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The barycenter method on singular spaces

Peter A. Storm*

Abstract. Compact convex cores with totally geodesic boundary are proven to uniquely mini-
mize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjec-
ture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are
proven to uniquely minimize volume over all compact hyperbolic cone-manifolds in the same
homotopy class with cone angles < 2. Closed hyperbolic manifolds are proven to minimize
volume over all compact Alexandrov spaces with curvature bounded below by —1 in the same
homotopy class. A version of the Besson—Courtois—Gallot theorem is proven for n-manifolds
with boundary. The proofs extend the techniques of Besson—Courtois—Gallot.

1. Introduction

This paper extends the barycenter map machinery of Besson—Courtois—Gallot [BCG1]
to a class of singular metric spaces called convex Riemannian amalgams (defined in
Section 2.8). This class of singular spaces includes cone-manifolds and the metric
doubling of hyperbolic convex cores across their boundary. These singular space
techniques are used to solve a conjecture in Kleinian groups due to Bonahon. Specif-
ically, we prove that compact convex cores with totally geodesic boundary uniquely
miminize volume over all hyperbolic 3-manifolds in the same homotopy class (see
Theorem 8.1).

The main tool of this paper is the following extension of Besson—Courtois—Gallot
techniques to convex Riemannian amalgams.

Theorem 4.1. For n > 3, let Z be a compact n-dimensional convex Riemannian
amalgam. Let Myy, be a closed hyperbolic n-manifold. Let h(z) denote the vol-
ume growth entropy of the universal cover of Z. If f: Z — Mnyp is a homotopy
equivalence then

h(Z)"Vol(Z) > (n — 1)" Vol(Mhyp)

with equality if and only if f is homotopic to a homothetic homeomorphism.

By restricting attention to cone-manifolds, we obtain

*This research was partially supported an NSF Postdoctoral Fellowship.
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Theorem 8.6. Forn > 3, let Z be compact n-dimensional cone-manifold built with
simplices of constant curvature K > —1. Assume all its cone angles are < 2m. Let
Mhyp be a closed hyperbolic n-manifold. If f: Z — My is a homotopy equivalence
then

Vol(Z) = Vol(Mhyp)

with equality if and only if f is homotopic to an isometry.

If Z is allowed to be any Alexandrov space with curvature bounded below by —1
(see Section 2.13), we then obtain

Theorem 8.7. Let Z be a compact n-dimensional (n > 3) Alexandrov space with
curvature bounded below by —1. Let Myy, be a closed hyperbolic n-manifold. If
[ Z — My is a homotopy equivalence then

Vol(Z) > Vol(Myyp).

As mentioned above, the paper’s main theorems solve a conjecture in Kleinian
groups. To state things precisely, let H(/V) denote the set of marked oriented isom-
etry classes of hyperbolic 3-manifolds M equipped with a homotopy equivalence
N — M. Define a volume function

Vol: M € H(N) — Vol(Cay).

It 1s a consequence of Thurston’s Geometrization Theorem and Mostow Rigidity
that N is acylindrical if and only if there exists a convex cocompact M, € H(N) such
that 9Cyy, is totally geodesic [Th2, p. 14]. Moreover, M, is unique up to isometry.

Let Mg denote M, with the opposite orientation.
Conjecture. Mg and M, are the only global minima of Vol over H(N).

Initial progress on this conjecture was made by Bonahon [Bon]. Using different
methods, Bonahon proved that M, is a strict local minimum of Vol (in the quasi-
isometric topology on H(N)). In [S], the author proved that M, and M,"" are global
minima of Vol. Here this conjecture 1s completely solved by

Theorem 8.1. Let N be a compact acylindrical 3-manifold. Let M, € H(N) be a
convex cocompact hyperbolic 3-manifold such that the boundary of the convex core
0Cy, C Mg is totally geodesic. Then for all M € H(N),

Vol(Cyr) > Vol(Cag, ),

with equality if and only if M and M, are isometric.

The techniques used to prove Theorem 8.1 immediately generalize to a version
of the Besson—Courtois—Gallot theorem for manifolds with boundary. (Perelman’s
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unpublished Doubling theorem [P, Theorem 5.2] is used in the proof of Theorem 8.9.
See Theorem 8.8.)

Theorem 8.9. Let Z be a compact convex Riemannian n-manifold with boundary
(n > 3). Assume the sectional curvature of mt(Z) is bounded below by —1. Let
Yosod be a compact convex hyperbolic n-manifold with totally geodesic boundary.
Let [:(Z,07) — (Ygeod, 3Ygeod) be a homotopy equivalence of pairs. Then

VOI(Z) = VOI(Ygeod),
with equality if and only if f is homotopic to an isometry.

This paper’s method of proof may be of independent interest. Following [BCG1],
these results are proven by defining a natural map from a nice path metric space Z
to a hyperbolic manifold Myy,. Instead of obtaining this map as a uniform limit of
approximating maps, the natural map is here obtained in a single step. The idea is to
emulate the “short” proof of the Besson—Courtois—Gallot theorem found in [BCG2],
where it is additionally assumed that Z is nonpositively curved. Here the assumption
of nonpositive curvature is removed, but the gist of the “short” proof is retained. As a
cost for this generalization, the arguments here require that Z and Myyp, be homotopy
equivalent. In [BCG1], only a map Z — Mhyyp of nonzero degree is required.

The results in this paper represent a large portion of the author’s Ph.D. thesis,
completed at the University of Michigan. The author thanks his advisor, Richard
Canary, for his essential assistance at every stage of this project. The author also
enjoyed several helpful conversations with Yair Minsky. Thanks to Ralf Spatzier for
introducing the author to the work of Besson—Courtois—Gallot.

1.1. Sketch of the proof of the main theorem. et Z be a compact n-dimensional
convex Riemannian amalgam with universal cover X (e.g. a cone-manifold or the
double of a convex core), Mpyp a closed hyperbolic n-manifold, and f: Z — Mpyp
a homotopy equivalence. Up to rescaling the metric of Z, way may assume that
h(X) = (n — 1) = h(H"). The first goal is to find a volume decreasing map
F: 7Z — Mhyy, homotopic to f. The second goal is to show that if the volume
decreasing map F' is in fact volume preserving, then it is an isometry.

Step 1. Defining “visual measures” on o X (Section 3). Following [BM], we define
a generalization of Patterson—Sullivan measure {1y }iex supported on a function
theoretic compactification X of X by Busemann functions. As Z and Myy, are
homotopy equivalent, X must be Gromov hyperbolic with Gromov boundary 9 X.
We define an Isom(X)-equivariant continuous surjection 7 : X — 9X, and use
it to push forward the measures {1, } onto 0 X. The resulting family of probability
measures {4} are the “visual measures” used to define the natural map F.

Step 2. Defining F (Section 4). The homotopy equivalence f lifts to a quasi-isometry
between the universal covers f: X — H", which in turn induces a homeomorphism
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of Gromov boundaries f: X — 0H". The measure ,u, is pushed forward via the
boundary homeomorphism to obtain a measure f,m., on dH". Finally, F(x) € H"
1s defined to be the barycenter of the measure f,m, 4. In sum,

F: X — H",

x > barycenter of measure (f o7 ) fix.

Itisrelatively easy to show that £ descends toamap F': Z — Mhyyp, and is homotopic
to f: Z — Mnyp. In particular, F': Z — My, 18 surjective.

Step 3. F is locally Lipschitz (Section 5). In order to use calculus to study the map F,
we must prove it i locally Lipschitz. (For example, a locally Lipschitz map which is
infinitesimally volume decreasing almost everywhere must be volume decreasing.)
This is done by factoring F as a composition ' = P o ¢, such that £ and ¢ can
be analyzed directly. ®: X — Li(,%’X ) € L?(#¢X) equivariantly maps X into
the strictly positive functions of the Hilbert space L>(#X). P: L%r(,}fX ) — H" is
basically the barycenter map, thinking of L%r (F€X) as a space of measures. We show
® is locally Lipschitz by direct estimates. Applying the implicit function theorem

shows P is 1. Together this shows F = P o & is locally Lipschitz.

Step 4. F is infinitesimally volume decreasing a.e. (Section 6). With only minor
modifications, the arguments of [BCG2] can be applied to show | Jac F'| < 1 almost
everywhere. This accomplishes the first goal of showing F is volume decreasing.
The arguments of [BCG2] also show that if | Jac F(x)| = 1 for some x, then d F 1s
an infinitesimal isometry. Thus if /' is volume preserving, it must be an infinitesimal
1sometry almost everywhere.

Step 5. F is volume preserving implies it is an isometry (Section 7). Applying the
arguments from [BCGI, p .790-793], we show a volume preserving map F is a local
isometry on an open dense set. We show F is injective by using some local properties
of convex Riemannian amalgams. Thus F is a homeomorphism. Again using the
convex Riemannian structure on Z, we prove I i1s an isometry. This accomplishes
the second goal, and completes the proof of Theorem 4.1.

1.2. Sketch of the applications. With the above machinery established, the theo-
rems concerning cone-manifolds (Section 8.2), Alexandrov spaces (Section 8.3), and
manifolds with boundary (Section 8.4) are easy to prove. To apply the machinery to
hyperbolic convex cores requires more work (Section 8.1).

Recall the hypotheses of Theorem 8.1. Let M and M, be homotopy equivalent
acylindrical convex cocompact hyperbolic 3-manifolds. Assume the convex core
Cym, C M, hastotally geodesic boundary. The goal is to prove Vol(Cyr) > Vol(Cyy, ),
with equality if and only if M and M, are isomeltric. To begin, metrically double
the convex cores across their boundaries to obtain the convex Riemannian amalgams
DCpy and DCyy,. Notice that DCyy, 1s in fact a closed hyperbolic 3-manifold. A
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short argument proves there exists a 71 -equivariant quasi-isometric homeomorphism

I ISZ’;[ — DCy,. Applying the above machinery to f yields Theorem 8.1.

In the case where M is geometrically finite with at least one rank one cusp,
gcometric (but not hyperbolic) Dehn surgery arguments are used to reduce to the case
of closed (non-hyperbolic) manifolds, where Theorem 4.1 can be applied. (These
geometric Dehn surgery techniques are based on [Bes], [L].)

2. Preliminaries

The following 1s a review of the necessary definitions. Throughout this paper, metric
spaces are assumed to be complete unless otherwise stated.

2.1. é-hyperbolicity. This paper will follow the definitions and notation of [GH].
For convenience, we recall a few basic notions. Let (X, d) be a -hyperbolic space
with basepoint 0 € X. Then for x, y € X, the Gromov product of x and y 1s

1
(x]y) = 5 {d(x,0) +d(y,0) —d(x, y)}.
A defining property of 3-hyperbolic spaces 1s that for any triple x, v, z € X,

(x|y) = min{(x [ z), (z [ y)} — 9. (D

The geometric content of the Gromov product may be difficult to grasp initially. The
idea 1s that geodesic triangles in a §-hyperbolic space are very close to being tripods.
For a tripod the Gromov product has the simple interpretation shown in Figure 1: it
is the length of the tripod’s “o” leg. Since long geodesic triangles in a §-hyperbolic

‘//({DJ)/,//’

Figure 1

space are very close to tripods, on a sufficiently large scale the Gromov product is
the length of the “o” leg of the geodesic triangle formed by o, x, and y.
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The Gromov boundary at infinity of X will be denoted by ¢X. The Gromov
product can be extended to all of X U 90X as follows. Fora, b € X U dX, define

(a|b) := supliminf(x; | y;)
L,j—=>00

where the supremum is taken over all sequences {x;}, {y;} C X such that x; — a
and y; — b. For a, b € X this reduces to the previous definition. Using inequality
(1), one can show that for any given sequences x; — a, y; — b,

(a|b) — 28 <liminf(x; | y;) < (a|b)

(see [GH, p. 122]). Therefore a sequence {z;} € X U dX converges toa € 0X if and
only if (z; | a) — o0.

2.2. Barycenter. Consider H" with basepoint 0. For each 6 e 9" let B be the
unique Busemann function of & such that By (o) = 0. Namely, if y is the geodesic
ray based at o asymptotic to ¢, then By (p) = limy_~o[d(p, ¥ (1)) — f]. Let 2 be a
Radon measure on the compact space dH". Define the average

Byfiph = f B0 dr0).

Proposition 2.1 (|[BCG1, Appendix A]). If & has no atoms, then B, is proper and has
a unique critical point in " corresponding to the unique global minimum. Moreover,
the Hessian of B, is a positive definite bilinear form. Namely, for all v € T,H",

(Hess By ) (v, v) == (V,VB;, v) > 0.
The unique critical point of B; is the barvcenter of A, denoted bar A. Since the

barycenter is the unique critical point of By, it is defined implicitly as the unique
point p such that

/ (VB v)pdi(6) =0
oM

forall v € T,H". Notice that the barycenter map is scale invariant, i.e. the barycenter
of the measure A equals the barycenter of the measure ci for any ¢ > 0.

2.3. The brain in a jar lemma. At a crucial stage in the proof of Proposition 4.3,
the following linear algebra lemma is needed.

Lemma 2.2. Let H be an n x n positive definite symmetric matrix with trace
tr(H) =1. Ifn = 3 then

det(H) noo
(det(id — F)P [(n - 1)2] '

Moreover, equality holds if and only if H = %Id.
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This lemma is false for n = 2. It is the only part of this paper (and Besson—
Courtois—Gallot theory in general) which fails in 2 dimensions.

2.4. Generalized differentiable and Riemannian structures (JOS]). Let X be a
topological space, 2 € X, and n € N. A family {(Uy, ¢)}gpecq 15 called a cloatlas
on 2 € X if the following hold:

(1) For each ¢ € @, Uy is an open subset of X.

(2) Each ¢ € & is a homeomorphism from Uy into an open subset of R".
(3) {Ug}pea 1s a covering of €2.

(4) If two maps ¢, ¢ € ® satisty Uy N Uy # 4, then

yrop™h Uy N Uy) > Yr(Us N Uy)

isClongp(UyN U, NQ).
A family {g4}4eq 18 called a CO-Riemannian metric associated with a C!-atlas
{(Up, P)}pes on Q € X if the following hold:
(1) Foreach ¢ € P, g4 is a map from Uy to the set of positive symmetric matrices.
(2) Foreach¢ € @, gy o ¢~ is continuous on P(Uyp N C2).
(3) Forany x e Uy N Uy, ¢, € @, we have

gy () = [d( o N gp(x) [d(h o™ (x))].

These two structures induce a distance metric D, on €2 which we now describe.
The length of a piecewise el path y: (0,1) — € is defined in the usual way
by pulling back the metric tensor via y. A path n: [0, 1] — X is admissible if
n~ (X \ Q) is a finite set of points {t1, ..., #}, and 5 is piecewise C! on (0, 1) \
{t1,...,4}. Forx, y € Q, define

Dy (x, y) = inf{ length(y) | v joins x to y and is admissible}.

If x and y cannot be joined by an admissible path, set D, (x, y) = 00. In general, the
topology of (2, D;) can be quite different from the subspace topology of 2 € X.

2.5. Almost everywhere Riemannian spaces. Let (X, d) be a geodesic metric
space with Hausdorff dimension n < 00. X 1s an almost everywhere Riemannian
metric space if there exists 2 € X, a dense subset of full n-dimensional Hausdorff
measure, such that:

(1) © admits a n-dimensional C'-atlas {(Ug, $)}sco.

(2) © admits a C°-Riemannian metric {g4}seo-
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(3) Each homeomorphism ¢ € @ is in fact locally bilipschitz.
(4) The identity map (€2, Dg) — (€2, d) is an isomelry (see Section 2.4).

(5) The Riemannian metric induces a volume element dvolg on 2. The measure
on X obtained by integrating this element equals n-dimensional Hausdor{f mea-
sure on X (X \ €2 has zero measure).

Notice X is not assumed to be a topological manifold, and €2 € X is not assumed
to be open. Conditions (1)-(5) are not as restrictive as they initially appear. For
example, Otsu and Shioya proved that a finite dimensional Alexandrov space with
curvature bounded below by k € R is almost everywhere Riemannian [OS] (see
Section 2.13). Condition (3) allows Rademacher’s theorem to be applied to almost
everywhere Riemannian spaces. This means locally Lipschitz functions on an almost
everywhere Riemannian metric space are differentiable almost everywhere. Condi-
tion (4) says that the C°-Riemannian metric on Q reproduces the metric d, in the
sense that the metric completion of (€2, D) is isometric to (X, d).

2.6. Cone-manifolds ([CHK, p. 53]). An n-dimensional cone-manifold M is a
manifold which can be triangulated so that the link of each simplex is piecewise
linear homeomorphic to a standard sphere and M is equipped with a path metric
such that the restriction of the metric to each simplex is isometric to a geodesic
simplex of constant curvature K. The singular locus 2 consists of the points with no
neighborhood isometric to a ball in a Riemannian manifold.

It follows that

e 2 is a union of totally geodesic closed simplices of dimension n — 2.

e Ateach point of ¥ in an open (n — 2)-simplex, there is a cone angle which is
the sum of dihedral angles of n-simplices containing the point.

In particular, the singular locus of a 3-dimensional cone-manifold forms a graph in
the manifold. A cone-manifoldis an almost everywhere Riemannian metric space (see
Lemma 2.3). Though a definition will not be given here, a cubed-manifold is another
example of a cone-manifold (see [AMR]). More abstractly, any manifold admitting
a locally finite decomposition into convex geodesic polyhedra is a cone-manifold.
This can be seen by adding superfluous faces to the polyhedral decomposition.

The manifold structure of a cone-manifold will not be used in this paper. Theo-
rem 8.6 18 equally valid for more general simplicial metric spaces not satisfying the
above link condition.

2.7. Convex Riemannian manifolds with boundary. A geodesic metric space C
is an n-dimensional convex Riemannian (resp. hyperbolic) manifold with boundary
if

(1) C is topologically an »-manifold with boundary,
(2) thereis an incomplete Riemannian (resp. hyperbolic) metric on the interior of C,
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(3) the metric on C is the metric completion of the Riemannian (resp. hyperbolic)
metric on the interior,

(4) for any pair of points in the interior of C, the shortest path between them lies in
the interior of C, and

(5) for any compact K € C, the curvature of the Riemannian manifold K N int(C)
1s bounded from above and below by finite constants.

(Notice no differentiability assumptions have been made on the boundary.)

Property (5) ensures C has “locally bounded geometry”. The lower curvature
bound on compact sets guarantees that C is locally an Alexandrov space with curvature
bounded below. This implies the boundary dC has Hausdorff dimension n — 1
[OS]. n [OS], they prove the singular set of an n-dimensional Alexandrov space
with curvature bounded below has Hausdorff dimension < n — 1. In this case, the
boundary is the singular set.) The local upper curvature bound gives a lower bound on
the volume of small metric balls in C. This useful property will be used in Section 7.

Given a convex Riemannian manifold with boundary C, we can metrically double
1t across its boundary to obtain a metric space DC. Topologically DC 1s the closed
manifold obtained by doubling C across its boundary. The metric on DC is the
path metric induced by gluing the two copies of C (one with opposite orientation)
along 9C. The convexity of C (property (4)) insures that the path metric obtained
after doubling does not alter the original metric on C. Notice that DC is an almost
everywhere Riemannian metric space (see Lemima 2.3).

2.8. Convex Riemannian amalgams. A geodesic metric space Z is an n-dimen-
sional convex Riemannian amalgam if Z contains an isometrically embedded locally
finite countable collection {C;} € Z of n-dimensional convex Riemannian manifolds
with boundary such that

WU, ¢ =2
(2) int(C;) Nint(Cy) =W for j # k.
(Notice Z 1s not assumed to be a manifold.) A cone-manifold is a convex Riemannian

amalgam (see Section 2.6). Another convex Riemannian amalgam is the metric
doubling DC of a convex Riemannian manifold with boundary C (see Section 2.7).

Lemma 2.3. A convex Riemannian amalgam is an almost everywhere Riemannian
melric space.

Proof. Define 2 := Uj int(C;). We must check conditions (1)-(5) of Section 2.5.
(1)—(3) are trivial. For (4) use the following consequence of convexity: any x, y € Z
can be joined by a path y such that

e the length of y is arbitrarily close to d(x, y), and

e v NJC; 18 at most two points for any C; in the decomposition.
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For (5) use that | J § dC; has measure zero. O

Convex Riemannian amalgams seem (o be the most natural class of metric spaces
for which the arguments of Theorem 7.1 are valid.

2.9. Convex cores. Let M be a hyperbolic manifold. Let S € M be the union of all
closed geodesics in M. The convex core, Cyy, 18 the smallest closed convex subset
of M which contains S, in other words it 1s the closed convex hull of S in M. The
convex core may also be defined as the smallest closed convex subset of M such
that the inclusion map is a homotopy equivalence. M is geometrically finite if an
g-neighborhood of Cjyy has finite volume. Otherwise, M is geometrically infinite.

For finite volume hyperbolic manifolds, the convex core is the entire manifold.
Thus this is a useful object only in the infinite volume case, where Cyy 1s the smallest
submanifold which carries all the geometry of M.

2.10. Pared 3-manifolds [M, Def.4.8]. Let N be a compact orientable irreducible
3-manifold with nonempty boundary. Assume N is not a 3-ball. Let P € 9N,
(N, P)is a pared 3-manifold if the following three conditions hold.

(1) Every component of P is an incompressible torus or a compact annulus.

(2) Every noncyclic abelian subgroup of 71 (/N) is conjugate into the fundamental
group of a component of P.

(3) Every my-injective cylinder C: (S' x I, S1 x 3I) — (N, P) is relatively ho-
motopic to a map ¥ such that (St x I) C P.

By Thurston’s Geometrization Theorem [M], (N, P) is a pared 3-manifold if and
only if there exists a geometrically finite hyperbolic structure on the interior of N
such that Cpy = N\ P.

2.11. Pared acylindrical ([Th3, p. 244]). A pared 3-manifold (N, P) is pared
acylindrical if 9N \ P 1s incompressible and if every mp-injective cylinder

C:(S'x1I,8S"xal)— (N,aN\ P)
1s homotopic rel boundary to dN.

2.12, Deformation theory. Let i > 0 be the Margulis constant for hyperbolic 3-
manifolds. Then for a hyperbolic 3-manifold M, the p-thin part of M is a disjoint
union of bounded Margulis tubes and unbounded cusps [BP]. After possibly making .
smaller, we may also assume that the intersection of dCyy and the p-thin part of M
is totally geodesic [M, Lemma 6.9]. Define M° to be M minus the unbounded
components of its p-thin part. In other words, M? is the manifold with boundary
obtained by removing the cusps from M.
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Let (N, P)beacompactpared 3-manifold. Define the deformationspace H(N, P)
as follows. For a hyperbolic 3-manifold M and a map m: N — M°, (M, m) €
H(N, P) if there exists a union Q s of components of dM? such that m: (N, P) —
(M, Qur) is a relative homotopy equivalence. (M1, m1) = (M, my) in H(N, P) if
there exists an orientation preserving isometry I : M1 — Mj such that I omq ~ mo.
(H(N, P) admits several interesting topologies [Th3]. They will not be needed here.)
(M, m) has no additional parabolics if Oy = dM?. Using the product structure on
the complement of Cyy; [EM] and the thick-thin decomposition, there exists a relative
homotopy equivalence p: (M, Qy) — (Capr N MP, Chr N Qpr).

Theorem 2.4 (Johannson). Let (N, P) be a compact pared acylindrical 3-manifold.
If (M, m) € H(N, P) is geometrically finite then p o m is homotopic to a homeomor-
phism (N, P) — (Cyy "M°, Cpr N Qap).

Proof. Since N is not homotopy equivalent to a surface, Cjys is a 3-manifold. Since
M is geometrically finite, (Cyr N M?, Cyr N Qpr) is a compact pared 3-manifold
[M, Corollary 6.10]. So p o m is a relative homotopy equivalence between compact
pared 3-manifolds, and the domain is pared acylindrical. By the work of Johannson
[J, Lemma X.23, p. 235], p o m 1s homotopic (rel the paring) to a homeomorphism
(N, Py = (Cyy "M%, Cpy Y Qpr). O

We are interested in pared acylindrical 3-manifolds because of the following corol-
lary of Thurston’s Geometrization Theorem and Mostow rigidity.

Corollary 2.5 ([Th2, p. 14]). Let (N, P) be a pared acylindrical 3-manifold. Then
there exist exactly two spaces (M, m), (M, m°PP) € H(N, P) such that M and
M°P gre geometrically finite, M and M°PP have no additional parabolics, and the
convex cores Cyy and Cppopp have totally geodesic boundary. Moreover, there exists
an orientation reversing isometry I . M — MO°PP such that m°P? ~ I o m,

2.13. Alexandrov space with curvature bounded below by —1. There are many
equivalent definitions of Alexandrov spaces. Here we give the most common defini-
tion. (See [BBI] for more information. )

Let Y be a path metric space. Y is an Alexandrov space with curvature bounded
below by —1 if about each point in Y there exists a neighborhood U satisfying the
following comparison condition. Let x, y,z € U be distinct points, let w lie on
the interior of a geodesic path xy connecting x to y. Let X, ¥, %, @ € H? be such
that d(x, y) = d(x,y),d(y,z) =d(y,2),dx,z) =d(x,2),dx, w) = d(x, w),
d(w,y) = d(w, y). We then require that d(z, w) > d(Z, w).

This comparison condition guarantees that geodesic triangles in Y are at least as
fat as hyperbolic triangles. The dimension of an Alexandrov space with curvature
bounded below is defined to be its Hausdorff dimension. For finite dimensional



144 P. A. Storm CMH

e
i

[ B

S

Figure 2

Alexandrov spaces with curvature bounded below, the Hausdorff and topological
dimensions agree [BGP, p. 21].
In Section 8.3, we will use

Theorem 2.6 (|OS]). If Y is a finite dimensional Alexandrov space with curvature
bounded below by —1, then Y is an almost everywhere Riemannian metric space.

Proof. Following [OS], let S be the singular set of Y. Define 2 := Y \ 5. Qisa
countable intersection of dense open sets with full measure. It is therefore dense and
has full measure. Conditions (1)—(5) of Section 2.5 also follow from results in [OS].
Specifically, conditions (1) and (2) follow from [Theorem B, p .630], condition (3)
follows from [LLemma 5.1.3, p. 651], condition (4) follows from [Theorem B, p. 630]
and [Theorem 6.4, p. 654], and condition (5) follows from [Section 7.1]. a

The main property of these Alexandrov spaces we will use is an upper bound on
their volume growth entropy, which we now define.

2.14. Volume growth entropy. Let X be a geodesic metric space of Hausdorff

dimension #, X be the universal cover 0£ X, and #" be n-dimensional Hausdorff
measure. The volume growth entropy of X 1s the number

h(X) := lim sup % log #¢" (By(x, R)),
R—x0
where x 1s any point in X, and the ball B (x, R)isin X. N
The volume growth entropy is independent of the choice of x € X,
The following theorem of Burago, Gromov, and Perelman will be important for
this paper.

Theorem 2.7 (IBGP, p. 401). If X is an Alexandrov space with curvature bounded
below by —1 and Hausdor[f dimension n, then the volume growth entropy of X is less
than or equal to the volume growth entropy of H". In other words

WX) < h(T) =n — 1.
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3. Horoboundary and densities

In order to define a density in the necessary generality, a second definition of the
boundary at infinity must be made. This is a more general definition than of the
Gromov boundary at infinity; it makes sense for any proper metric space. In the case
of negatively curved Riemannian manifolds, it reduces to the Gromov boundary. (For
more information, see [BGS, p. 21], [BM], and [F, Section 2].)

Let Y be a proper metric space. For p € Y, define d,,(y) := d(p, y). Denote the
space of continuous (real valued) functions on ¥ by C(Y), and endow this set with
the topology of uniform convergence on compact sets. Define an equivalence relation
on C(Y) by f ~ gif and only if f — g is a constant function. Denote the quotient
space C(Y)/ ~ by C.(Y). C.(Y) is Hausdorff. Define a map ¢t: ¥ — C,.(Y) by
t(p) :=[dy]. ¢1is a topological embedding.

Definition 3.1. Let CI(Y) denote the closure of «(Y) in C.(Y). The horoboundary
of Y is
HY ;= CI(Y)\ «(Y).

A continuous function i € C(Y) such that [h] € FY 1s a horofunction of Y.
Forn € C,(Y) define a function b,,: ¥ x ¥ — R by

by(p,q) == h(p) — hig) forany & € C(Y) such that [#] = 5.

If ¥ has a fixed basepoint o, then define b, (p) = b, (p, o).

It is a quick check to see that £, is well-defined, i.e. independent of the choice
of h. The functions b, are 1-Lipschitz. Thus applying the Arzela—Ascoli theorem
shows CI(Y) 1s compact, implying Y 1s compact. (If ¥ 1s nonpositively curved,
then horofunctions and the horoboundary are identical to Busemann functions and
the boundary at infinity [BGS, p. 22].)

Isometries of Y extend to homeomorphisms of #Y in the following simple man-
ner. Consider the Isom(Y )-action by homeomorphisms on C(Y) given by ¢.f =
fo qb‘l. This action descends to an action on Cy(Y). Since ¢.[dp] = [dy.p], the
map ¢|,yy: «(Y) — «(Y) is a homeomorphism. Since ¢ acts as a homeomorphism
on both «(Y) and C,(Y), it also acts as a homeomorphism on Y. Thus we have
defined an Isom(Y )-action by homeomorphisms on #Y.

Definition 3.2. Let Y be proper metric space. Let G be a closed subgroup of Isom(Y).
A continuous map (under the weak-* topology on measures)

w: Y — {positive Radon measures on #Y }

is an £-dimensional density for G if
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(1) wp is G-equivariant, i.e. pe x = gufix,

(2) pp < pg forall p, g, and for n € #HY,

Wp (1 — o~tlbnipa))

Example. For ", #MH" = ¢H". Let ®: S,H" — JH" be the standard radial
homeomorphism between the unit tangent sphere and the boundary at infinity. Define
Hp 1o be the push-forward of Lebesgue measure on S, Y by ®. This is known as the
visual measure at p, and is an (n — 1)-dimensional density for all of [som(H"). Visual
measure is the most natural density in this case.

Our entire reason for defining the horoboundary is the following proposition.

Proposition 3.1 ([BM, Prop. 1.1]). Let X be a proper metric space of Hausdorff
dimension n with basepoint o € X. Let m be n-dimensional Hausdor{f measure.
Assume m(X) = oo and X has finite volume growth entropy h(X). Then there
exists an h(X)-dimensional density x +— py for Isom(X). This density is called
Farterson—Sullivan measure.

By normalizing we may always assume that 1, 1s a probability measure. Notice
this normalization implies that w1, , = g4, 1S also a probability measure for any
¢ € Isom(X).

Let X be a d-hyperbolic proper path metric space. Assume that 2(X) € (0, 00).
We have defined two different compactifications of X; the Gromov boundary at
infinity 0 X and the horoboundary # X. In general, those two compactifications are
not homeomorphic. However, they are both necessary for the work of this paper. To
connect the two compactifications, we now define a continuous Isom( X )-equivariant
surjection: HX — 0X.

Fix a basepointo € X. Pick § € # X and a sequence {p, } such that [d,,, ] — & n
Cy(X). Then {p,} leaves every compact set of X. So by the Arzela—Ascoli theorem
there exists a subsequence {a;} < {p,} such that the geodesic segments oq; converge
to some [v] € dX in the compact-open topology, where v is a geodesic ray based
at o.

Define w: #X — 0X by n(&§) = [y]. Before proving 7 is well defined, we
need the following lemma.

Lemma 3.2. In the above notation, the sequence {a;} converges to [y] € dX.
Proof. Tt 1s enough to show ([y]]|a;) — oc. Pick a large M > 0, and consider the

metric ball B(o, M). Find L such that for / > L, the geodesic segment oa; is 1-close
to y on B(o, M). Then the picture looks roughly like Figure 3.
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B(o, M)

[v] ai

Figure 3

As M — oo, intuitively ([y]|la;) — o0. To prove this carefully, notice that for
k>1

d(y(kM), a) < ld(a;, 0) — M1+ [d(y(kM),0) — M]+ 1.

This implies
(y(kM)|a) = M — 1/2.

So finally

(Il a) = liminf Gy (kM) |ar) —28 = M — 25 —1/2. 0
—00

Lemma 3.3. The map w: #X — 3X is well defined.

Proof. Suppose mr is not well defined. Then there exist sequences p;, g — § € HX
such that {p;}, {g; } do not converge to a common point in @ X. Thus there exists an
M = Osuchthat (p; |g;) < M for all i.

Pick a metric closed ball K muchlarger than B(o, M). p;, g; — & € #X implies
that for large : and all x € K,

d(pi,x) —d(pi,o0) = d(gi, x) —d(gi, 0). (2)

This will lead to a contradiction.
To begin, pick x € K Nog; such that d(x, 0) > M. Then

d(gi,x) —d(gi, 0) = —d(x,0). 3)
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Figure 4

Approximate the four point metric space {x, o, g;, p;} by a tree. Let the correspond-
ing four points in the tree be {¥, o, g;, p;}. We may assume this tree is at worst
(1, 28)-quasi-isometric to {x, o, gi, pi} [GH, p. 33] (see Figure 4). We thus obtain
the inequalities

d(pi, x) —d(pi,0) = d(p;, X) —d(p;,0) — 48
=d(x,0) —2(x| p;) — 48
= d(x,0) —2(qi | pi) — 43
> d(x,0) =26 —2qg; | pi) — 65 — 45

d(x, 0)
>d(x,0) —2M — 125 > 7

Together with equation (3), this contradicts equation (2). O
Lemma 3.4. 7 is continuous and surjective.

Proof. To see that 7 is surjective, pick a geodesic ray y based at 0. By compactness
there is a sequence {f;} C (0, o0) such that y () converges to a pointé € F€X. Then
by definition 7 (£) = [y ].

Let & — £ in #¢X. Pick sequences {p;'} such that for all n, lim; . p; = &".
This implies lim; 00 p;' = w(§") in dX for all n. There is an increasing sequence
i1, 12,13, ... of natural numbers such that

lim p! =&in#X, and (x(&")|pl) > n.

n—00
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This implies lim,, _, ~ pﬁl = n (&) in 0 X. By the definition of §-hyperbolicity

(7 (&) | (€M) = [min{(m (&) | p). @E") | pl )} —38] > 00 asn — oo,
Therefore w (") — 7w (&) in 9X. O

The proof of the following lemma is trivial and has been omitted.
Lemma 3.5. Forallg € Isom(X), gow = 7 o g.

Lemma 3.6. If X admits a cocompact isomelric action, then my v, has no atoms for
allp € X.

Proof. As mypy, < mmypty, it 18 sufficient to show m, 11, has no atoms. Suppose there
exists o € 0 X such that w1, () > 0. Since X admits a cocompact isometric action,
there is a constant D > 0 such that any p € X is at most a distance D from an orbit
point g, .0 for g, € Isom(X). It follows that the total mass of the measure 1), is at
most DX

We first show all the horofunctions in the fiber 7 ~! () are a bounded distance
from each other. Pick a geodesic ray in X based at o asymptotic to «. Pick a sequence
p; of points going to infinity on the geodesic ray. After passing to a subsequence we
may assume the points p; converge to some & € 7~ (o) C #X.

By definition

be(x) =lim (—=2(pi | x) +d(x, 0)) .

We know
(| x) — 28 <liminf(p; | x) < (x| x).

Because bg is well defined, the lim inf can be replaced by a limit. Thus
—2a|x) +d(x,0) <bg(x) < —2w|x)+d(x,0)+45.
So for any other ¢ € 7~ !(«) we have
|be (x) — by (x)] < 48.

Using this we obtain the inequality

T fdp, () :[ 1 dpp, :] e—h(X)bi(Pi)dMO(é-)
T Hw) ()

N [ ¢ HXbs(pidH481 7, (1
o)

= e_h(X)[bé(pz)+48] . H*Mo(a) e O
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Butlim;_, » bg(p;) = —00. So

lim e pp, () = o0.
=00

Since 7, /iy, has total mass at most e?X)_ his is a coniradiction. Therefore 1,
has no atoms. O

4. The Besson—Courtois—Gallot inequality

Theorem 4.1. Let My, be a closed hyperbolic n-manifold for n > 3. Let Z be a
compact n-dimensional almost everywhere Riemannian metric space with universal
cover X. (For a definition, see Section 2.5.) Let f: Z — Myyp be a homotopy
equivalence. Then

h(X)" Vol(Z) = (n — 1)" Vol (Mpyp).

Let f also denote the lifted map f: X — H". Recall that if Z and My, are
compact, then a homotopy equivalence f: Z — My lifts to a quasi-isometry

f: X — jl/lzy/p between the universal covers. This implies that the volume growth
entropy of X is a strictly positive and finite (see for example [Gr, Prop.5.10]). Fix
a basepoint 0 € X, and let f (o) € H" be a basepoint of H". Since f: X — H" is
a quasi-isometry, f extends to a homeomorphism between the Gromov boundaries
f:9X — oH",

We now define the natural map F: X — H", but postpone proving its regularity
properties until later sections. For x € X, let p, be the Patterson—Sullivan measure
at x. Recall we have defined a continuous map 7 : #X — dX. Push forward the
Patterson—Sullivan measure 1, on J¢ X to a probability measure ( f o 7 ), iy on 0H".
Define I': X — H" by

F(x) .= barycenter(( f o ) ptx).

F is the natural map induced by f. Fisal := m(Z) = m1(Mpyp)-equivariant
continuous map. It therefore descends to a continuous map f': Z — Myy,,.

Remark 4.2. Any additional symmetries of the map f: Z — Mhnyp also become
symmetries of /. Namely, if Z and My, possess an isometric involution, and
/1 Z — Myy, 18 equivariant with respect to the involutions, then F': Z — My,
1s similarly equivariant. This follows immediately from the definition, because both
m: X — dX and Patterson—Sullivan measure are Isom(X)-equivariant. This fact
will be used in the proofs of Theorems 8.1 and §8.9.
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F, f: X — H" are I'-equivariant maps. The straight-line homotopy between
them is also I'-equivariant. Therefore the downstairs maps I, f: Z — Myy, are
homotopic. This shows F': Z — My, 18 a homotopy equivalence. As My, 1S a
closed manifold, I must be surjective.

Proving the local regularity properties of the natural map requires some work.
These properties are summarized in

Proposition 4.3. The natural map I': Z — My, has the following properties:
(1) ftis locally Lipschitz and differentiable almost everywhere.
(2) |Jac F(p)| < (%)” almost everywhere.

(3) If for some p, | Jac F(p)| = (];(_Xl))n then the differential dF, is a homothery
of ratio (“X)",

This proposition will be proven in later sections. Specifically, (1) will be proven
in Section 5, (2) and (3) will be proven in Section 6. Let us now temporarily assume
it, and complete the proof of Theorem 4.1. (In this section, we use only (1) and (2).
(3) will not be used until Section 7.)

By assumption, Z is an almost everywhere Riemannian metric space. So by
definition Z has a subset €2 of full measure admitting a clatas {Up, p}peca and a
eC-Riemannian metric { g4 }pea. This Riemannian metric induces a volume element
wz which agrees with n-dimensional Hausdorff measure on Z. Let wpy,, be the
volume element on My,

Lemma 4.4.

VO](Mhyp) = Vol(F (Z)) :f DMy, = [ |Jac F| wz < (@> Vol(Z).
F(Z) A n—1

Proof. Assuming Proposition 4.3, the only non-trivial part is to prove

f G)Mhypif |Jac F| wyz.
F(Z) Z

This amounts to justifying the change of variables formula for the singular space Z.
To do this, we will unpack the definitions and apply the change of variables formula
for Lipschitz maps.

Z \ S is measure zero, and £ is locally Lipschitz. This implies F(Z\ ) C Myyp
is also measure zero. The collection of open sets {Uyp}geq covers €2. Let {E} be a
countable partition of Uy Uy C Z into measurable sets such that each £ is contained
in some open set Uy. Since F(UpEr) = F(UpUy) C Mpyyp is of full measure, it
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suffices to prove the inequality on each measureable set Ey, i.e. it suffices to show
that

f O My, < |Jac F| wz.
F(Eg) Ey

Assume that £y C Uy. Letus also assume without a loss of generality that the image
F(Uy) C Myyp lies in an open set Vy; equipped with a smooth diffeomorphism
onto an open subset of R™. Let gas denote the smooth Riemannian metric on v (Vay)
given by the hyperbolic metric on Myy,,.

The volume element (qb_l)*(wzl%) is defined on an open subset of R*. Tt is
induced by the C°-Riemannian metric gp. Concretely this means that

(Cb_l)*(a)zwd,) = Jdet ggp dxi1dxy .. .dx,
Similarly,

(U opg,, = v/det gy dyidys . .. dy,
VP

Define the locally Lipschitz map G := ¢ o I o ¢!, which is a map between subsets
of Euclidean space. By definition, the Jacobian of F': Z — My, at p € Uy 1s

d F
ac F(p)) 1= YELEMTEDN | 0001,

det g4 (¢ (p))

Applying the change of variables formula for Lipschitz maps [EG, 3.4.3] to G yields

[ X (B (X)y/det gy (G(x))| Tac G(x)| dxydxy . . . dxy
$(Uy)

- [mv )#{G—l(Y) NG (EW} det gy (y) dyidys .. .dy,

Since det g4 vanishes on a set of measure zero, way may perform the following step

[ Xp(Ep)(X) \/det em(G(x)) [ Jac G(x)| dxydxy .. .dx,
pUg)

Vdet gy (G(x))
= Xp(Ep) (X) Vdet gp(x) | Jac G(x)| dxidxy . . . dxy
fcp(U¢) ¢ Jdetgg(x)

= f Xp(Ep) (x) | Jac F(¢_1(X))| Vet gs(x) dxidxy ... dxy
$(Uy)
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Putting this together yields

| Jac F(2)| @ =[ Xz () | Tac F (¢~ (x))| /det g (x) dxidxy . .. dxy

Ey #{Us)

- L L HGT I NP ED) Vel e 0 i
= [ #{F~ (m) N Ex) OMyy, (1) = / @ My - H
Vi

The above lemma implies that
h(X)" Vol(Z) > (n — 1)" Vol(Mpyp).

This proves the inequality of Theorem 4.1. []

5. The Barycenter map is locally Lipschitz

In this section we prove part (1) of Proposition 4.3.

(1) The natural map F: Z — Myyp 18 locally Lipschitz and differentiable almost
everywhere.

It 1s only necessary to prove I is locally Lipschitz. Almost everywhere differentia-
bility will then follow by using Rademacher’s theorem (see Section 2.5). We will
prove the lifted map F': X — H" is locally Lipschitz by factoring it as a composi-
tion of two locally Lipschitz maps. Namely we will define a locally Lipschitz map
®: X - L*(H#X)and a Cl-map P: L?(#X) — H" such that F = P o &,

The barycenter map takes a positive atomless measure v on dH" to the unique
point x = bar(v) defined implicitly by the equation

[ (VBS, v)dv(@) =0 forallv e T,H",
QH?

where B¢ is the Busemann function on H" (normalized so B°(0,#) = 0 for all
6 € oH").

Consider the Hilbert space L*(#X) of square integrable functions on # X with
respect to the Patterson—Sullivan probability measure p,. Define a I' 1= 71(Z)-
action on L2(#X) by

(r-)(n) == ply~ ) - Jexp (=h(X)by(y.0)).

Lemma 5.1. I" acts by isomefries on L2(#X).
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Proof.
fﬂ X(V-¢)2(n) dpo(n) = - ¢ (L) e M X0l gy ()
= quz(y—l.n) diiy o ()
= | Sdy =1 ¢*dp, O
FX HX

Let L2 (#X) denote the strictly positive functions in L?(#X). Notice that
I' acts by isometries on Li(ﬂ’X ). An element ¢ ¢ L%F(RX ) defines a positive
atomless measure ¢2 du,. Push this measure forward via the map f o (0 a measure
(f o 7)(@?dpio) on OH". Define the map P: L% (#X) — H" by

P: > bar((f o 1) (PPdpuy)).

In other words P(¢) is the unique point x defined implicitly by the equation

| B 0 d(f e m @ dua)©) = [ (VB o) #) dao =0,
oH" FEX

for all v e T, H".

Lemma 5.2. P is I"-equivariant.

Proof. P(y.¢) is the unique point x such that for all v € T, H",

0= [ 9By ohe 820 e 0N )
= | B 0 P20 Do
— L{X<VB;OﬁOy(n)’ vy ¢ (n) duo(n) (change of variables)
:/,,ngWB;“fO”(”)’ Ve d2(0) dpo(n) (f o is I'-equivariant)

_ f (VB dy L)), 1, B2n) dpo(n) (VB is Isom (P )-invariant).
HX

Since dy~1': T.H" — T, [H" is an isomorphism, this implies y~lx = P(g).
Therefore P(y.¢) = x = y.P(¢p). O
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Pick a @ frame {¢;} on H" and define a map Q: H" x L3 (#X) — R" by
Q: (x,¢) >

VBS et d*(n)du, [ VBY o en) e b () dio )
([%X< For(n) e1)x P () du,(n) J€X< forr(n) en)x @ () dpo(n)

FX is compact, By (x) is a C* function of both & and x, and {e;} is a C* frame.
Using these facts, applying the Lebesgue dominated convergence theorem proves
that Q is €*. Notice P is defined implicitly by the equation

Q(P().¢) =(0....,0).

The goal is to show that P is 1. This can be accomplished by employing the implicit
function theorem. (The implicit function theorem is true on Banach spaces. See [RS,
p.366].) Foreach fixed ¢, we must show the map Q% : x — Q(x, ¢) has an invertible
differential at each point x of the fiber (0" ~Y0,...,0). Split Q% into coordinate
functions Q% = (qu, cees Qf). Then

d
P 0f(x) = | (Hess B )x(e 1) #*(n) duo(n)

2
t [ B Vs ) ot
HX
The second term in this sum satisfies

2
[ﬁ AVE] g Vegerhe $200) dito )

i
= f,}f’X (VB;OJT(W) ;D k=1 C;'Ciek)x B> (1) dpio(n) = Z C;-Ci Qf(x) = (),
k=1

for some constants cj?i depending on the frame {e;}. This implies the bilinear form
on T, H" determined by the differential of Q¢ at x satisfies

(v,dQ? () = fﬂmess B, o)x (v, 0) 62 () d o ()

= | (Hess B0, 0)d((f o 1) (921106,

forallv € T, H". The right hand side of this equation is strictly positive by Lemma 2.1.
This implies the differential of Q¢ at x 18 positive definite, and thus invertible. There-
fore the implicit function theorem may be applied to conclude that P is C!.

Define a map

X - LA (#X) C LA(H#X)
x > yJexp (—h(X)b,(x)).
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Lemma 5.3. & is Lipschirz.

Proof. Let D be the diameter of the downstairs metric space Z covered by X. It
follows that for any p € X, ||®(p)|| is at most 2%, Pick points x, y € X. The
goal 1s to control the quantity

/ |~ 2RI _ p=1h B0 2y ().
FX

For n € #X, by i1s 1-Lipschitz. This implies b,(y) < d(y, x) + by(x). Using this
we obtain the inequalities

o~ ThOby() _ = 3h(X0B () £ (= 3hXby(0) _ = 3h(X0d(y,) = 3HX0b (x)
_ e—%h(X)bn(x)(l _ e—%h(X)d(y,x))’
yielding

|e—%h(X>bn<x) _ e—%h(X)bnm‘ < (6—%h<X>bn<x) 4 e—%h(X)bno»))(l _ e—%h(X)d(x,y)).
Therefore,

HX

<(1- e—%h(X)d(x,y))zf | =210k @) | (=300B ) 2 gy ()
HX
= (1 — e AN p(x) + ()12

—l 2 ) 2
< (1= e PRIENT @] + [P < (1 — e72H0ANI)7 4e2PHE

To complete the proof, notice that for ¢ > 0, (1 — e~ 2HX1) < 1h(X)t. Applying
this yields

2
f \e—%h@“bw—e‘%h(m(”\zduow)s(%h(X)d(x,w) 420X,
JEX

So finally we’ve obtained

[P (x) = P(y)l

< h(X) - PMO, O
d(x,y)

P is @', therefore F = P o & is locally Lipschitz. I'-equivariance implies F
descends to a locally Lipschitz map X /I’ = Z — H"/I" = Myy,. By Rademacher’s
theorem, F is differentiable almost everywhere (see Section 2.5).
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6. The Jacobian estimate

In this section we prove parts (2) and (3) of Proposition 4.3.

(2) |Jac F(p)| < (%)n almost everywhere.

(3) 1f for some p, | Jac F(p)| = (
Hx) Y,

Z_Xl) )”, then the differential 4, is a homothety
of ratio (

The proof closely follows Section 5 of [F], which is in turn based on [BCG2,
p. 636-639]. Recall that X is the universal cover of Z,I" := 71 (Z) = m1(Mhyp), {ei}
is a > frame on TH", and © < X is a subset of full measure possessing a C!-atlas
(see Sections 2.4 and 2.5).

In the previous section we have deﬁned a ['-equivariant locally Lipschitz map
b X — Li(Ji’X) a I'-equivariant e! barycenter map P : Lz 1 (HX)— H" and a
C®map Q = (Q1,..., 0y : H" x L%F(JfX) — R". They satlsﬁed the equations
F = Pod®and Q(P(qb) $) = 0for¢p € L2 1 (A X). We thus obtain the implicit
equation Q(F, &) =0.Let @ € Q2 € Xbe the set of points where @ 1s differentiable.
By Rademacher’s theorem (see Section 2.5), @ < X is a subset of full measure. Pick
pe@andv e T,X.

Lemma 6.1. Differentiating the function

x> Qi(F(x), ®(x) = f (VB iy @)y e "0 dpg () = 0
FX
at p in the direction of v yields
0= [ (Hess By iy (AF ), ) €MDl 1)
FX
+ f% VB Varwerhry e 0P *)
+ [% AVB] g et (RO (Vb o)y e 00D (),

Proof. 'This is an application of the Lebesgue dominated convergence theorem. #€X
is compact. So to apply the theorem it is sufficient to find a ¢ > 0 such that for all
n € #X, the function

x> (VB] s € e "
is locally c-Lipschitz near p. To show the existence of such a constant, use that b,, is
1-Lipschitz, #X is compact, and (V B, ¢;},: H"* x dH" — Ris C*. O
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The second term in equation (x) satisfies

f,,ze (VB oy Varwen) Fpy e P d g (1)
X
n

B [ﬂXWB?wr(n)’ D cizeirgy e PP d g, (n)
=1

= cij Qi(F(p), ®(p)) =0,
Ji=l

for some constants ¢;; depending on the frame {e;}. Therefore, forv € T, X, u €
Tr(pH" we have

f (Hess B F(py (@F (v), u) e "0y, ()
HX (**)

= 1(X) [% (VBY..co., 4y (Vhy, 0}y &P 4y, ).
X

Let ||zp]| denote the total mass p,(FX) of the measure u,. Define a bilinear
form K and a quadratic form H on Tr ;" by

1
lpll Joex

1
lipll Joex

(K(w), u)pp) = (Hess BY... ) Fip (w, u) e "X P dp, ()

(H(u), u)pp) = (VB rs W € "0 P dpg(n).

Note that the symmetric endomorphism K is positive definite by Theorem 2.1. It is
therefore invertible. This is used in the proof of Lemma 6.2.

Use equation (x%), the Cauchy-Schwarz inequality, and the definition of K to
obtain

[(K o dF(v), u)ppl

h(X) _

= ol ﬂX<VBJ(zon(ﬁ)’ ”)F(p) ’ <Vbna U)p g R dﬂa(ﬁ)‘
P

h(X) ) v ) v
< (VB2 w. dp (n)} { f (Vby, 02 du (n)}

ey | UM L wx 0oPTTR

h(X) 12 [ f " ]1/2
= —— [{Hu),u : Vby, v);, d ;

7 [(H (), u) )] - (Vbu v} dpay ()

forall u € Tp,H" and v € T, .
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Lemma 6.2 (|[BCG2, p. 637]). Forall p € O,

h(X)" (det H)1/2

Jac F <
Tac F Pl = = o7 Ger &

Proof. Theproofis the proof of Lemma 5.4 of [BCG2, p. 637] with two modifications.
First replace the Busemann function B, with the horofunction b,,, and notice that

n

D (Vbyou)y = Vbl <1 (3)
i=1

Second, the total mass of the Patterson—Sullivan measure ||1,| must be carried
through the estimate, but it cancels itself out in the final step. O

A key property of hyperbolic space is that Busemann functions on H" satisfy the
equation
(Hess B))(u, v) = (u, v) — (VBj, u) - (VBy, v)

forall & € dH" (see |[BCGI1, p. 750-751]). Integrating this equation over # X yields
K =1d - H.
Lemma 6.3. The symmetric endomorphism H is positive definite.

Proof. Suppose there exists x € X and # € Tx X such that (/ (1), u), = 0. From the
definition of I, this implies the support of the measure ( f o )4 00 on dH" is contained
in a codimension one conformally round sphere in S < H". By the equivariance of
the Patterson—Sullivan measures, the support of (f o 7)., , 1S contained in y (S)
for y € I'. But py,, < p, implies the support of (f o 7)., 18 contained in S.
Therefore I' preserves S < oH". This contradicts the fact that the limit set of I" s
the entire sphere at infinity. O

A short computation shows that tr(//) = 1. Therefore we can apply the brain in
a jar lemma (LLemma 2.2) to fi. This yields

det(H) n 7l
[wmd—HNZSLn—DJ’

with equality if and only if H = %Id. Combining this with Lemma 6.2 proves the

desired inequality, namely
h(X)\"
[Jac F(p)| < | —= ) .
n—1

This completes the proof of part (2) of Proposition 4.3.
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The proof of part (3) of Proposition 4.3 is the “equality case” argument on page 639
of [BCG2] with two modifications (as in Lemma 6.2). First replace the Busemann
function B, with the horofunction b, and use inequality (%), Second, the total mass
of the Patterson—Sullivan ||z, | must be carried through the estimate, and again it
cancels itself out. This completes the proof of Proposition 4.3.

7. The equality case

Theorem 7.1. Let Myy, be a closed hyperbolic n-manifold for n > 3. Let Z
be a compact n-dimensional convex Riemannian amalgam (see Section 2.8). Ler
f 1 Z — My be a homotopy equivalence. If

h(X)" Vol(Z) = (n — 1)" Vol(Mhyp)
then the natural map F: Z — My is a homothetic homeomorphism.

Remark 7.2. Recall that if Z is either

¢ the metric doubling of a convex hyperbolic manifold with boundary (see Sec-
tion 2.7), or

e a cone-manifold (see Section 2.6),
then Z is a convex Riemannian amalgam.

Let X be the universal cover of Z. Lift the convex Riemannian amalgam structure
on Z to a convex Riemannian amalgam structure on X with decomposition {C; } into
convex Riemannian manifolds with boundary. Define the incomplete disconnected
Riemannian manifold € := [ J; int(C;) € X.

The equation

h(X)" Vol(Z) = (n — 1)" Vol(Mhpyp)

implies the string of inequalities from Lemma 4.4 is in fact a string of equalities.
Therefore | Jac F(p)| = (%)” almost everywhere. By Proposition 4.3, dF is a
homothety almost everywhere. The goal 1s to prove I': Z — My 18 a homothetic
homeomorphism. Without a loss of generality, scale the metric of Z so that 4 F is
an isometry (not necessarily orientation preserving) almost everywhere. This forces
Vol(Z) = Vol(Mpyp). It now suffices to show that F': Z — My is an isometric
homeomorphism. This will be done by working on the universal covers and showing
F: X — H" is an equivariant isometric homeomorphism.

Lemma 7.3. F': X — H" is a contraction mapping, i.e. for any pair x,y € X,
dyn (F(x), F(y)) <dx(x,y).
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Proof. Pick a length minimizing geodesic segment « connecting x to y. Define
@ € 2 C X to be the set of full measure where dF is an isometry. There exists a
small perturbation ¢, of ¢ such that . N @ C «, 1s a subset of full measure, and
length(c:) < length(w) +e. F islocally Lipschitz, so in all Hausdorft dimensions F
maps measure zero sets to measure zero sets. This implies I preserves length on c.
Therefore

dun (F(x), F(y)) <length(F («,)) = length(«;) < length(w) + & = dx(x,y) + &.
Since ¢ was arbitrary, the result follows. O

We claim that 7 is volume preserving. | Jac FF| = 1 a.e. and I" is locally Lipschitz,
so I' 1s volume non-increasing. If it strictly decreased the volume of some measur-
able set, then we would have Vol(Z) > Vol(Myyp). This would be a contradiction.
Therefore I 1s volume preserving.

There exist constants Cp, epyp > 0 such thatif y € H" and & < epyp, then

vpe" < Vol(Byr (v, &) < vpe™ (1 + C1e?), (4)

where v, i1s the volume of a unit ball in R", Similarly, @ € X is a Riemannian
manifold with sectional curvature bounded from above. (An upper curvature bound
follows from the definition of a convex Riemannian amalgam.) For compact K C 2
(possibly a point), define

nj,(K) := Zlg}f{ (injectivity radius of €2 at z).

The upper curvature bound implies there exist constants C, e > 0 such that if
£ < &g, & < INjo(z), and Bx(z, &) C 2 then

vee™(1 — Cre?) < Vol(Bo(z, €)). (5)

We now consider the restriction of F to the “smooth” set §2. Define Fg =
Flg: @ — H".

Lemma 7.4. Fg is injective.

Proof. (This proof is an adaptation of [BCGI1, Lemma C.4].) Suppose there exist
distinct z1, z2 € €2 such that Fo(z1) = Fa(z2) = y. Pick

g0 < min{eq, iNjg(z1), iNju(z2), Ehyp}
sufficiently small such that

Bx(z1.80) N Bx(z2.80) =¥ and Bx(z1.e0) U Bx(z2.89) C .
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In particular, inequality 4 (resp. inequality 5) 1s valid at y (resp. z1 and z;) for e < &g.
Since F is contracting, Fo(Bg(z;, €)) € By (y, ¢) for all ¢ < gg. Therefore

Ba(z1, ) U Ba(za. &) € Fg' (Bun (3, ).
Since F' is volume preserving (and X \ €2 is measure zero),
Vol(By (y. £)) = Vol(Fg, ' (Ban (v, £))) = Vol (Bg(z1. 8) U Ba(22. 8))
= Vol(Bgq(z1, €)) + Vol(Bq(z2, €)).
Now apply inequalities 4 and 5 to obtain
vae™ (1 4 C182) > 2u,e™ (1 — Cae?).
This implies e2(Cy1 +2Cy) > 1 forall & < &g, which is a contradiction. O

Since €2 is locally compact, Lemma 7.4 shows that F'g: Q2 — Fqe(€2) is a home-
omorphism.

Lemma 7.5. Fg, Lis locally Lipschirz.

Proof. (This proof is an adaptation of [BCG1, Lemma C.7].) Pick z € Q. Let
y 1= Fq(z). Pick o < min{epyp, £} sufficiently small such that Bx(z, 3g0) C €2,
g0 < injo( Bx(z, 2&0) ), and
’ 1
2e65(C1 + ) < 2_”
Define V := Bgq(z, gy). Since F' is a contraction mapping, (V) € Byn(y, g9). We
will show that if z;, z» € V are distinct, then

dx(z1,22) < 2dun (F(z21), F(22)).

This will imply F|y~! is 2-Lipschitz on the open set F(V).

Suppose the above inequality is false, 1.e. there exist distinct z1, z2 € V such that
2dyn (F(z1), F(z2)) < dx(z1,22). Set e 1= dmn (F(z1), F'(z2)) < &o. Since & < &o,
inequality 4 remains valid at /'(z1) and " (z2) fore. Bpn(£'(z1), &) and Bgr (F(z2), &)
mtersect, and their intersection contains a ball of radius £/2 centered in the middle
of the minimizing geodesic joining F(z1) to F(z2) (see Figure 5). Therefore

1
Vol (B (F(z1), &) U B (F(z2), €)) < vy [28”(1 + C1e?) — 58”]-
Moreover, dx(z1, z2) > 2¢ implies By(z1, &) N Bx(z2, &) = ¥. Since Bx(z1,¢&) U

Bx(z2,¢€) C B(z,2e9) C 2, we may apply inequality 5 to conclude

Vol (F (Bx(z1,&) U Bx(z2,))) = Vol (Bx(z1,¢) U Bx(z2, €))
> vy [26" (1 — Creh)].
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Figure 5

F is a contraction mapping. Therefore
F(Bx(z1,€)) € Byn(F(z1),e) and F(Bx(z2,¢)) € Bun(F(z2), ¢).

Putting these inequalities together yields
1
Uy [28”(1 + C18%) — 2—”8”] > v,e"[2(1 — Cre?)],

implying

1
262(C1 + Cy) > ot

This contradicts our choice of gg. O

Since F|g~! is locally Lipschitz, it is differentiable almost everywhere. There-
fore, for almost every z € €2,

d(ldg); = d(F|g™! o Fg), = d(F|g™!) 0 dFq.

This implies d(F|g ") is an isometry of tangent spaces almost everywhere. By an
argument analogous (o Lemma 7.3, and by working on small balls in Myy,, one can
see that F|g ™! is locally a contraction mapping F(€2) — Q. Both Fg and Flg™!
are local contraction maps. Thus they are both local 1sometries.

Lemma 7.6, Forall j, F lc; is an isometry onto its image, and I'(int(C;)) is convex.
Proof. By continuity, 1t suffices to show F| int(C)) 18 an 1sometry onto its image. Pick

x,y € nt(C;). Since int(C;) is convex, there exists a geodesic segment xy C int(C;)
joining x to y. Fg is a local isometry. Thus length(F (xy)) = length(xy), and
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F(xy) < H" is locally a hyperbolic geodesic joining F(x) to F(y). In H", a local
geodesic 1s a global geodesic. Therefore

din (F(x), F(y)) = length(F(xy)) = length(xy) = dx (x, y). U

Lemma 7.7. For each z € X, there exists 5; > 0 such that dx(z, x) < &; implies
dir (F(z), F(x)) = dx(z, x).

(Notice that this lemma proves neither that ' 1s an 1sometry nor that it is locally
injective. 'To see why, consider the branched double covering of an Fuclidean disk
by an Euclidean cone with cone angle 4s.)

Proof. Pick z € X. If z € Q then we are done. So assume z € X \ 2. Up to
rearranging the mndices we may assume

€ (BCIUICU---UICH\ (8C141 U---UICY).

By this, there exists 8; > 0 such that

!
Bxzsynec| .
j=1

For x € Bx(z, d;), there exists an integer j, and a geodesic segment xz C C;,. Fl¢;,
18 an isometry, so dx (z, x) = dex (z,x) = dyn(F(z), F(x)). This proves the lemma.
O

As a corollary of this lemma, we see that F —1(y) is a discrete set for all y € H".
Lemma 7.8. F: X — H" is injective.

Proof. Fory e ", F~1(y) is the discrete set {z;}. We will show F~1(y) must be a
single point. Forall ¢, pick 8; < 1sothatdy(z;, x) < §; implies dm» (F(z;), F(x)) =
dx(z;, x). Assume the metric balls Bx(z;, é;) are disjoint.

If for some i, Flpy (7.8 Bx(zi, 8;) — B (F(z;), 8;) 18 not surjective, then F/
can be properly homotoped to a map taking Bx(z;, §;) — dBm(F(z;), §;). More-
over, this can be done without altering F outside of Bx(z;, §;).

If for every i, Flpy(.5,): Bx(zi,8;) — Bun(F(z;), ;) is not surjective, then
F 1is properly homotopic to a map which does not have y in its image. F is a
proper surjective homotopy equivalence. Thus every map properly homotopic to F
is surjective. Therefore for some i, I'| gy (5, 5;) 18 surjective. We may assume ¢ = 1.

Fq 1s injective and open, €2 is open and dense, and F'(Bx (z1, 81)) = Bun (v, 81).
Thus

F(Q\ Bx(z1,81)) N B (y, 81) = 9.
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By extending to the closure of €2, this shows that forall; > 1,

F(zi) =y & By (y, 81).
Therefore F~1(y) must be the single point z;. O

Recall that F: X — H" is surjective. Therefore F': X — H" is a continuous
bijection. Since X is locally compact, F' is a homeomorphism. To prove that F' is an
isomelry, it is sufficient to show F~! is a contraction mapping.

Lemma 7.9. F~! is a contraction mapping, i.e. it is 1-Lipschitz.

Proof. By the above lemmas, /' imposes a convex Riemannian amalgam structure
on H". The collection of convex Riemannian manifolds with boundary is {F(C;)}.

Pick x, y € H", & > 0. Since each I'(C;) is convex, there exists a path y C H"
joining x to y such that:

e length(y) <d(x,y) + e,

e v N F(JC;) 18 at most two points for any F'(C;) of the decomposition.
As the collection {F(C;)} 18 locally finite, the set I “L(y)\ Qs finite. F l¢; 18 an
isometry for all j. Therefore F “l(y)isa path of the same length as y. This implies
F~1is 1-Lipschitz. O

This completes the proof of Theorem 7.1.

8. Applications

8.1. Kleinian groups. The Kleinian group theory notation used here is defined in
Sections 2.9-2.12.

Let N be a compact acylindrical 3-manifold (see Section 2.10). Recall that by
Corollary 2.5, there exists a convex cocompact hyperbolic 3-manifold M, such that
Cp, 1s homeomorphic to N and the boundary of the convex core dCy, C M, is
totally geodesic.

As was discussed in Section 1, the following theorem solves a conjecture in
Kleinian groups.

Theorem 8.1. Let N be a compact acylindrical 3-manifold. Let (Mg, mg) be a convex
cocompact hyperbolic 3-manifold such that Cur, is homeomorphic to N and the
boundary of the convex core 9Cy, C My is totally geodesic. Forall (M, m) € H(N),

Vol(Car) = Vol(Cay, ),

with equality if and only if M and M, are isometric.
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Fix an (M, m) € H(N). We may assume without a loss of generality that M is
geometrically finite. Since dCyy, 1s totally geodesic, metrically doubling Cy, across
its boundary produces a compact hyperbolic manifold DCyy, .

Lemma 8.2. Metrically doubling the convex core Cyy across its boundary vields an
Alexandrov space with curvature bounded below by —1.

Proof. In [S, Appendix A] it was proven that taking an e-neighborhood of Cys in M,
and metrically doubling that across its boundary to obtain DN, Cyy, yields an Alexan-
drov space with curvature bounded below by —1. DCyy 1s the Gromov—Hausdorff
limit of these spaces as ¢ — 0. Being an Alexandrov space with curvature bounded
below by —1 is a closed property in the Gromov-Hausdorff topology [BBI, Proposi-
tion 10.7.1, p. 376]. This proves the lemma. O

Remark 8.3. Lemma 8.2 also follows from a more general theorem of Perelman (see
Theorem 8.8).

In particular, by Lemma 8.2 and Theorem 2.7, the volume growth entropy of m
is not greater than 2 = h(H?). This will be used later. Let o denote the boundary
preserving isometric involution of DCyy and DCyy, .

Case 1. Assume M is convex cocompact.

Proof of Case 1. Both M nor M, are convex cocompact. By Theorem 2.4, m o m~!

is homotopic to a homeomorphism Cyy — C M, (m_1 denotes a relative homotopy
inverse of m.) This homeomorphism can be “doubled” to produce a homeomorphism
between the doubled manifolds f: DCy — DCy,. Theorem 4.1 may now be
applied to f: DCy — DCyp,. This proves that

R(DCy)® Vol(DCyp) > 2% Vol(DCyy,),

with equality if and only if DCy and DCyy, are isometric. Since h(DCyr) < 2 we
have
Vol(DCyr) = Vol(DCyy,).

with equality if and only if DCps and D Cyy, are isometric. Dividing both sides by 2
yields the desired inequality.

Let us now assume Vol(DCyr) = Vol(DCyy,). The goal is to show M and M,
are isometric. o do this it is sufficient to show Cyr and Cypy, are isometric. The map
f:DCy — DCMg 18 by construction o -equivariant. Let /': DCy — DCMg be the
natural map induced by f. The o-equivariance of f implies F is also o -equivariant
(see Remark 4.2). Therefore F': Cp — C)y, is an isometry. 'This completes the
proof of Case 1. O
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Case 2. (M, m) is not convex cocompact.

Proof of Case 2. (M, m) € H(N), so by definition m: N — M? is a homotopy
equivalence (see Section 2.12). Moreover, by Theorem 2.4 there exists a homeomor-
phismg: N — Cy N M?. let P := g7 (Cyy NdM?) ¢ dN. Consider (M, m)
as an element of H(N, P) with no additional parabolics. (N, P) 1s pared acylindri-
cal. Therefore there exists a geometrically finite Mp € H(N, P) with no additional
parabolics such that Cyy, has totally geodesic boundary.

Again by Theorem 2.4, there is a homeomorphism Cp, — N \ P, inducing
a doubled homeomorphism DCyp, — D(N \ P) between open manifolds. Let
p C P C dN be a finite collection of disjoint simple closed curves such that p
is a strong deformation retract of P, i.e. each component of p is a core curve of a
componentof P. Then there is ahomeomorphism D(N\ P) — (DN)\ p. Moreover,
the manifolds DCyrp, = D(N \ P) are topologically obtained by removing the curves
p C dN c DN. Conversely, replacing the removed curves of DN\ p corresponds to
performing a (topological) Dehn surgery on DN \ p. Therefore the homeomorphism
type of DN = DC)y, can be obtained by performing a topological Dehn surgery on
DCyp,. DCyy, 18 a finite volume hyperbolic manifold. Therefore Mostow rigidity
implies that DCp, may in fact be obtained by performing a hyperbolic Dehn surgery
on DCy, [Thl].

Hyperbolic Dehn surgery strictly decreases volume [Thl, Theorem 6.5.6], [Bes].
Therefore Vol(DCyy,) > Vol(DCyy, ). Moreover, by [NZ] there exists a closed hy-
perbolic 3-manifold L obtained from hyperbolic Dehn surgery on DCyg, such that

Vol(DCpp) > VOI(L) > Vol(DCyy,).
So to complete the proof it suffices to show that
Vol(DCyy) = Vol(L).

This will be accomplished by geometrically filling in the cusps and reducing to the
case of closed manifolds.

The geometric (though not hyperbolic) Dehn surgery arguments below are based
on techniques from [Bes], [L.]. (See also [BCS] for another application of these
methods.) The exposition here will roughly follow [Bes].

Outside a compact set, the metric on DCys is a collection of smooth rank two
hyperbolic cusps. For simplicity, let us assume that D Cyy has exactly one cusp. The
general case follows by performing the following geometric operations on each cusp
individually.

Pick a compact exhaustion K; of DCys such that each boundary ¢ K; 1s a smooth
horospherical torus. By “opening up” the cusp of DCjs one can construct a family
of metric spaces {(A, d;)}ce(0,1] such that:
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1. A is homeomorphic to K.

2. (A, d.)1s an Alexandrov space with curvature bounded below by —1 — cg, where
lim8_>0 Ce = 0.

3. For each i, there is an 1isometric embedding K; — (A, d.) for all sufficiently
small &.

4. lime_.o Vol(A, d.) = Vol(DCyy).

5. Near the boundary of A the metric d, is a flat Riemannian metric with totally
geodesic boundary 0 A.

6. Foranye < 1,(0A,d.) = (A, e -dy).

(A careful and clear explanation of this procedure is in [Bes, Section 2.2]. See also

[L].)
Let W denote a solid torus. Using the fact that W is a product of a disk and a
circle, one can build a product Riemannian metric g on W such that:

1. (W, g) has totally geodesic boundary isometric to an Euclidean torus.
2. (W, g) has sectional curvature bounded below by zero.

A manifold homemorphic to L is obtained from A by approprately gluing o W
to dA (i.e. by an appropriate Dehn surgery). The goal is to perform this gluing
geometrically. To do so we must scale appropriately and interpolate between the
flat torus boundaries of (A, d.) and (W, g). Let T2 x [0, 1] denote a trivial interval
bundle over a torus. Pick diffeomorphisms

do: T x {0} - dAand ¢ : T? x {1} - oW

such that the glued up manifold

A U(sz[O,l]) U w
o P1

1s homeomorphic to L.
Consider the metrics ¢} d. and ¢} g on the boundary of 72 x [0, 1]. We now apply
a lemma from [Bes].

Lemma 8.4 ([Bes, Appendix A.2]). For any n > O there exist a,, &, > 0 and a
Riemannian metric o, on T* x [0, 1] such that:

1. The curvature of oy, is bounded between —1/n and 1/n.
2. The volume of (T? x [0, 11, o) is less than 1/n.

3. (I? x [0, 1], o) has totally geodesic boundary given by (T* x {0}, ¢d.,) and
(T* x {1}, o - ¢ e).
4. w, and g, g0 10 Zero as n — <.
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We may now glue geometrically to form

(Y. Ay == (A de) | (T2 x 1011, 00) | W,y - ),
%0 #1
such that:
1. Vol(Y, A;)) — Vol(DCyy).
2. (¥, Ap) 1s an Alexandrov space with curvature bounded below by —1 — cgn.
3. Y is homeomorphic to the closed hyperbolic manifold L.

There is a sequence n, — 1 such that the homothetically scaled spaces (Y, 1, -Ay)
are Alexandrov spaces with curvature bounded below by —1. Theorem 4.1 applied
to (¥, n, - Ap) and L yields the inequality

Vol(Y, n, - Ay) = Vol(L).
Taking n — oo yields the desired inequality
Vol(DCpr) = Vol(L). a

Using the above geometric surgery arguments, we now prove that the inequality
of Theorem 8.1 holds also for pared acylindrical manifolds.

Corollary 8.5. Let (N, P)be acompact pared acylindrical 3-manifold. Let (Mg, mg)
be a hyperbolic 3-manifold such that Cy, is homeomorphic to N\ P and the boundary
of the convex core dCy, C My is totally geodesic. For all (M, m) € H(N, P),

Vol(Cyr) > Vol(Ciy,).

Proof. DCpy, 18 a finite volume hyperbolic manifold. By repeating the arguments
from the beginning of Case 2 above, it follows that DCyy, is obtained topologically
by performing a (possibly empty) set of Dehn surgeries on the manifold DCyy. (Note
that since DCyy, 18 not compact, Dehn surgery is not performed on every end of
DC)yy. The ends corresponding to the cusps of DCyy, are not changed.)

By performing an infinite sequence of iyperbolic Dehn surgeries on DCyr, we ob-
tain a sequence of closed hyperbolic manifolds Ly such that Vol(Lg) 7 Vol(DCyy,)
[NZ]. For each k, a manifold homeomorphic to L can be obtained from DCy by
performing an appropriate topological Dehn surgery on each end of DCy;. By re-
peating the geometric surgery arguments of Case 2 above, the closed manifold Yj
obtained by these Dehn surgeries on DCys can be given a sequence of metrics &
such that:

1. 1imy, 0 VOI(¥%, 87) — Vol(DCys).

2. (Y, 8;) is an Alexandrov space with curvature bounded below by —1.
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3. Y; is homeomorphic to the closed hyperbolic manifold Ly.
Applying Theorem 4.1 to the sequence {(¥y, §;)}, and Ly yields

Vol(DCpy) > Vol(Ly).

Taking k — oo yields
Vol(DCyy) = Vol(DCyy,). O

8.2. Cone-manifolds

Theorem 8.6. Let Z be compact n-dimensional (n > 3) cone-manifold built with
simplices of constant curvature K > —1. Assume all its cone angles are < 2m. Let
Mhyp be a closed hyperbolic n-manifold. If f: Z — My is @ homotopy equivalence
then

Vol(Z) = Vol(Mhyp)

with equality if and only if f is homotopic 1o an isometry.

Proof. Since K > —1 and all the cone angles of Z are < 2, this implies Z 1s
an Alexandrov space with curvature bounded below by —1 [BGP, p. 7]. "Therefore,
by Theorem 2.7, the volume growth entropy of Z is less than or equal to (n — 1).
Applying Theorems 4.1 and 7.1 proves the theorem. O

8.3. Alexandrov spaces

Theorem 8.7. Let Z be a compact n-dimensional (n > 3) Alexandrov space with
curvature bounded below by —1. Let Myyp be a closed hyperbolic n-manifold. If
[ Z — My is a homotopy equivalence then

Vol(Z) = Vol(Mnyp).

Proof. Otsu and Shioya proved that a finite dimensional Alexandrov space with curva-
ture bounded below by —1 is almost everywhere Riemannian [OS]. By Theorem 2.7,
the volume growth entropy of Z is < (n — 1). The theorem now follows from
Theorem 4.1. O

8.4. n-manifolds with boundary. The argument used in Section 8.1 generalizes
immediately to prove a version of the Besson—Courtois—Gallot theorem for convex
Riemannian »-manifolds with boundary. (For the definition of convex Riemannian
manifolds with boundary, see Section 2.7.) A good example of a convex Riemannian
manifold with boundary 1s a convex core with positive volume.

Perelman’s Doubling theorem [P, Theorem 5.2] 1s used in the proof of Theo-
rem 8.9. Unfortunately, the well known preprint [P] remains unpublished.
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Theorem 8.8 ([P, Theorem 5.2]). Metrically doubling any Alexandrov space with
curvature bounded below by k across its boundary produces an Alexandrov space
with curvature bounded below by k.

Theorem 8.9. Let Z be a compact convex Riemannian n-manifold with boundary
(n > 3). Assume the sectional curvature of int(Z) is bounded below by —1. Let
Yoeod be a compact convex hyperbolic n-manifold with totally geodesic boundary.
Let f:(Z,07) — (Ygeod, @Y geod) be a homotopy equivalence of pairs. Then

VOI(Z) = VOI(Ygeod),
with equality if and only if f is homotopic to an isometry.

Proof. The homotopy equivalence of a pairs [ : (Z,9Z) — (Ygeod, 0 Yeeod) can be
extended to a homotopy equivalence between the doubled manifolds f: DZ —
DYpeoq. We know the sectional curvature of int(Z) is bounded below by —1. So Z
is an Alexandrov space with curvature bounded below by —1. By Perelman’s The-
orem 8.8, DZ is also an Alexandrov space with curvature l)_gunded below by —1.
Theorem 2.7 then implies the volume growth entropy of DZ is not greater than
h(H") = (n — 1). Applying Theorem 4.1 yields the desired inequality.

Assume the inequality 1s an equality. Theorem 7.1 then implies the natural map
F:DZ — DYgeoq 18 an isometry. As before, let o be the boundary preserving
isometric involution of DZ and DY,eoq. Since f is o-equivariant, F' is o -equivariant
(see Remark 4.2). Therefore, by Theorem 7.1, I': Z — Ygeoq 15 an isometry. O
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