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Erratum to “The topology at infinity of Coxeter groups
and buildings”

Michael W. Davis and John Meier

The paper referred to in the title concerns the algebraic topology at infinity of ge-
ometric realizations of Coxeter groups and of buildings. TFor Coxeter groups, the
arguments are correct; however, for buildings, they are not. Jan Dymara and Damian
Osajda pointed out to us some serious problems with Section 5, where the results
for buildings are given (see [4]). In particular, Lemmas 5.3 and 5.7 are wrong. This
leads to gaps in the proofs of Theorems 5.8, 5.12 and 5.13. Nevertheless, we believe
that the theorems in Section 5 remain true. (More precisely, Theorems 5.12 and 5.13
should hold as stated and a version of Theorem 5.8 should be true.)

The basic mistake in Section 5 is this. Suppose C is (the set of chambers of) a
building and X C C is a subset which is starlike with respect to a base chamber cp.
Let ¢ be an extreme chamber in X and put X := € — X. Implicit in both Lemmas 5.3
and 5.7 1s the assumption that

XN el = [e]1E9), (1)

In other words, the intersection on the left is a certain union of mirrors of |c| indexed
by I4+(X, ¢), where I+(X, ¢) denotes the set of i € I such that X contains a chamber
i-adjacent to ¢. In fact, the intersection in (1) need not be a union of mirrors. For
example, it can be the union of |¢|/t(¥-) with a lower dimensional face. (This can be
seen even in the case of thick, right-angled, spherical buildings of rank > 2.)

In the calculation of /7 (|C|) in Theorem 5.8, one starts by ordering C, cg, 1, . . .,
so that 1(8(co, cpy1)) = 1(8(co, c)), where 8( , ) is the W-valued distance on C and
[( ) 1s word length on W. If X, := {co, c1, ..., cm}, then one wants formula (1)
to hold with X = X,,, and ¢ = ¢,;. There 1s considerable freedom in choosing the
ordering of C and not all choices work. To see this, suppose R is a spherical residue
in C and dp € R is its chamber closest to ¢g. Let L g be the set of chambers in R
which are furthest from dp. (L g 1s the set of chambers in R opposite to dg.) Since
the elements of Lz all have the same W-valued distance from cg, when choosing
the ordering of C, L g can be ordered arbitrarily. Most choices of orderings will not
satisfy (1). In particular, if L g is not gallery-connected, no choice will work.
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When C is right-angled the situation can be remedied. For in this case, Lg is a
spherical building of the same type (W, J) as R (at least when R is thick). Order the
clements of L z using the Wy -distance on L g. (It may be necessary to apply this step
repeatedly.) The conclusion is that for right-angled buildings there is an ordering of
C satisfying (1). Hence, Theorems 5.8, 5.12 and 5.13 hold for right-angled buildings
and Corollary 5.14 1s true as stated. A different proof of Theorem 5.8 for right-angled
buildings is given in [2]. It also uses the fact that L  is a building of type (W;, J). In
the right-angled case, Theorems 5.12 and 5.13, as well as, Corollary 5.11 also follow
from the results in [1].
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