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Invariant d’Hermite isotrope et densité des réseaux orthogonaux
lorentziens

Christophe Bavard

Résumé. Nous déterminons la densité maximale des réseaux orthogonaux lorentziens jusqu’en
dimension 12 et en dimension 18 pour le type pair. Par ailleurs, nous définissons un invariant
d’Hermite isotrope pour lequel nous établissons, dans le cas lorentzien,une théorie « deVoronoï »

complète.

Abstract. We compute the maximal density of orthogonal Lorentzians lattices up to dimension
12 and in dimension 18 for the even type. On the other hand, we define an isotropic Hermite
invariant and we show that it satisfies, in the Lorentzian case, a complete “Voronoï’s theory”.

Codes AMS 2000). 11H55.

Mots clé. Réseaux euclidiens orthogonaux, invariant d’Hermite.

Introduction

Introduits par Bergé et Martinet [B-M], les réseaux orthogonaux sont avec les réseaux

symplectiques des exemples importants et naturels de réseaux isoduaux, c’est-à-dire
isométriques à leur dual cf. Conway et Sloane, [C-S]). Le problème de la densité
maximale, soulevé par Buser et Sarnak [B-S] pour les réseaux symplectiques, se

pose toutaussi naturellement pour les réseaux orthogonaux. L’approche traditionnelle
« à la Voronoï » pour ces questions vise à classer les maxima locaux de l’invariant
d’Hermite µ restreint à ces familles particulières. Ceux-ci sont caractérisés dans

[B-M] et vérifient de bonnes propriétés de finitude ([B-M], [Bav4]). Cependant, leur
classification dans le cas orthogonal ou symplectique) est pour l’instant largement
ouverte.

Nous nous concentrons ici sur le cas des réseaux orthogonaux de signature n,1),
que nous appellerons orthogonaux lorentziens, ou simplement lorentziens. L’étude de
leur densité est abordée par une méthode directe et entièrement géométrique. Nous
déterminons la densité maximale des réseaux lorentziens jusqu’en dimension 12 et en

dimension 18 dans le cas pair table 1 et 2). Celle-ci n’était connue qu’en dimension
inférieure ou égale à 3 d’après [C-S]. D’autre part, le point de vue géométrique
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développé est également relié à l’approche classique. Nous introduisons un invariant
plus fin que µ, l’invariant d’Hermite isotrope µ0, pour lequel nous établissons dans

le cas lorentzien une théorie « de Voronoï » complète, analogue à celle des réseaux
usuels, avec en particulier un algorithme de Voronoï répondant au problème de la
classification des maxima locaux de µ0.

Table 1. Densité maximale des réseaux lorentziens impairs de rang 12.

n + 1 µn,1 n + 1 µn,1
2 2/v3 1,1547 8 2 2.0000

3 1/2 +v2/2 1,2071 9 5/3 1,6666

4 4/3 1,3333 10 1/2 +v5/2 1,6180

5 7/5 1,4000 11 5/3 1,6666

6 3/2 1,5000 12 2 2.0000

7 5/3 1,6666

Table 2. Densité maximale des réseaux lorentziens pairs de rang 18.

n + 1 µII
n,1 n + 1 µIIn,1

2 1 1.0000 18 621/310 2.0032

10 2 2.0000

Les réseaux orthogonaux portent une structure sous-jacente de Z-module
bilinéaire indéfini. Quand on fixe cette structure entière, ou « type algébrique » en y
ajoutant éventuellement l’action d’un groupe fini, l’ensemble des réseaux obtenus
considérés à isométrie près) s’identifie au quotient d’un espace symétrique X par un

groupe discret L’isotropie relative au type algébrique est alors reliée à la topologie
de \X section 2). Par exemple µ et µ0 coïncident à l’infini de \X et vérifient la
compacité de Mahler.Au passage, nous obtenons aussi,en feuilletant les «classes
isotropes» des rétractes naturels -équivariants et cocompacts deX, proposition 2.3 la
construction de tels rétractes est un problème classique dans l’étude cohomologique
des groupes arithmétiques, cf. Ash [Ash]).

Pour les réseaux lorentziens de rang n + 1, l’espace X s’identifie naturellement
à l’espace hyperbolique Hn section 1). De plus, les fonctions longueur normes des
vecteurs des réseaux) s’expriment simplement au moyen de la distance hyperbolique,
proposition 1.2. À partir de cette observation élémentaire, et en analysant l’action sur
Hn du groupe d’automorphismes du type algébrique, nous déterminons la densité
maximaleen petitedimension donnée par le maximum deµ, table1 et 2). Notreétude
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met enévidencedes liens étroits entre la fonctiondensité et la géométrie des domaines
fondamentaux de ; par exemple, pour le type pair de rang 18, la densité maximale
correspond au rayon interne du domaine fondamental §1.4). Comme conséquence, la
densité maximale est estimée jusqu’en dimension 23, avec notamment la construction
de maxima locaux de densité table 3, §1.6). Pour 13 n + 1 18, nous montrons
que le maximum de µ est relativement faible, voisin de 2, ce qui reflète à nouveau une

propriété géométrique particulière des domaines fondamentaux pour ces dimensions.
Toujours dans le cas lorentzien, l’invariant isotrope µ0 est défini via les fonctions

de Busemann par des points à l’infini de Hn proposition 1.2) Nous obtenons ainsi
une « théorie de Voronoï» en particulier un algorithme de Voronoï) pour µ0 à l’aide
de deux pavages duaux de Hn par des polyèdres hyperboliques, associés respectivement

aux points à l’infini précédents et aux points parfaits théorème 3). Cette
vision géométrique, combinée avec les propriétés topologiques générales de \Hn
section 2), est aussi la source de relations numériques concernant certains réseaux

particuliers relativement à µ0 §3.3) : formule de masse pour les points parfaits,
formules d’Euler pour les classes non isotropes ou pour les points eutactiques. Nous
donnons également la valeur maximale de µ0 jusqu’en dimension 16 table 4).

1. Densité des réseaux orthogonaux lorentziens

1.1. Réseaux orthogonaux. Invariant d’Hermite isotrope. Un réseau orthogonal
cf. [B-M]) d’un espace euclidien E est un couple s) formé d’un réseau de E

et d’une isométrie involutive s ±IdE qui échange et son dual. Deux réseaux

orthogonaux i,si) de Ei i 1, 2) sont isométriques s’il existe une isométrie
de E1 sur E2 telle que 1) 2 et .s1.-1 s2.

Tout réseau orthogonal s) hérite d’une structure entière. En effet, la forme
bilinéaire symétrique

a(u, v) u,s(v) u,v E), 1)

dont la restriction a à × est entière, induit un isomorphisme de groupes de

sur HomZ( Z). Le Z-module bilinéaire indéfini a est alors caractérisé par

son type pair ou impair) et sa signature p, q), appelés type et signature de s)
et évidemment invariants par isométrie de réseaux orthogonaux. Soit I± resp. U)
le module bilinéaire associé au module quadratique Z,±u2) resp. au module pair
Z2, 2u1u2)). Dans le cas impair a est isomorphe à pI+ + qI- ; dans le cas

pair, on a p - q 8a a Z) et a est isomorphe à qU +|a|E+8 pU +|a|E-8
ou pU selon le signe de a ([Ser, §V.2]).

La forme entière a permet de raffiner l’invariant d’Hermite. Soit s) un

réseau orthogonal impair resp. pair), et soit k Z resp. k 2Z) avec k /. 4Z+ 2 si
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dim E 2. Nous définissons µk( µk( s) par

µk
min{|u|

2
; u \ {0}, a(u, u) k}. 2)

En particulier l’invariant d’Hermite isotrope µ0 est défini par les vecteurs isotropes.
Noter que les µk sont invariants par isométrie de réseaux orthogonaux. L’invariant
d’Hermite µ des réseaux orthogonaux de rang fixé est évidemment le minimum
des µk, mais on a un résultat plus précis.

Proposition 1.1. Soit .m la constante d’Hermite en dimension m. Alors

µ min{µk
; |k| .m}. 3)

En effet, en appliquant l’inégalité de Cauchy–Schwarz à 1) on obtient la relation
fondamentale

|a(u, v)| |u||v| u, v E) 4)

qui borne les valeurs de a sur les vecteurs minimaux du réseau. Par exemple, en

dimension m 8 on a µ min{µ-1,µ0,µ1} pour le type impair et µ µ0
pour le type pair. C’est vrai même pour la valeur exceptionnelle µ(E8) 2 par
continuité. Il existe aussi des structures orthogonales sur E8 de type pair et impair)
avec µ µ2 µ-2 2.

Exemples 1.1. 1) Les structures orthogonales sur un réseau entier unimodulaire
correspondent aux classes de conjugaison deséléments d’ordre 2 -Id)de Aut(
Par exemple pour le réseau de racines E8, en composant des générateurs du groupe
de Weyl qui commutent et leurs opposés), on obtient des structures orthogonales
impaires de signature p, q) pour 1 p 7.

2) Structures orthogonales sur Zm. Il est facile devoir que dans Aut(Zm), produit
semi-direct de {±1}

m et du groupe symétrique Sm, tout élément d’ordre 2 distinct de

-Id est conjugué à e1, em; 1,2) 2r- 1,2r)) avec ek 1 si 1 k p+r
et ek -1 sinon, pour un certain couple p,r) vérifiant 0 2r m et max(1, r)
p m - max(1,r). Il y a donc 1 + min(p, q) structures orthogonales distinctes
de signature p, q) donnée 1 p m - 1, p + q m) sur Zm, soit au total

[m2/4] + m- 1 structures, dont une seule paire de signature p,p) quand m 2p.
Pour ces structures, on a µ0 µ 1 si r > 0, µ1 µ 1 et µ0 2 si r 0.

3) Pour p + q m 8 et p - q 0(8), le réseau D+m admet une structure
orthogonale paire de signature p, q) avec µ0(D+m) µ(D+m) 2 ([B-M, §6.4]).

1.2. Géométrie des longueurs. À partir d’ici nous nous concentrons sur le cas

lorentzien. Soit f une forme entière de signature n,1) et de discriminant -1 sur
Zn+1 ; son extension à Rn+1 sera encore notée f Rappelons que le projectifié Hf du
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cône négatif de f est un modèle classique de l’espace hyperbolique de dimension n.
On pose u · v f u, v) u et v Rn+1), u2 u · u et u Ru si u Rn+1 \ {0}.

Montrons que les classes d’isométrie de réseaux lorentziens s) dont le type

a est isomorphe sur Z) à f sont paramétrées par Hf En effet, par transport des
structures, on peut supposer que a Zn+1,f D’après la relation 1),
l’isométrie s est une réflexion f -orthogonale et sa droite propre x de valeur propre -1
appartient à Hf ; il est clair que la formule

u, v x u · v - 2
u · x) v · x)

x · x
u,v Rn+1 x Hf 5)

définit une bijection entre Hf et les structures euclidiennes ainsi obtenues.
L’invariant d’Hermite des réseaux lorentziens « de type f » peut donc s’exprimer

sur Hf par

µ(x) min u, u x;u Zn+1

\ {0} x Hf 6)

Remarquer que µ est invariant par l’action du groupe O(f, Z) des isométries entières
de f Considérons les fonctions lu(x) u, u x x Hf, u Zn+1), appelées
fonctions longueur par analogie avec les surfaces de Riemann) et définies pour u Rn+1.

Les lu admettent une description naturelle au moyen de la géométrie hyperbolique.

Proposition 1.2 interprétation géométrique des longueurs). Soit d la distance
hyperbolique de Hf Soit u Rn+1 \ {0}. Si u2 > 0, on note u. l’hyperplan polaire de

u dans Hf Alors

lu
-u2 cosh[2d(., u)] si u2 < 0,

lu(p) exp(2hu,p) si u2 0,

[3pt]u2 cosh[2d( u.)] si u2 > 0,

où hu,p est la fonction de Busemann associée à u u2 0) normalisée par
hu,p(p) 0, le point p Hf étant arbitraire. En particulier lu est convexe et

même strictement convexe si u2 0.

Preuve. Le vecteur u définit unpoint deHf si u2 < 0, et unehypersurface totalement
géodésique u. de Hf intersection de Hf avec le projectifié de l’hyperplan f -orthogonal

à u) si u2 > 0. Pour ces cas, on a respectivement

cosh2[d(x,u)]
x · u)2

x2u2
sinh2[d(x, u.)] -

x · u)2

x2u2
x Hf 7)

Si u2 0, le point u est situé au bord de Hf Soit y Hf La fonction de

Busemann hu,y est définie avec la géodésique qui joint les points y et u par
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hu,y limt.8[d(· t)) - t] t étant la longueur d’arc). On vérifie alors que

hu,y(x) ln |x · u|
|y · u|

y2

x2

1/2
x, y Hf 8)

Pour conclure, il suffit d’appliquer la trigonométrie hyperbolique usuelle.

Remarque 1.1. Il y a donc une forte analogie entre l’invariant d’Hermite isotrope
des réseaux orthogonaux lorentziens et celui des réseaux usuels pour lequel les fonctions

longueur sont aussi des exponentielles de fonctions de Busemann dans l’espace
symétrique Pm des matrices de Gram ([Bav1, 1.3]).

1.3. Densité maximale pour le type impair de rang 12. Soit f le noyau de

l’action de O(f,Z) sur les composantes connexes du cône négatif de f et soit f
le sous-groupe de f engendré par les réflexions hyperplanes associées aux racines
de carré positif du module indéfini Zn+1, f On sait que pour n 19, f est

d’indice fini dans f [Vin1], [Vin2], [V-K]. Pour estimer la densité maximale des

réseaux orthogonaux lorentziens en petite dimension, nous utilisons l’interprétation
et les propriétés géométriques des longueurs proposition 1.2),ainsi que ladescription
explicite d’un domaine fondamentalpolyédral f pour f donnée dans [Vin1],[Vin2]
n 17) et [V-K] n 18, 19). Dans le cas impair, on prend x · y n

i=1 xiyi -
xn+1yn+1 et on pose n f n f

Théorème 1 densité maximale pour le type impair de rang 12). La valeur maximale

µn,1 de l’invariant d’Hermite des réseaux orthogonaux lorentziens de type
impair et de dimension n+1 12 est donnée par la table 1. De plus, µn,1 1 n 11)
est atteinte par un unique point modulo n correspondant à A2, E8, D+12 pour
n + 1 2, 8, 12).

Preuve. La preuve consiste à majorer un petit nombre de longueurs l1, lN choisies

dans chaque cas en relation avec la géométrie de n. Le maximum d’une fonction

convexe sur un polyèdre de volume fini condition superflue en dimension 1)

de l’espace hyperbolique sera atteint en un point extrémal, c’est-à-dire un sommet
éventuellement à l’infini, en admettant la valeur+8 pour f On majorera donc les

longueurs en les évaluant aux sommets de n, ou aux sommets de sous-polyèdres de

n si nécessaire. Une fois trouvée une estimation µ min(l1, lN) M sur n,

il suffira pour conclure que M soit une valeur de µ.
D’après [Vin1], n est donné en coordonnées homogènes x [X1, Xn+1]

par un nombre fini d’inéquations de la forme x · ej 0 associées à des racines de
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Zn+1, f ej entier avec ej · ej 1 ou 2), plus précisément 1 n 11) :

0 Xn Xn-1 · · · X1,

X1 + X2 + X3 Xn+1 n 3) ou X1 + X2 X3 n 2),
11

i=1 Xi 3Xn+1 n 11) ou 10

i=1 Xi 3X11 n 10).

9)

Pour ces petites valeurs de n, le polyèdre n est un domaine fondamental de n. Il
admet un unique sommet à l’infini si n 8, et deux sommets à l’infini si 9 n 11.
Noter que ces sommets, ou classes modulo n de vecteurs entiers isotropes,
correspondent bijectivement aux réseaux unimodulaires entiers euclidiens de dimension

n- 1 cf. [Vin2]). Combinatoirement, n est un simplexe n si 1 n 9, et une
pyramide de base 8 × n-9 contenue dans la face X9 X10) si n 10, 11. On
note u 0, 1, 0)t la racine associée à la face Xn 0, et pour 1 n 9, on

note pn le sommet opposé à cette face.
Traitons d’abord les cas 3 n 7 et n 11, où une seule longueur suffit.

La longueur lu est fonction strictement croissante de la distance à la face Xn 0
proposition 1.2). Si 3 n 7, il est donc évident que lu atteint son maximum

sur n au sommet opposé, c.-à-d. pn [1, 1, 3], et uniquement en ce point.
Si n 11, il y a 9 sommets de 11 tels que X11 0, et le maximum de lu est

atteint uniquement en q11 [2,1, 1, 4] le réseau correspondant est D+12). Pour
3 n 7 et n 11, il se trouve que lu(pn) µ(pn) cf. §1.5), d’où le résultat.

Si n {1,2, 8, 9, 10}, on obtient une majoration optimale avec deux longueurs en

découpant n en deux sous-polyèdres. On pose respectivement v 1, 1)t n 1),

v 1,0, 1)t n 2), v 1, 1,3)t n 8,9 et 10). L’élément géométrique
associé à v cf. proposition 1.2) est le sommet pn si n 1, 8 ou 9, un sommet à

l’infini si n 2 et une face du polyèdre si n 10. Pour n 1,8 ou 9, il existe
sur chacune des n arêtes de n issues de pn un unique point où lu lv ; on partage

n avec l’hyperplan passant par ces n points. Pour n 2, on découpe 2 en deux
triangles avec la droite X1 + 1 + v2)X2 X3. Enfin on partage 10 en deux
pyramides avec l’hyperplan H d’équation-X10 X1+· · · +X10- 3X11 sur lequel

lu lv ; l’intersection de H avec la base de 10 c.-à-d. X9 X10) est un simplexe
de dimension 8. En procédant comme indiqué plus haut, on obtient que dans chacun
des cas étudiés, le maximum de min(lu, lv) sur n est atteint en un unique point qn
donné par

q1 [2- v3, 1],
q2 [1, 1, 2 +v

2],
q8 [3, 2, 2,7],
q9 [5 +

v5, 4, 4, 13 +v
5],

q10 [2, 1, 1,4].

10)
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De plus on a lu(qn) lv(qn) µ(qn) pour n {1,2, 8,9, 10} cf. §1.5), ce qui
achève la preuve.

Remarque 1.2. Le pointq2 correspondau réseau mis enévidencedans[C-S, sect.3]).
On peut également vérifier que lesmaxima trouvés en dimension5et 7 correspondent,
avec les notations de [C-S, table 1 et sect. 6], aux réseaux A451)+ et E631)+.

1.4. Densité maximale pour le type pair de rang 18

Théorème 2 densité maximale pour le type pair de rang 18). La valeur maximale
µIIn,1 de l’invariant d’Hermite des réseaux orthogonaux lorentziens de type pair et de

dimension n+1= 18 est donnée par la table2. De plus,µII
n,1 n 1 9, 17)est atteinte

par un unique point modulo f correspondant à Z2 et D+10 pour n + 1 2, 10).

Preuve. On note ici E8 la matrice donnée dans [Bou, p. 270] ou [Ser, p. 89] matrice
de Gram d’une base de racines d’un système « de type E8 » et on pose U2 0 1

1 0
Pour k N, soit f la forme bilinéaire dont la matrice, dans la base canonique ei) de
Rn+1, est formée de k blocs diagonaux E8 suivis d’un bloc U2 n+1 8k+ 2). Pour

k 0, 1, 2, une application directe de [Vin1] à partir du point base [0, 0, 1,-1]
permet d’expliciter un polyèdre f de volume fini k 1, 2) au moyen des racines
suivantes :

ej -ej j 1, n- 1),

en -en- en+1,

en+1 2e1 + 3e2 + 4e3 + 6e4 + 5e5

+ 4e6 + 3e7 + 2e8 + en+1 n 9, 17),

e19 2e9 + 3e10 + 4e11 + 6e12 + 5e13

+ 4e14 + 3e15 + 2e16 + e18 n 17).

11)

Si n 9, f est un simplexe et on a f f Si n 17, f est une pyramide de

base 8 × 8 ([Vin1]) et f est d’indice 2 dans f comme le suggère la symétrie
du diagramme de Coxeter de f figure 1).

3 4 5 6 91 7 8

2

18 17 19 16 15 14 13 12 11

10

Figure 1. Diagramme de Coxeter de f
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Pour n 1 et 9, f admet un unique sommet à l’infini en+1, et on vérifie que la

longueur associée len+1
est maximale en un unique sommet bn de f :

b1 [-1, 1],
b9 [2, 5/2, 7/2,5, 4,3, 2, 1,-1, 1].

12)

Le point b9 est le sommet opposé à la face x · e1 0 de f D’après 1.5 on a

de plus µ(bn) len bn) n 1, 9) ; les réseaux correspondants sont isométriques
respectivement à Z2 et D+10. Pour n 17, on considère le point

b17 [46, 68, 91, 135, 110, 84, 57,29,46, 68, 91, 135, 110, 84, 57, 29,-30, 31].
13)

Ce point est équidistant de toutes les faces de f En procédant comme au §1.6
cf. lemme 1.3) on obtient la majoration µ(p) 621/310 p Hf avec inégalité

stricte si p b17 modulo f Il se trouve cf. §1.5) que µ(b17) 621/310 avec 19

paires de vecteurs minimaux (±ej 1=j=19), ce qui achève la preuve. Noter que dans

ce dernier cas le maximum de µ est lié au rayon interne de f
1.5. Étude des maxima de densité. Nous prouvons maintenant que les bornes
établies en 1.3 et 1.4 voir table 1 et 2) correspondent à des valeurs de la densité.
Rappelons que l’invariant d’Hermite du réseau associé à x Hf est le minimum de

lu(x) u · u- 2
u · x)2

x · x
x Hf 14)

le vecteur u décrivant Zn+1 \ {0}, et que les valeurs de u2 sur les vecteurs minimaux
peuvent être bornées grâce à l’inégalité 4).

Commençons par le cas où 3 n 7 donc le type est impair) et considérons

x0 1, 1, 3)t On a alors lu(x0) u2 + 2(u · x0)2/(9- n) et on observe que
l’entier u2- u · x0 est toujours pair. Si n 7, le réseau est donc isomorphe à E8 et le
minimum vaut 2. Si 3 n 6, on peut grâce à 4) se restreindre à u2 -1, 0 ou 1.
Sachant que lu(x0) > 0, on voit que 9-n)lu(x0) est respectivement minoré, suivant
ces trois valeurs de u2, par 9+ n, 8 et 11- n; d’où l’on conclut que le minimum vaut
11 -n)/(9 - n).

Pour les cas restants, nous utilisons de plus une autre inégalité. Soit A une matrice
carrée d’ordre m définie positive. Si u et v sont des vecteurs de Rm, on pose u, v
utv et A[u] utAu. En choisissant une racine carrée de A, on prouve la relation

u,v 2
A[u]A-1

[v]. 15)

Considérons maintenant n {1, 2, 8, 9, 10, 11} avec f de type impair. Soit qn le

point de Hf défini par l’équation 10), complétée par q11 [2, 1, 1, 4]. Traitons
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les cas 8 n 11, en supposant que µ(q11) < 2. Soit u ui) un vecteur minimal.
L’inégalité 15) montre que

u2
i 1 et ui - uj 2 1 2 i, j n). 16)

Enparticulier les ui pour 2 i n ont le même signe.Par suite, lu(qn) ne dépend que
des trois variables entières u1, n

i=2 ui et un+1. Par ailleurs, u2 u21 +
n
i=2 ui -u2

n+1 -1, 0 ou 1. L’examen des diverses possibilités u1 et un+1 étantaussibornées
par 15)) conduit aisément aux valeurs de la table 1. Le cas n 2 se traite de façon
analogue et n 1 donne le réseau équilatéral.

Passons au type pair. Soit bn n 1, 9 ou 17) le point défini par 12) et 13). Les
vecteurs entiers seront écrits sous la forme u ui) v,un, un+1) Z8k+2 avec

k 0, 1ou2.Si n 1, le réseau est isomorpheàZ2.Si n 9,considéronsunvecteur
minimal u Z10. On a lu(b9) u2+(u1-2u10+2u9)2/2 avec u2 E8[v]+2u9u10
voir au §1.4 la définition de f Supposons que µ(b9) < 2 ; alors u2 0 inégalité
4)), en particulier v n’est pas nul, et lu(b9) 1/2. Mais d’après 15), on a |u9| 1,

|u10| 1 et |u10 - u9| 1, ce qui contredit u2 0. Reste le cas n 17. On a

lu(b17) u
2
+

a2

310
avec a

16

i=1

ui + 31u17- 30u18, 17)

et u2 E8 E8)[v] + 2u17u18. Supposons que µ(b17) < 621/310. Soit u Z18

minimal,doncvérifiant u2 -2, 0ou2.Siu2 -2, on voit, toujoursgrâceà 4),que

|a| 36, ce qui est absurde. Si u2 0, alors |a| 24 et par 15) |u17| 2, |u18| 2.
Ou bien v 0, ou bien quitte à changer u en -u), le triplet u17, u18,E8 E8[v])
vaut 1,-1, 2), 1,-2, 4), 2,-1, 4) ou 2,-2, 8). Soit w Z8 tel que E8[w] 2,
4, 6 ou 8 ; en appliquant 15) à chaque coordonnée, on voit que 8

i=1 wi est majoré
respectivement par 33, 46, 59 et 69. Il en résulte que |a| 25 dans tous les cas, ce

qui est absurde. Enfin, si u2 2, u est une racine de Z18, f et l’inégalité lu(b17) <
621/310 signifie que l’hyperplan u. coupe l’intérieur du domaine fondamental f
de f ce qui est impossible voir §1.4 pour la description géométrique de f On
pourrait aussi exclure ce dernier cas en procédant comme plus haut.

Remarque 1.3. La méthode indiquée ci-dessus permet aussi d’expliciter les vecteurs
minimaux dans chaque cas.

1.6. Estimations géométriques supplémentaires. On considère une forme entière

f comme en 1.2, de rang n+ 1 20, et on note µf la valeur maximale de l’invariant
d’Hermite des réseaux lorentziens de type f
Lemme 1.3. Soit p f Pour l 1, 2, on note rl(p) le maximum des distances

d(p, H) quand H décrit l’ensemble des faces de f définies par des racines de
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carré l. On a alors la majoration

µf max{cosh(2r1(p)), 2 cosh(2r2(p))}. 18)

Preuve. Il suffit de majorer µ sur f qui contient un domaine fondamental de f
Par ailleurs on peut supposer que p est intérieur à f On décompose alors f en
pyramides de sommet p et sur chacune d’elles, µest majoré en fonction de la distance
à la base face de f d’où le résultat.

Proposition 1.4. La valeur maximale µn,1 de l’invariant d’Hermite des réseaux
lorentziens de type impair et de rang n + 1, 13 n + 1 23, est estimée dans la
table 3, où ß12 1507 +

11v2246)/1014, ß17 114-v2)/56 et les nombres

ßn)13=n=16 sont algébriques de degré 4 sur Q.

Table 3. Estimations de µn,1 pour 13 n + 1 23.

n + 1 µn,1 µn,1 < n + 1 µn,1
13 ß12 2.0003 651/325 2.0031 19 184/91 2.0219

14 ß13 2.0007 507/253 2.0040 20 112/55 2.0363

15 ß14 2.0004 772/385 2.0052 21 31/15 2.0666

16 ß15 2.0026 572/285 2.0071 22 15/7 2.1428

17 ß16 2.0048 205/102 2.0099 23 12/5 2.4000

18 ß17 2.0104 141/70 2.0143

Preuve. Considérons le point

cn [24,23, 25- n, 70]. 19)

Noter que cn est invariant par le groupe d’isométries Gn de n pour n 19 par

exemple G18 S4 et G19 S5, [V-K]). Si n 18, ce point cn est équidistant de
toutes les faces de n associées aux racines de carré 2, et la valeur commune des

longueurs correspondantes vaut

.n 2
n- 26)(2n2- 95n + 1131)

n- 25)(2n- 49)(n - 24)
20)

De plus, pour n 17 on a r1(cn) < r2(cn), d’où la majoration µn,1 .n lemme);
l’inégalité stricte s’obtient par la preuve du lemme. Pour n 18, 19, on a la relation

µ(cn) .n. Cette égalité restant valable pour20 n 22,on conclut que µ1,n .n
pour 18 n 22. On vérifie également que pour 12 n 22, cn est parfait et

eutactique voir §3.1) relativement au système de longueurs valant .n ; par suite
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([Bav1, §2.1]) si 12 n 17 la majoration par .n est localement optimale pour ce

système, et .n est un maximum local de densité pour 18 n 22.
La construction de réseaux lorentziens assez denses 12 n 17) s’effectue en

utilisant les autres éléments géométriques de n. Les faces de ce polyèdre étant
numérotées comme dans la table6de [Vin1], on note lk)1=k=Nn les longueursassociées.

Les points donnant les minorations de la table 3 pour 12 n 17 sont uniquement
définis dans n par l’égalité de certaines longueurs lk), k {1, Nn} \ Jn, et

d’une longueur lwn associée à un sommet de n si 13 n 16, avec les valeurs
suivantes :

J12 {13}, J17 {5,13},
J13 {5, 6}, w13 [2, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 4],
J14 {6, 7,8}, J15 {5, 6, 9}, w14,w15 [2, 2,2, 2, 2, 2, 2,1, 1, 1, 1, 6],
J16 {3, 11, 17}, w16 [1, 1, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1, 1, 1, 4].

Les sommets wn, n 13,15,16 sont situés à l’infini. Le calcul montre que pour
13 n 16, ßn appartient au corps quartique Q(.n) défini par

4
13 - 16 2

13 - 136 .13 - 566 0,
4
14- 1154 2

14- 16512 .14 + 46036 0,
4
15 - 2 3

15- 122 2
15 + 2466 .15 - 6561 0,

4
16 - 2 3

16 - 62 2
16- 786 .16 + 57 0.

21)

De plus, on a ßn Pn(.n), où .n est une racine convenable de 21), avec :

P13(t) 2(1071832 t
3- 770492 t

2 - 38450040 t + 5237155223)/5285302305,

P14(t) 7776 t
3 - 191652 t2 - 5034720 t + 3095413193)/1536378935,

P15(t) 16382 t3
+ 1410467 t2

+ 17516168 t + 9589881744)/4797591903,

P16(t) (-2437 t3
+ 32231 t2 - 74617 t + 67058907)/33168576.

Remarques 1.4. 1) Les valeurs relativement faibles de µn,1 pour 12 n 17
reflètent la forme géométrique « étroite » de n.

2) On vérifie voir ci-dessus) que les valeurs ßn 12 n 17) et .n 18 n
22) correspondent à des maxima locaux de densité pour les réseaux lorentziens.

3) Les minorations données en dimension 13 et 15 améliorent légèrement celles
de [C-S, table 1].
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2. Autres aspects géométriques

2.1. Réseaux marqués. Actions de groupes. Compacité. Dans cette section, nous
poursuivons l’étude des réseaux orthogonaux en signature quelconque. Ces objets
sont décrits par des espaces symétriques riemanniens. Nous en donnons quelques
propriétés topologiques générales qui seront illustrées à la section 3 avec l’invariant
d’Hermite isotrope du cas lorentzien.

Considérons Rm muni de la structure euclidienne u,v utv et de la forme
indéfinie de signature p, q) « usuelle » a(u, v) p

i=1 uivi- m

i=p+1 uivi u, v
Rm, p + q m). D’autre part, soit f une forme bilinéaire symétrique entière
indéfinie sur Zm de signature p, q) et de discriminant ±1, et soit fR son extension
à Rm R Zm. Un réseau orthogonal marqué de type f est un R-isomorphisme
unimodulaire de fR sur a. Il est clair que tout réseau orthogonal dont le type est

isomorphe à f voir §1.1) peut s’écrire sous cette forme, c.-à-d. PtZm avec

P SLm(R) et a(P t x, P ty) f x, y) x,y Zm 22)

Notons Pm l’ensemble des matrices symétriques réelles m × m positives de
déterminant 1. C’est un espace symétrique riemannien sur lequel SLm(R) agit isométriquement

et transitivement par P.A PAPt P SLm(R), A Pm). Soit Vf
l’ensemble des matrices de Gram des réseaux orthogonaux marqués de type f
matrices PPt où P vérifie 22)). On sait cf. [Bav4, §2.7]) que Vf est une sous-variété
connexe, complète et totalement géodésique de Pm ; de plus, si F est la matrice de f
dans la base canonique, on a

Vf {A Pm; AF-1A F}. 23)

Le quotientSOt f,Z)\Vf s’identifie avec l’ensembledes réseauxorthogonauxdont le

type est isomorphe à f modulo isométrie directe de réseaux orthogonaux. Observons
que l’inégalité 4) se traduit via 22) en termes de formes quadratiques : tout élément

A Vf satisfait l’inégalité

|fR(x,x)| A[x] x Rm 24)

On voit ainsi que Vf coïncide avec l’ensemble des majorantes minimales, ou
majorantes d’Hermite de la forme quadratique fR cf. [Bor, §I.5]).

Il est naturel de considérer, comme dans la théorie usuelle, des réseaux orthogonaux

stables par une action préservant la structure orthogonale, c’est-à-dire en termes
de formes, préservant Vf Notons GO(f, R) resp. GOp,q(R)) le groupe des similitudes

orthogonales relativement à f resp. à a) de rapport ±1. Alors le stabilisateur
de Vf pour l’action sur Pm des P GLm(R) avec det(P ±1, coïncide avec

GOt f, R) ([Bav4, §2.8, prop. 2.14]).
Soit : GOt f, Z) une représentation entière d’un groupe fini On pose

.t)-1 eton note Zm le Z[ ]-module correspondant. Un réseau orthogonal de
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type f, est un réseau stable parunereprésentation de dansOm(R)nGOp,q(R)
et tel que f soit isomorphe à a par un isomorphisme de Z[ ]-modules entre Zm

et La notion de réseau orthogonal marqué de type f, est analogue à celle du
cas particulier où est triviale voir plus haut).

f des formes A Vf invariantes par c’est-à-direConsidérons l’ensemble V
p)A.(p)t A pour tout p dans SiGest unsous-groupe de Lie de GLm(R), on

noteG. le commutant de dansGnSLm(R). Le groupeSOt f, R) d’indicefini dans

GOt f Il est clair que l’ensemble des réseaux orthogonaux marquésf, R)) agit sur V
resp. non marqués) de type f, considérés modulo isométrie directe conjuguant

les actions, s’identifie via les matrices de Gram à Vf resp. à SOt f Voicif,Z)\V

fles principales propriétés de V

f est une sous-variété non vide,Proposition 2.1. ([Bav4, §2.5]) 1) L’ensemble V
connexe, complète et totalement géodésique de l’espace Pm. C’est une orbite du

commutant SOt f,R).

f,Z)\V2) L’application SOt f SL(m, Z)\Pm est propre et à fibres finies.

Corollaire 2.2. L’invariant d’Hermite isotrope des réseaux orthogonaux tend vers 0
à l’infini de l’espace de modules SOt ff,Z)\V

f
e

{A VPreuve. Soit e > 0 et V f ; µ(A) e}. Alors SOt f
ef,Z)\(V

est compact proposition 2.1 2) et critère de Mahler usuel). Mais d’après l’inégalité
fondamentale 4), µ coïncide avec µ0 en dehors de Vf 1.

f est partitionné2.2. Classes minimales. Rétractions équivariantes. L’espace V
comme dans la théorie classique par les configurations de vecteurs minimaux cf.
[Mar, ch IX]). Deux formes A et B de Vf sont dans la même classe minimale si elles
ont le même ensemble de vecteurs minimaux pour µ. La décomposition obtenue est

évidemment SOt f,Z)-invariante. En remplaçant µ par µ0, on définit une partition

fanalogue de V
On dira qu’une classe minimale est isotrope si le sous-espace engendré par les

vecteurs qui la définissent est totalement isotrope pour f Cette notion est invariante
par SOt f, Z).D’après l’inégalité 4), les classes isotropes pourµ ou µ0) recouvrent

f \(VV f
1 et décrivent donc l’infinide SOt f voir proposition 2.1 2)). Def,Z)\V

plus elles possèdent une structure géométrique particulière qui permet de les rétracter
sur les classes non isotropes.

Proposition 2.3 rétraction des classes isotropes). Soit une représentation de
dans GOt f, Z). On note N0f, resp. Nf, la réunion des µ0-classes resp. des µ-

fclasses) minimales non isotropes de V
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f,Z)\N01) Les quotients SOt f,Z)\Nf, sont compacts et le nombref, et SOt

de classes non isotropes est fini modulo SOt f,Z).
2) Chaque classe isotrope pour µ ou µ0) est feuilletée par des arcs géodésiques.

3) L’espace V f,Z)-équivariante sur N0f se rétracte par déformation SOt f, et

sur Nf,

Preuve. 1) Les ensembles N0f, et Nf, sont fermés, invariants par SOt f, Z) et

f 1, d’où la compacité proposition 2.1 2)). La finituded’après 4) inclus dans V
résulte du fait que les partitions en classes minimales sont localement finies.

2) Soit U un sous-espace de Rm totalement isotrope pour f et stable par Pour

f on note pUtout A V A
et qU

A
les matrices des projections A-orthogonales de Rm

sur U et sur F-1AU U.f A, et on pose

XU(A) A(pU
A - qU

A 25)

Remarquer que F-1AU est A-orthogonal à U en particulier XU(A) 0), que pUA et

qU
A

commutent et sont conjuguées par F-1A qui conserve l’orthogonalité pour A).
On vérifie aussi que XU(A) est tangent à Vf au point A. De plus, les orbites du flot

t
f sont des géodésiques. En effet soit .A(t) Aexp(A-1XU(A)t).U de XU sur V

À partir de la relation A t) XU(A)A-1.A(t), on voit que les décompositions

(*) Rm U U.A et (**) Rm U U.f A U.f n U.A 26)

sont .A(t)-orthogonales pour tout t R. On a donc pU.A(t) pUA et il est facile de

U A) .A(t). Dans le cas oùU Ru est de dimension1, lechampXUvérifier que t

f de la fonction longueur lu lu(A) A[u]) :est proportionnel au gradient relatif à V

XU 2/ lu). lu. 27)

f définie par S Zm \ {0}, soit U leSoit c une classe minimale isotrope de V
..-module engendré par S et soit A c. Pour tout u Rm considérons la fonction

.u lu .A, que l’on note .0 si u S. En utilisant la décomposition .A(t)-
orthogonale (**), on montre que .u vérifie l’inéquation différentielle u .u avec
égalité si et seulement si u U, d’où l’on voit que .u/.0 est décroissante. Par suite

il existe tA > 0 tel que t) c pour t .]-8, tA[.

f etDk k 1) le complémentaire dans V3) SoitD0 V f de la réunion des µ0-

classes minimales définies par des configurations isotropes de rang k Dk N0
f,

pour k assez grand). De façon analogue au cas symplectique traité dans [Bav3],
on montre que les flots des champs XU eq. 25)) associés aux classes isotropes
permettent de construire une rétraction équivariante par déformation deDk surDk+1,

donc de Vf sur N0f, voir les arguments détaillés dans [Bav3, §2.3]). On procède de

même pour Nf,
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Remarques 2.1. 1) L’avantage de µ0 est de fournir un rétracte de codimension non
nulle quand est triviale.

2) Laproposition2.3 et sapreuvesont valablesplus généralement pour les réseaux
b-autoduaux avec b réflexive) définis dans [Bav4].

Quand est triviale, une étude algébrique des classes isotropes montre que les

µ-classes minimales de réseaux orthogonaux de type f sont en nombre fini modulo
SOt f, Z) ([Bav4, §2.9]). Dans les cas lorentzien, cette finitude est donnée par un

argument purement topologique valable pour toute représentation.

Proposition 2.4 finitude des classes minimales). Soit f de signature n,1) et
une représentation de dans GOt f, Z). Alors l’ensemble des µ-classes resp. des
µ0-classes) minimales de Vf est fini modulo l’action de SOt f, Z).

Preuve. En signature n, 1), les classes minimales isotropes sont ouvertes, donc de

frontière non vide puisque Vf est connexe. Soit Aun point frontière d’une telle classe

pour µ ou µ0). Le sous-espace engendré par les vecteurs minimaux de A est de rang

2, donc non totalement isotrope. Par 24) on a µ(A) 1. Sachant que les classes

non isotropes sont incluses dans Vf 1, il existe donc un compact de SOt ff, Z)\V
qui rencontre toutes les projections des classes minimales, d’où la finitude.

3. Invariant d’Hermite isotrope des réseaux lorentziens

3.1. Algorithme de Voronoï. L’algorithme de Voronoï pour les réseaux permet de
classer les réseaux parfaits au sens usuel ([Vor]). En utilisant un graphe géodésique,
nous établissons l’existence d’un algorithme analogue pour l’invariant d’Hermite
isotrope des réseaux lorentziens. Un autre exemple de graphe deVoronoï géodésique
a été construit dans [Bav2] dans le contexte des réseaux symplectiques.

On reprend les notations du §1.2, à ceci près que Hf sera ici identifié à l’une des

nappes de l’hyperboloïde x2 -1, choisie une fois pour toutes. Soit x Hf et

soit K*x le convexe engendré par les différentielles dlu(x) quand u décrit l’ensemble
des vecteurs f -isotropes tels que lu(x) µ0(x). Rappelons que x est parfait si K*x
engendre affinement l’espace cotangent en x, et que x est eutactique si K*x contient 0
dans son intérieur affine ([Bav1]). Par exemple les maxima locaux de µ0 sont parfaits
et eutactiques car µ0 vérifie le théorème deVoronoï d’après [Bav1, §2.2], les lu étant

ici strictement convexes, proposition 1.2).

Théorème 3 description géométrique de µ0). 1) La partition P en classes
minimales pour µ0 est un pavage f -invariant de Hf par des polyèdres hyperboliques.
Les classes minimales sont les cellules ouvertes de P et sont bornées sauf en dimension

maximale n. De plus, f \P est une décomposition finie de f \Hf
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2) On suppose n 2. Le squelette unidimensionnel P1 de P est un graphe
géodésique f-invariant dans Hf dont les sommets sont les points parfaits et les

arêtes de longueur finie). Ce graphe est connexe et on peut décrire explicitement le
complexe cellulaire fini f \P1 « algorithme à la Voronoï »

Preuve. 1) D’après 14), on a lu(x) 2(x ·u)2. Si v est isotrope, f v) est de signe
constant sur Hf Par suite, les égalités entre longueurs définissent des sous-espaces

hyperboliques sous-variétés complètes totalement géodésiques) de Hf éventuellement

vides. En particulier si S est un ensemble de vecteurs isotropes minimaux de
rang au moins 2, l’égalité entre toutes les lu)u.S définit un sous-espace hyperbolique
C̃ de Hf D’après la proposition 1.2, le champ de gradients -.lu est dirigé vers

le point à l’infini u. Il en résulte que C̃ est orthogonal au sous-espace hyperbolique
engendré par S* {u; u S}. Remarquer que la fonction longueur commune lu
u S) est propre sur C̃ car l’ensemble S* est disjoint de l’infini de C̃ Sachant que

µ0 est borné, on en déduit que la classe minimale CS est l’intérieur relatif d’un polyèdre

hyperbolique borné de C̃ L’invariance de la décomposition par f est claire.
Enfin, la finitude modulo f des classes minimales est établie à la proposition 2.4.

2) Soit une géodésique de Hf c.-à-d. une solution de l’équation différentielle
x x · x x. Alors toutes les fonctions lu u isotrope) sont solutions de

la même équation différentielle

2.. 4C.2 +
2 où C · 28)

Par suite les fonctions longueur sont déterminées le long de par leur jet d’ordre 1
en un point. On voit ainsi que l’adhérence d’une classe minimale CS coïncide avec la

réunion
S.T CT on retrouve aussi le fait que les classes sont géodésiques). Soit p

unpoint non parfait etsoit S l’ensemble des vecteurs minimaux de p.D’après l’observation

précédente, un vecteur tangent orthogonal au sous-espace affine engendré par

lu(p))u.S donne une variation de p dans sa classe CS. D’autre part un point parfait
est toujours isolé dans sa classe ([Bav4, §1.4]) qui est donc par connexité réduite à ce

point. Les sommets de P, ou classes minimales réduites à un point, correspondent
donc aux points parfaits.

Soit p et q deux points parfaits et soit [p, q] le segment géodésique qui les

joint. Alors [p,q] est recouvert par un nombre fini de polyèdres fermés C1, CN,
chaque Ci étant l’adhérence d’une classe isotrope, c.-à-d. de dimension maximale.
Les polyèdres Ci et Ci+1 se coupent sur [p, q], donc ont au moins un sommet pi
en commun. Posons p0 p et pN q en supposant p C1 et q CN. On peut
joindre pi et pi+1 par des arêtes de P dans le bord de Ci+1 i 0, n- 1), d’où
un chemin de p à q dans P1.

Soit x Hf et soit C sa classe. Si x n’est pas parfait, on peut faire une variation
géodésique de x dans C jusqu’à atteindre le bord de C voir ci-dessus, si dim C n,

il suffit d’éviter la direction qui mène à l’infini). Ainsi, au bout d’un nombre fini
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d’étapes, on aboutit sur un point parfait. Remarquons ensuite que l’on peut expliciter
les sommets voisins d’un sommet donné de P1. En effet soit p parfait et soit K
le convexe engendré par les lu)u.S(p). Chaque face F de dimension n - 1 de K
sépare l’espace tangent en deux hyperplans affines. On note .F le vecteur unitaire
orthogonal à F et dirigé vers l’hyperplan contenant K. D’après l’observation sur les

1-jets des longueurs, les arêtes deP issues de p sont des arcs géodésiques de direction
initiale .F ; chacune conduit, en un temps fini voir l’assertion 1)), à un autre point
parfait voisin de p. On peut trouver ainsi un voisinage combinatoire arbitrairement
grand de p, et en tenant compte de l’action de f décrire le complexe cellulaire
fini et connexe f \P1. L’équivalence de deux points de Hf sous f peut se traiter
en terme de formes quadratiques on sait algorithmiquement tester l’équivalence et

le cas échéant obtenir la liste finie des GLn+1(Z)-équivalences entre deux formes
données).

n

3.2. Graphe deVoronoï pour n 5. À titre d’exemple, nous décrivons ici P1f \
pour 2 n 5. Pour tout point parfait p, on note p* le polyèdre convexe engendré

par les points à l’infini associés aux vecteurs µ0-minimaux de p. Rappelons que
pour n petit, le polyèdre n f avec les notations de 1.3) est un simplexe décrit
par les relations 9).Afind’expliciter le graphe deVoronoï, nous prenons comme point
de départ le sommet sn [0, 0, 1] n qui est toujours parfait c’est même un

maximum local de µ0). Soit p2 [1, 1,2], pn [1, 1, 3] n 3) le sommet
de n opposé à la face Xn 0 n petit) et soit s le symétrique de sn par rapport
à pn. Le polyèdre s*n est un hyperoctaèdre régulier) et f agit transitivement sur
ses faces de codimension 1. Si n 2 ou 3, le domaine fondamental n est contenu
dans s*n et pn est situé au centre d’une face de s*n ; il y a un unique point parfait
modulo f et f \P1 est un quotient de l’arête [sn, sn] figure 2). Pour n 4, le
point p4 est parfait et p*4 est un simplexe dont toutes les faces sont f -équivalentes.

sn sn s4 s5p4 p5 p5

n 2,3 n 4 n 5

Figure 2. Graphe de Voronoï pour 2 n 5.

5

On a f \P1 [s4, p4] deux points parfaits mutuellement voisins modulo f
Enfin si n 5, p5 est parfait et p*5 est un hyperoctaèdre avec deux classes de faces
modulo f L’une des faces de p*5 est contenue dans l’hyperplan X5 0 et centrée
au sommet q5 [1, 1, 1, 1, 0, 3] de 5. Le quotient P1f \ est alors donné par la

figure 2, où p désigne le symétrique de p5 par rapport à q5.
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3.3. Sur les points parfaits ou eutactiques. Certaines formules liant entre eux
les objets particuliers associés à l’invariant µ0 pour les réseaux lorentziens points
parfaits ou eutactiques, classes minimales) se déduisent des très bonnes propriétés
géométriques decet invariant. Nous appellerons groupe d’automorphismes d’un point

x Hf ou d’une classe minimale C son stabilisateur pour l’action de f noté Aut x
ou Aut C.

En associant à toute classe minimale CS le polyèdre hyperbolique engendré par
S* {u; u S}, nous définissons un pavage hyperbolique P* géométriquement
dual de P. En particulier, les cellules de dimension maximale de P*, notées p*, sont
en bijection avec les points parfaits p. Chacune est de volume fini on suppose n 2)
et leurs intérieurs sont mutuellement disjoints.

Proposition 3.1 formule de masse pour les points parfaits). Soit PF un système de
représentants des points parfaits modulo f Alors

p.PF

Vol p*

|Aut p|
Vol( f \Hf 29)

où Vol désigne le volume hyperbolique on suppose n 2).

Preuve. On décompose f \Hf à partir du pavage f -invariant P*.

Remarque 3.1. Il existe une formule analogue à 29) pour les réseaux parfaits usuels.
L’application de ces formules est limitée par la faible connaissance du calcul des

volumes.

Proposition 3.2 formule d’Euler pour les classes non isotropes). Soit N un système

de représentants modulo f des classesminimalesnon isotropes,c’est-à-dire définies
par des systèmes de vecteurs isotropes) de rang au moins 2. Alors

C.N
(-1)dim C

| Aut C|
f 30)

où est la caractéristique d’Euler.

Preuve. Les classes isotropes sont ici définies par une seule paire de vecteurs
minimaux ±u, et de dimension maximale. En utilisant les lignes de gradient de lu,
c’est-à-dire les géodésiques issues du point à l’infini u, on peut rétracter par déformation

les classes isotropes sur la réunion N des classes non isotropes voir eq. 27) et

proposition 2.3). Par ailleurs théorème 3 1)), N admet une décomposition cellulaire
finie modulo f Pour conclure, on prend un sous-groupe sans torsion c.-à-d.
sans points fixes) et d’indice fini dans f et on obtient des informations de nature
cohomologique, notamment sur la caractéristique d’Euler, à partir de \N qui est un

K( 1) cellulaire fini.
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Remarque 3.2. On a f 0 si n est impair. En effet soit comme dans la
preuve ci-dessus. La variété \Hf est un K( 1) ; elle se rétracte sur une variété X
compacte à bord telle que X) 0 et dont le double est de caractéristique nulle.

Considérons maintenant les points eutactiques pour µ0 voir §3.1). Comme les

longueurs sont strictement convexes, chaque classe minimale C contient au plus un

point eutactique ([Bav4, §1.3]) ; ces points sont donc en nombre fini modulo f. De
plus, si e C est eutactique, on a Aut C Aut e unicité). Rappelons que le rang
d’un point x Hf pour µ0 est le rangdesgradients lu(x) pour les u réalisant µ0(x).

Proposition 3.3 formule d’Euler pour les eutactiques). Soit E un système de
représentants modulo f des points eutactiques pour µ0. Alors

e.E

(-1)rang e

|Aut e|
f 31)

où est la caractéristique d’Euler.

Preuve. C’est une conséquence directe de [Akr]. Puisque le hessien des lu est défini
positif voir 28)), on sait que µ0 est une fonction de Morse topologique sur Hf dont
les points critiques d’indice r sont exactement les eutactiques de rang r ([Akr]), ici
en nombre fini modulo f On conclut comme d’habitude en prenant un sous-groupe
d’indice fini et sans torsion de f

Il est très facile de comparer les relations 30) et 31). La classe C d’un point
eutactique e est non isotrope ([Bav4, §2.8, thm. 1]). De plus on a Aut e Aut C
et rang e + dim C n voir §3.1). Le premier membre de (-1)n(30) contient celui
de 31). Compte tenu de la rem. 3.2, on a donc C(-1)dim

C/| Aut C| 0, somme
sur les classes minimales modulo f non isotropes et non « eutactiques » Il serait
intéressant d’obtenir directement cette relation.

3.4. Valeur maximale en petite dimension

Proposition 3.4 maximum de µ0). La valeur maximale de µ0 pour les réseaux
lorentziens de dimension n + 1 16 est donnée par la table 4. Elle est atteinte
uniquement modulo f par les points suivants :

sn [0, 0, 1] 1 n 5),

pn [1, 1, 3] 5 n 8),

xn [1, 1, 1, 1, 1,1, 1,0, 0, 3] 9 n 11),

yn [2, 1, 1,4] 11 n 12),
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z13 [1, 1, 0, 4],
z14 [2, 2, 1, 1, 1, 1,1, 1,1, 6],
z15 [1, 1, 4] pour le cas impair et b1, b9 eq. 12)),

d17 [4, 6,8, 12, 10, 8, 6, 3, 5, 8,10, 15, 12, 9,6, 3,-3, 3] pour le cas pair.

Table 4. Maximum de µ0 en petite dimension.

n + 1 µ0
n,1 n + 1 µ0

n,1 n + 1 µ0 0,II
n,1n,1 n+1 µ

2,3, 4, 5,6 2 9 8 14 9/2 2 1

7 8/3 10, 11, 12 4 15, 16 8 10 2

8 4 13 8 18 9/2

Preuve. Dans le cas impair, on procède comme au §1.3, avec une longueur si n 8,
et par découpage pour 9 n 15. Noter que le réseau associé à sn point base) est

isomorphe à Zn+1. Le cas pair résulte directement de la preuve du théorème 2 cf.
§1.4) pour n 1 ou 9, et d’un découpage en deux sous-polyèdres pour n 17.
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