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Rigidity theory for matroids

Mike Develin, Jeremy L. Martin and Victor Reiner*

Abstract. Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint
frameworks in Rd in terms of the structure of the underlying graph G. The goal of this article
is to broaden the foundations of combinatorial rigidity theory by replacing G with an arbitrary
representable matroidM. The ideas of rigidity independenceand parallel independence, as well
as Laman’s and Recski’s combinatorial characterizations of 2-dimensional rigidity for graphs,
can naturally be extended to this wider setting. As we explain, many of these fundamental
concepts really depend only on the matroid associated with G or its Tutte polynomial), and
have little to do with the special nature of graphic matroids or the field R.

Ourmain result is a“nesting theorem” relating the various kindsof independence. Immediate
corollaries include generalizationsof Laman’s Theorem, as well as the equality of 2-rigidity and

2-parallel independence. A key tool in our study is the space of photos ofM, a natural algebraic
variety whose irreducibility is closely related to the notions ofrigidity independence and parallel
independence.

The number of points on this variety, when working over a finite field, turns out to be an
interesting Tutte polynomial evaluation.
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1. Introduction: a brief tour through rigidity theory

Combinatorial rigidity theory is concerned with frameworks built out of bars and
joints inRd representingthe verticesV and edgesE of an undirected, finite) graphG.
For comprehensive treatments of the subject, see, e.g., [4], [19], [20].) The

motivating problem is to determine how the combinatorics of G governs the rigidity or

flexibility of its frameworks. Typically, one makes a generic choice of coordinates

p {pv : v V} Rd 1)

for the vertices of G, and considers infinitesimal motions p of the vertices. The
following two questions are pivotal:

I) What is the dimension of the space of infinitesimal motions p that preserve all
the squared) edge lengths Q(pu-pv), for {u, v} E, where Q(x) d

i=1 x2
i

II) What is the dimension of the space of infinitesimal motions p that preserve all
the edge directions pu - pv regarded as slopes, that is, up to scaling?

The answers to these questions are known to be determined by certain linear
dependence matroids represented over transcendental extensions of R, as we now
explain.

First, the d-dimensional rigidity matroidRd(G) is the matroid represented by the
vectors

{(eu - ev) pu - pv) : {u, v} E} 2)

lying in R|V | R(p)d where R(p) is the extension of R by a collection of d|V |
transcendentals p, thought of as the coordinates of a generic embedding as in 1).
The |E|×d|V | rigidity matrix Rd(G) has as its rows the |E| vectors in 2). Then the
nullspace of Rd(G) is the space of infinitesimal motions of the vertices that preserve
edge distances becauseRd(G) is 1

2 times the Jacobian in the variables p of the vector
of squared edge lengths Q(pu - pv); cf. Remark 6.2 below). Since row rank equals
column rank, knowing the matroidRd(G) represented by the rows of Rd(G) answers
question I).

Second, the d-dimensional parallel matroid Pd(G) is the matroid represented by
the vectors

j
u,v : {u, v} E, j 1,2, d - 1} 3){(eu - ev)
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u,v, d-1)
u,v are generically chosenwhere for each edge {u,v} E, the vectors 1)

normals to pu - pv in Rd Again, we should consider the vectors in 3) as lying in
R|V | R(p, d where R(p, is an extension of R by d|V | transcendentals p and

d - 1)|E| transcendentals In analogy to the preceding paragraph, the |E| × d|V |
parallel matrix Pd(G) has as its rows the |E| vectors in 3), and its nullspace is
the space of infinitesimal motions of the vertices that preserve all edge directions.
Consequently, the matroid Pd(G) represented by the rows of Pd(G) provides the
answer to question II).

Some features of the theory are as follows:

• For d 1, the rigidity matroid coincides with the usual graphic matroid for G
while the parallel matroid is a trivial object).

• For d 2, the rigidity and parallel matroids coincide [19, Corollary 4.1.3].
Furthermore, this matroidR2(G) P2(G) has many equivalent combinatorial
reformulations, of which the best known is Laman’s condition [6]: A E is
2-rigidity-independent if and only if for every subset A A

2|V A |- 3 |A | or equivalently

2 |V A |- 1 > |A |
4)

where V A denotes the set of vertices incident to at least one edge in A We
will refer to this coincidence between R2(G),P2(G) and the matroid defined
by Laman’s condition as the planar trinity.

• Ford > 2, the parallel matroid has a simple combinatorial characterization that

generalizes Laman’s condition, while an analogous description for the rigidity
matroid is not known.

2. Main definitions: from graphs to matroids

The purpose of this article is to broaden the scope of rigidity theory by replacing
the graph G with a more general object: a matroid M represented over an arbitrary
field F. As we shall see, the notions of rigidity and parallel independence, as well as

Laman’s combinatorial characterization, admit natural generalizations to the setting
of matroids.

In the process, we will see that many of the main results do not depend on the
special properties of graphs or graphic matroids), nor on the field R, but indeed
remain valid for any matroid M represented as above. In the process, we are led
naturally to an algebraic variety called the space of k-plane-marked d-photos of M.
Just as a bar-joint framework may be regarded as an embedding of a graph in Rd, a

photo of M is a “model” of M in Fd
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Whether or not the photo space is irreducible plays a key role in characterizing the
matroid analogues of rigidity independence and parallel independence. In turn, the
question of irreducibility can be answered combinatorially, using some elementary
algebraic geometry and the classic matroid partitioning result of Edmonds [3]. We

note in addition that when the field F is finite, the number of photos of M is counted
by an evaluation of the Tutte polynomial using q-binomial coefficients.

In order to summarize our results, we define the main protagonists here. Recall
that a simplicialcomplex onvertex setE is acollection of subsetsofE satisfying the
following hereditary condition: if I and I I then I The independent
sets of a matroid always form a simplicial complex. From here on we will make
free use of standard terminology and notions from matroid theory; background and
definitions may be found in standard texts such as [1], [12], [17].

Definition 2.1 m-Laman independence, m-Laman complex). Let E be a set of
cardinality n, and let M be a not necessarily representable) matroid on ground set E,
with rank function r. For m a real number in the open interval 1,8)R, say that

A E is m-Laman independent if

m · r(A > |A | for all nonempty subsets A A. 5)

The m-Laman complex Lm(M) is defined as the abstract simplicial complex of all
m-Laman independent subsets of E.

We will prove combinatorially that

• if m is a positive integer, then Lm(M) is the collection of independent sets of a

matroid Theorem 3.1), but this is not true in general for other values of m;

• if m is a positive integer, then Lm(M) has several other combinatorial
characterizations Theorem 3.6), including a generalization of Recski’s Theorem;

• if m 2 and M is representable, then the matroid L2(M) coincides with the
2-dimensional rigidity and parallel matroids, defined below Corollary 6.6).

Throughout the rest of the introduction, let M be a represented matroid; that
is, a matroid equipped with a representation over some field F by vectors E
{v1, vn} Fr It isworthemphasizing that we are not regardingM as anabstract
matroid; that is, the vectors {v1, vn} are part of the data of M. For notational
convenience, we identify the ground set E with the numbers [n] := {1, 2, n}.
Denote by Gr(k, Fd the Grassmannian of k-planes in Fd regarded as a projective

variety over F via the usual Plücker embedding into P(
d
k)-1.

Whenm > 1 is a rational number, the Laman complex Lm(M) is closely related
to an algebraic variety that we now define.
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Definition 2.2 photo space, k,d)-slope independence, k, d)-slope complex). Let
M be amatroid equipped with representation {v1, vn} as above. The corresponding

space of k-plane-marked d-photos or just k,d)-photos) is the algebraic set

Xk,d(M) := {( W1, Wn) HomF(Fr Fd
× Gr(k, Fd n

: vi) Wi
for i 1, n}.

6)

The photo space of a matroid is analogous to the picture space of a graph, as

defined in [7], [8]. One may think of the map HomF(Fr Fd as projecting the
vectors v1, vn into a space Fd of dimension possibly less than r, like a camera
taking a photo of the vi on photographic paper that looks like Fd The k-plane Wi
in Fd is thought of as a “marking” of the image vector vi) in the photo, so that

Wi is constrained to contain f(vi). Of course, whenever vi) 0 perhaps the
camera caught vi at a bad angle), this k-plane Wi is unconstrained. The idea of

k, d)-slope independence is to measure how independently these marking k-planes
can vary while obeying these constraints, when none of the vi are annihilated by
The linear dependences among the vi force linear dependences among their image
vectors vi), and hence algebraic constraints among the subspaces Wi

Define a Zariski open subset of Xk,d(M) called the non-annihilating cellule; see

Definition 4.1 below) by

XØ
k,d M) := {( W1, Wn) Xk,d(M) : vi) 0 for i 1, 2, n}

and consider its image under the projection map

Hom(Fr Fd
× Gr(k, Fd n p-. Gr(k,Fd n 7)

This image measures the constraints on the Wi when none of the vi are mapped to
zero; specifically, we defineM to be k,d)-slope independent if pXØk,d M) is Zariski
dense in Gr(k, Fd n. The k, d)-slope complex is defined as

Sk,d M) := {A E : M|A is k, d)-slope independent}. 8)

A third notion of matroid rigidity generalizes the d-dimensional rigidity matroid
Rd(G) of a graph G.

Definition 2.3 rigidity matroid, rigidity complex). Let M be a matroid equipped
with representation {v1, vn} as above, and let d be a positive integer. The
ddimensional generic) rigidity matroid is the matroid represented by the vectors

{vi vi)}
n

i=1 Fr
F F( d 9)

where F( is the field extension of F by dr transcendentals giving the entries of
the matrix : Fr F( d The d-rigidity complex Rd(M) is the complex of
independent sets of the d-dimensional rigidity matroid, and the d-rigidity matrix
Rd(M) is the n × dr matrix whose rows are given by the vectors 9).
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To interpret this construction, consider the pseudo-distance quadratic form

Q(x) :=
d

i=1 x2
i on F( d Provided that the field F has characteristic 2, one

can interpret the nullspace of Rd(M) as the space of infinitesimal changes of that
preserve the values Q( vi)) for all i 1, 2, n. See Proposition 6.1(ii).)

Definition 2.4 hyperplane-marking matroid). Let M be a matroid represented by

v1, vn Fr as above. Its d-dimensional, generic) hyperplane-marking matroid
is the matroid represented over F( by the vectors

{vi .i}n

i=1 Fr
F F( d

where F( is the extension of F by dr transcendentals .ij the entries of the matrix
and d - 1)n more transcendentals .ij the coordinates of the vectors .i normal

to vi)). The complex Hd(M) is defined to be the complex of independent sets of
this matroid.

To interpret the notion of rigidity independence modeled by Hd(M), one should
regard lack of rigidity as the ability to deform so that the images vi) of the ground
set elements vary, but membership in their orthogonal complement hyperplanes is
preserved. The most important instance of the hyperplane-marking matroid uses the

d - 1)-parallel extension of M, the matroid d - 1)M whose ground set consists of

d - 1 parallel copies of each element of E. The d-dimensional, generic) parallel
matroid is defined as

Pd M) := Hd d - 1)M),
and the d-parallel matrix Pd(M) isdefinedas the n×dr matrix whose rows represent

Hd d - 1)M). Its nullspace consists of the infinitesimal changes in the matrix
which preserve the slopes of all the direction vectors vi) see Proposition 6.1 i)).

These definitions generalize the ordinary definitions from the rigidity theory of
graphs. Strikingly, the geometric constraints on the photo space can be categorized
combinatorially: the identity

Sk,d M) L
d

d-k M)

Corollary 4.4) provides a geometric interpretation of Lm(M) for rational m.
The slope complex Sk,d(M) is closely related to the rigidity and parallel matroids.

The precise relationship is given by the Nesting Theorem Theorem 6.5):

S1,d M) Rd M) Ld M) Hd M) Sd-1,d M)

for all integers d 2. In particular, when d 2,

H2 M) S1,2 M) R2 M) L2 M). 10)
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Thus matroid rigidity theory leads to a conceptual proof of the planar trinity the
second and third inequalities in 10)).

For d 3, the d-rigidity matroid Rd(M) is the hardest of these objects to understand

as it is for graphic matroids). One fundamental question is whether Rd(M)
depends on the choice of representation of M. It is invariant for d 2 by the Nesting

Theorem) and up to projective equivalence of representations Proposition 8.1),
but the problem remains open for the general case. We also study the behavior of
the d-rigidity matroid as d .8, and show Proposition 8.4) that Rd(M) stabilizes
when d r(M).

3. Laman independence

The central result of this section, Theorem 3.1, states that the generalized Laman’s
condition 5) always gives a matroid when m is an integer. The proof is completely
combinatorial; that is, it is a statement about abstract matroids, not represented
matroids. In addition, we describe some useful equivalent characterizations of d-Laman
independence: one uses the Tutte polynomial, another is reminiscent of Recski’s
Theorem, and another is related to Edmonds’ theorem on decomposing a matroid
into independent sets.

3.1. When is the Laman complex matroidal?

Theorem 3.1. i) Let d be a positive integer and let M be any matroid. Then the
simplicial complex Ld(M) is a matroid complex.

ii) Let m 1,8)R be a real number which is not an integer. Then there exists

a represented matroid M for which Lm(M) is not a matroid complex.

Proof. For the first assertion, it is most convenient to use the characterization of
matroids by circuit axioms [1, eq. 6.13, p. 264]. Define C to be the collection of
those subsets of E which are minimal among nonmembers of Ld(M). We wish to
show that C satisfies the axioms for the circuits of a matroid. Since Ld(M) is a

simplicial complex, we only need check the circuit exchange axiom:

If C, C C with C C and e C n C then there exists C C such
that C C C \ {e}.

Since C, C are minimal among the sets not satisfying the hereditary property 5)

we claim that

|C| d · r(C),

|C | d · r(C
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where r is the rank function of M. To see this claim, note that |C| d · r(C), and if
this inequality were strict, then

|C - e| d · r(C) d · r(C - e)

for any e C, contradicting the statement that C is a minimal set not satisfying 5).
Note also that C n C is a proper subset of each of C, C and hence

|C n C | < d · r(C n C

Since d is an integer, the last condition may be rewritten as

|C n C | + 1 d · r(C n C

The rank submodular inequality r(C C r(C)+ r(C - r(C n C then implies

d · r((C C \ {e}) d · r(C C

d · r(C) + d · r(C - d · r(C n C

|C| + |C |- |C n C | - 1

|(C C \ {e}|.

So C C \ {e} is not in Ld(M), hence contains some element of C. This establishes

i).
We now prove ii). Suppose that m 1,8)R is not an integer, and let c := m

the greatest integer m). Choose positive integers a, b satisfying the inequalities
11) in Lemma 3.2 below. We will explicitly construct a represented matroid Ma,b,c

such that Lm(Ma,b,c) is not a matroid complex.
Let F be a sufficiently large for example, infinite) field, let V be a 2b - 1)-

dimensional vector space over F, and let V1, V2 be two b-dimensional subspaces of V
whose intersection V1 n V2 is a line. Let X {x1, xc} be a set of c nonzero
vectors on For i 1, 2, choose a set Yi Vi of cardinality a - c generically this
is always possible if F is sufficiently large). Note in particular that no member of
Y1 Y2 lies on

LetMa,b,c be the matroid represented over F by E X Y1 Y2, and denote by

C the set of subsets of E that are minimal among nonmembers of Lm(Ma,b,c). We

claim that C does not satisfy the circuit exchange axiom. To see this, let Ci X. Yi
for i 1,2 and observe that

m · r(Ci) mb a |Ci |,
so Ci Lm(Ma,b,c). In fact, we claim that Ci C. Indeed, let I be any nonempty
proper subset of Ci and let J I n Yi Since r(X) 1, and by the generic choice
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of Y1 and Y2, we have

r(J) min(|J |, b),

r(I) min(|J| + 1, b),
m · r(I) min(m|J| + m, mb).

Now Lemma 3.2 implies that mb a |Ci| > |I |. Since m is not an integer, we
have also

m|J| + m > |J| + c |J| + |X| |I|.
In all cases m · r(I) > |I |. It follows that Ci C.

Now, let xi X, and let I C1 C2) \ {xi} E \ {xi}. Then every nonempty
subset I I satisfies 5). We omit the routine but tedious calculation, which
involves eight cases, depending on how I meets each of X, Y1 and Y2.) That is, I is
m-Laman-independent, hence contains no element of C. Therefore C fails the circuit
exchange axiom, and we are done.

The following numerical lemma was used in the proof of Theorem 3.1.

Lemma 3.2. Let m 1,8)R be a real number which is not an integer, and let

c := m Then there exist positive integers a, b such that

a - 1
b

<
2a - c- 1

2b- 1 < m
a

b
11)

Proof. First, note that the third inequality implies the first one. Indeed, if m a/b,
then

b + a 1 + a 1 + bm > 1 + bc,

which implies in turn that 2ab - a - 2b + 1 < 2ab - bc - b. Factoring this gives
2b- 1)(a - 1) < b(2a - c - 1), or a-1 < 2a-c-1

b 2b-1 as desired.
We therefore concentrate on thesecondandthird inequalities in 11). Subtractingc

from each expression in 11) and substituting a bc + r yields

2r - 1

2b - 1 < m- c
r
b

2r
2b

12)

Therefore, it will suffice to find a pair b, r of positive integers satisfying 12).
Note that m - c is the fractional part of m; since m is not an integer, we have

m- c 0, 1)R. Therefore, it will suffice to show that 0, 1) is the union of intervals
of the form 2r-1

2b for positive integers b, r. Indeed,
2b-1

2r

0, 1)

m=0

m

m + 1

m + 1

m + 2

0
1

1

2

1
2

2

3

2
3

3

4 · · ·
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and

m

m + 1

m + 1

m + 2
s=1

2sm + 1

2s(m + 1) + 1

2sm + 2

2s(m + 1) + 2

2m + 1

2m + 3

2m + 2

2m + 4

4m + 1

4m + 5

4m + 2

4m + 6

8m + 1
8m + 9

8m + 2

8m + 10 · · ·

establishing 12), as desired.

3.2. Equivalent characterizations. One of the equivalent phrasings of m-Laman
independence involves the Tutte polynomial TM(x, y) of M, a fundamental isomorphism

invariant of the matroid M. For background on the Tutte polynomial, see the
excellent survey article by Brylawski and Oxley [2].

Given a subset A of the ground set E, denote by A the matroid closure or span of

A. If A A, then A is called a flat of M.

Proposition 3.3. Let M be a matroid on ground set E with rank function r, and fix
m 1,8)R.

Then the following are equivalent:

i) E is m-Laman independent, that is, Lm(M) 2E the power set of E).

ii) m·r(A) > |A| for every nonempty subsetA E. Equivalently, m·r(F) > |F|
for every flat F of M.)

iii) The Tutte polynomial specialization TM(qm-1,q) is a monic polynomial of de¬

gree m- 1)r(M).

Note that in iii) we must allow non-integral) real number exponents for a “polynomial”

in q, but the notions of “degree” and “monic” for such polynomials should still
be clear. The connection between the Tutte polynomial and rigidity of graphs was
observed by the second author in [8, §6].

Proof. The equivalence of i) and ii) is clear from the definition of m-Laman
independence since r(A) r(A) and |A| |A| for any A E.

For the equivalence of i) and iii) we use Whitney’s corank-nullity formula [2,
eq. 6.13] for the Tutte polynomial

TM(x, y)
A.E

x - 1)r(M)-r(A)(y - 1)|A|-r(A).



Vol. 82 2007) Rigidity theory for matroids 207

Substituting x qm-1 and y q gives an expression for TM(qm-1, q) as a sum of
terms indexed by subsets A E, each of which is a monic polynomial in q of degree

m- 1)r(M) -m · r(A) + |A|.

Thus TM(qm-1, q) will have degree at most m-1)r(M) if andonly ifm·r(A) |A|
for all subsets A E. Furthermore, since the term indexed by A Ø is monic of
degree m - 1)r(M), the whole polynomial TM(qm-1, q) will be monic of degree

m - 1)r(M) if and only if m · r(A) > |A| for every nonempty subset A, that is, if
and only if E is m-Laman independent.

Suppose that m d is a positive integer, so that Ld(M) is a matroid complex.
Here d-Laman independence has two more equivalent formulations, one of which
extends a classical result in the rigidity theory of graphs.

Recski’s Theorem ([13]). Let G V E) be a graph, and let E be a spanning set

of edges of size 2|V|- 3. Then E is a 2-rigidity basis if and only if for any e E
we can partition the multiset E {e} that is, adding an extra copy of e to E into
two disjoint spanning trees of G.

This notion can be naturally extended to arbitrary matroids and dimensions.

Definition 3.4. Let M be a matroid on E. We say that E is d-Recski independent

if for any element e E, the multiset E {e} can be partitioned into d disjoint
independent sets for M.

We wish to show that this purely matroidal condition is equivalent to the purely
matroidal condition of d-Laman independence. To prove this, we use a powerful
classic result of Edmonds.

Edmonds’Decomposition Theorem ([3, Theorem 1]). LetM be a matroid of rank r
on ground set E. Then E has a decomposition E I1 · · · Id into disjoint
independent sets Ij for each j 1, d if and only if d · r(A) |A| for every
subset A E.

Definition 3.5. Let M be a matroid on E. A d-Edmonds decomposition of M is a

family of independent sets I1, Id whose disjoint union is E, with the following
property: given subsets I1 I1, …, Id Id with not all Ii empty, then it is not the

case that I1 I2 · · · Id

Theorem 3.6. Let M be a matroid on ground set E, and let d be a positive integer.
Then the following are equivalent:
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i) E has a d-Edmonds decomposition.

ii) E is d-Laman independent.

iii) E is d-Recski independent.

Proof. ii).(i): Suppose that E is d-Laman independent. By Edmonds’ Theorem,
the set E can be partitioned into disjoint independent sets I1, Id We claim that
every such family is a d-Edmonds decomposition. Indeed, suppose that I1 I1, …,

Id Id all have the same span, with not all Ij empty. Since the Ij are independent,

the Ij all have the same cardinality, say s. Then A := I1 Id is nonempty and
has rank s and cardinality ds, which violates the d-Laman independence of E.

i) ii): Let I1, Id be a d-Edmonds decomposition of M. Let A E be

nonempty, and Aj := A n Ij Then

|A|
d

j=1
|Aj|

d

j=1

r(Aj
d

i=1

r(A) d · r(A).

However, equality cannot hold: it would force r(Aj r(A) for each j so that each

Aj has the same span as A, violating the definition of a d-Edmonds decomposition.
Hence |A| < d · r(A) as desired.

ii) iii): Suppose that E is d-Laman independent. Consider the matroid M
given by cloning any e E as in the definition of d-Recski independence, so that the
ground set of M is E E {e}. We claim that |A | d · r(A for each A E
Indeed, either A E, when |A | < d · r(A or else A A {e} with A E,
when |A | |A| + 1 < d · r(A) + 1, so |A | d · r(A) d · r(A By Edmonds’
Theorem, E can be partitioned into d disjoint independent subsets. It follows that

M is d-Recski independent.

iii) ii): Suppose that E is not d-Laman independent, i.e., it has a subset A
with |A| d · r(A). Let a A. The set A {a} E {a} has rank r(A) and
cardinality |A| + 1, so |A {a}| > d · r(|A {a}|). By Edmonds’Theorem, E {a}
cannot be partitioned into d independent sets. Hence E is not d-Recski independent.

3.3. Digression on polymatroids. As we have seen in Theorem 3.1 ii), when m
is not an integer, the Laman complex Lm(M) need not form the collection of
independent sets of a matroid. However, Lm(M) is related to a more general and less

well-known) object called a polymatroid, as we now explain. The results of this
section will not be necessary for the remainder of the paper.)

We reviewthe definition of a polymatroid, using its characterizations by monotone
submodular rank functions see [17, Chapter 18]).
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Definition 3.7. Fix the ground set E [n]. A function : 2E R=0 is the rank
function of a polymatroid on E if it is

– monotone: A) B) whenever A B E;
– submodular: A B) + A n B) A) + B) for all A, B E; and

– normalized: .(Ø) 0.

The polymatroid associated with is the convex polytope

P. := x Rn
0 : a.A xa A) for all A E

also called the set of independent vectors of the polymatroid.

Note that, for all A E, the characteristic vector .A Rn is independent for
if and only if A) |A|.

Our goal is to show the following:

Proposition 3.8. For every loopless matroid M on ground set E [n], and every
real number m 1,8)R, there is a polymatroid rank function on E with the
following property: A E is m-Laman independent if and only if its characteristic
vector is independent for

The proof uses two standard lemmas.

Lemma 3.9 ([1, Lemma 6.15]). If f : 2E R=0 is monotone, submodular, and
normalized, then so is the function rf : 2E R=0 defined by

A A{f A + |A \ A |}.rf A) := min

Lemma 3.10 ([19, Proposition A.3.1]). For a monotone, submodular, normalized
function f : 2E R=0 with associate function rf as above, the following are equivalent:

a) |A | f A for all A A.
b) |A | rf A for all A A.
c) rf A) |A|.

Proof of Proposition 3.8. Let 0, 1 and define f : 2E R=0 byr(M) R

f A) m- r(A).

Note that f is monotone, submodular, and normalized, because the rank function r
of any loopless matroid has these properties. By Lemma 3.9, the function := rf
shares these properties, hence also defines a polymatroid rank function on E.
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SinceM is loopless, for all A Ø, the inequality mr(A) > |A| holds if and only
if m - r(A) |A|. Consequently

A Lm M) f A |A | for all nonempty A A

f A |A | for all A A

A) rf A) |A|.

Here the last equality uses Lemma 3.10.

4. Slope independence and the space of photos

In [7] and [9], the second author studied the picture space of a graph G, the algebraic
variety of point-line arrangements in d-dimensional space with an incidence structure
given by G. The rigidity-theoretic behavior of G controls the geometry of the picture
space to a great extent; for instance, the picture space is irreducible if and only if G
is d-parallel independent.

In this section, we study thespaceXk,d(M) of k, d)-photos, which iswell defined
for any matroid M equipped with a representation. The photo space plays a role
analogous to thatof the picture space of agraph,1 and the techniques we use to study it
are similar to those of [7]. In particular, Xk,d(M) provides a geometric interpretation
of m-Laman independence for all rational numbers m > 1: it is equivalent to the
irreducibility of a certain space of photos.

Throughout this section, we work with a matroid M represented over a field F by
nonzero2 vectors v1, vn Fr In addition, let 0 < k < d be integers, and write
m d

d-k
Recall Definition 2.2) that the space of k, d)-photos of M is

W) HomF(Fr Fd
× Gr(k, Fd n

: vi) Wi for all 1 i n

Note that the photo space is an algebraic subset of HomF(Fr Fd × Gr(k, Fd n,

hence a scheme over F. The symbol Xk,d(M) is a slight abuse of notation; as defined,
the photo space depends on the representation {vi }, and it is not at all clear to what
extent it depends only on the structure of M as an abstract matroid. We will return
to this natural question later.)

A key tool in our analysis is a disjoint decomposition of the photo space into
irreducible algebraic subsets called cellules in analogy to [7]). For each photo

W), ker is a linear subspace of Fr hence intersects E in some flat F ofM. The
idea is to classify photos according to this flat.

1 The reader should be warned not to take this analogy too literally: the picture space of a graph is not an

instance of the photo space of a matroid!
2 Our assumption that M contains no loops is purely for convenience; trivial but slightly annoying)

modifications are necessary when loops are present.
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Definition 4.1. For each flat F E, the corresponding cellule is

k,d(M) W) Xk,d(M) : ker n E FXF

By definition, each photo belongs to exactly one cellule; that is, Xk,d(M) decomposes

as a disjoint union of the cellules. Of particular importance are the two extreme
cases:

I.ThecelluleXØ
k,d M) corresponding to the empty flatØ iscalled thenon-annihilating

cellule. It is a Zariski open subset of Xk,d(M), defined by the conjunction of open

conditions

vi) 0 for all i 1, n. 13)

II. The cellule XE
k,d M) corresponding to the improper flat E is called the degenerate

cellule. It is precisely {0} × Gr(k, Fd n, where 0 is the zero map Fr Fd

Proposition 4.2. Let M and Xk,d(M) be as above.

i) The natural projection map

XØ
k,d M) HomF(Fr Fd

provides XØ
k,d M) with the structure of an algebraic fiber bundle, with fiber

Gr(k - 1,Fd-1) and base the Zariski open subset of HomF(Fr Fd defined by
13). In particular, dim XØ

k,d M) dr + n(k - 1)(d - k).

ii) Foreach flatF,XFk,d M)~=
XØ

k,d M/F ×Gr(k, Fd F Consequently, XFk,d M)
is an irreducible subvariety of Xk,d(M), with dimension given by the formula

dim XF
k,d(M) d(r - r(F))+(n- |F|)(k - 1)(d- k) + |F|k(d - k). 14)

The precedingassertions aremore or less immediatefrom thedefinition of cellules
and the standard fact that the Grassmannian Gr(k, Fd has dimension k(d - k).

As in 7), let p denote the projection map

HomF(Fr Fd
× Gr(k, Fd n p-. Gr(k, Fd n

and define M to be k, d)-slope independent if pXØk,d M) is Zariski dense in

Gr(k,Fd n. We will denote the Zariski closure of a set Z by Z.

Theorem 4.3. Let M be a matroid with rank function r, represented by vectors

v1, vn Fr Fix positive integers 0 < k < d, and let m d

d-k

Then the following are equivalent:

i) M is k, d)-slope independent, i.e., pXØk,d M) is dense in Gr(k, Fd n.
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ii) M is m-Laman independent, i.e., m · r(F) > |F| for every nonempty flat F
of M.

k,d M) < dim XØiii) dim XF k,d M) for every nonempty flat F of M.
iv) The photo space Xk,d(M) is irreducible.

v) The photo space Xk,d(M) coincides with the Zariski closure XØ
k,d M) of its

non-annihilating cellule.

Proof. ii).(iii): Compare the cellule dimension formula 14) dimension with the
definition of m-Laman independence Definition 2.1).

i) ii): For a nonempty flat F, write M|F for the restriction of M to F.
Consider the commutative diagram

XØk,d M) ----. XØk,d M|F

p p̃

Gr(k, Fd n ----. Gr(k, Fd F

15)

in which the top horizontal morphism restricts the photo map to the linear span

F(F of the vectors in F, while forgetting the k-planes {Wi}i.E\F Both vertical
arrows are projections as in 7); we use the tilde on the right-hand map to distinguish
them in what follows. Note that when is non-annihilating, its restriction to the span

of F will also be non-annihilating. Moreover, the bottom horizontal morphism is
surjective.

Now assume that condition i) holds. Since the image of p is Zariski dense in the
target, so is the image of p̃ Therefore

d · r(F) + |F|(k - 1)(d - k) dim XØ
k,d MF dim Gr(k,Fd F

|F|k(d - k),
16)

or in other words, d · r(F) d - k)|F|. However, scaling a non-annihilating map
by an element of F× does not change the line spanned by any vi). Hence every

fiber of p̃ is at least one-dimensional. Put differently, when restricted to XØ
k,d M|F

the morphism p̃ factors through a d · r(F) - 1) + |F|(k - 1)(d - k)-dimensional
space of projectivized non-annihilating maps in P(HomF(F(F Fd

Therefore, for every nonempty flat F, we have the strict inequality d · r(F) >
d - k)|F|, or equivalently m · r(F) > |F|, which is ii).

iv).(v): SinceXØ
k,d M) is Zariski open inXk,d(M), its closureXØ

k,d M) is one

of the irreducible components of Xk,d(M). Thus the full photo space is irreducible
if and only if the non-annihilating photos are dense.

v).(i): Suppose that v) holds. Then i) follows from the observation that

p XØk,d M) p XØk,d M) p(XE
k,d(M)) Pd-1

F
E
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the first inclusion is standard, and the second is implied by v)).
iii) iv): We begin by finding an upper bound for the codimension of every

component of the photo space. Note that Xk,d(M) n

i=1 Zi where

Zi W) Hom(Fr Fd
× Gr(k,Fd n

: vi) Wi

Let

Zi W) Zi : vi) 0

Zi W) Zi : vi) 0

Note that Zi
has codimension d - k in HomF(Fr Fd × Gr(k, Fd n. Additionally,

Zi is contained in the Zariski closure of Zi
because the condition vi) Wi

expressed using the Plücker coordinates of Wi is satisfied also when vi) 0.
Therefore, every Zi has codimension d-k, and every irreducible component of their
intersection Xk,d(M) has codimension at most n(d - k). On the other hand, by the
cellule dimension formula 14), n(d - k) is precisely the codimension of the
nonannihilating cellule XØk,d M). Hence every irreducible component of Xk,d(M) has

dimension at least as large as that of XØk,d M).

k,d M) < dim XØNow suppose that iii) holds, so that dim XF k,d M) for every

F Ø. Since the cellules are all irreducible and disjointly decompose Xk,d(M),
the irreducible components of Xk,d(M) must be exactly the closures of those cellules

XFk,d M) that are contained in the closure of no other cellule. On the other hand, by
the previous paragraph, every such cellule must have its dimension at least that of

dim XØ
k,d M), and by iii) the only possibility is F Ø. Therefore XØ

k,d M) is the
unique irreducible component.

The equivalence of i) and ii) in Theorem 4.3 immediately gives the following
equality between the slope and Laman complexes.

Corollary 4.4. Letm Qn(1,8)R. Writemas d

d-k
where 0 < k < d are integers.

Then Sk,d(M) Lm(M).

Remark 4.5. The condition d 2 is implicit in Corollary 4.4. However, there is a

sense in which the result is still valid for d 1. Take k 1, so that the result asserts

that
S1,d M) L

d

d-1 M).
Now, if one establishes conventions properly, this equality remains valid as d
approaches 1, so that m d

d-1 approaches infinity. That is,

S1,1 M) L8(M) 2E
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Indeed, the full simplex 2E is logically equal to S1,1(M): there is only one possible
line through any point in F1, so the projection map p is dense. Meanwhile, it is easy

to see that L8(M) 2E, where we have defined

L8(M) := lim
m.8

Lm M).

Remark 4.6. For a given matroidM and irrational numberm, it is not hard to see that
there exists a rational number m̃ chosen sufficiently close to m, such that Lm̃ M)
Lm(M). Therefore, Corollary 4.4 actually gives a geometric interpretation for every
instance of Laman independence.

Remark 4.7. Another surprising consequence of Corollary 4.4 is that k, d)-
slopeindependence is invariant under simultaneously scaling k and d. That is, if > 0 is
an integer, then the Corollary implies that

Sk,d M) S.k,.d M).

Moreover, if d is divisible by k, then m d/(d - k) is an integer and Sk,d(M)
Lm(M) is in fact amatroidbyTheorem3.1 i). The geometrybehind these phenomena

is far from clear.

A natural question is to determine the singularities of the photo space. While we
cannot do this in general, we can at least say exactly for which matroids Xk,d(M) is
smooth. The result and its proof are akin to [9, Proposition 15], and do not depend
on the parameters k and d.

Proposition 4.8. Let M be a loopless matroid equipped with a representation

{v1, vn} as above. Then, for all integers 0 < k < d, the photo space X
Xk,d(M) is smooth if and only if M is Boolean that is, every ground set element is
an isthmus).

The assumptionof looplessness isharmless,becauseifvi is a loop, thenXk,d(M)~=
Gr(k,Fd × Xk,d(M\v), so Xk,d(M) is smooth if and only if Xk,d(M\v) is.

Proof. First, note that the photo space of a direct sum of matroids is precisely the
product of their photo spaces this can be seen by writing the matrix for a picture of
the direct sum in block-diagonal form). In particular, if M is Boolean, then

X~=

n

i=1
.i, Wi) Fd

× Gr(k,Fd
: .i(vi) Wi

and each factor in the product is a copy of the total space of the tautological k-plane
bundle over Gr(k, Fd In particular, X is smooth.
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Now suppose that M is not Boolean; in particular n > r. Recall from Proposition

4.2 that the non-annihilating cellule has dimension dr + n(k - 1)(d - k). Near
each non-annihilating photo the photo space looks locally like an affine space of
this dimension; in particular, the tangent space T X) has dimension

dim T X) dr + n(k - 1)(d - k). 17)

Let W) be a “very degenerate” photo; that is, 0 and all the k-planes

Wi coincide. Each Wi can be moved freely throughout the ith Grassmannian, giving
n · dim Gr(k, Fd nk(d - k) independent tangent vectors to X at On the other
hand, we can also vary the map throughout Hom(Fr, Wi), giving kr more tangent
directions that are linearly independent of those just mentioned. Therefore

dim T X) nk(d - k) + kr. 18)

Comparing 17) and 18), and doing a little algebra, we find that

dim T X)- dim T X) d - k)(n- r) > 0.

That is, not all points of X have the same tangent space dimension. Therefore X
cannot be smooth.

5. Counting photos

Although it will not be needed in the sequel, we digress toprove an enumerative result,
possibly of independent interest, about the photo space: when working over a finite
field, the cardinality |Xk,d(M)| is an evaluation of the Tutte polynomial TM(x, y).

We refer the reader to [2] for details on the Tutte polynomial. In what follows,
we write M\v and M/v respectively for the deletion and contraction of M with
respect to an element v of its ground set. We also dispense with the assumption
from the previous section that M contains no loops. On the other hand, we add the
assumption that the representing vectors v1, vn Fr actually span Fr; in other
words, r(M) r. This represents no loss of generality; it is easy to check that when

r(M) < r, there is a natural isomorphism

Xk,d(M)~= HomF(Fr-r(M), Fd
× Xk,d(M

where M is represented by the same vectors v1, vr regarded as elements of the

r(M)-dimensional subspace of Fr that they span.
The following fact [2, Corollary 6.2.6] is a standard tool for converting

deletioncontraction recurrences to Tutte polynomial evaluations. We need the dual matroid
M., characterized as follows: when M is represented by the columns v1, vn
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of an r × n matrix of rank r as above, the dual M. is represented by the columns
v*1, v*n of an n - r) × n matrix of rank n - r, with the property that the row
space of M. is the nullspace of M, and vice versa. In purely combinatorial terms,
the bases of M. are the complements of bases of M.)

Proposition 5.1. Let M) be an invariant of matroids taking values in a commutative

ring R, with the following properties:

T1) For all matroids M1, M2, M1 M2) M1) M2).

T2) When the ground set of M consists of a single isthmus, M) c.

T3) When the ground set of M consists of a single loop, M) d.

T4) When v is neither a loop noran isthmus ofM, M) a M\v)+b M/v).

Then

M) a r(M.)br(M)TM
c

b
d
a

Recall [14, Proposition 1.3.18] that when F is a finite field with q elements, the
cardinality of the Grassmannian Gr(k, Fd is given by the q-binomial coefficient

d

k q
:= [d]!q

[k]!q[d - k]!q

where

[n]!q := [n]q [n- 1]q · · · [2]q [1]q

and

[n]q :=
1 - qn

1- q
1 + q + q

2

+ · ·· + qn-1

We can now state the main result on counting photos.

Theorem 5.2. Let F be the finite field with q elements. LetM be a matroid of rank r,
represented over F by vectors v1, vn spanning Fr and let d 2. Then the
number of k,d)-photos of M is

|Xk,d(M)|
d - 1

k - 1

r(M.)

q
qk d - 1

k q

r(M)

TM [d]q

[d - k]q
[d]q

[k]q

Proof. Abbreviate Xk,d(M) by X(M), and define M) := |X(M)|. We must show
that satisfies the conditions of Proposition 5.1 with

a
d - 1

k - 1
q

d 1
b= qk -k q

c= qk d
k q

d=
d
k q
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By an easy calculation, the arguments to the Tutte polynomial in the statement of
the theorem are precisely c/b and d/a.)

Condition T1) is straightforward. For T2), if the ground set of M consists of a

single loop, then X(M)~= Gr(k, Fd has cardinality dk

q
If the ground set of M consists of a single isthmus v, then a k, d)-photo of M

is just a pair W) where : F1 Fd and W is a k-plane containing v). Since
the image vector w := v) completely determines the map a photo is equivalent
to a pair w, W) Fd × Gr(k, Fd satisfying w W. Thus the space Xk,d(M) is
isomorphic to the tautological k-plane bundle over Gr(k,Fd and its cardinality is
qk dk

q
establishing condition T3).

The verification of T4) is the crux of the proof. If v is neither a loop nor an

isthmus of M, we have the following commutative diagram:

E --. X(M)

p̃ p

E --. X(M - v)

19)

The map p sends a k, d)-photo ofM to a photo ofM\v by forgetting the k-plane
corresponding to the vector v. The map p̃ is the restriction of p to the source and
target

E := {( W) X(M) : v) 0}~= X(M/e) × Gr(k, Fd

E := {( W) X(M\v) : v) 0}~= X(M/e)

and corresponds to the projection of X(M/e)×Gr(k,Fd onto its first factor. Meanwhile,

the restriction
X(M) \ E

p-. X(M\v) \ E

makes X(M) \ E into a bundle with fiber Gr(k - 1,Fd-1). Consequently

|X(M) \ E|
d - 1

k - 1
q

X(M\v) \ E

and

M) |E| +
k - 1
d - 1

q
M\v)- E

d - 1

k - 1
q

M\v) +
d
k

q
M/v) -

d - 1

k - 1
q

M/v)

d - 1

k - 1
q

1
M\v) + qk d -k q

M/v)
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where the last equality uses the q-Pascal recurrence [14, Chapter 1, §1.3, Equation
17b)]

d

k
k d 1

q -kq q
+

d - 1

k - 1
q

Since theTutte polynomial ofM does not depend on the choice of representation,
neither does the number of photos. Theorem 5.2 also implies a curious symmetry
between the number of photos of amatroidM and of its dualM.. Since TM.(x,y)
TM(y, x) [2, Prop. 6.2.4] and dk

q
d

d-k q
we have:

Corollary 5.3. Let M and M. be dual represented matroids. Then

qd ·r(M)|Xd-k,d(M.)| q d-k)n
|Xk,d(M)|.

It would be nice to have a more direct explanation for Corollary 5.3.

Remark 5.4. A topological commutative diagram analogous to 19) was exploited
by the second author in [8] to compute the Poincaré series of picture spaces of graphs
over C as an analogous Tutte polynomial evaluation. In contrast, when F R or

C, the topology of the photo space is much simpler. Indeed, there is a deformation
retraction of Xk,d(M) onto its degenerate cellule:

F : [0, 1] × Xk,d(M) -. XE
k,d(M)

W)) - W).

Hence Xk,d(M) is homotopy equivalent to the degenerate cellule XØ
k,d M), which is

homeomorphic to Gr(k, Fd n see Definition 4.1).

6. Rigidity and parallel independence

In this section, we examine more closely the special cases k 1 and k d - 1
of k, d)-slope independence for a represented matroid M. It turns out that they are
intimately related to the d-dimensional generic rigidity matroid Rd(M) and the
ddimensional generic hyperplane-marking matroid Hd(M). Throughout the section,
let M be a matroid represented by vectors E {v1, vn} spanning Fr and let
d > 0 be an integer.

6.1. Interpreting Rd(M) and Hd(M). Recall Definition 2.3) that the d-dimensional

rigidity matroid is represented over F( by the vectors

{vi vi)}
n

i=1 Fr
F F( d
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where F( is the extension of F by dr transcendentals the entries of the matrix

: Fr F( d The complex Rd(M) is defined to be the complex of independent
sets of this matroid. The d-rigidity matrix Rd(M) is the n × dr matrix whose rows
represent Rd(M).

Recall also Definition 2.4) that the d-dimensional hyperplane-marking matroid
is represented over F( n) by the vectors

{vi .i}ni=1 Fr
F F( d

where F( is the extension of F by dr +(d - 1)n transcendentals the dr entries of
the matrix and the d - 1)n coordinates of the normal vectors .i to vi)). The
complex Hd(M) is defined to be the complex of independent sets of this matroid.
Denote by Hd(M) the n × dr matrix whose rows represent Hd(M).

To interpret Rd(M) and Hd(M), we study their right) nullspaces. Both matrices
have row vectors in Fr F Fd so their nullvectors live in the same space. It will be

convenient to freely use the identifications

Fr
F Fd

~= Fr )* F Fd
~= HomF(Fr Fd

The second of these isomorphisms is canonical; the first comes from identifying Fr
and Fr )* by the standard bilinear form on Fr

x, y
r

i=1

xiyi

whose associated quadratic form is

Q(x) x, x
r

i=1

x2
i

With these identifications, for every Fr F Fd~= HomF(Fr Fd v Fr and

x Fd the induced bilinear form on Fr F Fd has the property

v x, x, v)

Proposition 6.1. Let M be a matroid represented by E as above, and let Fr F

Fd~= HomF(Fr Fd

i) The vector lies in ker Hd(M) if and only if + vi) is normal to .i for
all i 1, 2, n.

In other words, the nullspace of Hd(M) is the space of directions in which
one can modify the map while keeping the image of vi lying on the same

hyperplane normal to .i for each i.)
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ii) Provided that F does not have characteristic 2, the vector lies in ker Rd(M)
if and only if

Q + vi) Q vi) mod 2

for each i 1, 2, n.

In other words, the nullspace of Rd(M) is the space of infinitesimal modifications

one can make to while keeping the values of the quadratic form Q on

the images of the vi constant up to first order) for each i.)

Proof. For i), note that

.i, + vi) 0 .i, vi) + .i, vi) 0

.i, vi) 0

vi .i, 0.

For ii), the expression

Q(( + vi)) Q( vi)) + 2 vi vi) +
2Q( vi))

is congruent to Q( vi)) modulo 2 if and only if vi vi) 0 since F does

not have characteristic 2). But vi vi) vi vi completing the
proof.

Remark 6.2. Part i) of Proposition 6.1 is a rephrasing of the following familiar fact
from rigidity theory: the rigidity matrix Rd(M) may be regarded as the Jacobian
matrix after scaling by 1

2 of the map

HomF(Fr Fd -. Fn

- Q( vi)))n
i=1

The following instance of the hyperplane-marking matroid generalizes the notion
of the d-parallel matroid of a graph see 3)). Denote by d - 1)M the matroid
whose ground set consists of d- 1 copies of each vector in E. The d-parallel matrix
of M is defined as Hd d - 1)M), and the matroid represented by its rows is the

d-dimensional, generic) parallel matroid Pd(M) := Hd d - 1)M). Part ii) of
Proposition 6.1 leads to an interpretation of the geometric meaning carried by the
d-parallel matrix:

Corollary 6.3. Let Fr F Fd~= HomF(Fr Fd Then ker Pd(M) if and
only if + vi) is parallel to vi) for all i 1,2, n.

Proof. Since there are d - 1 copies of the vector vi in d - 1)M, there will be

d - 1) accompanying normal vectors to vi). Because these normals are chosen

with genericcoordinates, theonly vectors normal to all d-1of them are those parallel
to vi). Now apply Proposition 6.1.
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As in classical rigidity theory, both Rd(M) and Hd(M) have certain obvious
nullvectors.

Proposition 6.4. Let Fr F Fd~= HomF(Fr Fd

i) Given any skew-symmetric d × d matrix s Fd×d the map s when
identified with a vector in Fr Fd lies in the nullspace of Rd(M).

ii) The map when identified with a vector in Fr Fd lies in the nullspace of
Hd(M).

Proof. Assertion ii) is immediate from the interpretation of the nullspace of Hd(M)
given in Proposition 6.1.

To prove i), we define

S := Z[ s, v]/(sji -sij

the polynomial ring in the entries of the matrices s, v1, vn. We wish to show
that

Rd M)(s 0 20)

in S. In fact, we will show by a formal calculation that 2Rd(M)(s 0. Since 2
is a non-zero-divisor in S, this will imply that 20) holds in S, hence remains valid
when we pass to S Z F and specialize the entries of v1, vn, s to elements of F.

The calculation3 actually takes place in S[ ]/( 2). Since sT -s, one has for
all x Fd

Q((Id + s)(x)) Q(x) + x,s(x) + s(x), x +
2Q(s(x))

Q(x) + x, s(x) + x,sT x) +
2Q(s(x))

Q(x) mod 2

Taking x vi), the function f defined by f := Q( vi)) has the property

f + s f mod 2

On the other hand, expanding f as a Taylor polynomial yields

f + s f + f s mod 2

where f is the gradient of f with respect to the entries of Therefore

f s 0. On the other hand, by Remark 6.2, the ith row of Rd(M)
is exactly 1

2. f So 2Rd(M)s 0 as desired.

3 This calculation is identical to that usually used to show that the orthogonal group with respect to the
quadratic form Q on Fd has its Lie algebra equal to the space of skew-symmetric matrices.
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6.2. The NestingTheorem. We have arrived at one of the main results of the paper,

the Nesting Theorem, which explains the relationship between the various independence

systems associated to an arbitrary representable matroidM. In the special case

that M is graphic and the ambient dimension d is 2, the Nesting Theorem gives what
we have called the planar trinity Corollary 6.6 below).

Theorem 6.5 The Nesting Theorem). Let M be a matroid represented by vectors

E {v1, vn} Fr and let d > 1 be an integer. Then

S1,d M) Rd M) Ld M) Hd M) Sd-1,d M)).

Proof. We first prove that Rd(M) Ld(M). It suffices to show that whenever

d · r(M) n, there is an F(.)-linear dependence among the vectors

{vi vi)}
n
i=1 Fr

F Fd

that form the n rows of Rd(M). Since E spans a subspace of Fr isomorphic to Fr(M),
the rows of Rd(M) actually lie in a subspace of dimension d · r(M). If d · r(M) < n,
then the desired linear dependence is immediate. On the other hand, if d · r(M) n,
then Proposition 6.4 implies that the rows of Rd(M) lie in a proper subspace of
Fr(M) Fd hence are linearly dependent.

If we replace vi vi) with vi .i the same argument shows that Hd(M)
Ld(M).

Next we prove that S1,d(M) Rd(M). Assume that the rows of Rd(M) are
dependent; we will show that M is k,d)-slope dependent for k 1.

We begin with the observation that

Sk,d M) L
d

d-k M) Ld M).

The equality is Corollary 4.4, and the inclusion follows from the definition ofLm(M)
because d

d-k
d). In particular, ifM is d-Laman dependent thenM is automatically

k, d)-slope dependent; we may therefore assume that M is d-Laman independent.
Without loss of generality, d · r(M) n, so the dependence of the rows of Rd(M)
implies the vanishing of every one of its n×n minor subdeterminants. Moreover, by
Theorem3.6, Madmits a d-Edmonds decomposition see Definition3.5). Associating
the vectors v1, vn with their indices [n] {1, n}, wemay write thisEdmonds
decomposition concisely as [n]

d

j=1 Ij
Claim. There exists an n×n minor of Rd(M) that is a nonzero multihomogeneous
polynomial in the coordinates of the vectors vi).

Given the claim, if vanishes on the non-annihilating cellule XØ
k,d M) of the

photo space, then the projection on XØk,d M) Gr(k, Fd is not Zariski dense,
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because the homogeneous coordinates of the vi) are in fact the Plücker coordinates

onGr(k, Fd Hence by Theorem 4.3, the claim is allweneed for the present theorem.
Let x(i) := vi), and let vi [vi1 · · · vir]

T Group the columns of R Rd(M)
in blocks, so that the ith row of R is

vi1x i)
11 ·· · virx i) vi1x i)

22 · · · virx i)
· · · vi1x i)

dd · · · virx i)

Each n×n submatrix RA of R is indexed by some choice of an n-element subset A of
the dr columns. Letting Ai be the subset of A coming from columns in the ith block,
one obtains a sequence of subsets A1, Ad [r] with n |A|

d

j=1 |Aj |.
Then

det RA
I

e(I
s1,...,sd

e(s1) e(sd

d

j=1 i.Ij
vi,sj i)x i)

j
Here the first sum ranges over all partitions I {I1, Id} of [n] with d parts, the
second sum ranges over all d-tuples of bijections sj : Ij Aj and e(C), e(sj
{±1} there are explicit formulas for these signs, but we won’t need them). This
expression may be simplified:

det RA

I
e(I

d

j=1 i.Ij
x i)j

d

j=1 sj : Ij.Aj

e(sj vi,sj i)

I

d

j=1 i.Ij
x i)
j e(I

d

j=1

det VIj Aj

where VIj Aj is the submatrix of [vik]i=1,...,n,k=1,...,r with rows Ij and columns Aj
Note that det(VIj Aj F, so the calculation implies that det RA is a multihomogeneous

polynomial in the coordinates {x
i)

j } with coefficients in F.
By the definition of an Edmonds decomposition, the sets I1, Id are independent

in M. Hence there is some subset Aj [r] with det VIj Aj 0. The monomial
corresponding to this choice of Ij’s and Aj ’s has a nonzero coefficient in the
multihomogeneous polynomial det RA. Therefore 0, establishing the claim and

completing the proof that S1,d(M) Rd(M).
Replacing Rd(M) with Hd(M), k 1 with k d - 1, and vi) with .i

throughout, the same argument shows that Sd-1,d Hd(M). Since Sd-1,d(M)
Ld(M) by Corollary 4.4, we are done.

The case d 2 is very special. Recall that Pd(M) Hd d - 1)M), so

P2(M) H2(M). Indeed, the Nesting Theorem implies much more:

Corollary 6.6. Let M be a matroid represented as above. Then

S1,2 M) R2 M) L2 M) H2 M) P2 M).
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Remark 6.7. Setting d 1 collapses the Nesting Theorem to

Sk,8(M) R1 M) L1 M) M.

However, these phenomena are somewhat more trivial. To make sense of the

complexes Sk,8(M) and L1(M), consider the identity Sk,d(M) L
d

d-k M) of Corollary

4.4. Fixing k and letting d .8(as a positive integer), we obtain Sk,8(M)
R1(M) L1(M). On the other hand, it is an easy consequence of the definitions of
Lm(N) and Rd(M) that limm.1+ Lm(M) M R1(M).

Remark 6.8. There is in fact a simple explicit isomorphism between the matroids
R2(M) and H2(M) P2(M)). Let be the “p/2 rotation” F2 F2 given by

0 -1

1 0

Then vi)) .i a generic normal to the generic image vector vi), and the
invertible linear operator 1Fr on Fr F Fd sends vi vi) to vi .i
Remark 6.9. When d 3, the inclusion Rd(M) Ld(M) is usually strict. By
Proposition 6.4, the nullspace of Rd(M) contains the d

2 -dimensional space of all
vectors of the form s as s ranges over all skew-symmetric matrices in Fd×d
Consequently, every d-rigidity-independent subset A E must satisfy |A| d ·
r(A) - d

2 On the other hand, there may exist d-Laman independent sets A of
cardinality up to d · r(A)- 1.

7. Examples: uniform matroids

Let E be a ground set with n elements. The uniform matroid of rank r on E is defined
to be the matroid whose independent sets are

Ur,n {F E : |F| r}.
Broadly speaking, Ur,n can be regarded as the matroid represented by n generically
chosen vectors in Fr where F is a sufficiently large field.

Predictably, the d-Laman independence complex onUr,n is alsoa uniformmatroid
for every d. More surprising is that d-Laman independence carries nontrivial geometric

information about sets of n generic vectors in r-space – specifically coplanarity
for U2,3 and the cross-ratio for U2,4.

Proposition 7.1. Let Ur,n be the uniform matroid of rank r on n elements, and let

d 1,8)R. Then

Ld Ur,n) Us,n where s min( dr - 1" n). 21)
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and
Sk,d Ur,n) Ut,n where t min dr

d-k - 1 n 22)

Proof. We know that Ld(Ur,n) is a simplicial complex, and it is easy to see that the
criteria for F to be d-Laman independent can depend only depend on the cardinality

|F|. Therefore

Ld Ur,n) {F E : d · r(F > |F | for all nonempty F F}
{F E : d · r(F) > |F|}
{F E : |F| < dr}
Us,n,

which is 21). Applying Corollary 4.4 to 21) gives 22).

Example 7.2 U2,3). Let F be any field, and let e1,e2 be the standard basis vectors
in F2. The matroid M U2,3 is represented by the vectors {e1, e1 + e2, e2} F2;

this representation is unique up to the action of the projective general linear group.
By Proposition 7.1,

Ld U2,3)
U2,3 if d 1, 3

2 R
U3,3 if d 3

2,8 R

and

S1,d U2,3)
U3,3 if d 2,

U2,3 if d {3, 4, }.

We now consider what these equalities mean in terms of slopes. Let : F2 Fd be

a linear transformation. If d 2, then the images e1), e1 + e2), e2) can have

arbitrary slopes as varies. This is why S1,2(U2,3) U3,3. On the other hand, when
d 3, those three vectors must be coplanar. This imposes a nontrivial constraint on
the homogeneous coordinates for the lines spanned by the three images, and explains
why S1,d(U2,3) U2,3.

By direct calculation, the vectors

e1 e1), e1 + e2) e1 + e2), e2 e2)

are linearly dependent if and only if d 1. Therefore

Rd U2,3)
U2,3 if d 1,

U3,3 if d {2, 3, }.

In this case, the inclusions Rd(M) Ld(M) given by Theorem 6.5 turn out to be

equalities.
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Example 7.3 U2,4). Let F be a field of cardinality > 2, let µ F \ {0, 1}, and let

e1,e2 be the standard basis vectors in F2. The four vectors

e1, e1 + e2, e2, e1 + µe2

represent M U2,4 over F. Again, this representation is unique up to projective
equivalence. By Proposition 7.1,

Ld U2,4)
2 RU2,4 if d 1, 3

U3,4 if d 3
2 2

R
U4,4 if d 2,8)R,

and

S1,d U2,4)
U3,4 if d 2,

U2,4 if d {3, 4, }.

Why is this correct from the point of view of slopes? From Example 7.2, we know
that when d 3, the lines spanned by the images of any three of the four vectors must
be coplanar, so there is analgebraic dependence among the homogeneous coordinates
for these three lines. For d 2, this does not happen; the slopes of the images of
any triple can be made arbitrary. However, applying a linear transformation to the
representing vectors does not change their cross-ratio in this case µ), so the fourth
image vector is determined by the first three. This is the geometric interpretation of
the combinatorial identity S1,2(U2,4) U3,4.

Direct calculation shows that every three of the four vectors

w1 := e1 e1), w2 := e1 + e2) e1 + e2),

w3 := e2 e2), w4 := e1 + µe2) e1 + µe2)

are linearlydependentifd 1,but independent forall d 2. Whend 2, there isan
additional, lessobvious lineardependence: µ-1)w1-µw2+(µ-µ2)w3+w4 0.
Consequently

Rd U2,4)
U2,4 if d 1,
U3,4 if d {2, 3, }.

This calculation is independent of the particular coordinates chosen for the
representing vectors, even up to projective equivalence that is, up to the choice of the
parameter µ): that is, Rd(U2,4) is a combinatorial invariant.

On the other hand, unlike the situation for U2,3, the inclusionsRd(M) Ld(M)
given by Theorem 6.5 turn out to be strict. In particular, R8(M) is not Boolean
while L8(M) is always Boolean. This behavior deviates notably from the case of
graphic matroids see Proposition 8.5 below).
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8. More on Rd(M): invariance and stabilization

The examples in the previous section raise some natural questions. Clearly Lm(M)
is a combinatorial invariant of M, that is, it does not depend on the choice of
representation, nor the field of representation. Hence by Corollary 4.4, the same is true for
Sk,d(M), and in particular Hd(M) and Pd(M). But what about Rd(M)? This is an

issue which does not arise in classical rigidity theory, as the graphic matroid M(G)
is always represented by the vectors

{ei - ej : {i,j} E(G)} 23)

where ei is the ith standard basis vector in R|V G)|. In fact, Proposition 8.1 below
will show that Rd(M) is a projective invariant of a matroid represented over a given
field. A result of N. White shows that graphic matroids, and more generally matroids
that can be represented over F2, are projectively unique when represented over any
fixed field; see, e.g., [18, Proposition 1.2.5]. It will follow that Rd(M(G)) is a

combinatorial invariant of a graphic matroid M(G) over any fixed field.
We begin by recalling the notion of projective equivalence for representations of

a matroid. Two sets of vectors E {v1, vn}, E {v1 vn} Fr are called
projectively equivalent if there are nonzero scalars c1, cn F× and an invertible
linear transformation g GLr F), such that vi g(civi) for every i. It is easy to see

that in this case, the matroids represented by E and E are combinatorially identical.
As we now show, the same is true for their d-rigidity matroids.

Proposition 8.1. Let M,M be matroids represented by projectively equivalent sets

E,E Fr and let d 2. Then Rd(M) Rd(M

Proof. For v E and c F×, replacing v with cv has the effect of multiplying
v v) by c2, which does not change the matroid Rd(M).

For the second assertion, let g GLr F), and suppose that we have an F(.)-linear
dependence

n

i=1

civi v i) 0 24)

in Fr F( d The group GLr F) acts F(.)-linearly on Fr F( d by g(v w)
g(v) w. Applying g to 24) yields

n

i=1

cig(vi) v i) g(0) 0.

Equivalently,
n

i=1

cig(vi) g-1 g(vi) 0.
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The entries of the d ×r matrix g-1 are algebraically independent transcendentals
over F because was), and the transcendental extensions F( and F( g-1)
coincide because g is invertible. Hence the matroid represented by {g(v1), g(vn)}
contains the same dependence 24) as do {v1, vn}. Considering all such
dependences and replacing g with g-1, one sees that this matroid is combinatorially
identical to Rd(M).

Question 8.2. Is Rd(M) a combinatorial invariant of M, or does it depend on the
choice of field F and the particular representation {v1, vn} of M in Fr?

In the special case d 2, the Nesting Theorem implies that Rd(M) is indeed a

combinatorial invariant. While we haveno reason to expect invariance in all cases, we
have not found a counterexample. We have seen thatRd(M) is indeed combinatorial
whenM U2,3 orU2,4. In what follows, we describe amatroid with twoprojectively
inequivalent representations whose d-rigidity matroids coincide.

Example 8.3. Consider the following two sets of nine coplanar vectors in R3:

E {(1, 0,0), 1,0,1), 1,0, 2), 1,1, 0), 1,1, 1), 1,1, 2), 1,2, 0), 1, 2, 1), 1, 2, 2)},

E {(1, 0,0), 1,0,1), 1,0, 3), 1,2, 0), 1,2, 1), 1,2, 3), 1,3, 0), 1, 4, 1), 1, 6, 3)}.

•

•

•

•

•

•

•
•
•

E

•

•
•

•

•
•

•
•

•

E

LetM, M be the matroids represented by E, E respectively. These matroids are

combinatorially isomorphic, but E and E are certainly projectively inequivalent. On
the other hand, computations using Mathematica show that R2(M) R2(M

U5,9) and that R3(M) R3(M the bases are the subsets of E resp. E of
cardinality 6, except for the complements of the eight affine lines.)

We next discuss howRd(M) stabilizes for large d. Let.: F(.1,1, .d+1,r
F(.1,1, .d,r be the map sending .d+1,j to 0 for every j Then takes linear
dependences on rows ofRd+1(M) to linear dependences on rows ofRd(M). Therefore

Rd(M) Rd+1(M).
Since there are only finitely many simplicial complexes on a fixed finite ground

set E, the tower

M R1 M) R2 M) R3 M) · · ·
musteventually stabilize to some complexR8(M). We can say morepreciselywhen
this stabilization occurs.
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Proposition 8.4. Let M be a matroid represented by E {v1, vn} Fr where
without loss of generality) M has rank r. Then for every d r,

Rd M) Rr M) R8(M).

Proof. Since Rd(M) Rd+1(M), it suffices to prove that Rd(M) Rr(M) for
d r. Let be an r × r matrix of transcendentals over F. Suppose that we have a

linear dependence of the form 24). Let be another d×r matrix of transcendentals,
so that F( F( is a purely transcendental extension. Viewing the matrix
as a F( .)-linear map, one can apply it to the second factor of Fr F( r Applying
this to 24) gives

n

i=1

civi vi) 0, 25)

which is an F( .)-linear dependence on the vectors {vi vi)}i=1,...,n.

We claim that F( is purely transcendental over F( To see this, first
note that F( F( .-1). That is, F( can be obtained from F(
by adjoining r2 elements, namely the entries of .-1. In particular, the transcendence

degree of F( over F( is at most r2. Similarly, the transcendence degree

of F( over F is at most dr. But F( clearly has transcendence degree

dr + r2 over F, and transcendence degree is additive in towers of field extensions

[5, Thm. VI.1.11], so both instances of “at most” may be replaced with “exactly”,
proving the claim.

By the existence of the F( .)-linear dependence 25), we conclude that the
vectors {vi.( vi)}i=1,...,n must also be F( .)-linearly dependent. Therefore

Rd(M) Rr(M) as desired.

When amatroidM can be represented over different fields, it is natural to ask how
much Rd(M) can vary. For instance, if M M(G) is graphic, then the standard

representation 23) is valid over every field F and unique up to projective equivalence
once the field is fixed, as mentioned earlier. For sufficiently large d, the d-rigidity
matroid of M(G) is also independent of the choice of the field F, as we now explain.

Proposition 8.5. Let M M(G) be the graphic matroid representing an n-vertex
graph G over an arbitrary field F, equipped with the standard representation 23).
Then Rn(M) 2E R8(M).

Proof. Let Kn be the complete graph on n vertices. Since Rn(M) is a row-selected
submatrix of Rn(M(Kn)), it suffices to assume that G Kn.

To avoid overly cumbersome notation, we give the proof for n 4; the argument
for arbitrary n should be clear from this case. For n 4, the 6 × 12 rigidity matrix
R4(M(K4)) is as follows. Each nonzero entry is a binomial .ij - .ik, written on
two lines so that the matrix is not too wide for the page.)
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.11
-.12

.21
-.22

.31
-.32

.12
-.11

.22
-.21

.32
-.31

0 0 0 0 0 0

.11
-.13

.21
-.23

.31
-.33

0 0 0 .13

-.11
.23
-.21

.33
-.31

0 0 0

0 0 0 .12
-.13

.22
-.23

.32
-.33

.13

-.12
.23
-.22

.33
-.32

0 0 0

.11
-.14

.21
-.24

.31
-.34

0 0 0 0 0 0 .14
-.11

.24
-.21

.34
-.31

0 0 0 .12-.14
.22-.24

.32
-.34

0 0 0 .14
-.12

.24-.22
.34-.32

0 0 0 0 0 0 .13
-.14

.23-.24
.33
-.34

.14
-.13

.24-.23
.34
-.33

We must show that some 6×6 minor of R4(M(K4)) is nonsingular. Consider the
submatrixM consisting of the last column in the second block, the last two columns
in the third block, and all three columns in the fourth block:

.32 - .31 0 0 0 0 0

0 .23 - .21 .33 - .31 0 0 0

.32 - .33 .23 - .22 .33- .32 0 0 0
0 0 0 .14 - .11 .24 - .21 .34 - .31

.32 - .34 0 0 .14 - .12 .24 - .22 .34 - .32
0 .23 - .24 .33 - .34 .14 - .13 .24 - .23 .34 - .33

Since M is block lower triangular, its determinant is the product of the determinants

of the blocks along the diagonal indicated in boldface). Each such determinant
is a nonzero polynomial in the .ij over any field, because the coefficients of .31 in
the first block, .21.32 in the second block, and .11.22.33 in the third block are all

±1. Therefore M is nonsingular over any field, as desired.

This observation begs the question of whether Rd(M(G)) depends on the field
before d reaches the stable range. For an arbitrary representable matroid M, it is
not true in general that R8(M) is Boolean. We have already seen one example for
which this fails, namely U2,4. Another example is the well-known Fano matroid F,
represented over the two-element field F2 by the seven nonzero elements of F32 It is
not hard to show that Ld(F is Boolean for d > 73 On the other hand, computation

with Mathematica indicates that R2(F U5,7, but Rd(F U6,7 for all integers
d 3.

9. Open problems

The foregoing results raise many questions that we think are worthy of further study;
some of these have been mentioned earlier in the paper. In this final section, we
restate the open problems and add a few more.
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Problem1. Determine the singular locus of the k,d)-photo spaceXk,d(M) perhaps

by calculating the dimension of its various tangent spaces, as in Proposition 4.8).

Problem 2. Give a direct combinatorial explanation for Corollary 5.3, presumably
by identifying some natural relationship between photos of M and of M..

Problem 3. Explain the “scaling phenomenon” of Remark 4.7 geometrically.

Problem 4. Determine whether or not the d-rigidity matroid Rd(M) is a
combinatorial invariant of M Question 8.2). If not, determine which matroids have this
property, and to what extent Rd(M) depends on the field F over which M is
represented. In particular, is Rd(M) independent of F in the case that M is a graphic
matroid?

Crapo gave an elegant characterization [19, Theorem 8.2.2] of Hd(M) when M
is graphic. A basis ofHd(M) is a multi-)set of edges having a d + 1)T d-covering,
or a decomposition into d+1 edge-disjoint trees, exactly d incident with each vertex,
with no d nonempty subtrees spanning the same subset of vertices.

Problem 5. Generalize Crapo’s characterization of Hd(M) to the case of a

nongraphic matroid M.

A vertex of a graph G corresponds to a cocircuit of M(G) whose deletion leaves a

connected matroid. However, there is no analogous notion of “vertex” when M is
a non-graphic matroid although the foregoing may be helpful if M is sufficiently
connected). Similarly, it is unclear how to generalize to non-graphic matroids and

to higher dimensions) other fundamentals of graphic rigidity theory; for instance,
Henneberg’s construction of the bases for H2(M) R2(M) L2(M) [19, Theorem

2.2.3].
Our last open problem is similar in spirit to the results of [7] and [9], describing

the algebraic and combinatorial structure of the equations defining the slope variety
of a graph. It is motivated also by the appearance of the cross-ratio in Example 7.3.

Problem 6. Describe explicitly the defining equations in Plücker coordinates on

Gr(k,Fd n) for pXØ
k,d M), where p is the projection map of 7).
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