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A pinching theorem for the first eigenvalue of the Laplacian on
hypersurfaces of the Euclidean space

Bruno Colbois and Jean-Francois Grosjean™

Abstract. In this paper, we give pinching theorems for the first nonzero eigenvalue A1 (M) of
the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the
volume of M is 1 then, for any ¢ > 0, there exists a constant C, depending on the dimension »
of M and the L -norm of the mean curvature H, so that if the L;,-norm || H||2, (p = 2)of H

satisfies n|| H ||% 5 C, < A1(M), then the Hausdorff-distance between M and a round sphere

of radius (n/A1(M))/? is smaller than &. Furthermore, we prove that if C is a small enough
constant depending on #n and the L ,-norm of the second fundamental form, then the pinching
condition n || H ||% 5 C < A1(M) implies that M is diffeomorphic to an n-dimensional sphere.

Mathematics Subject Classification (2000). 53A07, 53C21.

Keywords. Spectrum, Laplacian, pinching results, hypersurfaces.

1. Introduction and preliminaries

Let (M™, g) be a compact, connected and oriented n-dimensional Riemannian mani-
fold without boundary isometrically immersed by ¢ into the » 4+ 1-dimensional eu-
clidean space (R L can) (ie. ¢*can = g). A well-known inequality due to Reilly
([11]) gives an extrinsic upper bound for the first nonzero eigenvalue A1 (M) of the
Laplacian of (M", g) in terms of the square of the length of the mean curvature.
Indeed, we have

il b
A1<M>sme|H| do M

where dv and V(M) denote respectively the Riemannian volume element and the
volume of (M”, ¢). Moreover the equality holds if and only if (M”, ¢) is a geodesic
hypersphere of R**1,

*Supported by European Commission through Human Potential Programme.
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By using Holder inequality, we obtain some other similar estimates for the Ly -
norm (p > 1) with H denoted by [|H 3,

h 2
(M) < W”HHZP’ (2)

and as for the inequality (1), the equality case 1s characterized by the geodesic hyper-
spheres of R"+1,

A first natural question is to know if there exists a pinching result as the one we
state now: does a constant C' depending on minimum geometric invariants exist so
that if we have the pinching condition

(Pc)

n
V(M)

then M is close to a sphere in a certain sense?

Such questions are known for the intrinsic lower bound of Lichnerowicz—Obata
([9D of A1(M) in terms of the lower bound of the Ricci curvature (see [4], [8], [10]).
Other pinching results have been proved for Riemannian manifolds with positive Ricet
curvature, with a pinching condition on the n 4+ 1-st eigenvalue ([10]), the diameter
([5], [8]. [15]), the volume or the radius (see for instance [2] and [3]).

For instance, S. Ilias proved in [8] that there exists & depending on n and an upper
bound of the sectional curvature so that if the Ricci curvature Ric of M satisfies
Ric > n — 1 and A1 (M) < A1(S") + ¢, then M is homeomorphic to S*.

In this article, we investigate the case of hypersurfaces where, as far as we know,
very little 1s known about pinching and stability results (see however [12], [13]).

More precisely, in our paper, the hypothesis made in [8] that M has a positive Ricci
curvature is replaced by the fact that M is isometrically immersed as a hypersurface
in R"*!, and the bound on the sectional curvature by an L.>-bound on the mean
curvature or on the second fundamental form. Note that we do not know if such
bounds are sharp, or if a bound on the L¢-norm (for some g) of the mean curvature
would be enough.

We get the following results

1H|3, — C < x1(M)

Theorem 1.1. Let (M*, g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold without boundary isometrically immersed by ¢ in R**t1, Assume
that V(M) = 1 and let xq be the center of mass of M. Then for any p > 2 and for any

g > 0, there exists a constant C, depending only on n, ¢ > 0 and on the L~o-norm
of H so that if

(Pc,) nl|H|3, — Ce < M(M)

then the Hausdorff-distance dg of M to the sphere S (xo, /#M) ) of center xo and

radius | 3y satisfies dp (gb(M), S (xo, J 00 )) < &
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We recall that the Hausdorft-distance between two compact subsets A and B of a
metric space is given by

du (A, B) =inf{n|V,(A) D> B and V;;(B) D A}

where for any subset A, V,,(A) is the tubular neighborhood of A defined by V;,(A) =
{x | dist(x, A) < n}.

Remark. We will see in the proof that Ce(n, ||H||~) — O when ||l ||sc — o0 Or
g — 0.

In fact the previous theorem is a consequence of the above definition and the
following theorem

Theorem 1.2. Let (M", g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold without boundary isometrically immersed by ¢ in R**1, Assume
that V(M) = 1 and let xq be the center of mass of M. Then for any p > 2 and for any

e > 0, there exists a constant C, depending only on n, ¢ > 0 and on the Lao-norm
of H so that if

(Pc,) n||H|3, — Co < A(M)

then

(W) dM) € B (0. [0 +2) \B (x0. [ty — 2);

) Blx,e) N (M) £ @ forall x € S (xo, /W)-

In the following theorem, if the pinching is strong enough, with a control on # and
the L~o-norm of the second fundamental form, we obtain that M is diffeomorphic
to a sphere and even almost isometric with a round sphere in a sense we will make
precise.

Theorem 1.3. Let (M", g) be a compact, connected and oriented n-dimensional
Riemannian manifold (n > 2) without boundary isometrically immersed by ¢ in
R Agsume that V(M) = 1. Then for any p = 2, there exists a constant C
depending only on n and the L ~-norm of the second fundamental form B so that if

(Pc) n|lH3, — C < 2 (M).

Then M is diffeomorphic to S".
More precisely, there exists a diffeomorphism F from M into the sphere

S ( /ﬁ) of radius % which is a quasi-isometry. Namely, for any 6,
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0 < 0 < 1, there exists a constant C depending only on n, the Log-norm of B
and 0, so that the pinching condition (Pc) implies

ldF @) —1| <0
Joranyx e M and u € Ty M so that |u| = 1.

Now we will give some preliminaries for the proof of these theorems. Throughout
the paper, we consider a compact, connected and oriented #-dimensional Riemannian
manifold (M", g) without boundary isometrically immersed by ¢ into (R™*!, can)
(i.e. ¢p*can = g). Let v be the outward normal vector field. Then the second fun-
damental form of the immersion will be defined by B(X, Y) = (V{v, Y), where V°
and { , ) are respectively the Riemannian connection and the inner product of R"+1,
Moreover the mean curvature H will be given by H = (1/n) trace(B).

Now let 9; be an orthonormal frame of R*T! and let x;: R*t! — R be the
associated component functions. Putting X; = x; o ¢, a straightforward calculation
shows us that

Bov=— Y VdX;®}
i<n+1

and
nHv= Y AX;d,
i<n+1
where V and A denote respectively the Riemannian connection and the Laplace—
Beltrami operator of (M", g). On the other hand, we have the well-known formula

1
5A|X|2=nH (v, X) —n (3)

where X is the position vector given by X = >, .1 X;0;.

We recall that to prove the Reilly inequality, we use the functions X; as test
functions (cf. [11]). Indeed, doing a translation if necessary, we can assume that
f y Xidv = O0foralli <n—+ 1 and we can apply the variational characterization
of A1(M) to X;. If the equality holds in (1) or (2), then the functions are nothing
but eigenfunctions of A1(M) and from the Takahashi Theorem ([14]) M is immersed

isometrically in R"+1 as a geodesic sphere of radius /ﬁ.

Throughout the paper we use some notations. From now on, the inner product
and the norm induced by g and can on a tensor 7" will be denoted respectively by
{, Yyand||?, and the L ,-norm will be given by

1/p
I, = (f |T|Pdv)
M
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and
|1 T |loo = sup |7T7].
M

We end these preliminaries by a convenient result.

Lemma 1.1. Let (M", g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold (n > 2) without boundary isometrically immersed by ¢ in R"+1,
Assume that V(M) = 1. Then there exist constants ¢, and d, depending only on n
so that for any p > 2, if (P¢) is true with C < ¢, then

n
<

A(M) —

dy. 4

Proof. We recall the standard Sobolev inequality (cf. [6], [7], [16] and p. 216 in [1]).
If f is a smooth function and f > 0, then

) 1—(1/n)
([ fﬁdv) SK(n)f(ldf|+|H|f)dv )
M M

where K (n) is a constant depending on n and the volume of the unit ball in R"”. Taking
f =1on M, and using the fact that V(M) = 1, we deduce that

H B ——
1H]l2p = K

and if (P¢) is satisfied and C' < = ¢,, then

n
2K (n)?

n

AM(M

) < <2K(n)? =d,. O

nlHI, — €

Throughout the paper, we will assume that V(M) = 1 and f,, X; dv = 0 for
all i < n + 1. The last assertion implies that the center of mass of M is the origin
of R™+1,

2. An L2-approach of the problem

A first step in the proof of Theorem 1.2 is to prove that if the pinching condition (P¢)
is satisfied, then M is close to a sphere in an L?-sense.
In the following lemma, we prove that the L?-norm of the position vector is close
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Lemma 2.1. Ifwe have the pinching condition (P¢) with C < ¢, then

MM X< —2 <,
(C + A1(M)) A (M)

Proof. Since | a Xidv = 0, we can apply the variational characterization of the
eigenvalues (o obtain

mOD [ 3 Pdvs [ 3 axiPdv =
Mient M <nt

which gives the inequality of the right-hand side.
Let us prove now the inequality of the left-hand side.

4 4
M(M)f XPdv < (far Zicas |dXi|2dv)3 _ U Zi5n+1(?Xi>Xi dv)
M (for i< [dXi[? dv) n
< (IM Zi5n+1(AXi)23dU)2 (IM |X|2dU)2
N n

o (f e ([

then using again the Holder inequality, we get

2
M(M)sl(nan%p)zf X2 d < (M) f|X|2du.
n M M

I
This completes the proof. O

From now on, we will denote by X7 the orthogonal tangential projection on
M. In fact, at x € M, X7 is nothing but the vector of T, M defined by X7 =
1 <j<n (X, e;) e; where (¢;)1<i <, 18 an orthonormal basis of 7, M. In the following

lemma, we will show that the condition (P¢) implies that the L?-norm of X of X
on M is close to 0.

Lemma 2.2, Ifwe have the pinching condition (P¢), then
IX715 < An)C.

Proof. From Lemma 2.1 and the relation (3), we have

2
kl(M)f |X|2dv§n:n(f H{X,v) dv)
M M



Vol. 82 (2007) A pinching theorem for the first eigenvalue of the Laplacian 181

2p—1

2 2p 7
s(] |H||<X,v>|du) < nlHI, ([ |<X,v>|zp—1dv)
M M

<alHIZ, ([ (X, v) |2dv):n||H||%pf X[ dv.
M M

Then we deduce that

nlHI3,1X1 05 = nlHI3, (fM (X2 = (X, v) %) dv)
< (|l HI3, — (M) X < duC

where 1in the last inequality we have used the pinching condition and Lemma 2.1.
O

Next we will show that the condition (P¢) implies that the component functions
are almost eigenfunctions in an L?-sense. For this, let us consider the vector field ¥
on M defined by

¥ = Z (AX; — A (MH)X;) 0, =nHv — (M) X.
i<n+1

Lemma 2.3. If (P¢) is satisfied, then
I¥13 < nC.

Proof. We have
f Y2 dv = [ (n*H* — 2na (M)H (v, X) + 2 (M)*|X|?) dv.
M M
Now by integrating the relation (3) we deduce that
/ H{v,X)dv=1.
M

Furthermore, since | y Xi dv = 0, we can apply the variational characterization of
the eigenvalues to obtain

A (M de:kM[ X,-de dX;|?dv = n.
o) [ 1xPav =00 [ Y WPavs [ 3 axiPde =

i<n+1 i<n41
Then

YP2dv < n? | |HP dv—nii(M) < n (nllHIF, — 2(M)) < nC
M M i

where in this last inequality we have used the Holder inequality. O
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i 1/2
X1~ (5tm) Ny

1/22
For this we need an Lz—upper bound on the function ¢ = | X| (lX | — (W) ) )
Before giving such estimate, we will introduce the vector field Z on M defined

b

’ n 172 X
Z:( ) X[y — ———.

A1 (M) XV

Lemma 2.4. If (P¢) is satisfied with C < ¢, then

< &.

To prove Assertion 1 of Theorem 1.2, we will show that

We have

1Z13 < B(n)C.

Proof. We have

1,2

n X
Z 2 — X 1/2H o
112 H (M(M)) XY =

2

2

n n 172
- X|H? -2 H{v,X)+1|X|)d
fM(xuM)' | (M(M)) i ] ') v
- 1/2 1/2
(f |X|2dv) (f H4dv)
a(M) \Jum M
v 1/2 , 1/2
_2(xl<M>) +UM'X' d”) |

Note that we have used the relation (3). Finally for p > 2, we get

1/2 172
||Z||%s(f |X|2dv) (LHHH% +1)—z( A )
. oy M)

NV C .\ 172
< +2) -2
(M(M)) (M(M) ) (M(M))

372
A (M) AMM) T n

=

This concludes the proof of the lemma. O
Now we give an L?-upper bound of ¢.
Lemma 2.5. Ler p > 2 and C < ¢,,. If we have the pinching condition (P¢), then

3/4
gl < Dn) @l cV4.
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Proof. We have

1/2
3/2 1/2 3/4 1/2,1/2
||</9||2=(f oV2 1! dv) < ol V22,
M

and noting that

5 172\ 2 i 172y 2
X IX] - = [IX]¥2x —
r (M) A (M) | X|1/2
we get
12y
[ (ﬂl/zdv — |X|1/2X . ( n ) ﬁ
M A (M) | X112,
X |1/ n \'"* X
= | - Y + |X|1/2Hv—( ) —
ri(M) A(M) A (M) | X172,
|X|1/2 n 1/2
<||——Y +( ) 1Z]l . (6)
M) |, \ (M) !

From Lemmas 2.3 and 1.1 we get

1 1,2
‘ y s—(f |X|dv) 171z
1 (M)
3/4

1/4 d
f X[2dv)  |I¥ll < ¢,
= M(M) w172

Moreover, using Lemmas 2.4 and 1.1 again it is easy to see that the last term of (6)
is bounded by d,"* B(m)/2C/2. Then ||¢'/2[,* < D(n)CY4, 0

|X|l/2
A1 (M)

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is immediate from the two following technical lemmas
which we state below.

Lemma 3.1. For p > 2 and for any n > 0, there exists K, (n, || H||l) < cq s0 that
if (P, ) is true, then ||¢lloo < 1. Moreover, Ky — O when | H||oc — o0 0r 5 — 0.

Lemma 3.2. Let xo be a point of the sphere S(O, R) of R** with the center at the ori-
gin and of radius R. Assume that xo = Re where e € S". Now let (M", g) be a com-
pact oriented n-dimensional Riemannian manifold without boundary isometrically
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immersed by ¢ inR"H sothatp (M)  (B(O, R+ m)\B(O, R — 1)) \B(xq. p) with

p = 42n — 1)y and suppose that there exists a point p € M so that (X, e) > 0. Then
there exists yo € M so thar the mean curvature H(yo) ar yo satisfies |H (yp)| = 4,1—”.

Now, let us see how to use these lemmas to prove Theorem 1.2,

1/2
Proof of Theorem 1.2. We consider the function f(t) = ¢ (t — (ﬁ) ) . For

g > 0 let us put

. 1 B ) 1 ) 1
He) =min ((HHHOO 8) o (anoo T 8) ° 27||H||éo)
) n 172 n 172 1
Smm(f((ww)) _8)’f((x1<M>) +8)’27||H||%;o)‘

Then, as n(¢) > 0 and from Lemma 3.1, it follows that if the pinching condition
(Pk, ., ) 18 satisfied with Koy < ¢, then for any x € M, we have

JUXD) = nle). (7)

Now to prove Theorem 1.2, it is sufficient to assume & < m Let us show that
either

7 172 " 142 1 " 1/2
(M(M)) _SS'X'S(MMJ e |X|<_(I\1(M)) -

By studying the function f it is easy to see that f has a unique local maximum

in 1( T E"”M))l/ % and from the definition of 5(e) it follows that n(g) < %m <

4 3/2 1 1/2
7 (on) =S GEmn) )
. 2 2 1/2 1 1/2 12
Since & < yr—, we have & < §(—M(”M)) and §(—M(RM)) 2 (—M?M)) —
This and (7) yield (8).
Now, from Lemma 2.1 we deduce that there exists a point yo € M so that

X (yo)| > ACMODZ nd since Ky < ¢n = - < A(M) < 2x1(M) (see
YOI Z TRy +a1 (M) n(e) n= g S M < 2A
n )1/2

the proof of Lemma 1.1), we obtain | X (yo)| > (M(M)

By the connectedness of M, it follows l;hat()t (M))l/z—e < |X| < (W)l/z—l—g

for any point of M and Assertion 1 of Theorem 1. 2 is shown for the condition (Pg, ).
In order to prove the second assertion, let us consider the pinching condition

(Pe,) with C, = Kﬁ(mg_n)‘ Then Assertion 1 is still valid. Let x = ()t ?M))lﬂe <

S(O |00 ) withe € §" and suppose that B(x, e)NM = @. Since [,, X; dv =0
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for any : < n 4 1, there exists a point p € M so that (X, ¢) > 0 and we can apply

Lemma 3.2. Therefore there is a point yo € M so that 1 (yg) > 2i=1 - | H|| s since

ne
we have assumed ¢ < 2 < 2n—1  Then we obtain a contradiction which
3 Hleo 2n]H oo

implies B(x,e) N M # @ and Assertion 2 is satisfied. Furthermore, C. — 0 when
| H ||oo — o0 0re — 0. O

4. Proof of Theorem 1.3

From Theorem 1.2, we know that for any & > 0, there exists C, depending only on
nand || H ||« so thatif (P¢,) 18 true then

‘|X|x—‘/ - ‘se
A (M)

for any x € M. Now, since /n||H|loc < ||B]l~0, it is easy to see from the previous
proofs that we can assume that C. is depending only on n and || B x.

The proof of Theorem 1.3 is a consequence of the following lemma on the Loo-
norm of ¢ = | XT|.

Lemma 4.1. For p > 2 and for any n > 0, there exists Ky(n, || B| ) s0 that if (Pk, )
is true, then || ||oc < 1. Moreover, K;; — Owhen | Bl — o0 0rn — 0.

This lemma will be proved in the Section 5.

Proof of Theorem 1.3. Let ¢ < % /m < /ﬁ. From the choice of &, we

deduce that the condition (P, ) implies that | X | 1s nonzero for any x € M (see the
proof of Theorem 1.2) and we can consider the differential application

F:M—>S(O, / 7 ),
A1(M)

n Xy
(M) X, |

We will prove that  is a quasi-isometry. Indeed, for any 0 < 6 < 1, we can choose
a constant e(n, || Bl|«, ¢) so that for any x € M and any unit vector u € T, M, the
pinching condition (Pc,, | ...5) 1mplies

[ldF ()| — 1| < 6.

For this, let us compute d Fy (u). We have

dF, () = |—C VO(X> N u(1>X—|— n 1 goy
rM) "\ X)) s A M)\ X r(M) X"
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B 1 n n 1
T TNy (M)|X|3 “(X1)X Vaman "
n 1 X)X + n 1
= — [———{u, T~ h
(M) X3 (M) |X|

n 1 (u, X)
— X )
M) X ( XP? +”)

By a straightforward computation, we obtain

2
‘|de(u)|2 _1| — o= 1 (1 _ M) 1

r (M) | X|? | X|? ©)
- n 1 1‘_'_ n 1 ( X)2
_ — ", :
T MM X2 A (M) |X]*
Now
n 1 1 n 9
=1 = - 1X|
A (M) |X]| | X% | A (M)

‘\/ 21(M) +|X|‘ mon T €
|X|2 2°
(\/ oD 8)

Let us recall that i < M(M) < ||B||2 (see (4) for the first inequality). Since we

assume £ < %

Bl B” , the right-hand side is bounded above by a constant depending

only on n and || B||~ and we have

n 1

AMM) X2

1‘ <ey(n, [[Blle)- (10)

On the other hand, since Co(n, ||Bllac) = 0when e — 0, there exists (n, || B||oo, 77)
sothat Ce 1pjom = n(” | Bloo) (Where K, is the constant of the lemma) and then

by Lemma 4.1, || ||Oo < 7%, Thus there exists a constant 8 depending only on » and
| B|oc SO that

— 2
wan X ek 112, < 028(n, || Blloo). (an

=M (M) IXI4

and from (9), (10) and (11) we deduce that the condition (ch(n’ | BHooﬂ?)) implies

ldFe(u)|* — 1] < ey (n, |Blloo) + 128(n, | Bllso)-
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1/2 :

Now let us choose 1 = (45) /% Then we can assume that &(n, || B||so, ) is small

enough in order to have g(n, || B|loo, n)y(n||Bllx) < %. In this case we have

|ldF)* = 1] <.

Now let us fix 0, O < 6 < 1. It follows that F is a local diffeomorphism from M

to S (O, /M?M) ) Since S (0, /M?M) ) is simply connected for n > 2, F is a

diffeomorphism. O

5. Proof of the technical lemmas

The proofs of Lemmas 3.1 and 4.1 are providing from a result stated in the following
proposition using a Nirenberg—Moser type of proof.

Proposition 5.1. Ler (M", g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isomertrically immersed into the n+ 1-dimen-
sional euclidean space (R™1, can). Let & be a nonnegative continuous function so
thaték is smooth fork > 2. Let O <r < s <250 that

1
EASQSZ"_Z < 8w+ (Ay + kADERT 1 (By + kBy&?h—s

where dw is the codifferential of a 1-form and A1, Aa, By, By are nonnegative con-
stants. Then for any n > O, there exists a constant L(n, Ay, Az, By, Ba, ||H ||so, 17)
depending only on n, A1, Ay, B, Bo, ||H ||~ and n so that if ||&||sc > 1 then

Moreover, L is bounded whenn — oo, andif B1 > 0, L — cowhen | H||loo — o
orn — 0.

This proposition will be proved at the end of the paper.

Before giving the proofs of Lemmas 3.1 and 4.1, we will show that under the
pinching condition (P¢) with €' small enough, the L~-norm of X 1s bounded by a
constant depending only on n and || H || ~c.

Lemma 5.1. If we have the pinching condition (P¢) with C < ¢y, then there exists
E(n, ||H||~) depending only on n and || H ||~ 50 that || X||eoc < E(n, || H|s0)-

Proof. TFrom the relation (3), we have

1 _ _
§A|X|2|X|2" 2 < n||H|loo X %1
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Then applying Proposition 5.1 to the function § = |X| withr = 0 and s = 1, we
obtain that if || X||. > £, then there exists a constant L(n, || ~, £) depending
only on n, || H||~ and E so that

[ Xlloo = Ln, [[H oo, £ X]l2,
and under the pinching condition (P¢) with C < ¢, we have from Lemma 2.1 that

1/2
1Xlloo < L(n, | Hlloo, E)dy'”.

Now since L is bounded when £ — o0, we can choose I = E(n, | H||~) large
enough so that

1/2
L(n, | Hllx. EYdy'* < E.
In this case, we have || X ||~ < E(n, || H||~0). O

Proof of Lemma 3.1. First we compute the Laplacian of the square of ¢>. We have

A=Al x) =2 2 1/2)(3 " xpP
p° = ||_(?L1(M)) ||+m||

= 2|XHdIX 27 4 21X PAIX P

1 A 3 1 20, 3 V>
—2 —— | X7 |d|X[7]" + | X|AIX]" ) +
A1 (M) 4 2

AlX|?.
A1(M)

Now by a direct computation one gets |d|X 12|12 < 4|X|?. Moreover by the relation
(3) we have |A| X 2| < 2n|H||~|X| 4+ n. Then applying Lemmas 1.1 and 5.1 we get

Ap? < a(n, [|H| xo)

and

2k—2 2k—2

1
S A% < aln, 1 H )™
Now, we apply Proposition 5.1 with r = O and s = 2. Then if ||¢||l~ > n, there

exists a constant L (n, || H ||~ ) depending only on n and || /||~ so that

l@lle = Liigll2-

From Lemma 2.5, if C < ¢, and (P¢) is true, we have ||¢lls < D(n)|o|l25tC/4,
Therefore
lplloe < (LDY*C.

Consequently, if we choose C = K;, = inf ( ), then we obtain [|¢]lo <

1
LD43CYL n'
(LD) o
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Proof of Lemma 4.1. First we will prove that for any C < ¢,, if (P¢) is true, then

1
5<Aw2>w2’<—2 < 8w+ (a1 (n, | Blloo) + kea(n. | Blloo)) 272 (12)

where dw 1s the codifferential of a 1-form w.
First observe that the gradient VM| X |? of | X|? satisfies VM |X|? = 2X7. Then
by the Bochner formula we get

1 1 1
—A|XT| 7 AIXP dIXP) = 21Vd X P — 2 Rie(VY X%, v X
1 1
< 2 [dAIX P, dIXP) — 5 Rie(VY X%, v IX %)
and by the Gauss formula we obtain

1 1 1 1
5A|XT| Z(dA|X| d|X|2)—ZnH(BVM|X|2,VM|X|2>—|—Z|BVM|X|2|2

= —([dAIX)*. d|X|*) = nH{BX", X"} + |BX"*.

N

By Lemma 5.1 we know that || X[« < E(n, || B||s) (the dependance in || H || 5 can

be replaced by || B|lsc). Then it follows that
1 _ _
<Aw At o3 4<dA|X| AIXP) 2 4+ & (n, || Blloo) ™2, (13)

Now, let us compute the term {dA|X|?, d|X|*)**~%. We have
[dAIX|?, d|X|*) 22
= do + (A|XH)** 72 — 2k — ) AIX)P (d|X |, difr) r?h 3
= 8o+ (AIX)?9 %72 — 22k — ) AIXP(XT, VM y )y 22
where @ = —A|X|*¢*=24|X|%. Now,

alXTP _ alX]? —ei (X.v)2 _ e X) — By (X ¢j) (X, 1)
21X 2IXT| - | X7

e; () =

Then
[dAIX1?, dIX 1PV 272 = 8o + (AIXIP)P 22 — 202k — 2)AIX P X T |y 2

xT x4

+ 22k — 2)A|X|2<B (X, v) 3

X7
< Sw + (A X[D22 72 4 202k — 2)|A| X |* |y 2
+2(2k — 2)|AIX | | B] | X |22
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Now by relation (3) and Lemma 5.1 we have
(dAIX)2, X)) 22 < 8w+ (o] (n, | Blloo) + ko (n, | Blloo)) 2.

Inserting this in (13), we obtain the desired inequality (12).
Now applying again Proposition 5.1, we get that there exists L(n, || B|loo, 17) SO
that if ||¢r || > n then

[V lloc < LI[¥]l2.
From Lemma 2.2 we deduce that if the pinching condition (P¢) holds then |||z <
A(n)/2CV/2, Then taking C = K,, = inf (ﬁ cn), then || ¢ le < 7. O

Proof of Lemma 3.2. The idea of the proof consists in foliating the region
B(O, R+ n)\B(O, R — n) with hypersurfaces of large mean curvature and to show
that one of these hypersurfaces is tangent to ¢ (M ). This will imply that ¢ (M) has a
large mean curvature at the contact point.

Consider S"~! € R* and R*"*! = R" x Re. Leta, L > [ > 0 and

Priq: 87 xSt — R
(£,0) —— L& —IcosO& +1sinfe+ ae.

Then &y ; , 1s a family of embeddings from "1 x s! in R**!. If we orient the
family of hypersurfaces ®; ; ,(S*~! x S!) by the unit outward normal vector field,
a straightforward computation shows that the mean curvature H (¢) depends only on
& and we have

H(Q):l(l_(n—l)cosé)zl(l_n—l)' (14)
n \ ! L —1lcosb n\l L-—1I

Now, let us consider the hypotheses of the lemma and for tp = 2arcsin (%) <
t < Z,put L = Rsint, I = 2y and a = Rcost. Then L > [ and we can
consider for tg < ¢ < Z the family Mg . ; of hypersurfaces defined by Mg, =
CI)R sint,2n,Rcost(Sn_1 X Sl)~

From the relation (14), the mean curvature Hg ,, ; of Mg ; , satisfies

1 n—1 . 1 /1 n—1

2n  Rsint—2n/) ~ n\2n Rsinty—2n

1 n—1 171 n—1Y 1

2n  Rsin(t/2)—2n) n\2p &-—2n) 4ngy
where we have used in this last equality the fact that p = 4(2n — 1)n.

Since there exists a point p € M so that (X (p), e} > 0, wecan find ¢ € [#g, 7 /2]

and a point yy € M which is a contact point with Mg , ;. Therefore [H (yg)| > 4,1—”.

Hpyi =

I | Z|

=
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MRz NF MR F
\ " xo/
=] ! ’\ Mpg.pio N F

MR NF '%\v

| Oy
AN

F is the vector space spanned by e and &.

\
)

Proof of Proposition 5.1. Integrating by parts we have

1ok, 1 2 ge2—2\ 5 k=1 k2
fMEAgg dv_E[M(dé,dé >dv_2( kz)fMldéldv

= (Al‘l—kAz)f gzk_rdv+(81+kB2)f ng—SdU'
M M

Now, given a smooth function f and applying the Sobolev inequality (5) to f2, we
get

. 1—(1/n)
(f fﬁdv) <K [ (@UF11df1+1HIF) de
M M

12 172
< 2K (n) (f fzdv) (f Idflzdv) +K<n>||H||oo[ 2 dv
M M M
1/2 12 172
_ K(n) ([ fzdv> (2(f Idflzdv) 1 (f fzdv) )
M M M
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where in the second inequality, we have used the Holder inequality. Using it again,
by assuming that V(M) = 1, we have

(o) "= (f )™

And finally, we obtain
AN 20 < K(n)C2lldf 12 + [ H [[ooll £ 12)-

For k > 2, &% is smooth and we apply the above inequality to f = &*. Then we get

1/2 172
M%%SKM) (/wﬁ|m9 +wmm(fs%M) }

k2 1/2 -
< K(n)|2 (m) ((Al + kAz) [MS dv

172 1/2
+«&+k&>[s%ﬂdﬂ -+wmm([s”d0 }
M M

k2 1/2
< K(n) {2 (—) (A1 + kADIIENZT

2(k—1)

+ (B + kB)EN5S ”Wam2+WHMﬂmmmmk4

o 172 1/2
< K(n) 2(—k ) (A1+kA2+ B“Lsz)
2(k — 1) €115 1€ 115

+wmmhﬂwmmkz

k2 1/2 A1/2 k1/2A1/2 B1/2 kl/zBl/Z
51{(”){2() il s W 2

2k — 1) TGS € 1%
1 ||H||oo:|||§||00||§“2k 2

If we assume that ||§ ||~ > 1, the last inequality becomes

172 1/2 172 41/2 1/2 172 1/2
ik <K |2{ B ) (A HRPAT | B4 KB
= 2(k — 1) 72 72

+ ||H||ooi|||g||oo||g”2k 2
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k2 1/2
— |:(K1 + k2K7) (k — 1) :| ||§||oo||§||2k 2

Now letg = .= >1andf0rz>()letk—q +1 > 2. Then

1

1
q +1 ==
=)+ k) I £ g

1§1lagi+14g) < ((Kl +(g' + 1)1/2K2) (
.
< (Rq')71 g I,

where K = 2K + 232K, + K’. We see that K has a finite limit when n — oo and
if By > 0, K — oo when ||H||~ — o0 or n — 0. Moreover the Holder inequality
gives

1€ 124041 < & 1l2git144)

which implies
1

11
% +1 T+1
I€]l5,001 < (Kg')a+! = 1€l 11,

Now, by iterating from O to i, we get

[E[FYERS
< (T (-2 +1)) Teis g ||§||£o saslte kil))lléllzng’i ; /-7)
=< K(l_HLO( kH)) Zk quH ”s”(l_ni_o(l kil))”%.”znk 0( k+1).

k 1 1
Lleto = Zizi() m andﬁ = 1_['120:0 (1 = m) = nizio (W) Then

1—
1€l < R\ B 121577 11€112,

and finally
1§ loo = LI [I2

where L = K %q“/ﬁ is a constant depending only onn, A1, Aa, B, By, || H ||~ and
1. From classical methods we show that 8 € [e™", e "/?]. In particular, 0 < g < 1
and we deduce that L is bounded when 5 — oc and L — o¢ when || H ||~ — 00 Or
n — 0 with By > 0. O

Remark. In[12]and [13] Shihohama and Xu have proved thatif (M", g) is acompact
n-dimensional Riemannian manifold without boundary isometrically immersed in
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R and if [, (IBI* — n|H|*) < D, where D, is a constant depending on #, then
all Betti numbers are zero. Forn = 2, Dy = 4m, and it follows that if

f |B|? dv — 47 < 3 (M)YV (M)
M

then we deduce from the Reilly inequality A((M)V (M) < 2 fM H? dv that
f1s(IBI* —2|H|*)dv < 4m and by the result of Shihohama and Xu M is diffeo-
morphic to 2.
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