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Isometric immersions into 3-dimensional homogeneous manifolds

Benoit Daniel

Abstract. We give anecessary and sufficient condition for a 2-dimensional Riemannian manifold
to be locally isometrically immersed into a 3-dimensional homogeneous Riemannian manifold
with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the sec-
ond fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds
includes in particular the Berger spheres, the Heisenberg group Nils, the universal cover of the
Lie group PSL;(R) and the product spaces $% x R and H? x R. We give some applications to
constant mean curvature (CMC) surfaces in these manifolds; in particular we prove the existence
of a generalized Lawson correspondence, i.e., a local isometric correspondence between CMC
surfaces in homogeneous 3-manifolds.

Mathematics Subject Classification (2000). Primary: 53C42. Secondary: 53A35, 53B25.

Keywords. Isometric immersions, constant mean curvature surfaces, homogeneous manifolds,
Gauss and Codazzi equations.

1. Introduction

A classical problem in geometry is to determine whether a Riemannian manifold V
can be isometrically immersed in another Riemaniann manifold V. We will restrict
ourselves to the case of codimension 1 immersions, i.e., 'V has dimension » and 'V
has dimension n + 1.

It is well known that the Gauss and Codazzi equations are necessary conditions
relating the Riemann curvature tensor R of 'V, the Riemann curvature tensor R of
V and the shape operator S of V. Denoting by V the Riemannian connection of 'V,
these equations are the following:

(R(X,Y)Z, W) — (R(X,Y)Z, W) = (SX, Z)(SY, W) — (SY, Z)(SX, W)

VxSY — VySX — S[X, Y] =R(X, Y)N,

for all vector fields X, ¥, Z and W on V.
Moreover, in the case where 'V is a space-form, i.e., the sphere S"*!, the Euclidean
space R"*1 or the hyperbolic space H"*!, the Gauss and Codazzi equations are also
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a sufficient condition for 'V to be locally isometrically immersed in V with S as shape
operator. In this case the Gauss and Codazzi equations involve only the metric and
the shape operator of V.

The author studied this problem when 'V is a product manifold $” x R or H" x R
([Dan04]). Then the Gauss and Codazzi equations involve the metric of 'V, its shape
operator S, the projection T of the vertical vector field (1.e., the unit vector field
corresponding to the factor R) on the tangent space of 'V and the normal component v
of the vertical vector field (i.e., its inner product with the unit normal of V). The author
proved that the Gauss and Codazzi equations, together with two other compatibility
equations coming from the fact that the vertical vector field is parallel, are a necessary
and sufficient condition for 'V to be locally isometrically immersed in 'V with S as
shape operator, 7" as tangent projection of the vertical vector field and v as normal
component of the vertical vector field.

It 1s natural to ry to generalize this result to other homogeneous Riemannian
manifolds. We will investigate the case of surfaces in manifolds of dimension 3, i.e.,
n = 2. Indeed, the classification of simply connected 3-dimensional homogeneous
manifolds is well known. Such a manifold has an isometry group of dimension 3,
4 or 6. When the dimension of the isometry group is 6, then we have a space form.
When the dimension of the isometry group 18 3, the manifold has the geometry of the
Lie group Sols.

In this paper we will consider the homogeneous manifolds whose isometry groups
have dimension 4: such a manifold is a Riemannian fibration over a 2-dimensional
space form, the fibers are geodesics and there exists a one-parameter family of trans-
lations along the fibers, generated by a unit Killing field £ which will be called the
vertical vector field. These manifolds are classified, up to isometry, by the curvature
« of the base surface of the fibration and the bundle curvature r, where « and t
can be any real numbers satisfying « # 4c2. The bundle curvature is the number t
such Vx& = tX x & for any vector field X on 'V, where V denotes the Riemannian
connection of V.

When the bundle curvature t vanishes (and then « # (), we get a product manifold
M? (k) x R where M?(«) is the simply connected 2-manifold of constant curvature «.
Their isometry group has 4 connected components. The vertical vector & is simply
the vector corresponding to the factor R. This case was treated in [Dan04].

When © # 0, the isometry group has 2 connected components: an isometry either
preserves the orientations of both the fibers and the base of the fibration, or reverses
both orientations. These manifolds are of three types: they have the isometry group
of/t_hf/ Berger spheres for « > 0, of the Heisenberg group Nils for « = 0, and of

PSL,(R) for « < 0. In this paper we will deal with these three types of manifold.
Like for M?(x) x IR, the Gauss and Codazzi equations involve the metric of V, its
shape operator S, the tangential projection 7" of £ and the normal component v of §.
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Denoting by K the curvature of ds?, these equations become
K =detS+t2+ (K — 4t2)v2,

VxSY —VySX — S[X, Y] = (k — 4w (¥, T)X — (X, T)Y)

The first theorem is the following one.

Theorem (Theorem4.3). Let'V be a simply connected oriented Riemannian manifold
of dimension 2, ds? its metric (which we also denote by (-,-)), V its Riemannian
connection and 1 the rotation of angle % on TV. Let S be a field of symmelric
operators Sy: T,V — T,V, T a vector field on'V and v a smooth function on'V
such that | T||* +v? = 1.

Let E be a 3-dimensional homogeneous manifold with a 4-dimensional isometry
group and & its vertical vector field. Lef « be its base curvature and t its bundle
curvature. Then there exists an isometric immersion f .V — E such that the shape
operator with respect to the normal N associated to [ is

df oSodf~!

and such that
E=df(T)+vN

if and only if (ds*, S, T, v) satisfies the Gauss and Codazzi equations for E and, for
all vector fields X on'V, the following equations:

VxT =v(SX — JX), dv(X)+ (SX —JX,T) =0.

In this case, the immersion is unique up fo a global isometry of E preserving the
orientations of both the fibers and the base of the fibration.

The two additional conditions come from the fact that Vx& = X x & for all
vector fields X. We notice that this theorem seems specific to dimension 2, since the
operator of rotation J is involved.

The method to prove this theorem is similar to that of [Dan04] and was inspired
by that of Tenenblat ([ Ten71]): it is based on differential forms, moving frames and
integrable distributions. However, things are technically much more complicated
here: in [Dan04] the proof was simplified by the fact that S x R and H" x R can be
included in R**2 and in the Lorentz space L2 respectively. We will first present the
models used for the 3-dimensional homogeneous manifolds, and then we will prove
the theorem.

Finally we will give two applications of this theorem to constant mean curva-
ture (CMC) surfaces in 3-dimensional homogeneous manifolds with 4-dimensional
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isometry group. There were many recent developments in this topic (see for exam-
ple [FMP99], [NRO4] and references therein); in particular Abresch and Rosenberg
proved the existence of a holomorphic quadratic differential for CMC surfaces in
these manifolds (JARO4], [AROS]).

The first application (Section 5.1) 18 the existence of an isometric correspon-
dence between certain CMC surfaces in homogeneous 3-manifolds with the same
“anisotropy coefficient” x —4¢2. This correspondence generalizes the classical Law-
son correspondence between certain CMC surfaces in space-forms. This is the fol-
lowing theorem.

Theorem (see Theorem 5.2). Ler Ey and Ko be two 3-dimensional homogeneous
manifolds with 4-dimensional isometry groups, of base curvatures 1 and «p and
bundle curvatures Ty and tp respectively, and such that

K1 — 47:12 =Ky — 41'22.
Let Hy and H> be two real numbers such that
r12+H12:r22—|—H22.

Then there exists an isometric correspondence between simply connected CMC
Hy surfaces in By and simply connected CMC H» surfaces in K.
This correspondence is called the correspondence of the sister surfaces.

Moreover, one surface is obtained from the other one by rotating the traceless part
of its shape operator by a fixed angle ¢ (depending on the 7; and the H;).

In particular we get a local isometric correspondence between minimal surfaces in
the Heisenberg group Nils (with its standard metric) and CMC % surfaces in H? x R.
In this case we have 6 = 7, which makes this correspondence similar to the conjugate
cousin correspondence in space forms (see [GBKS03], [Kar05]). We compute some
examples: the sister surface of the rotational minimal surface of equation z = 0 in
Nils is a graph over H? in H” x R invariant by a vertical rotation; the sister surface
of the translational minimal surface of equation 7 = % in Nil is a graph over H” in
H? x R invariant by a hyperbolic translation.

The second application (Section 5.3) is the existence of “twin immersions” of non-
minimal CMC immersions in homogeneous 3-manifolds with non-vanishing bundle
curvature. This twin immersion might be useful to prove an Alexandrov-type theorem
in these manifolds.

Conventions and notations. In this paper we will use the following index conven-
tions: Latin letters ¢, 7, etc, denote integers between 1 and » (or the integers 1 and 2),
Greek letters «, 8, etc., denote integers between 1 and n + 1 (or between 1 and 3).
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The set of vector fields on a Riemannian manifold 'V will be denoted by X (V).
The Riemann curvature tensor R of a Riemannian manifold V of Riemannian
connection V is defined using the following convention:

R(X,Y)Z =VyVxZ —VxVyZ + V[X,Y]Z.

The shape operator of a hypersurface 'V of a Riemannian manifold 'V associated
to 1ts unit normal N i B
SX = —-VxN

where V is the Riemannian connection of V.

2. 3-dimensional homogeneous manifolds with 4-dimensional isometry group

In this section we will give the general setting for simply connected homogeneous
3-manifolds with 4-dimensional 1sometry group and we will describe the models
used. We will consider only those having non-vanishing bundle curvature (since the
product manifolds M2(x) x R were treated in [Dan04]). The reader can refer to
[Sco83] for the geometry of 3-dimensional homogenecous manifolds.

2.1. Canonical frame. Let E be a simply connected 3-dimensional homogeneous
manifold with a 4-dimensional isometry group. Such a manifold is a Riemannian
fibration over a simply connected 2-manifold of constant curvature «. The fibers are
geodesics. We will denote by £ a unit vector field on E tangent to the fibers; it will
be called the vertical vector field. Tt is a Killing field (corresponding to translations
along the fibers).

We will denote by V and R the Riemannian connection and the Riemannian
curvature tensor of E respectively.

We assume that E is not a product manifold M?(x) x R.

The manifold E locally has a direct orthonormal frame (Eq, F2, E3) with

Ey =&
whose non-vanishing Christoffel symbols '}, = (Vg, E,,, E) are the following:
=g =3 =2
Ip=Ipy=-TIy=-T=r,
[ =-T5=7-0

for some real numbers o and t # O (this will be made explicit in the sequel). Then
we have

[Eh, E2] =2tE3, [Ea, Esl=0F1, [E3, E1] =0k).
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We will call (E, E», E3) the canonical frame of E. For all vector field X we have
VxE; =tX x E3

where x denotes the vector productinE, i.e., forall vectorfields X, Y, Z, (X xY, Z) =
det(E1,E2,E3) (X, Y, Z)
Setting
RIXAY),ZAW)=R(X,Y)Z, W),

the matrix of R in the basis (Ey ANEs, Ex A Eq, E1 A Ey) s
R = diag(a, a, b)

with
a = rz, b= —37% + 2o,

We now compute the curvature « of the base of the fibration. If M — M is a
Riemannian submersion, then the sectional curvature of a 2-plane I1 in M generated
by an orthonormal pair (X, Y) is

o 8. s
K(I) = K(T) + 2 |1X, Y)Y
where X and Y are horizontal lifts of X and Y in M, K (I1) is the sectional curvature

of a 2-plane Min M generated by ()? Y ), and where ZY denotes the vertical part of
a vector field Z in M (see [Car92], chapter 8). In our case we get

_ 3 3
k = (R(Ey, E2)Ey, E2) + ZH[El, E|* =h+ ZHM;HZ =b+37%.

Thus we have b = k — 3r2, and so

Proposition 2.1. For all vector fields X, Y, Z, W on E we have
(R(X.Y)Z, W) = (k = 3t)(Ro(X, Y)Z. W) + (k —4r")(R1(E: X. Y)Z, W)

with
Ro(X.Y)Z = (X, Z)Y — (Y, Z) X,

Ri(V; X, VNZ={)Y,V{Z, V)X + (¥, Z)(X,V)V
— (X, )Y, V)V — (X, V)({Z, V)Y.
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Proof. We set X = b s x& with X horizontal and x = (X, &), etc. Using the
multilinearity of the Riemann curvature tensor, we get a sum of 16 terms; the terms
where & appears three or four times, or twice at positions 1,2 or 3,4, vanish by
antisymmetry. The terms where & appears once vanish because the matrix of R in the
basis (E2 A E3, E3 A Eq, E1 A E3) 1s diagonal. Hence we have

RX.VZ, W)= RX,NZ W)+ ywRX,6Z &+ yz(R(X, )&, W)
+xw(RE V)Z,6) + xz(RE, DE, W)
= (k = 3tH(X, Z)(Y, W) — (X, W)(¥, Z))

+ 2 (ywiX, Z) — yz(X, W) — xw(¥, Z) + xz(¥Y, W)
= (kK = 3tH(X, Z)(Y, W) — (X, W)(Y, Z))

— (i —4T)((X, ZNY, &YW, &) + (Y, W)(X, E)(Z, §)
— (X, WY, E)(Z. &) — (Y, Z)(X, §)(W, §)). .

2.2, The manifolds with the isometry group of the Berger spheres. They occur
when v # 0 and « > 0; they are fibrations over round 2-spheres. They are obtained
by deforming the metric of a round sphere in a way preserving the Hopf fibration but
modifying the length of the fibers. Their isometry group is included in that of the
round sphere. The reader can refer to [Pet98].

The sphere S? is the universal covering of SO3(IR), which can be identified with
the unitary tangent bundle to the 2-sphere US®. Indeed, the group SOs(R) acts
transitively on US?, and the stabilizer of any point in US? is trivial. The unitary
tangent bundle US? can be endowed with the metric induced by the standard metric
on the tangent bundle TS?. We will give an expression of this metric.

Let (x, y) +— @(x, y) be a conformal parametrization of a domain D in S? and
let A be the conformal factor, i.e., the metric of D is given by A%(dx? + dy?). Then
a parametrization of UD 1s the following:

1
(x,y,0) — ((p(x, y), X(COS 00, + sinQBy)).

Letp =9(x,y) e D,veTpyDand V € T, ) (UD). Let a(z) = (p(1), v(1))
be a curve such that v(r) € Tp(t)]HIZ, p(0) = p, v(0) = v and &’(0) = V. Then the
norm of V is given by

2 . 2 Dv 2
VG, = ldr (V) + || = (0)

P

where 7 : UD — D is the canonical projection.
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We set o(t) = (x(£), y(¢t),6(r)). Then we have
v(t) = %(cos@(r)&‘x +sin6(1)dy),

and thus

Duv A ) 6 .
n = —F(cosé?ax +sin6/dy) + I(—sm%x —+ cos0dy)
1 . :
+ X(Cosé’(xvax dx + YV, 0x) + 800 (x Vg, 8y + ¥V, dy)),

where the dot denotes the derivation with respect to ¢, Since A= %iy + iy,
2 A A
Vaxax = %&c - Tyaya Vayf?y = _);\_xax + Ty&y and Vaxay = Vayax = Tyax + %8},,
we get
Dv

1 .
N — k_z(m + Yiy — xAy)(c0s00y, —sinda, ).

Thus 0
IVIG, 0 = 2262+ 5% + 5 (0 + e — 1)

Setting z = ¢ on the universal covering, we get the following expression for the
metric of UD:
2 a2,4.2 2 Ay A ’
ds® = A7(dx" +dy") + —de—l—Tdy—l-dz .
We now choose D = §% \ {co} with the metric of constant curvature 4 (i.e., the
metric of the round sphere of radius %) given by the stereographic projection, i.e.,

1
A= ————.
1+ x24+ y2
Then we get
ds? = 22 (dx? + dy?) + Qia(vdx — xdy) + dz)>.
More generally, R? endowed with the metric
ds? = )\2((1x2 + dyz) + (tA(ydx — xdy) + d,z)2
with
1
A= K2 2

is the universal cover of a homogeneous manifold E of bundle curvature r and of base
curvature « > 0 minus the fiber corresponding to the point oo € S%. The fibers are




Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 95

given by {x = xg, ¥y = yo}in these coordinates. The canonical frame is (E1, E2, E3)
with

Ei = )L_l(cos(oz)ax +sin(oz)dy) + t(xsin(oz) — ycos(oz))d;,
Ey = )L_l(— sin(o z)dy + cos(oz)dy) + t(x cos(oz) + ysin(oz))d,, (1)
E3 = 8Z

with

which satisfy
K K
[E1: E2] =28 Es, [BpBsl=~—E1, [Ea.E1]=-—58s.
2t 2T

This frame is defined on the open set E” which is E minus the fiber corresponding to
the point oo € S%.
The Berger spheres in the strict sense are the manifolds such that « = 4.

2.3. The manifolds with the isometry group of the Heisenberg group Nilz. They
occur when T # 0 and « = (; they are fibrations over the Fuclidean plane.
The Heisenberg group is the Lie group

1
Nily = 0
0

o = Q

C
b|:(a,b,c)eR?
1

endowed with a left invariant metric.
It is useful to use exponential coordinates. In this model, the Heisenberg space
Nils is R? endowed with the following metric:

ds? = dx? + dy? + (r(ydx — xdy) + dz)*.

The fibers are given by {x = xg, y = yp} in these coordinates.
The canonical frame is (Fq, Ey, E3) with

E1 =08, —tyd, Ey=8,+1tx9, Ei=2, 2)
which satisty
[E1; Ex] =275ks, [Ex B3] =0, [Hs&]=0

The reader can refer to [FMP99] (where 7 = %).
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e s

2.4. The manifolds with the isometry group of PSL;(R). They occur when r # 0
and « < 0; they are fibrations over hyperbolic planes.

TN e

The Lie group PSL2(R) with its standard metric can be identified with the universal
covering of the unitary tangent bundle to the hyperbolic plane UH? equipped with
its canonical metric. Indeed, the group PSL,(R) acts transitively on UHZ, and the
stabilizer of any point in UH? is trivial. The unitary tangent bundle UH? can be
endowed with the metric induced by the standard metric on the tangent bundle TH?,
The reader can refer to [Sco83]. We will give an expression of this metric.

Let (x,y) — @(x,y) be a conformal parametrization of H? and let & be the
conformal factor, i.e., the metric of H? is given/‘bg:)f(dx2 +dy?). Then, proceeding

as in Section 2.2, we obtain that a metric on PSLy(R) is
3 _ 3By 2 2 Ay Ax :

This metric defines a homogeneous manifold with « = —1 and 7 = —%.
More generally, we can take the Poincaré disk model for the hyperbolic plane of
constant curvature « < (. The manifold ]DDZ(JL__K) x R, where D?(p) = {(x, y) €

R2: x2 + y% < p?}, endowed with the metric
ds? = 22(dx* + dy?) + (tAlydx — xdy) + dz)?
with
1
A= K2 2y
I+ 3(x= 4+ y)

1s a homogeneous manifold of bundle curvature T and of base curvature « < 0. The
fibers are given by {x = x¢, y = »o} in these coordinates. The canonical frame is
(£1, Eo, E3) with

E1 = 2" (cos(02)8, + sin(02)3y) + t(xsin(oz) — ycos(oz))d;,
Ey = 3~ Y—sin(oz)dy + cos(02)dy) + t(x cos(oz) + ysin(oz))d., (3)
E3 =9,

with

which satisfy

K K
[E1, E2] =2t E3, [E2, E3]l=—FE1, [E3 E1]=—EFE>.
2t 2T
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3. Preliminaries

3.1. The compatibility equations for surfaces in 3-dimensional homogeneous
manifolds. We consider a 3-dimensional homogeneous manifold E with an isometry

group of dimension 4, of bundle curvature = and of base curvature «. Let R be the
Riemann curvature tensor of E. Let 'V be an oriented surface in E, V the Riemannian
connection of 'V, J the rotation of angle % on TV, N the unit normal to V and S the
shape operator of V.

Proposition 3.1. For X, Y, Z, W € X(V) we have
R(X,V)Z, W) = (k = 3tH(Ro(X, V) Z, W) + (x — 4t (R((T: X, Y)Z, W),

R(X, V)N = (k — 4t (Y, T)X — (X, T)Y),

where
v =(N,§},

T is the projection of £ on'T'V, i.e.,
T=£&£—vN,
and Ro and Ry are as in Proposition 2.1.

Proof. This is a consequence of Proposition 2.1, using the fact that X, Y and Z are
tangent to the surface and N is normal to the surface. O

Corollary 3.2. The Gauss and Codazzi equations in E are

K =detS+ 1%+ (k — 4t2)v2,

VxSY — VySX — S[X, Y] = (k — 4t ((Y, T)X — (X, T)Y),
where K is the Gauss curvature of V.
Proposition 3.3. For X € X(V) we have
VxT =v(SX —7]X), dv(X)+ SX —7IX,T)=0.
Proof. On the one hand we have
Vxé = Vx(T +vN)

= VT +dv(X)N +vVyN
= VxT + (SX, T)N + dv(X)N — vSX.
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On the other hand we have

Vyt=1X x &
=tX x (I +vN)
= (X, T)N —vJX).

We conclude taking the tangential and normal parts in both expressions. O

3.2. Moving frames. In thissection we introduce some material about the technique
of moving frames.

Let V be a Riemannian manifold of dimension #n, V its Levi-Civita connec-
tion, and R the Riemannian curvature tensor. Let S be a field of symmetric oper-

ators Sy: T,V — T, V. Let (e1, ..., e,) be a local orthonormal frame on V and
(@', ..., ") the dual basis of (e1, ..., ey), ie.,
o' (er) = 8;.
We also set
o't = 0.

We define the forms a);, w;‘H, w! 41 and a)ﬁﬂ on V by

Cl)}(ek) = (ngej, ei)a a);'l-i_l(ek) - <S€k’ ej>’

J _ n+1

n+l _

Ct)n+1 = uU.

Then we have

; +1
Veej = Za); (ep)ei, Sep = Za);” (ex)e;.
i J

Finally we set Ry, = (R(ex, er)e;, ei).

Proposition 3.4. We have the following formulas:

do' —I—Za);/\wp = (), 4)
P
Za);"'l Aot =0, (5)
p
da)}—l—Za);/\a)f :_EZZR;CZkaAa)l’ (6)
2 k I

1
dcc);H'1 —I—Za);"'l /\0)5.7 =g ZZ(ngSel — Vg, Se — Slex, ¢], ej)a)k Aol (7)
r k !
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For a proof of these classical formulas, the reader can refer to [Dan04], Proposi-
tion 2.4.

3.3. Some facts about hypersurfaces. In this section we consider an orientable

hypersurface V of an (n + 1)-dimensional Riemannian manifold V. Let (e1, .. ., en)
be a local orthonormal frame on 'V, e,,41 thenormal to V, and (Eq, ..., E,41) alocal

orthonormal frame on V. We denote by V and V the Riemannian connections on vV

and 'V respectively, and by S the shape operator of 'V (with respect to the normal
en+1). We define the forms o, a)g on 'V as in Section 3.2. Then we have

vekeﬁ = Z a)g (ex)ey .
Y

Let A € SO, 41(R) be the matrix whose colummns are the coordinates of the eg in
the frame (F,), namely A% = (eg, Ey). Let € = (w%‘) € My (R).

Lemma 3.5. The matrix A satisfies the following equation:
A7ldA =Q+ LA
with

LG =2 ( X AALART ot

y,5,8

where the TS, are the Christoffel symbols of the frame (Ey).

Proof. We have

ep =) AYE,
o

Then, on the one hand we have

Vyep = ZdA;;(ek)ES + ZA%%k Es
= ZdAﬁ(ek)E(g + ZZZM AYTEE,

and on the other hand we have

Vees =)D @p(e) A E
4 b
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Identifying the coefficients we get
Wy = = 3 T AGALTS + Yo
y o8 Y
=2 D ApALT) ) oA,
y o3 ¥

since the frame (E,) 1s orthonormal.
We conclude using the fact that A~! is the transpose of A. O

4. Isometric immersions of surfaces into 3-dimensional homogeneous manifolds

We consider a simply connected oriented Riemannian manifold 'V of dimension 2. Let
ds? be the metric on V (we will also denote it by (-, -)), V the Riemannian connection
of V, R its Riemann curvature tensor, K its Gauss curvature, and J the rotation of
angle 5 on TV. Let S be a field of symmetric operators Sy : T,V — T,V, T" a vector
field on V such that || 7] < 1 and v a smooth function on 'V such that v < 1.

The compatibility equations for surfaces in 3-dimensional homogeneous mani-
folds with 4-dimensional isometry group established in Section 3.1 suggest to intro-
duce the following definition.

Definition 4.1. Let E be a 3-dimensional homogeneous manifold with a 4-dimen-
sional isometry group. Let « be its base curvature and 7 its bundle curvature. We say
that (ds2, S, T, v) satisfies the compatibility equations for E if

1717 +v? =1
and, forall X, Y, Z € X(V),
K =detS + 1% + (k — 41207, (8)
VxSY — VySX — S[X, Y] = (k — 420w ((Y, T)X — (X, T)Y), (9)
VT =v(SX — tIX), (10)
dv(X)+ (SX — 7IX, T) = 0. (11)

Remark 4.2. We notice that (10) implies (11) except when v = 0 (by differentiating
the identity (7', T) + v? = 1 with respect to X).
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Theorem 4.3. Let 'V be a simply connected oriented Riemannian manifold of dimen-
sion 2, ds? its metric and V its Riemannian connection. Let S be a field of symmetric
operators Sy: Ty'V — TV, T a vector field on''V and v a smooth function on 'V
such that ||T|)* +v? = 1.

Let E be a 3-dimensional homogeneous manifold with a 4-dimensional isometry
group and & its vertical vector field. Ler x be its base curvature and t its bundle
curvature. Then there exists an isometric immersion f:V — E such that the shape
operator with respect to the normal N associated to f is

df oSodf!

and such that
E=df(T)+vN

if and only if (ds%, S, T, v) satisfies the compatibility equations for E. In this case,
the immersion is unique up to a global isometry of E preserving the orientations of
both the fibers and the base of the fibration.

The fact that the compatibility equations are necessary was proved in Section 3.1.
To prove that they are sufficient, we consider a local orthonormal frame (eq, e2) on 'V
and the forms o', @*, @}, @?, @y and @3 as in Section 3.2 (with n = 2).

From now on we assume that © # 0 since the case = 0 was treated in [Dan04].

Wedenoteby (£, Ez, E3) the canonical frame of E (see Section 2.1); in particular
we have E3 = &. We denote by E’ the open set where the canonical frame is defined
(in particular we have E' = E when « = 0 or « < 0; see Sections 2.2, 2.3 and 2.4).

We set

T =(T,e), T° =v.
We define the one-form n on 'V by

n(X) = (T, X).

In the frame (e, ey) we have 5 = 3, T*ao*. We define the following matrix of
one-forms:
£ = (a)g) e M3(R).

For a point y € 'V where (e1, e2) 1s defined, let Z(y) be the set of matrices
Z € SO3(R) such that the coefficients of the last line of Z are the T8(y). It is
diffeomorphic to the circle SL. For Z € Z(y), we set

Lz =3 (X zAd 4T, ),

k V.,0,8

where the Ff/g are the Christoffel symbols of the frame (E, ) (see Section 3.3). This
defines an antisymmetric matrix of 1-forms.
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We also set o = 5.
From now on we assume that the hypotheses of Theorem 4.3 are satisfied. We first

prove some technical lemmas that are consequences of the compatibility equations.

Lemma 4.4. We have

dn = —2rvel Ao

Proof. By (10) we have dn(X,Y) = (VxT,Y) — (VyT, X) = 27vv{(X,JY). Thus
dn(er,ey) = —2tv. O

Lemma 4.5. We have
A7 =Y "T7e) + 117’

Y
d7? = ZTVa)g — 3!,
Y
A1 =) "T7e) —tT'e + 177"
¥

Proof. The first two identities are a consequence of condition (10) and the last one
of condition (11). O

Lemma 4.6. We have

0 2 0
dQ+ QA =[-12 0 0|o' Aw?
0O 0 0

0o 713 -1
+ k=47 =12 0 T!' | o' A’
7% =Tl

Proof. Weset W = dQ2 4 Q A Q and R,fdj = (Rlex, e1)ej, e;). By Proposition 3.4

we have
1

i _ i k ! i 3
k1

and by the Gauss equation (8) we have Rfd 5 = Eliclj + a); A co?(ek, er) with
Ry, = (k —37)(858] — 818%) + (e — 4 (T T78F + TR TP 8L — T 87 — T T78)).
Thus we get

\I}J’ = (& — 37:2)a)i Al + (k —47:2)(Tia)j — Tja)i) 7. B
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In the same way, by Proposition 3.4 we have
1
\11}3 — 5 Z Z(ngSe,z — V¢, Sex — Slex, et], ej)a)k P! a)l,
ko1
and by the Codazzi equation (9) we have

(Ve Ser — Vo, Sex — Slek. 11, ¢j) = (i —4r*)T>(T'85 — T*5)).

Thus we get

U=k —4tHT 0’ A

Hence we have

0O 1 0
U=k-3|-1 0 0w Aa?
0O 0 0

0 =77 —T°\

+ =412 0 0 |e' Ay
™ 0o 0
o 7' —0 \
+ k=4[ =T 0 -T?|a?An.
o 1 0 )
We conclude using that w! A 7 = T?0! A @?, 0* Ay = =T o' A w? and (T1)? +
(T2)2 + (T3)2 — 1. O

Lemma 4.7. We have

§ —= T2
L(Z)= (2t —0) ( T3 0 Tl) 9
-72 71! 0
0
0
— 0

0 0 0 0 7
+10 0 ]+ ]oO 0 | v
0 —7 0 T 0
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Proof. We compute that

L2y =Y (L Y 44 4T, )t
k y 8 €
=Y (WBLZ,+ 22 — 2V 775 — 2,7, 7))
k
G VAV AV AR AV AV A
=Y THZZL - 2,70 + T (ZyZ; — Z1 7))
k
+(r —o)TNZyZ, — ZL75)) 0"

Moreover the matrix Z lies in SO3(RR), so it is equal to its comatrix. Using this
fact we compute that

L(Z)) = -2t —o) T3 (T 0! + T?0?),
L(Z) =@t —o)T'T?0! + 2t — 0)(TH?0” — 10?,
L(Z); = -2t — o) (TH20! — 2t — )T T?0? 4 0!,

which proves the lemma. 0

Lemma 4.8. We have

0o -1 T1°
LAL=tQ2r—-a)T*[ T3 0 =T!'|o're’
—7% 7! 0
0 1 0
+r(r—0)| -1 0 0] Aw
0 0 0
Proof. We compute that
o 1 0
LAL=12t—-0)|=-T' 0 -=-T?|nnro
0o 71 0
0 -1r* -71° 0 -1 0
+tRr—a)| T2 0O 0 |nro'+22|1 0 0o Ao
T35 0 0 0 0 0

We conclude using that (T1)? 4+ (T2 + (T3 = 1. O
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Lemma 4.9. We have

0 —d7?® dT1?
LAQ+QAL=02t—o)nnA| dT3 0  —d7!
—dr? drt! 0
0 A L
+12t -V =T 0 T!' |o' Ao’

T -1t 0
0 -1 0
+12r—0)|1 O O ol A w?
0O 0

0 0 0 1
0 —1]|del+7|[ 0 0 0]de?
1 0 0

Proof. We compute that

LAQEQAL=0Qr—opAM

0 —a)% 0 0 a)% —w%
+ ro* A —a)% 0 a)% + 1ol A a)% 0 0
0 w 0 —w} 0 0
with
0 T?wy —Tlwl —T3w3 +T'lo)
M=|-T'w} +T*w3 0 T3w) — T?w?
Tla)% — T3a)g —Tzw% + T3a)% 0

We conclude using Lemma 4.5, formulas (4) and (5), and the fact that (71)% +
(T?? + (T = 1. H

We now prove the following proposition.

Proposition 4.10. Assume that the compatibility equations for E are satisfied. Ler
yo € Vand Ay € Z(yo). Then there exist a neighbourhood Uy of yo in 'V and a
unique map A: Uy — SO3(R) such that

A7NdA = Q+ L(A),
A(y) € Z(y) forall y € Uy,

A(yo) = Ao.
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Proof. Let U be a coordinate neighbourhood in V. The set
F={»2) e U xS03(R): Z € Z(y)}
1s a manifold of dimension 3, and
Ty.pF ={(u.0) € T,U & Tz803(R): ¢ = (dT7),(w)}.

Let Z denote the projection U x SO3(R) — SO3(R) € M3(R). We consider
on ¥ the following matrix of 1-forms:

O@=z2Z-Q- L)
where L(7) is defined in Lemma 3.5, namely for (y, Z) € ¥ we have
®(y,Z): T(y,z)}v — Mg,(R),

Oy (. ) = Z7'¢ — Qy(u) — L(Z)(w).
We claim that, for each (v, Z) € F, the space
D(y, Z) =ker Oy, z)

has dimension 2. We first notice that the matrix ® belongs to so3(R) since €2, L(Z)
and Z~1dZ do. Moreover we have

(ZO)y =dZy — Y Zywy — > L L(Z), =dT? =) "TVel — > "TYL(Z)}.
Yy 14 14 y

Using Lemmas 4.5 and 4.7 we compute that
3 _
(ZO)g =
Thus the values of ®(, z) lie in the space
¥ = (H € s03(R); (ZH) = 0},

which has dimension 1 (indeed, the map F: SO3(R) — §%, Z — (Z3)4 is a sub-
mersion, and we have f1 € # if and only if ZH € ker(dl') z). Moreover, the space
T¢y,z) F contains the subspace {(0, ZH); H < J¢}, and the restriction of &y 7y on
this subspace is the map (0, ZH) — H. Thus O, z) is onto #€, and consequently
the linear map ®y 7 has rank 1. This finishes proving the claim.

We now prove that the distribution D 1s involutive. We first compute that

dO = —Z7 'z A 771z —dQ — dL
——(O+Q+IVAO+Q+L)—dQ2 —dL
=——OOAO-—0OAQL-—QAO-—OAL-LAB

—QAL—LAQ-QAQ—dQ—LAL-—dL.
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Using Lemmas 4.4, 4.6, 4.8, 4.9 and the relation o = 5, we obtain

d=-0OA -—-OAL—-—QAO-—OAL-LAO.

From this formula we deduce that if £1,%& € D, then d® (&1, &) = 0, and so
O(&1, 6] = &1 - ©(5) —& - O(1) —dO(&, &) =0, 1e., [§1, 5] € D. Thus the
distribution &£ is involutive, and so, by the theorem of Frobenius, it is integrable.
Let 4 be the integral manifold through (yo, Ag). If { € T4,SO3(R) 1s such that
(0, ¢) € Tiyg,and = D(yo, Ap), then we have 0 = Oy, 40)(0,¢) = Aalf. This
proves that
Ty, A0 A N ({O} X TAOSOg,(R)) = {D}.

Thus the manifold «4 is locally the graph of a function A: U} — SO3(R) where U
is a neighbourhood of yg in U. By construction, this map satisfies the properties of
Proposition 4.10 and is unique. O

Proposition 4.11. Ler xo € E (without loss of generality we can assume that
xo € B)). There exist a neighbourhood Uy of yo contained in Uy and a unigue
function f: Uy — E such that

df = (Bo f)Aw,

f(yo) = xo,

where w is the column (o', @*,0) and, for x € E/, B(x) € M3(R) is the matrix of
the coordinates of the frame (Ey(x)) in the frame (0xe).

Proof. We consider on Uy x ' the following matrix of 1-forms:
A =B ldx — Aw,
namely, for g € Uy and x € E’ we have
Ay T,U @ TLE — M3 1(R),

Ao (u,v) = Bx) v — Alg)w, (u).

We first notice that for all (¢, x) € Uy x E the linear map A, ) is onto M3 1(R).
Consequently the space
8(q', x) = ker A(q’x)

has dimension 2. We will prove that this distribution & is integrable.
We have
dA = —B BB ' Adx —dA Aw — A A do.
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By equations (4) and (5) we have dw = —Q2 A @; and by Proposition 4.10 we have
dA = AQ + AL(A). Thus we get

dA = —B 'dBAA — B 'dB A Aw — AL(A) A w.

Using Lemma 4.7 we compute that

T! 0
LMrw=—0Cr—a)T |T? o' ro® — | 0| o' Ao?,
T3 o

and thus, using the fact that A% — 7P and A = comA, we get

—O'A%
— 2 1 2]
AL(A)rho = | —0A5 |o Ao”.
—2¢7T°

We will use the notation (x, vy, z) instead of (x', xZ, x3) for the coordinates in E
and we will use the local models described in Sections 2.2, 2.3 and 2.4. Using
formulas (1), (2) and (3), we get that the matrix B is

2L cos(oz) —2"Lsin(oz) 0
B = 2 Lsin(oz) 2~ Lecos(oz) 0],
T(xsinoz —ycosoz) t(xcoscz+ ysinoz) 1
with
1
= ) 3
I+ 5%+ )

We will write .

o
Aw = | o
hi
with _ _
ol = A{wl + Aéa)z.
Then we have

r(cos(oz)dx + sin(ez)dy) — o!
A =B MdX — Aw = | M—sin(o7)dx + cos(o7)dy) — o
tA(ydx —xdy) +dz —n

We also compute that

FAa(xdx + ydy) —odz 0
B~'dB = odz Sa(xdx +ydy) 0
a b 0
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with
K

a= 7k(y cos(oz) —xsin(oz))(xdx + vdy) + r(sin(oz)dx — cos{oz)dy),

b = —%A(x cos(oz) + ysin(oz))(xdx + ydy) + t(cos(oz)dx + sin(oz)dy).
Thus we have

sA(xdx + ydy) A ol —odz A o?
B7'dB A Aw + AL(A) A w = | odz A el + Sa(xdx + ydy) A o?
anal +bAa?

Using the above expression for A we gel
adx = cos(oz) Al — sin(oz) A% + cos(oz)a! — sin(oz)e?,

ady =sin(oz)A! + cos(oz)A? + sin(o ) + cos(oz)e?,
dz = A + n — ta(ydx — xdy).
The term in the first line of the matrix B~'dB A Aw + AL(A) is

%(y cos(67) — x sin(oz))a? A al + o7 (ycos(oz) — x sin(o 7))l A o

—an A a® —UA%wl A w2 —I—Xl

where x! is a linear combination of the A% (the coefficients being 1-forms). Since
o = 5=, the first two terms in this expression cancel. Moreover we have n A o =
(AJA3 — A3ADw! A w? = —Alw! A @?, hence the term in the first line of the
matrix B~'dB A Aw + AL(A) is x!. In the same way, the term in the second line
of the matrix B~1dB A Aw + AL(A) is a linear combination of the A% which will
be denoted by x?2. Finally we compute that the term in the third line of the matrix

B~1dB A Aw + AL(A) is
z
(—t — z(x2 + y2)> al Aa? = 21T 0! A 0 + X3

where x3 is a linear combination of the A%. Since A~! = 1 + %(x2 + y?) and
! Aa? = (AlAT — AlAD ! A 0 = T30! A @, this term is simply x3. We
conclude that

B YdB A Aw+ AL(A) = g
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where y is a matrix of 2-forms which are linear combinations of the coefficients of A.
Finally we have

dA = —B B A A — g.

From this formula we deduce that if &1, & € €, then dA (&1, &) = 0, and therefore
[£1, &2] € &. Thus the distribution & 1s involutive, and so, by the theorem of Frobenius,
it i$ integrable.

Let 4 be the integral manifold through (yo, xp). If v € Ty, 18 such that (0, v) €
T(yo.x) b = D(y0, x0), then we have 0 = Ay, 1) (0, v) = B(xo)~'v. This proves
that

Tiyg,xp) o N ({0} - TXOIE) = {0}.

Thus the manifold # is locally the graph of a function A: Uy — E’ where U is
a neighbourhood of yg in Uy. By construction, this map satisfies the properties of
Proposition 4.10 and is unique. O

We now prove the theorem.

Proof of Theorem 4.3. Let yo € V, Ag € Z(yo) and xo € E’. We consider on 'V a
local orthonormal frame (eq, e2) in the neighbourhood of yo and we keep the same
notations. Then by Propositions 4.10 and 4.11 there exists a unique map A: U, —
SO*(R) such that

A71dA = Q + L(A),

A(y) € Z(y) forall y € Uy,

A(yg) = Ao,

and a unique map f: U — E’ such that

df = (Bo f)Awm,

f(yo) = xo,

where U, 1s a neighbourhood of yg, which we can assume simply connected. We will
check that f has the properties required in the theorem on U5.

Wehaved f“(er) = (B(f)A)Y,soin the frame (dy«) the vectord f (e ) 1s given by
the column & of the matrix B A, whichis invertible. Hence d f has rank 2, and thus f is
an immersion. Moreover, in the frame (£, ) the vector d f (e ) 18 given by the column &
of the matrix A, which is orthogonal, and thus we have (d f (e,), d f(e,)) = 55 , which
means that f is an isometry.

The columns of A(y) form a direct orthonormal frame of E. The first and second
columns form a direct orthonormal frame of Ty / (V) Thus the third column gives,
in the frame (Z), the unit normal N(f(y)) to f (V) in E at the point f ().
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We set X; = d f(e;). Then we have
dAf (ex) = (Vx, X, Eo) + (X, Vx, Ea)
= (Vx,X;. Ea)+ Y _ Y ALATS,

= (V. Xj. Eq) + (AL(A)? (ep),
SO
(Vx, Xj. Ny =3 (Vx, Xj. Ea)AS = ZA%‘ (dA — AL(A))¥ (ex)

=Y AJ(AQ)Y(er) = ZZA“A o (er)

= ) (ex) = (Ser. ;).

This means that the shape operator of f(V)mEisdf oSodf —1,
Finally, the coefficients of the vertical vector £ = E3 in the orthonormal frame
(X1, X2, N) are given by the last line of A. Since A(y) € Z(y) forall y € Uy we get

=3 "T/X;+T°N=df(T)+vN.
j

We now prove that the local immersion 1s unique up to a global isometry of E
preserving & (and also, consequently, the orientation of the base of the fibration).
Let /: Uy — E be another immersion satisfying the conclusion of the theorem,
where Uz is a simply connected neighbourhood of yg included in Us, let (X g) be the
associated frame (i.e., )2,» — df(ej) and X3 is the normal of f(’V)) and let A the
matrix of the coordinates of the frame (X g) in the frame (L, ). Up to an isomeltry
of E (which 1s necessanly direct), we can assume that f ( yo) = f (vo) and that the
frames (Xg(yo)) and (Xﬁ(yo)) coincide, i.e., A(vo) = A(yg). We notice that this
isometry necessarily fixes & since the 7% are the same for x and x. The matrices
A and A satisfy A71dA = Q@+ L(A) and A~'dA = Q + L(A) (see Section 3.3),
A(y), A(y) € Z(y) and A(yo) = A(yp), thus by the uniqueness of the solution of
the equation in Proposition 4.10 we get A(y) = A( v). We conclude similarly that
f = fonUs.

The proof that this local immersion f can be extended to the whole V (since V
is simply connected) is exactly the same as the proof of the corresponding statement
in Theorem 3.3 in [Dan04] (it is a standard argument). O

Remark 4.12. If (ds2, S, T, v) satisfies the compatibility equations and correspond
to an immersion f: X — I, then (dsz, S, =T, —v) also satisfies the compatibility
equanons and corresponds to the immersion o o f where o 18 an isometry of E
reversing the orientations of both the fibers and the base of the fibration.
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5. Constant mean curvature surfaces in 3-dimensional homogeneous manifolds

In this section we will give applications of Theorem 4.3 to constant mean curvature
surfaces (CMC) in 3-dimensional homogeneous manifolds with 4-dimensional isom-
etry group. Abresch and Rosenberg proved that there exists a holomorphic quadratic
differential for CMC surfaces in S x R and H” x R, generalizing the Hopf differential
for CMC surfaces in 3-dimensional space forms ([AR04]). Since the Hopf differential
1s a very useful tool for CMC surfaces, this motivated many works on CMC surfaces
in §? x R and H? x R. Recently, Abresch and Rosenberg announced the existence of
a holomorphic quadratic differential for CMC surfaces in all 3-dimensional homo-
geneous manifolds with 4-dimensional isometry group ([ARO5]). This indicates that
the theory of CMC surfaces in these manifolds may be particularly interesting.

We will consider constant mean curvature immersions of oriented surfaces. Con-
sequently the mean curvature will be defined with a sign: it will be positive if the
mean curvature vector induces the same orientation as the initial orientation, and it
will be negative if the mean curvature vector induces the opposite orientation.

We will denote by T and J the identity and the rotation of angle 3 on the tangent
bundle of a surface.

5.1. A generalized Lawson correspondence. It is well known that there exists
an isometric correspondence between certain simply connected CMC surfaces in
space-forms ([Law70]): more precisely, every simply connected CMC Hy surface
in M3(K ) is isometric to a simply connected CMC H; surface in M3(K,) with
Ky — Ky = H22 — le, and the shape operators of these two surfaces differ by
(I — )1 Two such surfaces are called cousin surfaces. This correspondence 1s
often called the Lawson correspondence. In particular, any simply connected minimal
surface in S? is isometric to a CMC 1 surface in R?, and any simply connected minimal
surface in R? is isometric to a CMC 1 surface in H>.

The Lawson correspondence is a consequence of the Gauss and Codazzi equations
in the space-forms.

In this section we will use the compatibility equations for homogeneous 3-mani-
tolds with 4-dimensional isometry group and Theorem 4.3 to prove the existence of an
isometric correspondence between certain simply connected CMC surfaces in these
3-manifolds. Hence this will be a generalisation of the Lawson correspondence.

The technique will be to start with some data (dsZ, S, T, v) on a surface satisfying
the compatibility equations for some homogeneous 3-manifold and to modify them
in order to get data satisfying the compatibility equations for another homogeneous
3-manifold. An important fact is that the space of symmetric traceless operators is
globally invariant by rotation. The easiest change is to keep ds? and v, and (o rotate
T and the traceless part of S by some fixed angles; the Codazzi equation then implies
that we need to take the same angle for 7" and the traceless part of S.
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Proposition 5.1. Let Ey and E; be two 3-dimensional homogeneous manifolds with
4-dimensional isometry groups, of base curvatures k1 and ky and bundle curvatures
1 and Tz respectively. Assume that

K1 — 47:12 =Ky — 4t22.
Let H1 and H> be two real numbers such that
t12+H12:t22+H22.

Let 'V be a surface with a quadruple (ds®, Sy, T1, v) satisfying the compatibility
equations for By and such that
trS1 =2H;.

Let
0elR,

T, =e”Ty,
Ss = (81 — HiD) + Hol.

In particular S, is symmetric and satisfies
trS; =2H;.
If the real number 6 satisfies
 +iHy = ¢ (r) +iH), (12)

then the quadruple (ds*, Sy, T», v) satisfies the compatibility equations for Ey.
Conversely, if the function v is not identically zero and if the quadruple
(ds?, S, Ts, v) satisfies the compatibility equations for B, then (12) holds.

Proof. The fact that S 1s symmetric comes from the fact that the space of symmetric
traceless operators is invariant by a rotation.
We have
det(Sy — Hil) = det Sy — H}

for k =1, 2, and so
detS; = detS, + Hf — Hj.

Let K be the Gauss curvature of the metric ds2. By the Gauss equation (8) we have
K =detS1 + rlz + (k1 — 41‘12)1)2
=det Sz + le — sz + ‘E12 + (k1 — 4t12)v2
=det Sy + 15 + (ki — dt3)?
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sincex; —4t} = kp—47vf and 1+ H{ = 7+ H;. Thus the quadruple (ds?, Sz, T2, v)
satisfies the Gauss equation for ;.
Since J commutes with Vy for all vector ficlds X, we have

ViSa¥ — VySoX — So[X, V] = ™ (VyS$1Y — Vy$1X — S4[X, ¥]).

On the other hand, a computation done in the proof of Proposition 4.1 in [Dan04]

shows that
(¥, )X — (X, Th)Y = P ((¥, T)) X — (X, T1)Y).

Hence the Codazzi equation for E; is satisfied by (ds?, Sz, 75, v).
To prove that the quadruple (ds?, Sa, T», v) satisfies the compatibility equations
(10) and (11) for E,, it suffices to prove that

Sy — 1) = (S — 1)), (13)
Using the expression of Sz, equation (13) 1s equivalent to
Hol — o] = /T (H1 — 1)), (14)

We notice that this is a purely algebraic condition: the shape operators are notinvolved
anymore. We consider a local direct orthonormal frame and we will identify the
operators with their matrix in this frame. Then we have

0 —1
J_(l 0)‘

Then equation (14) is equivalent to

Hy = Hicost + t181né,
70 = 11C080 — Hisind,

1.¢., it is equivalent to equation (12). This proves the first assertion of the theorem.
Conversely, if (dsz, S;, 1>, v) satisfies the compatibility equations for E;, then
the compatibility equations (10) for (dsz, S1, 711, v) and (dsz, Sy, T, v) imply that
(13) holds at every point where v # 0. If there exists a point where v # 0, this
implies that (12) holds. (.

Theorem 5.2. Let Ey and Ey be two 3-dimensional homogeneous manifolds with
4-dimensional isometry groups, of base curvatures k1 and 2 and bundle curvatures
11 and ta respectively, and such that

K1 —47:122162—41'22.

Let &1 and & be the vertical vector fields of Eq1 and E; respectively.
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Let X2 be a simply connected Riemann surface and let x1 : ¥ — Eq be a conformal
constant mean curvature Iy immersion with IIF > 3 — t2. Let Ny be the induced
normal (compatible with the orientation of %). Let S1 be the symmelric operator
on X induced by the shape operator of x1(2) associated to the normal N1. Let T
be the vector field on 2 such that dx1(11) is the projection of &1 onto T(x1(%)). Let
v = (N1, &1).

Let Hy € R such that

t} + H? = 13 + H.

Let 0 € R such that

v+ il = (r +iHy).

Then there exists a conformal immersion xy: X — Eo such that:
(1) the metrics induced on X by x1 and x; are the same,

(2) the symmetric operator on X induced by the shape operator of x2(X) is
(81— Hil) + Hal,

(3) & = dxa (e’ T1) + vNy where Ny is the unit normal 1o x».

Moreover, this immersion xy is unique up to isometries of Ey preserving the
orientations of both the fibers and the base of the fibration, and it has constant mean
curvature Hy.

The immersions x1 and x> are called sister immersions. The number 6 is called
the phase of (x1, x3).

This means that there exists an isometric correspondence between CMC Hy simply
connected surfaces in E; and CMC H» simply connected surfaces in E,.

Proof. Let ds? be the metric on ¥ induced by x1. Then (ds?, 81, Ty, v) satis-
fies the compatbility equations for E;. Thus, by Proposition 5.1, the quadruple
(ds?, 82, 11, v) with S2 = 77(S1 — HiI) + H>I also does. Thus by Theorem 4.3
there exists an immersion x; satisfying properties 1, 2, and 3, and this immersion is
unique up to isometries of E, preserving the orientations of both the fibers and the
base of the fibration. Moreover, we have tr So = 2H», 1.e., the immersion x> has
mean curvature H. O

Figure 1 helps visualizing which classes of CMC surfaces are related by the sis-
ter surface correspondence. We start from a CMC surface in some homogeneous
3-manifold. Then we can go horizontally on the graph. We can go to the left un-
til reaching a manifold with ¢ = 0; in this case the absolute mean curvature | /|
increases. We can 2o to the right until reaching A = 0; in this case | H| decreases.

A particularly interesting case is when [E; is the Heisenberg group Nilz with its
standard metric (k1 = 0, 71 = ) and E» = H? x R (k, = —1, 7, = 0). Then CMC
H; surfaces in Nily correspond isometrically to CMC H, surfaces in H?> x R with
H3 = H? + . In particular we have the following corollary.
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K — 412 \f

SQ(K) xR

Berger spheres

(first type)

AL round spheres

| H| increasing

Berger spheres
PSL5(IR) (second type)

HZ(K) x R

Figure 1. The correspondence of the sister surfaces.

Corollary 5.3. There exists an isometric correspondence with phase 6 = 7 be-
ween simply connected minimal surfaces in the Heisenberg group Nily and simply
connected CMC % surfaces in H> x R.

The fact that & = 5 suggests that this correspondence looks like the conjugate
cousin correspondence between minimal surfaces in R? and CMC 1 surfaces in H>
([Bry87], [UY93]). This correspondence has nice geometric properties, and is useful
to construct CMC 1 surfaces in H* with some prescribed geometric properties starting
from a solution of a Plateau problem in R3 (see for example [Kar05], [Dan06]). In the
same way, the conjugate cousin correspondence between minimal surfaces in S° and
CMC 1 surfaces in R was used (o construct CMC 1 triunduloids in R?® ([GBKS03]).
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In particular, if a minimal surface X in Nil3 contains an ambient geodesic y, then
the normal curvature of v vanishes, and so

! ! ! ! 1 / ! !
0= " S1y) z(y , ISy +§JV ) = —({y. IS2y").
This means that Sy’ is colinear to y/, i.e., y is a geodesic line of curvature in the
sister CMC 7 surface in H? x R,

We describe three examples of sister CMC % surfaces in H? x R of minimal
surfaces in Nil3. We will use the exponential coordinates given in Section 2.3 (with
7 = %). We will denote between parentheses ( ) the coordinates of a vector in the
coordinate frame (dy, dy, 9;), and between brackets [ ] the coordinates of a vector in
the canonical frame (Eq, E», E3); with these notations one has

a

b
%(ya —xb)+c

o SR
I

Example 5.4 (vertical plane). A vertical plane # in Nils is a flat minimal surface
(but not totally geodesic). A conformal parametrisation is

U
w: (u,v)— |0
(7}
We have
ou =E3, ¢@,=E;, N=E,
and so
v =20,
(Ta 8LL> = <E’ WM) = 1a
<T7 81)) = (Ea WU) = 07
1e.,
T = au
We also have
_ 1 1 _ 1 1
V(PuN = EEl ZQOM, @DN = EE?) - 2(/9Ua

so in the direct orthonormal frame (0,, d,,) we have

1/0 1
S__E(l 0)'
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We now show that the CMC % sister in H? x R of 2 is the product # x R
where # is a horocycle in H?. We will use the upper half-plane model for H?. Then
H? xR = {(x, v, z) € R*; y > 0} and the metric is ds*> = %(dx2 +dy?) +dz%. We
consider the direct orthonormal frame (£, £, E3) defined by I = y9,, £y = ydy,
Ey = d;; it satisfies VEl Ei=E,, VEl E, = —FE;, and the other derivatives vanish.
For #, we can choose the curve of equation y = 1inH?. A conformal parametrization
of # x Ris

—Uu
¢ (u,v)y— | 1
v

We have
@M:_El, @U :E37 N:EZa

and so
v=0, T =2,.

We also have
Vi, N = E1 = — @y, Vg, N =0,

so in the direct orthonormal frame (d,, d,) we have

= 1 0
~(39),
) Hence, ¢ induces on R2 the same metric as ¢, and we have 1 = v, T = IT and
5 =18+ %I, so ¢ is the sister immersion of ¢. The vertical lines in & are mapped

to horizontal horocycles in # x R, and horizontal lines in & are mapped to vertical
lines in # x R.

Example 3.5 (surface of equation z = 0). The surface #4 of equation z = 0 in the
exponential coordinates is a minimal surface in Nils which is invariant by rotation
about the z-axis (but it is not invariant by any translation; see [FMP99]). We consider
the following parametrisation:

U Cosv
@: (u,v) — | usinv |,

0
for u > O (the origin in # 1s excluded). We have
CoS v cosv

¢y = | sinv | = | sinv |,
0 0
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—u sinv —u sinv
oy = | ucosv | =| ucosv |,
0 —%uz
S0
(Pus u) = 1,
2 u?
(WU,(/QU> =u (1 + _) ’
4
{(@u, pv) = 0.
The unit normal vector is N = ||$Z EZZM ; we compule that
1
1V =

——
J1+5

A direct orthonormal frame (eq, e3) is given by

1

elzau, 62:—81;-
2
uy 1+
We compute that
1 = —Lav.

2
21+ 4

We now show that the CMC % sister in H? x R of # is the CMC % graph 8 of
Theorem D in [NR0O4]. This surface B is a graph over the entire H? and it is invariant
by rotation about a vertical axis. If we take for H? the Poincaré unit disk model,

then & is the graph of the function (x, y) — . . We will use the Lorentzian
2] : 1—x2—32
for H* x R, i.e.,

H> xR ={(x" !, 2% xH e L x B —x"? + )2 + 2?2 = =1, x¢ > 0}

with the restriction of the quadratic form —(dx®)? + (dx1)? + (dx?)? + (dx?)%. In
this model, we consider the map
2
1+ ”7
u 1+ ”742 COS v
gb: (Lt, U) = 2, *
1+ MT sin v
2
241+ MT
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for u > (0. We can check that it is a parametrization of $8 minus the origin (using that
the correspondence between the Poincaré model and the Lorentzian model is given

by x +iy = x iz’ x). We have

14x0 2=
u,/l-l—%z 0
1_|_u72 COS v —Lh/‘l—l—%SinU

QBM = ;2 ( 2) ’ (/511 = 5 s
1+ % (1+”7)sinv a1 + %= cos v
u 0
2
SO
(@uﬂﬁu) = 1,
(v, Pu) = Mz (1 ~+ M_z) )
4

(@uﬂﬁv) = 0,

s0 ¢ induces the same metric as ¢. We compulte that

u

T = ———e =1T.
U
Bl +Er
Thus we also have 72 = v%. Moreover, ¢, points outwards and ¢, points in the
u P p

counter-clockwise direction, so the normal N points up, i.e., v > 0. So we get
M=,

It remains to check that § = JS + %I. Since v # 0, the compatibility equations (10)
for ¢ and ¢ imply that S=1S— %J ) = J8 & %I. Hence ¢ is the sister immersion
of ¢.

The straight lines in 4 passing through the origin are mapped to the generatrices
of 8, which are lines of curvatures lying in vertical planes. Thus the symmetries
of 8 with respect to these vertical planes correspond to the symmetries of 4 with
respect to the straight lines passing through the origin.

Example 5.6 (surface of equation z = %), The surface # of equation 7 = % in the
exponential coordinates is a minimal surface in Nil3 which is invariant by translation
along the x-axis (see [FMP99]; note that in this model this translation is not given by
the Euclidean one). We consider the following conformal parametrisation:

il
@: (u,v) — sinh v
Lusinh v
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We have
1 0
Py = 0 , ¢y = |coshuv
sinh v 0

We have (¢, ¢,) = (¢, ¢,) = cosh? v and (@,, ¢,) = 0. The unit normal vector is

N = 0
coshv 1
We have )
1 sinh v
v — ) — -~ au -
cosh v cosh? v

We now show that the CMC % sister in H? x R of # is the CMC % graph 8 given
by formula (29) in [SE05]. This surface B is a graph over the entire H? and it is
invariant by a one-parameter family of hyperbolic transactions. If we take for H? the

2 2
upper half-plane model, then B is the graph of the function (x, y) > xy+y . We
will use the notations of example 5.4. A conformal parametrisation of 8B 1s

—e' tanh v
~ 24
@- (M’U> B coeshv
cosh v
We have
—e* tanh v -
_ ot ~ sinh v
Py = cosh o s Py = — tanh v )
0 sinh v

80 (P, @u) = (Py. @) = cosh?v and (@, ¢,) = 0. Hence ¢ induces the same
metric as ¢. We compute that

B 1
V= =V
cosh v
and ,
i sinh v
I = —zav = JT.
cosh” v

Finally, since v # 0, the compatibility equations (10) for ¢ and ¢ imply that S =
J(S — %J) =JS+ %I. Hence ¢ is the sister immersion of ¢.

The straight lines in 4 given by x = x( are mapped to the generatrices of B,
which are lines of curvatures lying in vertical planes. Moreover, the x-axis in A 1s
mapped to a horizontal geodesic of H? x R lying in 8. Thus the symmetries of B
with respect to vertical planes correspond to the symmetries of A with respect to the
straight lines.
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Example 5.7 (CMC rotational spheres). The sister of the CMC Hj rotational sphere
in Nilz is the CMC ,/ H12 + % rotational sphere in H? x R. Indeed, the sister of this

sphere is a possibly immersed CMC sphere in H? x R, which is necessarily rotational
by a theorem of Abresch and Rosenberg (JAR0O4]).

Remark 5.8. CMC H surfaces in H? x R have very different properties when H < %
and when H > %; for example compact embedded CMC H surfaces exist only for
H > % The reader can refer for example to [NRO4]. An explanation could be that
CMC H surfaces in H? x R arise from minimal surfaces in a Berger sphere when

H > %, in Nilz when H = %, and in a space PSL;(R) when H < %

Remark 5.9. When; —4rjz = 0, the sister relation is the composition of the classical

cousin relation between the round 3-spheres and R and of the conjugation by a phase
& in the associate family. The hyperbolic 3-space does not appear in this classification
since it is not a fibration over a 2-manifold of constant curvature.

Remark 5.10. When r; = H; = 0, the sister relation gives the associate family of a
minimal surface in M2 (k) x R (any 8 works). The associate family is a one-parameter
family of minimal isometric deformations of this surface obtained by rotating the
shape operator (see [Dan0O4]).

A natural question is that of the existence of minimal isometric deformations
of a given minimal surface in a homogeneous 3-manifold E such that = # 0. The
compatibility equations show that an associated family cannot be obtained in a simple
way as when © = 0; indeed, if the quadruple (ds?, S, 7, v) satisfies the compatibility
equations for E, then, in general, the quadruple (ds?, ¢?’S, ¢*’ T, v) where 6 € R\
2w Z does not. The question of the existence of the associate family for minimal
surfaces in £ when t # 0 remains open.

5.2. Sister surfaces and stability. We now show that the stability operator is pre-
served by the sister immersion correspondence, which was not obvious a priori since
the stability operator is extrinsic.

Proposition 5.11. Ler X be a simply connected Riemann surface and letx: X — E
be a CMC H immersion. Then the stability operator induced by x on % is

L=A—2K+4H?* +4t% + (x — 4D (1 + %)

where A is the Laplacian of the induced meiric on % and K the Gauss curvature of
this metric.
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Proof. We recall that the stability operator is
L = A+ ||S||* + Ric(N)

where N is the unit normal to x (%), S its shape operator and Ric the Ricci curvature
in E (see for example [NRO4] and references therein).

Let (Eq, E2, E3) bethecanonical frame of E. ThenwehaveRic(E1) = Ric(E,) =
x — 2% and Ric(E3) = 217 (see Section 2.1), and so

Ric(N) = (k =251 —vH) + 27507 = (k —425)(1 = v?) + 272,
On the other hand we have
IS|I? = 4H? — 2detS = 4H? + 277 4+ 2(k — 41*0? — 2K
by the Gauss equation (8). Thus we get
ISII? + Ric(N) = 4H? + 472 + (x — 4t (1 +v?) — 2K. O

Proposition 5.12. Let X be a simply connected Riemann surface and letx1: £ — K
and xy: X — [y be two sister immersions. Then x1 and xy induce the same stability
operator on X.

Proof. This follows Proposition 5.11 since x1 and x; induce the same metric on X,
le + r12 = H22 + t22 and x1 — 4t12 =Ky — 41’22 by hypotheses. O

We recall that a CMC surface 'V (possibly with boundary) in a Riemannian 3-
manifold 'V is said to be strongly stable if

_ffo>0 (15)
v

for all smooth functions f on 'V with compact support, where L is the stability operator
of V. The CMC surface V is said to be weakly stable if (15) holds for all smooth
functions f on 'V with compact support and such that fv f=0.

Corollary 5.13. Let 1 C Ei and Eo C Ey be sister surfaces (possibly with
boundaries). Assume that Xy and X are simply connected. Then Xy is strongly
stable (respectively, weakly stable) if and only if 2o is strongly stable (respectively,
weakly stable).

Proof. Since %7 and 2 are simply connected, we can identify them globally, and
the result follows from Proposition 5.12. O
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5.3. Twin immersions. In this section we will study the special case of sister im-
mersions lying in the same homogeneous 3-manifold. They necessarily have opposite
mean curvatures.

Theorem 5.14. Let E be a homogeneous 3-manifold with a 4-dimensional isometry
group, of base curvature k and bundle curvature T. Let & be its vertical vector field.

Let % be a simply connected Riemann surface and let x . 2 — E be a conformal
constant mean curvature H # Oimmersion. Let N be the induced normal (compatible
with the orientation of X). Let S be the symmetric operator on X induced by the
shape operator of x(X) associated to the normal N. Let T be the vector field on =
such that dx(T) is the projection of & onfo T(x(X)). Let v = (N, &). Let

H
f = —2 arctan —.
T

Then there exists a unique conformal immersion x: ¥ — E such that:
(1) the metrics induced on T by x and x are the same,

(2) the symmetric operator on % induced by the shape operator of 2(X) is S =
NS — HI) — HI = 1S — t]) + 1,

(3) & =dx('T) + vN where N is the unit normal fo X.

Moreover, this immersion x is unique up to isometries of E preserving the ori-
entations of both the fibers and the base of the fibration, and it has constant mean
curvature —H.

It is called the twin immersion of the immersion x.

Proof. This is a particular case of Theorem 5.2 with E; = E; = E, =0 =r,
Hy = —H, = H. Itsuffices to check that the plgaseQ satisfies t —i H = ¢!’ (vt +i H).
The equivalence of the two expressions of S 1s a consequence of (14). O

We notice that when 1 — 0, then & — 7, ie, T — —T, and also S — —S.
This limit corresponds to the image of the initial surface by a horizontal symmetry in
M?(x) x R.

Moreover, we notice that the twin surface of a multigraph (over a part of the base
of the fibration) is also a multigraph (since a surface is a multigraph if and only if v
does not vanish).

This suggests that the twin surface could be used to get an Alexandrov reflection-
type principle in homogeneous manifolds with non-vanishing bundle curvature, since
there is no Alexandrov reflection principle (see [Ale62]) in these manifolds (the hor-
1zontal and vertical “symmetries” are not isometries). Such an Alexandrov reflection
principle would be very useful for the theory of CMC surfaces in homogeneous
manifolds, in particular for proving that any closed embedded CMC surface in the



Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 125
Heisenberg group or in PSL,(IR) is a rotational sphere (this was proved for CMC
surfaces in R, H?, a 3-hemisphere, H? x R and a 2-hemisphere cross R using the
Alexandrov reflection principle).

We now give some examples of twin surfaces in the Heisenberg group Nils with
its standard metric (i.e., k = 0, 7 = %). We will use the exponential coordinates
described in Section 2.3. Figueroa, Mercuri and Pedrosa classified CMC surfaces in
Nilz invariant by a one-parameter family of translations or rotations (see [FMP99];
note that in their article the mean curvature is defined as the trace of the shape operator,
whereas in this paper it is defined as the half of the trace). We will compute the twin
surfaces of these examples. We will denote between parentheses () the coordinates of
a vector in the coordinate frame (0, dy, 0;), and between brackets [ ] the coordinates
of a vector in the canonical frame (E1, E2, E3).

Example 5.15 (translational tubes). Let /7 > 0. The map

with

£ 1+cos2u — 1 +4H? _ sin v
v) = ——Ssmv + ———arcsm| ———1,
4H* 2H V1+4H?

for (u,v) € R?, is a CMC H immersion defining a surface which is invariant by
horizontal translations in the x-direction. This surface is an annulus, and it 1s a bigraph
over a part of the minimal surface of equation z = 2 ; moreover it is “symmetric”
with respect to this minimal surface.

We have
1 1
(pu = O — O ¥
cos v cosvy
1H 2H
0 0
S R
S”“’ + 4Hf (v) a5 Y fu)
.
CcoS
=1 1 ,
f'(v) = 2cos v1/ + a7
and so
cos? v

(Pus pu) =1+ T



126 B. Daniel CMH

1 cos? v
(WU,GDU>:—4H2 14 112 ;

cos? v cosZ v

22\ T am

{(Pus Pv) =

The unit normal vector is given by N = 222 we compute that

T ol
b sin v '
L+ s
We have COS
(I, 0y) = (&, pu) = H
CoS v cos? v
(Ta8v>:<éaﬁﬂv>:ﬁ 1+ma
We notice that v(uy, —v) = —v(uy, v) for all (uy, uy, v). This indicates that the

twin immersion could be an orientation-reversing reparametrization of the surface.
For this reason we set

u+ h(v)
G (u,v) > @+ h(v), —v) = S
(u+ h(v) L2 — =2 f(v)

where / is a function. This is a CMC —H immersion defining globally the same
surface as ¢. We compute that

1 " (v)
=] 0 | B= g ,
T B WS = g7 )
and so s
COS™ v
~)~ :1 T o
(Pus Pu) & 4112

3 o0s2 v 2
COS” v COS* v
Dy, O = | 1 h h 1
(Pv, Pv) (+ 4H2) (v)? — 2172 (v)y/ 1+ A2
. 1 1+cos4v
4FH? 4H? ]’
2

2 2
COs” v COS* v cos? v
)h’( ) —

5 o) = [ 1 .
u. o] (+ 4112 a2\ T am
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Thus ¢ induces on R? the same metric as ¢ if and only if

2
0S8
h’(v) . C v

N 2 cos? v ‘

2H 1+ 20

We now assume that this condition is satisfied; we can also assume that 2(0) = 0.
The function /4 1s increasing. We have

v =,
~ - COS v
(T, 8y) =&, @u) = SH
2
= - COSv CoS8~ v
(T’ 81)) = (S’ (Pv) = ( 4H2 - 1) .

2
2f,/1 + —C;’;ﬂ”

The direct orthonormal frame (ep, ep) obtained from the frame (d,, d,) by the
Gram—Schmidt process satisfies

_ au o = _<aua 81))8M - Hau”zav
leml 180 11/ 192 [P 118w 1% — (B, 30)2

€1

A computation gives

1 cos? v
101213l = (3, 3} = (1+ )

 4H? AH?
Thus we get
1 cosZ v
€1 = = au, ey — — 5 au —I_ ZHav‘
cos= v cos=n
I+ 402 201+ 412
So we have
T COS v ( 1 3 )
= er1t+er ),
COSZU 2H
1+ 4H?
7 COS U ( 1 )
= e1—ez ).
cos2vy \2H
1+ 412
Let 6 = —2arctan(2H). Then we have
s 1 —4H? - AH
cost) = ——,  sinf) = ——.
1 +4H? 1+4H?
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Since Je; = e and Je, = —eq, we get
AT =T.
Finally, the compatibility equation (10) implies that
S=eMS—tH+1J

at points where v # 0; and by continuity this identity holds everywhere. This proves
that ¢ 1s the twin immersion of ¢.

Thus the translational tube is globally invariant by the twin relation, but it 1s nof
pointwise invariant: the correspondence 1s

@(u,v) = @(u + h(v), —v).

Geometrically, this correspondence maps a point of the tube to the other point of
the tube lying in the same fiber and then translates it by 4(v) in the x-direction. In
particular, the closed curve v — ¢@(ug, v) is mapped to the curve v +— @(ug +
h(v), —v), which 1s nor closed.

Example 5.16 (rotational spheres). Let / > (. The map

1
7 COSuUCosv

@ (u,v) — %sinucosv ,

o7 f(©)

with f as in example 5.15, for (u,v) € R x (=%, 7), is a CMC —H immersion
defining a rotational sphere minus the top and bottom points (the normal of the
immersion points outside whereas the mean curvature vector points inside). It is
a bigraph over a part of the minimal surface of equation z = 0; moreover it is
“symmetric” with respect to this minimal surface.

We have
1 —Sinu cos v 1 —cpsus'inv
Yy = — | cOSucosv |, @, =— | —sSlmusmv |,
M1 -y cos? v 71 1w
and so

COSZU C082 v
(Pu, Pu) = 72N 1+ ,
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_ cos> v { cos? v

The unit normal vector is given by N = 222 we compute that

low <@l ?
Sin v
V= —
COos™ v
1+ 4H?
We have 5
COs“ v
Ta 8 = y i ——
( M) (g Wu) 2 H?
COS v cosZ v
(T,00) = (&) = —— 1 + -
Let

% cos(u + g(v)) cosv
@: (u,v) = @u+g), —v) = | z sin(u + g(v)) cosv
—57/ (V)
2H
where g is afunction. This is a CMC H immersion defining globally the same surface
as ¢. We compute that

— sin{u + g(v)) cos v

@y = I cos(u + g(v))cosv |,

1 2
—3F COS™ v

—cos(u + g(v))sinv — g’(v) sin(u + g(v)) cos v
Py = — | —sin(u + g(v)) sinv + g’(v) cos(u + g(v)) cosv |,
H Ly — L ol(nycos? v
] IHS
and thus ¢ induces on R x (5, %) the same metric as ¢ if and only if
Cos v

g'(v) = — —.
COsS~ v
Hyl+ Ja

We now assume that this condition is satisfied; we can also assume that g(0) = 0,

which gives
) 5 , ( sin v )
g(v) = —2arcsin | —— |
1+ 4H?

The function g 1s odd and 27 -periodic. We have

V=,
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2
(T 80) = (6 o) = —t (Cj;; - 1) .
H,J1+ oy
The direct orthonormal frame (eq, e2) obtained from the frame (d,, d,) by the
Gram—Schmidt process satisfies

H CoS v
el:COSU 1_’_@8”’ 62:_2 1+C052U8M+H8U'
v 4H? ' 4H?
So we have
COS v 1
T = = | ~577¢! +e2 ),
COS~ U
1+ 4H2

~ cos v 1
T = = (—ZHel—eg).
Vi
Let 6 = 2arctan(2/1). We check as in example 5.15 that

~

AT =T,

S=MS — )+l

This proves that ¢ is the twin immersion of ¢.
Thus the rotational sphere 1s globally invariant by the twin relation, but it 1s nof
pointwise invariant: the correspondence 1s

@(u,v) = @+ g(v), —v).

Geometrically, this correspondence maps a point of the sphere to the other point of
the sphere lying in the same fiber and then rotates it by the angle g(v) about the z-axis.
In particular, the circle v — @(ug, v) lying in a vertical plane 1s mapped to the curve
v = @(ug + g(v), —v), which is closed but not contained in a vertical plane.
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