitrairement proche de n voir par exemple [1]). Un
résultat de S. Gallot [9, lemme 3.1] implique alors qu’on ne peut espérer obtenir une
estimation similaire de Hess f + fg en norme L8.

Le lemme suivant permet de déduire des informations géométriques de cette
inégalité sur le hessien.

Lemme 1.6 ([4, Theorem 2.11]). Soit M, g) un élément de Mn. Il existe des
constantes, ne dépendant que de n, notées C(n) et C̃ n), telles que pour x1 et x2 appartenant

à M, r1, r2 des réels positifs on note Bi B(xi,ri)) et pour toute fonction
continue h sur M, on a

1

vol(B1 × B2) B1×B2 .xy
h2 dxdy

C(n)
1

vol B1 +
1

volB2 M
h2 x) dx.

5)

On obtient, en particulier, pour r1 r2 r

1

vol(B1 × B2) B1×B2 .xy
h

2 C̃ n)
dxdy

V r)
1

vol(M) M
h2 x)dx.

Remarque 1.7. La notation V r) désigne le volume d’une boule géodésique de

Sn, gcan) de rayon r. La notation B1×B2 désigne en réalité le sous-ensemble de
mesure pleine de ce produit, constitué par les couples admettant une unique géodésique
minimisante les reliant notée .xy). La seconde inégalité se déduit de la première en

utilisant le théorème de Bishop–Gromov nous renvoyons à [11] pour un énoncé).

En appliquant ce lemme à la fonction | Hessf + fg| où f est la fonction propre
associée à .1(M) normalisée par 2), dans le cas où r1 r2 r et en remarquant
que pour une géodésique paramétrée par longueur d’arc

|(f .xy) t) + f .xy)(t)|
2

|Hess f + fg|
2



Vol. 82 2007) Pincement spectral en courbure de Ricci positive 329

on déduit de la proposition 1.4

1
vol(B1×B2)

B1×B2

d(x,y)

0
|(f .xy) t)+(f .xy)(t)|

2dtdxdy C(n)
e

V r)
6)

Par conséquent, pour des rayons r(e) convenables i.e. tels que e

V r(e))
soit petit),

l’inégalité de Byenaimé–Tchebitchev implique l’existence de points x, y pour
lesquels f .xy vérifie presque la même équation différentielle que dans le cas de la
sphère canonique. On peut ensuite par des méthodes classiques comparer f .xy à

une solution correspondante sur la sphère en fixant des conditions au bord comme
l’a fait T. Colding dans [7]) à l’aide du lemme suivant.

Lemme1.8. Soit v(t)et Z(t) deux fonctionsdéfiniessur[0,l] avecl < p. Onsuppose

que l
0 Z2(t)dt < e2 et que v est solution de v + v Z avec |v(0) - a| < et

|v(l)- b| < Il existe une constante positive C telle que pour tout t dans [0, l],

|v(t)- ũa,b(t)| <
C

sin(l)
e +

et

|v t)- ũa,b(t)| <
C

sin(l)
e +

où ũa,b est la solution de u + u 0 sur [0, l] vérifiant les conditions initiales
u(0) a et u(l) b.

On peut également fixer des conditions de Cauchy.

Lemme1.9. Soit v(t)et Z(t) deux fonctions définiessur[0, l] avec l p. Onsuppose

que l
0 Z2(t)dt < e2 et que v est solution de v + v Z avec |v(0) - a| < et

|v 0) - b| < Il existe une constante positive C telle que pour tout t dans [0, l],
|v(t) - ua,b(t)| < C(e +

et

|v t) - ua,b(t)| < C(e +
où ua,b est la solution de u + u 0 sur [0, l] vérifiant les conditions initiales
u(0) a et u 0) b.

Pour contrôler les conditions initiales de l’équation différentielle dans le
lemme 1.9, nous aurons besoin d’une estimation due à P. Li et S. T. Yau ([13], voir
également [19], page 108) qui prouve que la norme du gradient d’une fonction propre
sur un élément de Mn, reste petite au voisinage des points réalisant les extréma de
la fonction propre. Ce résultat ne peut découler directement d’une estimation sur le
hessien de la fonction propre car on constate, en considérant des sphères rondes de

rayon arbitrairement petit, que la norme L8 du hessien d’une fonction propre de

norme 1, tend vers l’infini.



330 J. Bertrand CMH

Proposition 1.10 ([13]). Soit M, g) un élément deMn et f une fonction propre de

valeur propre non nulle Sous ces hypothèses, on a pour tout x dansM, l’estimation

|.f |
2 x)

2. supM f
supM f - infM f

supM f - f x))(f x)- infM f

2. Variétés vérifiant la propriété Pk(

L’objet de cette partie est de démontrer le

Théorème 2.1. Soit k dans {2, n+1}. Il existe une fonction t( telle que, pour
tout élément M, g) deMn vérifiant la propriété Pk( on a l’estimation

.k(M) n + t(

La démonstration du théorème 2.1 repose en partie sur l’utilisation de fonctions
cos dp pour p appartenant à M et admettant un « presque antipode » c’est-à-dire, p
est tel que sup

x.M d(p, x) est proche de p). Nous étudions de telles fonctions dans

le prochain paragraphe.

2.1. Propriétés des fonctions cosdp. Sur la sphère canonique, toute fonction
propre) cosdp est une combinaison linéaire d’une base de fonctions propres

associées à la valeur propre n. Précisément, si xi)1=i=n+1 est une base orthonormée
de l’espace euclidien Rn+1 alors pour tout élément p de Sn

cos dp
n+1

i=1

cos d(p, xi) cos dxi 7)

En particulier si p appartient à Sk-1 en identifiant Sk-1 à la partie de Sn dont les

n - k + 1 dernières coordonnées sont nulles), seuls les p premiers termes de la
somme ci-dessus sont non tous nuls. Nous allons montrer que la propriété 7) sur les

fonctions cosdp est « stable » pour les points p admettant un presque antipode. Ce

résultat améliore un lemme démontré par P. Petersen [17, lemme 4.3].

Lemme 2.2. Il existe une fonction t(t) tendant vers 0 avec t telle que pour tout
nombre réel positif e, vérifiant. < e et pour tout élément M,g) deMn contenant
deux points p, q vérifiant d(p, q) > p - on a

cos dp -
k

i=1

ai(p)fi t
L8 e

8)
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oùk max{i; .i(M) n+e} estunentier nonnulet où lesai(p)sont les coefficients
de Fourier de la fonction cosdp par rapport à une base orthogonale fi)i=0 de

fonctions propres normalisées par 2), c’est-à-dire ai(p) n+1 cos dpfi. DevolM M
plus, les coefficients ai(p) vérifient pour e assez petit

k

i=1

ai
2 p)- 1 C(n)

e

Preuve. Soit p comme dans l’énoncé. Dans la suite, on note ai)i.N les coefficients
de Fourier de cos dp. Une conséquence de la formule de la coaire et du théorème de
Bishop–Gromov est le

Lemme 2.3. Il existe une constante C(n) telle que pour tout élément M,g) de

Mn, admettant deux points p et q vérifiant d(p, q) > p - et pour toute fonction

u: [0, p] R de classe C1, on a

1

volM M
u dp dv -

1

vol Sn Sn
u dSn p, · dx C(n)

p

0 |u r)|dr.

vol(M) M
cos2 dp est proche de 1Remarque 2.4. On obtient en particulier que 1

n+1
si p admet un presque antipode.

Nous renvoyons à [2] pour une démonstration. En appliquant le lemme 2.3 à

u cos2, u sin2 et u cos puis en remarquant que les expressions ci-dessous

sont nulles dans le cas de la sphère canonique, on obtient

cos dp
2

L2L2 - n cos dp
2 C(n)

|a0|
v1 + n
vol(M) M

cos dp C(n)

Par conséquent, les coefficients de Fourier de la fonction cosdp vérifient

+8

i=1
.i ai

2 fi 2
L2 n

+8

i=1

ai L2 + C n)2 fi 2

C’est-à-dire, d’après la normalisation 2) des fonctions propres

+8

i=1
.i ai

2 n
+8

i=1

ai
2
+ C n)
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Comme .1(M) n, on peut négliger les k premiers termes, on obtient

+8

i=k+1
.i - n)ai

2 C n)

On en déduit par définition de k,

cos dp -
k

i=1

aifi
2

L2
C n)

e
9)

volM M
cos2 dp est proche de 1et comme 1

n+1 la formule de Parseval donne

k

i=1

ai
2 - 1 C(n)

e

L’inégalité précédente montre en particulier que les coefficients ai)1=i=k sont
bornés. On déduit alors de l’hypothèse sur .k(M) et de la proposition 1.1, l’existence
d’une constante D(n) telle que la fonction h cos dp - k

i=1 aifi vérifie

h L8 D(n)

et

dh L8 D(n).

Or par l’inégalité de Cauchy–Schwartz, on déduit de 9)

h L1 C n)
e

1
2

Soit x0 tel que |h(x0)| h L8 et r un réel positif ; le théorème des accroissements
finis donne

C n)
e

2
vol(M)

1

B(x0,r)
|h(x)|dx h L8 -D(n)r)vol(B(x0,r)).

En appliquant le théorème de Bishop–Gromov, on en déduit

C n)
e

1
2 V r)

V p)
h L8 -D(n)r).

e
convenable. Ce qui achève la preuve duD’où le résultat en choisissant r r

lemme 2.2.



Vol. 82 2007) Pincement spectral en courbure de Ricci positive 333

2.2. Démonstration du théorème 2.1. Soit M, g) un élément de Mn vérifiant la

propriété Pk( en particulier M, g) vérifie

diam(M) p -
Sous ces hypothèses, le résultat de S. Y. Cheng cité dans l’introduction montre que

.1(M) est proche de n. On déduit du lemme 2.3 une estimation explicite.

Lemme 2.5. Il existe une constante C(n) telle que tout élément M, g) deMn pour
lequel diam(M) > p - vérifie l’inégalité

.1(M) n + C(n)

Notons

e v et ke max{k N; .k(M) n + e}.
Par le lemme 2.5, pour assez petit, ke est supérieur ou égal à 1. Notons fi)1=i=ke

une famille orthogonale de fonctions propres associées à .i(M) et normalisées par
1

volM M f 2

i
1

n+1 D’autre part, notons

F VectL2(M){f1, fke}
et PF la projection orthogonale de L2(M) sur F. Par hypothèse sur M, g), il
existe x1, y1), xk, yk) appartenant à M2 tels que pour tout i,j distincts dans

{1, k}, p
d(xi,xj - 2

10)

et pour tout i dans {1, k},

d(xi,yi) p -
Par conséquent,d’après le lemme 2.2 appliqué avec e v et il existe une fonction

t( telle que, pour tout i dans {1, k},
cos dxi - PF cos dxi L8 t( 11)

où PF cosdxi
ke

j=1 aj xi)fj vérifie pour tout i
ke

j=1

a2

j xi)- 1 t( 12)

En particulier, pour assez petit et pour tout i, PF cosdxi n’est pas identiquement
nul. Par conséquent si ke < k alors la famille PF cos(dxi k

i=1 est liée. Notons

bi)i.{1,...,k}
avec k

i=1
b2

i 1, des coefficients tels que

k

i=1
biPF cos dxi 0.



334 J. Bertrand CMH

Alors 11) implique

k

i=1

bi cos dxi -
k

i=1

biPF cos dxi
L8

k
1
2t(

C’est-à-dire,
k

i=1

bi cos dxi
L8

k
1
2t( 13)

Comme k
i 1, l’un des coefficients bi0 vérifie |bi0|

1
vki=1

b2 Or l’estimation
13) appliquée au point x xi0 et l’hypothèse 10) implique

|bi0| t(
ce qui est absurde pour assez petit et donc ke k, ce qui termine la preuve du
théorème 2.1.

3. Valeurs propres proches de n

L’objet de cette partie est de démontrer la réciproque du théorème 2.1.

Théorème 3.1. Il existe une fonction t(e) telle que tout élément M, g) deMn pour
lequel .k(M) n + e, vérifie la propriété Pk(t e)).

Ce résultat découle d’une « réciproque » du lemme 2.2.

Proposition 3.2. Il existe des fonctions t(e) et e) telles que, pour tout élément

M,g) deMn et toute fonction propre f surM de valeur propre non nulle n+ e,

normalisée par 1
volM M f 2 1

n+1 on a l’estimation

cos dx - f L8 t(e),

avec x dans M tel que f x) supM f De plus, si y dans M vérifie f y) infM f
alors

d(x,y) > p - e).

Nous démontrons cette proposition dans le prochain paragraphe.
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3.1. Fonctions propres associées à une « petite » valeur propre. La preuve de

la proposition 3.2 est une conséquence du lemme 1.6. La première étape consiste à

estimer la borne supérieure d’une telle fonction propre.

Lemme 3.3. Il existe une fonction t(e) ne dépendant que de n, telle que pour tout
élément M, g) de Mn et toute fonction propre f sur M de valeur propre non nulle

n + e, normalisée par 1
volM M f 2 1

n+1 on a l’estimation

| sup
M

f - 1| t(e).

Preuve. Par la minoration de Lichnérowicz de la première valeur propre non nulle,
vérifie

n n + e.

Par choix de la normalisation de f on a

1
1

volM M
f 2

+ |df |
2 1 +

e

n + 1
14)

Donc d’après la proposition 1.1, il existe une fonction t(e) telle que f vérifie pour
tout x dans M

f 2 x) + |df |
2 x) 1 + t(e).

Ainsi f 2
+ |df |

2 est majorée par une quantité environ égale à sa moyenne, par

conséquent f 2
+ |df |

2 est L1-proche de sa moyenne :

1

volM M
|1- f 2 x) - |df |

2
x)| t(e).

Soit x vérifiant f x) supM f Un corollaire du théorème de Bishop–Gromov

[11, remarque 2.8] implique l’existence de R(e), t e) ne dépendant que de n et de x̃
vérifiant d(x, x̃) R(e), tels que

|f 2 x̃) + |df |
2 x̃)- 1| t e).

D’après la proposition 1.10,

|df |
2 x̃) t(e)

d’où

|f x̃)- 1| t(e),

ce qui permet de conclure pour f x) puisque le gradient de f est borné.

Preuve de la proposition 3.2. De l’hypothèse sur la valeur propre, on déduit proposition

1.4)
Hess f + fg L2 t(e).
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Fixons x comme dans l’énoncé et soit u dans M quelconque. En appliquant le

lemme 1.6 aux boules B(x, r(e)) et B(u, r(e)) avec r(e) convenable, on obtient
l’existence d’une fonction t(e) telle que pour tout u dans M, il existe ũ, x̃ dans M
tels que :

– il existe une unique géodésique minimisante reliant x̃ à ũ,
– d(u, ũ) r(e), d(x, x̃) r(e) et

d(x̃,ũ)

0
|(f t) + f t)|

2dt t(e). 15)

Nous allons maintenant estimer les conditions initiales f 0) et f 0)
afin d’appliquer le lemme 1.9. Par le lemme 3.3, on a

| sup
M

f - 1| t2(e).

Par conséquent, comme x̃ est proche de x et que le gradient de f est borné, on en

déduit l’existence d’une fonction t3(e) telle que

|(f 0) - 1| t3(e). 16)

D’autre part, par la proposition 1.10, il existe une fonction t4(e) telle que |.f |(x̃)
t4(e) d’où

|(f 0)| t4(e). 17)

Grâce à 15), 16) et 17), le lemme 1.9 appliqué à f et cos, implique l’existence
d’une fonction t5(e) telle que pour tout t dans [0, d(x̃, ũ)],

|(f t)- cos(t)| t5(e). 18)

|(f t) + sin(t)| t5(e). 19)

En particulier,

|f ũ) - cos(d(x̃, ũ))| t5(e).

Donc par construction de x̃ et ũ et comme le gradient de f est borné, on en déduit
l’existence d’une fonction t6(e) telle que

f - cos d(x, · L8 t6(e).

Montrons maintenant la deuxième partie de l’énoncé. Soit y vérifiant f y)
infM f et soit x̃ et ỹ comme ci-dessus.

D’après 19)

|(f d(x̃,ỹ)) + sin(d(x̃, ỹ))| t5(e). 20)



Vol. 82 2007) Pincement spectral en courbure de Ricci positive 337

Comme ỹ est proche de y qui est un point réalisant le minimum de f on déduit de

la proposition 1.10 apliquée à ỹ et de 20)

| sin(d(x̃, ỹ))| t7(e).

La borne sur le gradient de f et le lemme 3.3 excluent l’hypothèse que d(x̃,ỹ) soit
proche de 0 donc les points x et y sont nécessairement à distance presque p.

3.2. Démonstration du théorème 3.1. Pour cela, on prouve un résultat un peu plus
précis :

Proposition 3.4. Soit k dans {2, n+1}. Il existe une fonction t(e) telle que pour
tout élément M,g) de Mn vérifiant .k(M) n + e, il existe x1,y1), xk, yk)
dans M2 tels que, pour tout i dans {1, k},

|d(xi, yi) -p| t(e),

pour tout i, j distincts dans {1, k}

d(xi, xj - p
2 t(e),

d(xi, yj - p
2 t(e),

d(yi,yj -
p
2 t(e).

De plus,ces points vérifient fi(xi) supM fi et fi(yi) infM fi avec fi)1=i=k une
famille orthogonale de fonctions propres associées à .i(M))1=i=k et normalisées
par 2).

Ces couples de points correspondent dans le cas modèle, aux couples formés de k
vecteurs ei)1=i=k de la base canonique deRn+1 et des k vecteursopposés (-ei)1=i=k.

Preuve. Soit xi)1=i=k et yi)1=i=k définis par

fi(xi) sup
M

fi et fi(yi) inf
M fi

avec les fonctions fi)1=i=k définies comme ci-dessus. D’après la proposition 3.2,
pour tout i dans {1, k}, on a

d(xi,yi) > p - e). 21)

Nous allons montrer l’existence d’une fonction t(e), telle que pour tout i, j comme
dans l’énoncé,

p
d(xi,xj - 2 t(e). 22)

Admettons provisoirement ce résultat, on en déduit les autres estimations à l’aide
d’un lemme sur la fonction « excess » dû à K. Grove et P. Petersen.
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Lemme 3.5 ([12]). Il existe une fonction t(e) telle que pour tout élément M, g) de

Mn et pour tout p, q dans M vérifiant

d(p, q) p - e,

on a

ep,q(M) sup

x.M
d(p,x) + d(q, x) - d(p,q)) t(e).

D’après ce lemme et 21), il existe une fonction t2(e) telle que pour tout i, j
distincts dans {1, k},

|d(xj, yj - d(xi, xj - d(xi, yj)| t2(e),

donc par 21) et 22), il existe une fonction t3(e) telle que

d(xi, yj - p
2

t3(e).

On déduit de manière similaire l’estimation sur d(yi, yj
Démontrons maintenant l’estimation 22). Fixons i, j distincts dans {1, k}.

Notons
h fifj + dfi, dfj

Par hypothèse sur les fonctions fi)1=i=k,

1

volM M
h 0.

Calculons la différentielle de h.

dh fjdfi + fidfj + Hess fi(.fj · + Hess fj fi ·

dh Hess fi + fig)(.fj · + Hess fj + fjg)(.fi ·
Donc

|dh|
2 2 Hess fi + fig 2

× fj 2
+ Hess fj + fjg 2

× fi 2

Or par la proposition 1.4, il existe une fonction t4(e) telle que pour tout s dans

{1, k},
Hess fs + fsg L2 t4(e).

Par 4), on en déduit l’existence d’une fonction t5(e) telle que

1
volM M

|dh|
2 t5(e).
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En appliquant l’inégalité de Poincaré à la fonction h de moyenne nulle, on obtient,
puisque .1(M) n, l’existence d’une fonction t6(e) telle que

1

volM M
h2 t6(e).

On déduit alors d’un corollaire du théorème de Bishop–Gromov [11, remarque 2.8],
l’existence de fonctions t7(e) et R(e) telles que pour tout x dans M, il existe x̃ tel
que d(x, x̃) < R(e) et

|h(x̃)| t7(e).

Pour x xj la proposition 1.10 implique l’existence d’une constante C n) telle que

|.fj|(x̃j C n)R(e)

puisque fj xj supM fj On en déduit qu’il existe une fonction t8(e) telle que

|h(x̃j - fi(x̃j fj x̃j)| t8(e).

Mais, par la proposition 3.2

cos dxj - fj L8 t9(e),

d’où

|fj x̃j - 1| C(n)R(e) + t9(e).

Par conséquent, il existe une fonction t10(e) telle que

|fi(x̃j)| t10(e).

On termine la preuve en appliquant de nouveau la proposition 3.2.

4. Proximité de Gromov–Hausdorff

Dans cette partie, nous montrons le

Théorème 4.1. Soit k dans {2, n + 1}. Il existe une fonction t(e) telle que tout
élément M, g) de Mn vérifiant .k(M) n + e, possède un sous-ensemble A M
presque convexe tel que dGH(A,Sk-1) t(e).

Nous renvoyons à la proposition 4.5 pour la définition de la presque convexité.
Fixons k dans {2, n + 1}. Notons F f1, fk) et F

f 2
1 +···+f 2

k

où

les fonctions fi)1=i=k sont les fonctions propres associées aux valeurs propres
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.i(M))1=i=k et normalisées par 2). Sur la sphère canonique, les fonctions
coordonnées qui forment une base de fonctions propres de valeur propre n) fournissent
un plongement isométrique d’une partie de Sn, gcan) sur Sk-1 Rk :

{x Sn;X21 + · · · + X2
k 1} -. Sk-1

x - X1, Xk)(x).

Nous allons montrer que l’application restreinte à une partie Ak convenable
est une t(e) approximation de Gromov–Hausdorff, c’est-à-dire que pour tout X dans

Sk-1, il existe y dans Ak tel que dSk-1(X, y)) < t e) et pour tout x, y dans

Ak, |d(x, y) - dSk-1( x), y))| < t e) dSk-1 désigne la distance induite par

la métrique canonique). Nous montrerons que pour une fonction e) bien choisie,

Ak {x M; |(f 2
1 + · · · + f 2 x)k - 1| < e)} convient.

Par choix de la partie Ak et par uniforme continuité de la fonction arccos, il suffit
pour démontrer le théorème 4.1, de prouver l’existence d’une fonction t(e) pour
laquelle la fonction F vérifie les propriétés suivantes :

– une propriété de « t(e)-presque surjectivité » : pour tout X dans Sk-1, il existe

x dans Ak tel que

F(x)-X Rk t(e), 23)

– une propriété de « t(e)-proximité métrique » : pour tout x, y dans Ak

| cos d(x, y)- F(x), F(y) Rk| t(e), 24)

où Rk désigne le produit scalaire euclidien dans Rk et Rk la norme associée.

La démonstration de 23) fait l’objet du prochain paragraphe, nous en déduirons
24) dans le paragraphe suivant.

4.1. Démonstration de la « presque surjectivité» Soit M, g) un élément deMn,
s un entier nonnul et un nombre réel positif. Soit f1, fs une famille orthogonale
de fonctions propres surM associées à .i(M))1=i=s et normalisées par 2). On note

s {x M; |f 2A 1 x)+ · · · + f 2
s x)- 1| < .}.

Proposition 4.2. Soit k dans {1, n+ 1}. Il existe des fonctions e) et t(e) telles

que pour tout élément de Mn pour lequel e)M,g) .k(M) n + e, l’ensemble Ak
vérifie une propriété de t(e)-presque surjectivité.

Preuve. La preuve repose sur une récurrence finie. Lorsque k 1, la proposition 4.2
est une conséquence directe de la proposition 3.2. Fixons k dans {2, n + 1} et m
dans {1, k - 1}. Dans la suite de la démonstration, on identifie {x Sk-1

; x
a1, am, 0, 0)} avec Sm-1. La preuve de la proposition est une conséquence

du lemme suivant.
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Lemme 4.3. Supposons qu’il existe des fonctions .m(e) et .m(e) telles que pour tout

X dans Sm-1, il existe x dans A.m(e)
m tel que

f1, fm)(x)- X Rm .m(e)

alors il existe des fonctions .m+1(e) et .m+1(e) telles que pour tout X dans Sm, il
existe x dans A.m+1(e)

m+1 tel que

f1, fm+1)(x)-X Rm+1 .m+1(e).

Démontrons le lemme 4.3. Commençons par remarquer que pour toute fonction
e), il existe une fonction e) telle que pour tout s dans {1, k- 1},

s A e)A e)
s+1, 25)

e)
s est presque réduit à {0}. Ce résultat est une conséquencec’est-à-dire que fs+1(A

directe d’un lemme démontré par P. Petersen [17, lemme 3.3].

Lemme 4.4 ([17]). Il existe une fonction t(e) telle que pour tout élément M,g)
dansMn vérifiant .k(M) n + e, on a pour tout x dans M

f 2
1 x)+ · · · + f 2

k x) 1 + t(e),

où fi)1=i=k est une famille orthogonale de fonctions propres de M, de valeurs
propres .i(M))1=i=k et normalisées par 1 f 2

volM M i
1

n+1

Soit Y cos s1, cos sm+1) dans Sm. Il faut distinguer les cas | sinsm+1| <
µ(e) et | sin sm+1| µ(e), où µ(e) vérifie lime.0 µ(e) 0 et sera défini plus loin.

Supposons | sin sm+1| < µ(e). Dans ce cas, comme d(xi, xm+1) est proche de
p2 et d(xi,ym+1) est proche de p2 pour tout i dans {1, m}, la proposition 3.2
implique l’existence d’une fonction t2(e) telle que

f1, fm+1)(a) - Y Rm+1 t2(e),

avec a xm+1 si sm+1 est proche de 0 et a ym+1 sinon.
On supposemaintenant que |sin sm+1| µ(e) et que sm+1 p2 Le cas sm+1 > p2

sera traité plus loin. On définit

X
cos s1

sin sm+1

cos sm

sin sm+1
Sm-1

.m(e)
m telle quePar hypothèse de récurrence, il existe x0 A

f1, fm)(x0) -X Rm .m(e). 26)
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.m(e)
m A e)D’après 25), il existe une fonction e) telle que A

m+
1. D’après la proposition

3.2, fm+1 est proche en norme L8 de cos dxm+1
donc comme x0 appartient à

.m(e)
m l’équation 25) implique l’existence d’une fonction t3(e) telle queA

| cos dxm+1(x0)| t3(e).

Par conséquent, par l’inégalité des accroissements finis, on a

p
2 - dxm+1(x0) t3(e). 27)

En appliquant le lemme 1.6 aux fonctions fi pour i dans {1, m + 1}) au

voisinage des points x0 et xm+1, on en déduit qu’il existe x̃0 avec d(x̃0, x0) < r(e)
et x̃m+1 avec d(xm+1, x̃m+1) < r(e), tels que si on note l’unique géodésique
minimisante reliant x̃m+1 à x̃0 et ui fi pour i {1, m + 1}) alors

d(x̃0,x̃m+1)

0
|ui t) + ui t)|

2dt t4(e).

Pour i dans {1, m}, les conditions aux bords sont

ui(0) fi(x̃m+1) 28)

et

ui(d(x̃m+1, x̃0)) fi(x̃0). 29)

Or, d’une part

|fi(x̃m+1)| |fi(x̃m+1) - fi(xm+1)| + fi - cos dxi L8 + |cos dxi xm+1)|,

donc

|fi(x̃m+1)| C(n)r(e) + t5(e) + t6(e)

et d’autre part

fi(x̃0) -
cossi

sin sm+1
|fi(x̃0)- fi(x0)| + fi(x0)-

cos si
sinsm+1

donc

fi(x̃0)-
cos si

sinsm+1
C(n)r(e) + .m(e).

Pour i dans {1, m}, notons ui t) cos si
sin sm+1

sin(t). En utilisant 27), on en déduit

ui
p
2 - ui(d(x̃m+1, x̃0))

t3(e) + 2r(e)

µ(e)



Vol. 82 2007) Pincement spectral en courbure de Ricci positive 343

On fixe µ(e) vt3(e) + 2r(e). D’après 28) et 29), il existe une fonction t7(e)
telle que

|ui(0)- ui(0)| t7(e)

et

|ui(d(x̃m+1, x̃0)) - ui(d(x̃m+1, x̃0))| t7(e).

D’après 27), on peut supposer e assez petit pour que l d(x̃m+1, x̃0) vérifie l’hypothèse

du lemme 1.8, par conséquent en appliquant ce lemme aux fonctions ui et ui
on obtient l’existence d’une fonction t8(e) telle que pour tout i dans {1, m} et

pour tout t dans [0, d(x̃m+1, x̃0)]

fi t)-
cos si

sin sm+1
sin(t) t8(e).

La proposition 3.2 permet d’estimer fm+1, on obtient

|fm+1( t))- cost| t5(e) + r(e).

En combinant ces résultats, on en déduit l’existence d’une fonction t9(e) telle que
pour tout t dans [0, d(x̃m+1, x̃0)],

f1, fm+1)( t))

- cos s1, cos sm, 0)
sin t

sinsm+1 + 0, 0, cos t)
Rm+1 t9(e).

30)

D’où, comme on suppose sm+1 p2 on obtient pour

T min{d(x̃m+1, x̃0), sm+1}

f1, fm+1)( T - coss1, cossm, cossm+1) Rm+1

t9(e) + coss1, cossm,0)
sin T

sin sm+1 - 1

+ 0, 0, 1)(cos T - cossm+1)
Rm+1

Or comme par 27)

d(x̃m+1, x̃0)
p
2 - t3(e) - 2r(e),

la proposition est démontrée dans ce cas. Si sm+1 p2 il suffit de remplacer xm+1

par ym+1 dans tout ce qui précède.
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4.2. Propriété de « proximité métrique» Soit k dans {2, n+1}. On conserve

la notation A e)
k pour la partie introduite dans la proposition 4.2. Dans cette partie,

nous montrons que F f1, fk) vérifie la propriété de t(e)-proximité métrique,
dont nous rappelons la définition :

Il existe une fonction t(e) telle que tout élément M, g) deMn tel que .k(M)
e)

kn + e, vérifie pour tout x, y dans A

| cos d(x, y)- F(x), F(y) Rk| t(e), 31)

ce qui termine la preuve du théorème 4.1. Nous démontrons également que tout
élément M, g) deMn tel que .n+1(M) n + e, vérifie

dGH(M, Sn t(e). 32)

Enfin nous démontrons que la partie A e)
k est « presque convexe » au sens de la

proposition ci-dessous.

Proposition 4.5. Il existe des fonctions e) et t(e) telles que tout élément M,g)
deMn pour lequel .k(M) n + e, vérifie la propriété suivante. Pour tout x, y dans

A e)
k

d
A e)

k
x,y) d(x, y) + t(e)

où d e)
kA

e)
k

et e) vérifie l’inégalitédésigne la distance intrinsèque de l’ouvert A
e) e).

Commençons par montrer comment la démonstration de la propriété 32) se

ramène à la démonstration que nous allons donner de la propriété 31). Sous l’hypothèse

.n+1(M) n + e, la proposition 4.2 montre que la variété M contient une partie
qui est t(e)-presque surjective sur Sn. Il suffit donc de prouver que cette application
vérifie la propriété de t(e)-proximité métrique pour une fonction t(e) convenable.
Or, d’après un résultat de P. Petersen [17, lemme 5.2], il existe une fonction R(e)
telle que

M AR(e)

n+1

avec R(e) e) où e) a été introduit dans la proposition 4.2). Pour démontrer
la propriété 32), il suffit donc de démontrer la propriété de proximité métrique 31)
pour toute partie AR(e)

k
avec R(e) e).

Plan de la preuve de l’estimation 31). Dans une première partie, nous démontrons

que tout point de AR(e)
k

avec R(e) e)) admet un presque antipode dans AR(e)
k

Nous démontrons également la proposition 4.5. Ensuite grâce au lemme 2.2, nous

montrons que pour tout x,y dans AR(e)
k

cos d(x, y) est proche de k

i=1 ai(x)fi(y),
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avec ai(x))i=0, les coefficients de Fourier de cos dx. Nous montrons ensuite que

ai(x) est proche de fi(x) il y a égalité dans le cas de la sphère), ce qui permet de

conclure.

4.2.1. Propriétés des ensembles AR(e)
k

Soit k dans {2, n + 1} et AR(e)
k

avec

R(e) e) 33)

fixé.
Sur la sphère canonique, l’ensemble {x Sn ; X21(x)+ · · · + X2

k x) 1} où les

fonctions Xi)1=i=k sont les k premières fonctions coordonnées, est un équateur de
dimension k - 1. La fonction X2 + · · · + X21 définie sur Sn atteint son maximum sur

k
cet équateur, son gradient est donc nul sur cet ensemble.

Le lemme suivant est une généralisation de ce fait au « presque équateur » AR(e)
k

dans le cas où la variété M,g) admet k valeurs propres de n.

Lemme 4.6. Il existe une fonction t(e), telle que pour toute fonction e) et pour
tout élément M, g) dansMn, vérifiant .k(M) n + e, on a pour tout x dans A e)

k

l’estimation
k

i=1
f 2
i x) 4(1 + e))(t e) + e)),

avec fi)1=i=k une familleorthogonalede fonctionspropres associées à .i(M))1=i=k
et normalisées par 2).

Preuve. Fixons un point x0 de A e)
k

et considérons les coefficients ai fi x0)
k

i=1 f 2
i x0)

pour i dans {1, k}. On note f k
i=1 aifi En développant le terme |.f |2, on

obtient

|.f |
2 x)

1=i, j=k

aiaj fi(x),.fj x)

D’où, en x0

|.f |
2

x0)
1

4 k

i=1 f2
i x0)

k

i=1
f 2

i x0)
2

Par conséquent en appliquant la proposition 1.1 à f au point x0, on obtient

k

i=1
f 2

i x0) +
1

4 k
i=1 f 2

i x0)

k

i=1
f2

i x0)
2

1 + t(e).

k
entraine 1 + e) kOr x0 appartient à A e)

i=1 f 2

i x0) 1 - e), d’où le

résultat.
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Ce lemme permet de démontrer que tout pointdeAR(e)
k

admet un presqueantipode.

Lemme 4.7. Il existe une fonction d(e) vérifiant lime.0
d(e)

e +8) telle que pour

tout élément M,g) de Mn vérifiant .k(M) n + e et pour tout x dans AR(e)
k il

existe y dans AR(e)
k avec

d(x, y) > p - d(e).

Preuve. Dans le cas de la sphère, le point antipodal d’un point X de Sn est -X, ce

qui suggère le « candidat » à être un presque antipode de x appartenant à AR(e)
k

Soit

x dans AR(e) notons a f1,k fk)(x) Rk l’hypothèse x appartient à AR(e)
k

implique

1- R(e))
1
2 a 1 + R(e))

1
2

e)
k

tel quePar la proposition 4.2 de presque surjectivité, il existe y appartenant à A

a f1, fk)(x)f1, fk)(y) +
1 t(e).

En appliquant le lemme 1.6 aux fonctions fi)1=i=k, on déduit l’existence de x̃ et ỹ
vérifiant

d(x, x̃) r(e), d(y, ỹ) r(e) 34)

et en notant x̃ỹ l’unique géodésique minimisante reliant x̃ à ỹ, on a pour tout i dans

{1, k},
d(x̃,ỹ)

0
|(fi t) + fi t)|

2dt t e). 35)

D’autre part, par le lemme 4.6

|.(f 2
k )|(x̃) t e). 36)1 + · · · + f 2

Notons ai fi(x̃), bi fi x̃ ỹ) 0) et l d(x̃, ỹ). On déduit de l’équation 35) et

du lemme 1.9, l’existence d’une fonction t2(e) telle que pour tout i dans {1, k}
et pour tout t dans [0, l],

|(fi x̃ ỹ)(t)- ai cos t + bi sint)| t2(e), 37)

|(fi x̃ ỹ) t) - (-ai sin t + bi cos t)| t2(e).

En appliquant l’inégalité de Cauchy–Schwartz, on obtient à l’aide de 36)

k

i=1
aibi

1

2

k

i=1
f 2

i x̃ỹ 0) t e)
2

38)
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Estimons maintenant fi(ỹ) pour i dans {1, k}.

fi(ỹ)+ai fi(ỹ)-fi(y))+ fi(y)+ fi x)
a + -fi x)

a +fi(x) +(-fi(x)+fi(x̃)).

D’où, par définition de y et par 34)

|fi(ỹ) + ai| 2C(n)r(e) + t(e)

+ C(n) max{-(1 + R(e))-
1
2 + 1;-1 + 1-R(e))-

1
2 }.

Donc, il existe une fonction t3(e) telle que pour tout i dans {1, k},

|fi(ỹ) + ai| t3(e). 39)

En appliquant 37) avec t l, on obtient

ai cos l + bi sin l -ai + di 40)

avec |di| t3(e).
En multipliant 40) par bi et en sommant par rapport à i, on obtient

k

i=1

aibi cos l +
k

i=1

b2
i sin l +

k

i=1

aibi
k

i=1

b2

i
1
2

d

avec d k
i Or |bi| |.fi |, donc la proposition 1.1 implique que k

i=1
d2 b2

i=1 i
est bornée par une constante C(n). D’autre part |d | n+ 1)

1
2 t3(e), donc on déduit

de 38) l’existence d’une fonction t4(e) telle que

k

i=1

b2
i sin l t4(e),

par conséquent, soit | sin l| t4(e))
1
2 soit k

i=1
b2
i t4(e))

1
2

Premier cas : | sin l| t4(e))
1
2 Comme f1, fk)(x) Rk est proche de 1, on

en déduit que f1, fk)(x) est presque égal à -(f1, fk)(y). Le gradient des

fonctions propresétantborné 4), cela implique l’existence d’uneconstanteC n) > 0
telle que

d(x, y) > C n)

et donc | sinl| t4(e))
1
2 implique que l est presque égal à p.

Deuxième cas : k
i=1 b2

i t4(e))
1
2 Dans ce cas par 37), il existe une fonction

t5(e) telle que pour tout i dans {1, k} et pour tout t dans [0, l],

|(fi x̃ ỹ)(t)) - ai cos t| t5(e),

en appliquant cette formule avec t l, on obtient par 39) que cos l est presque égal

à-1, d’où le résultat.
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À l’aide d’une légère modification de la preuve ci-dessus, nous sommes en

mesure de démontrer la propriété de « presque convexité » de l’ensemble A e)
k

proposition

4.5).

Preuve. Le début de la preuve est identique à celle du lemme 4.7. Soit x,y dans

A e)
k

En appliquant le lemme 1.6 aux fonctions fi)1=i=k, on déduit l’existence de

x̃ et ỹ vérifiant d(x, x̃) r(e), d(y, ỹ) r(e) tels que, si on note x̃ ỹ l’unique
géodésique minimisante reliant x̃ à ỹ, on a pour tout i dans {1, k},

d(x̃,ỹ)

0
|(fi t) + fi t)|

2dt t e). 41)

Notons ai fi(x̃), bi fi x̃ỹ) 0) et l d(x̃,ỹ). On en déduit comme
précédemment 38) que pour tout t dans [0, l],

|(fi x̃ ỹ)(t)) - ai cos t + bi sin t)| t2(e) 42)

avec
k

i=1

aibi
t(e)

2
43)

Par 4), il existe une constante C(n) telle que

k

i=1
f 2
i L8

C(n).

Par conséquent, les hypothèses sur x et x̃ impliquent

d(x, x̃) d e)+C(n)r(e)
kA x, x̃),

de même pour y et ỹ. Notons .2(e) e)+C(n)r(e). Pourdémontrer la proposition,

il suffit donc de prouver qu’il existe des fonctions e) et e) telles que

d
A

e)
k

x̃, ỹ) d(x̃,ỹ) + e).

.2(e)
k

c’est-à-direPar construction ỹ appartient à A

k

i=1
i x̃ỹ)(l) - 1f 2 .2(e). 44)

Par ailleurs, grâce à 42) et 43), il existe une fonction t(e) telle que

k

i=1
i x̃ ỹ)(l)-

k

f 2

i=1

a2
i

cos2 l +
k

i=1

b
2
i

sin2 l t(e). 45)
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.2(e)
k

44) et 45) impliquent l’existenceOr, comme ai fi(x̃) et x̃ appartient à A
d’une fonction t2(e) telle que

1-
k

i=1

b 2

i sin2 l t2(e).

Par conséquent, soit |
k

i - 1| vt2(e), soit sin2 l vt2(e). Supposons tout
i=1

b2

d’abord que
i - 1k

i=1 b2 vt2(e). Dans ce cas, on obtient en utilisant 42) et

43), l’existence d’une fonction t3(e) telle que pour tout t dans [0, l],
k

i=1
i x̃ỹ)(t)- 1f2 t3(e).

Lv
a proposition estdémontrée dans ce premier cas. Supposonsmaintenant que sin2 l
t2(e). Ce quisignifieque d(x̃, ỹ)est proche de0 ou de p. Sid(x̃, ỹ) est proche de 0,

c’est immédiat. Si d(x̃,ỹ) est presque égal à p alors nécessairement, avec les notations
de la proposition 3.4, il existe i0 dans {1, k} tel que sin2 d(xi0 x̃) vt2(e) et

sin2 d(xi0 ỹ) vt2(e). Par conséquent, d’après le premier cas, la courbe c formée
de l’union des deux géodésiques minimisantes reliant x̃ à un point voisin de xi0 et ce

dernier point à ỹ est contenue dans At3(e)
k

Le lemme 3.5 sur la fonction « excess »
permet alors de conclure.

4.2.2. Démonstration de la propriété de « proximité métrique » Nous venons

de montrer que tout point de AR(e)
k admet un presque antipode. L’idée de la preuve

consiste à utiliser la propriété des fonctions cos dp pour p admettant un presque
antipode, établie dans le lemme 2.2. Cependant, on ne peut pas appliquer directement
le lemme 2.2 avec la fonction d(e) introduite dans le lemme 4.7, puisqu’on voit
facilement par exemple dans la proposition 1.4) que les fonctions t(e) utilisées dans

la preuve du lemme 4.7 sont supérieures à e et donc

lim
e.0

d(e)
e +8. 46)

Pour contourner ce problème, on pose

k max{i ;.i n + d(e)}.
Par 46) etpour e assez petit, on a k k.D’après le lemme 2.2 appliqué avec d(e)
et vd(e) et le lemme 4.7, il existe une fonction t(e) telle que pour tout x dans AR(e)

k

il existe des coefficients ai(x))k

i=1 pour lesquels pour tout z dans M,

cos dx(z)-
k

i=1

ai(x)fi(z) t(e), 47)
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avec i x)- 1k
i=1 a2 t(e).

Montrons que k

i=1 |fi(x)- ai(x)|
2 est petit.

k

i=1
|fi(x) -ai(x)|

2
k

i=1
f 2
i x) +

k

i=1

a2
i x)- 2

k

i=1

ai(x)fi(x).

Or le lemme 4.4 implique

k

i=1
f2

i x) 1 + t( d(e)). 48)

D’autre part, l’inégalité 47) appliquée pour z x donne

k

i=1
ai(x)fi(x)- 1 t(e).

On obtient finalement

k

i=1
|fi(x) -ai(x)|

2 3t(e) + t( d(e)). 49)

En appliquant l’inégalité 47) à y dans AR(e)
k il vient

F(x), F(y) Rk - cos d(x,y)
k

i=1
fi(x)fi(y)-

k

i=1

ai(x)fi(y) + t(e)

k

i=1
fi(x)- ai(x) fi(y) +

k

i=k+1
fi(x)fi(y) + t(e).

En utilisant l’inégalité de Cauchy–Schwartz puis 49) et 48), on obtient

k

i=1
fi(x) -ai(x))fi(y) 3t(e) + t d(e) 1 + t d(e)

1
2

i=k+1 fi(x)fi(y)Il ne reste plus qu’à estimer le terme k Or pour tout élément z

de AR(e)
k on a

k

i=1
f2

i z) 1- R(e),
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donc en utilisant de nouveau l’inégalité de Cauchy–Schwartz et 48), on obtient

k

i=k+1
fi(x)fi(y) R(e) + t( d(e)),

ce qui termine la démonstration.
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