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Invariant d’Hermite isotrope et densité des réseaux orthogonaux
lorentziens

Christophe Bavard

Résumé. Nous déterminons la densité maximale des réseaux orthogonaux lorentziens jusqu’en
dimension 12 et en dimension 18 pour le type pair. Par ailleurs, nous définissons un invariant
d’Hermite isotrope pour lequel nous établissons, dans le cas lorentzien, une théorie « de Voronoi »
compléte.

Abstract. We compute the maximal density of orthogonal Lorentzians lattices up to dimension
12 and in dimension 18 for the even type. On the other hand, we define an isotropic Hermite
invariant and we show that it satisfies, in the Lorentzian case, a complete “Voronoi’s theory”.

Codes AMS (2000). 11HS55.

Mots clé. Réseaux euclidiens orthogonaux, invariant d’Hermite.

Introduction

Introduits par Bergd et Martinet [B-M], les réseaux orthogonaux sont avec les réseaux
symplectiques des exemples importants et naturels de réseaux isoduaux, ¢’ est-a-dire
isométriques a leur dual (cf. Conway et Sloane, [C-S]). Le probléeme de la densité
maximale, soulevé par Buser et Sarnak [B-S] pour les réseaux symplectiques, se
pose tout aussi naturellement pour les réseaux orthogonaux. I’ approche traditionnelle
«a la Voronoi » pour ces questions vise a classer les maxima locaux de I’invariant
d’Hermite g restreint a ces familles particulieres. Ceux-ci sont caractérisés dans
[B-M] et vérifient de bonnes propriéiés de finitude ([B-M], [Bav4]). Cependant, leur
classification dans le cas orthogonal (ou symplectique) est pour I'instant largement
ouverte.

Nous nous concentrons ici sur le cas des réseaux orthogonaux de signature (n, 1),
que nous appellerons orthogonaux lorentziens, ou simplement loreniziens. 1. étude de
leur densité est abordée par une méthode directe et enticrement géométrique. Nous
déterminons la densité maximale des réseaux lorentziens jusqu’en dimension 12 et en
dimension 18 dans le cas pair (table 1 et 2). Celle-ci n’était connue qu’en dimension
inférieure ou égale a 3 d’apres [C-S]. D’autre part, le point de vue géométrique
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développé est également reli€ a 1’approche classique. Nous introduisons un invariant
plus fin que j, linvariant d’Hermite isotrope u°, pour lequel nous établissons dans
le cas lorentzien une théorie « de Voronoi » complete, analogue a celle des réseaux
usuels, avec en particulier un algorithme de Voronoi répondant au probleme de la
classification des maxima locaux de p°.

Table 1. Densité maximale des réseaux lorentziens impairs de rang < 12.

n+1 M1 c n+1 M1 r=
2 2/+/3 1,1547 8 2 2.0000
3 17244272 1,2071 9 53 1,6666
4 4/3 1,3333 || 10 1/2+4/5/2 1,6180
5 75 1,4000 || 11 5/3 1,6666
6 3/2 1,5000 || 12 2 2.0000
7 5/3 1,6666

Table 2. Densité maximale des réseaux lorentziens pairs de rang < 18.

n—+1 ,u},il i~ n+1 M}@I,l i~
2 1 1.0000 18 621/310  2.0032
10 2 2.0000

Les réseaux orthogonaux portent une structure sous-jacente de Z-module bili-
néaire indéfini. Quand on fixe cette structure entiere, ou « type algébrique », en y
ajoutant éventuellement 1’action d’un groupe fini, I’ensemble des réscaux obtenus
(considérés a 1sométrie pres) s’ identifie au quotient d’un espace symétrique X par un
groupe discret ©. L’isotropie relative au type algébrique est alors reliée a la topologie
de ©®\ X (section 2). Par exemple p et 1? cotncident a I’infini de O\ X et vérifient la
compacité de Mahler. Au passage, nous obtenons aussi, en feuilletant les « classes 1so-
tropes », des rétractes naturels @-équivariants et cocompacts de X, proposition 2.3 (la
construction de tels rétractes est un probléme classique dans 1I'étude cohomologique
des groupes arithméuques, ¢f. Ash [Ash]).

Pour les réseaux lorentziens de rang n 4 1, I’espace X s’identifie naturellement
a I’espace hyperbolique H" (section 1). De plus, les fonctions longueur (normes des
vecteurs des réseaux) s’ expriment simplement au moyen de la distance hyperbolique,
proposition 1.2, A partir de cette observation élémentaire, et en analysant I’ action sur
H" du groupe d’automorphismes & du type algébrique, nous déterminons la densité
maximale en petite dimension (donnée par le maximum de pt, table 1 et 2). Notre étude
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met en évidence des liens étroits entre 1a fonction densité et la géométrie des domaines
fondamentaux de © ; par exemple, pour le type pair de rang 18, la densité maximale
correspond au rayon interne du domaine fondamental (§1.4). Comme conséquence, la
densité maximale est estimée jusqu’en dimension 23, avec notamment la construction
de maxima locaux de densité (table 3, §1.6). Pour 13 < n + 1 < 18, nous montrons
que le maximum de g est relativement faible, voisin de 2, ce qui reflete a nouveau une
propriété géométrique particuli¢re des domaines fondamentaux pour ces dimensions.
Toujours dans le cas lorentzien, I’ invariant isotrope ° est défini via les fonctions
de Busemann par des points a I'infini de H* (proposition 1.2) . Nous obtenons ainsi
une « théorie de Voronoi » (en particulier un algorithme de Voronoi) pour 2 a I’aide
de deux pavages duaux de H" par des polyedres hyperboliques, associés respecti-
vement aux points a I'infini précédents et aux points parfaits (théoreme 3). Cette
vision géométrique, combinée avec les propriétés topologiques générales de ©@\H”
(section 2), est aussi la source de relations numériques concernant certains réseaux
particuliers relativement a 12 (83.3) : formule de masse pour les points parfaits, for-
mules d’Euler pour les classes non isotropes ou pour les points eutactiques. Nous
donnons également la valeur maximale de 1° jusqu’en dimension 16 (table 4).

1. Densité des réseaux orthogonaux lorentziens

1.1. Réseaux orthogonaux. Invariant d’Hermite isotrope. Un réseau orthogonal
(cf. [B-M]) d’un espace euclidien E est un couple (A, o) formé d’un réseau A de E
et dune 1sométrie involutive o # £ldg qui échange A et son dual. Deux réscaux
orthogonaux (A;, o) de E; (i = 1, 2) sont isométriques §’1l existe une isométrie ¢
de E; sur E, telle que ¢(A1) = Az et porp™! = 0.

Tout réseau orthogonal (A, o) hérite d’une structure entiere. En effet, la forme
bilinéaire symétrique

alu,v) ={u,o(v)) (u,velk), (1)

dont la restriction e a4 A x A est entiere, induit un isomorphisme de groupes de A
sur Homyz (A, Z). Le Z-module bilinéaire indéfini (A, o) est alors caractérisé par
son type (pair ou impair) et sa signature (p, q), appelés rype et signature de (A, o)
et évidemment invariants par isométrie de réseaux orthogonaux. Soit I* (resp. U)
le module bilinéaire associé au module quadratique (Z, +u?) (resp. au module pair
(Z#, 2ujuy)). Dans le cas impair (A, ap) est isomorphe & pI+ + g1~ ; dans le cas
pair,ona p —q = 8a (a € Z) et (A, ap) estisomorphe & qU + |a| EJ, pU + |a|Eg
ou plU selon le signe de a ([Ser, §V.2]).

La forme entiere o, permet de raffiner I’invariant d’Hermite. Soit (A, o) un
réseau orthogonal impair (resp. pair), et soit k € Z (resp. k € 2Z) avec k ¢ 4Z + 2 s1
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dim E = 2. Nous définissons pX(A) = uX(A, o) par
5 (A) = minfjul®; u € AN\{O), a(u,u) = k). (2)

En particulier {invariant d’Hermite isotrope 1° est défini par les vecteurs isotropes.
Noter que les p* sont invariants par isométrie de réseaux orthogonaux. I’ invariant
d’Hermite g des réseaux orthogonaux de rang fixé est évidemment le minimum
des 2%, mais on a un résultat plus précis.

Proposition 1.1. Soir y,, la constante d’Hermite en dimension m. Alors
o= min{p®; k] < ym}. 3)

En effet, en appliquant I’inégalité de Cauchy—Schwarz a (1) on obtient la relation
fondamentale
|l (u, v)| < ullv] (u,v e E) (4)

qui borne les valeurs de « sur les vecteurs minimaux du réseau. Par exemple, en
dimension m < 8 on a u = min{u~!, u° u'} pour le type impair et 1 = p°
pour le type pair. C’est vrai méme pour la valeur exceptionnelle p(Eg) = 2 par
continuité. Il existe aussi des structures orthogonales sur Eg (de type pair et impair)
avec = pt =p "t =2,

Exemples 1.1. (1) Les structures orthogonales sur un réseau entier unimodulaire A
correspondent aux classes de conjugaison des éléments d’ordre 2 (# —Id) de Aut(A).
Par exemple pour le réseau de racines Eg, en composant des générateurs du groupe
de Weyl qui commutent (et leurs opposés), on obtient des structures orthogonales
impaires de signature (p,g)pour 1 < p <7.

(2) Structures orthogonales sur Z™ . 1 est facile de voir que dans Aut(Z™), produit
semi-direct de {£1}" et du groupe symétrique 4, tout élément d’ordre 2 distinct de
—Id estconjugué a (1, ..., em; (1,2) ... (2r—1,2r)) avecey =11l <k < p+r
et e = —1 sinon, pour un certain couple (p, r) vérifiant O < 2r < m et max(l,r) <
p < m —max(l,r). Il yadonc 1+ min(p, g) structures orthogonales distinctes
de signature (p,q) donnée (1 < p <m — 1, p+ g = m) sur Z", soit au total
[m?/4] + m — 1 structures, dont une scule paire de signature (p, p) quand m = 2p.
Pour ces structures, ona pu’ = p =1sir >0, ul = p=1etp’ =2sir =0.

(B3)Pour p+q = m > 8et p— g = 0(8), le réseau D} admet une structure
orthogonale paire de signature (p, ¢) avec u(D;h) = (D) = 2 ([B-M, §6.4]).

1.2. Géométrie des longueurs. A partir d’ici nous nous concentrons sur le cas
lorentzien. Soit f une forme entiere de signature (n, 1) et de discriminant —1 sur
Z**1 ; son extension 2 R"*! sera encore notée f. Rappelons que le projectifié H ¢ du
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cone négatif de f est un modele classique de I’espace hyperbolique de dimension n.
Onposeu -v= f(u,v)(wetv e RN u? =y -ueti =Rusiue R\ {0}

Montrons que les classes d’isométrie de réseaux lorentziens (A, o) dont le type
aa est isomorphe (sur Z) a f sont paramétrées par Hy. En effet, par transport des
structures, on peut supposer que (A, ap) = (Z"H, ). D’apres la relation (1), I’1s0-
métrie o est une réflexion f-orthogonale et sa droite propre x de valeur propre —1
appartient a Hy ; il est clair que la formule

5t 4 55) {0 )

X X

(, vy =u-v— (u,v e R ¥ e Hy). (5)
définit une bijection entre Hy et les structures euclidiennes ainsi obtenues.

[’invariant d’Hermite des réseaux lorentziens « de type f » peut dong s’exprimer
sur Hy par

p(®) = min {(u, u)z:u € ZF\(0}} (7 € Hy). (©6)

Remarquer que p est invariant par 1’action du groupe O( f, Z) des isométries entieres
de f. Considérons les fonctions [, (x) = {u, u)z (x € Hy, u € zntly, appelées fonc-
tions longueur (par analogie avec les surfaces de Riemann) et définies pour u € R+,
Les /, admettent une description naturelle au moyen de la géométrie hyperbolique.

Proposition 1.2 (interprétation géométrique des longueurs). Soir d la distance hy-
perbolique de Hy. Soit u € R*1\ {0}, Si u? > 0, on note ut I’hyperplan polaire de
u dans Hy. Alors

—u? cosh[2d(., 1)] siu? <0,

by = { L (p) exp(2hy p) siur =0,
[3ptlu? cosh[2d (., u™)] siu? > 0,

ou hy p est la fonction de Busemann associée a u (u* = 0) normalisée par
hy p(p) = 0, le point p € Hy étant arbitraire. En particulier 1, est convexe et
méme strictement convexe si u> < 0.

Preuve. Le vecteur u définitun pointde Hy si u? < 0, et une hypersurface totalement
géodésique u de H £ (intersection de Hy avec le projectifié de I'hyperplan f-ortho-
gonal a u) si u? > 0. Pour ces cas, on a respectivement

(x - u)*

X2M2 ’

a3
sinh2[d (%, ub)] = —% TeHy). )

cosh?[d(x, )] =

Si u? = 0, le point & est situé au bord de Hy. Soit ¥ € Hy. La fonction de
Busemann 7, 5 est définie avec la géodésique y qui joint les points y et u par
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h, 5 = limy_old(-, y(t)) — t] (¢ étant la longueur d’arc). On vérifie alors que
by @ =In | 2 ’”'(”2)1/2 (5.7 € Hy) ®)
-(x) = — Fos ;
i v oul\22 S
Pour conclure, il suffit d’appliquer la trigonométrie hyperbolique usuelle. O

Remarque 1.1. 11 y a donc une forte analogie entre 1’invariant d’Hermite isotrope
des réseaux orthogonaux lorentziens et celui des réseaux usuels pour lequel les fonc-
tions longueur sont aussi des exponentielles de fonctions de Busemann dans 1’espace
symétrique Py, des matrices de Gram ([Bavl, 1.3]).

1.3. Densité maximale pour le type impair de rang < 12. Soit ©¢ le noyau de
I'action de O(f, Z) sur les composantes connexes du cone négatif de f, et soit I'y
le sous-groupe de © engendré par les réflexions hyperplanes associées aux racines
de carré positif du module indéfini (Z*1 £, On sait que pour n < 19, I'y est
d’indice fini dans Oy, [Vinl], [Vin2], [V-K]. Pour estimer la densité maximale des
réseaux orthogonaux lorentziens en petite dimension, nous utilisons I’interprétation
et les propriéiés géométriques des longueurs (proposition 1.2), ainsi que la description
explicite d’undomaine fondamental polyédral I, pour I' y donnée dans [Vinl |, [Vin2]
(n < 17)et [V-K] (n = 18, 19). Dans le cas impair, on prend x - y = Zle Xjyi —
Xp+1Yu+1 €ton pose @, = Of, I1, = Tly.

Théoreme 1 (densité¢ maximale pour le type impair de rang < 12). La valeur maxi-
male w1 de Uinvariant d’Hermite des réseaux orthogonaux lorentziens de type im-
pair et de dimension n+1 < 12 est donnée par la table 1. De plus, p1,1 (1 <n <11)
est atteinte par un unique point modulo ©, (correspondant a Aj, Eg, Dfrz pour
n+1=2 8, 12).

Preuve. la preuve consiste a majorer un petit nombre de longueurs [y, . . ., [y choi-
sies dans chaque cas en relation avec la géométrie de I1,. Le maximum d’une fonc-
tion convexe sur un polyedre de volume fini (condition superflue en dimension 1)
de I’espace hyperbolique sera atteint en un point extrémal, ¢’est-a-dire un sommet
(éventuellement a 1’infini, en admettant la valeur 4-o¢ pour /). On majorera donc les
longueurs en les évaluant aux sommets de IT,, ou aux sommets de sous-polyedres de
[T, sinécessaire. Une fois trouvée une estimation p < min(/y, ..., {y) < M sur I1,,
il suffira pour conclure que M soit une valeur de .

D’apres [Vinl], I1,, est donné en coordonnées homogenes x = [ X, ..., X;+1]
par un nombre fini d’inéquations de la forme x - ¢; < 0 associées a des racines de



Vol. 82 (2007) Invariant d’Hermite isotrope 45
(Z" L, £ (e; entier avec e; - e¢; = 1 ou 2), plus précisément (1 <n < 11):

OSXHSXR—IE”'SXL
X1+ X0+ X3<X,11(n=23) ou X1+ Xy <X3(n=2), (9)
YU X <3X, (=1 ou 3% X <3Xy (n = 10).

Pour ces petites valeurs de n, le polyedre I1, est un domaine fondamental de ©,. Il
admet un unique sommet a I'infini si n < §, et deux sommets al’'infinisi9 < n < 11.
Noter que ces sommets, ou classes modulo &, de vecteurs entiers isotropes, cor-
respondent bijectivement aux réseaux unimodulaires entiers euclidiens de dimension
n — 1 (cf. [Vin2]). Combinatoirement, [1, est un simplexe A, si 1 < n < 9, et une
pyramide de base Ag x A;_g (contenue dans la face X9 = Xq19)sin = 10, 11. On
note u = (0, ..., 1,0) la racine associée i la face X, = O, etpour 1 < n < 9, on
note p, le sommet opposé a cette face.

Traitons d’abord les cas 3 < n < 7 et n = 11, ou une seule longueur suffit.
La longueur /, est fonction strictement croissante de la distance a la face X,, = 0
(proposition 1.2). Si 3 < n < 7, 1l est donc évident que [, atteint son maximum
sur IT,, au sommet opposé, c.-a-d. p, = [1,...,1, 3], et uniquement en ce point.
Sin = 11,1 y a 9 sommets de ITq; tels que X171 # 0, et le maximum de /,, est
atteint uniquement en g11 = [2, 1, ..., 1, 4] (le réseau correspondant est D »). Pour
3<n<T7Tetn =11,1l setrouve quel (pn) = 1(py) (ct. §1.5), d’ou le resultat

Sin € {1, 2,8, 9, 10}, on obtient une majoration optimale avec deux longueurs en
découpant IT,, en deux sous-polyedres. On pose respectivement v = (1, 1)! (n = 1),
v=(10,1)(n =2),v=(1,...,1,3) (n = 8,9 et 10). L’élément géométrique
associé a v (cf. proposition 1.2) est le sommet p, sin = 1, 8 ou 9, un sommet a
I’infini si » = 2 et une face du polyedre sin = 10. Pour n = 1, 8 ou 9, il existe
sur chacune des n arCtes de I1, issues de p, un unique point ou /, = [, ; on partage
[T, avec ’hyperplan passant par ces n points. Pour n = 2, on découpe T2 en deux
triangles avec la droite X1 + (1 + +/2)X2 = X3. Enfin on partage ITio en deux
pyramides avec I"hyperplan I d’équation — X190 = X1+ - -+ X10 —3X11 sur lequel
I, =1, ; 'intersection de H avec la base de I11g (¢c.-a-d. Xo = X1¢) est un simplexe
de dimension 8. En procédant comme indiqué plus haut, on obtient que dans chacun
des cas étudiés, le maximum de min(/,, [,,) sur I1, est atteint en un unique point g,
donné par

2 — /3.1,

1, 2-+'vfj
.2, 7], (10)

1,
5+v§4 L4, 13 1435,
.,1,4}

= |
|
=3,
=
2,

q10 =
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De plus on a l,,(g,) = l,(gn) = n(gy) pour n € {1, 2,8,9,10} (cf. §1.5), ce qui
acheve la preuve. O

Remarque 1.2. Le point g correspond au réseau mis en €vidence dans [C-S, sect. 3]).
On peut également vérifier que les maxima trouvés en dimension 5 et 7 correspondent,
avec les notations de [C-S, table 1 et sect. 6], aux réseaux (A451)T et (Eg31) ™.

1.4. Densité maximale pour le type pair de rang < 18

Théoréme 2 (densité maximale pour le type pair de rang < 18). La valeur maximale
;LE | de Uinvariant d’Hermite des réseaux orthogonaux lorentziens de type pair et de

dimensionn+1 <18 estdonnée parlatable 2. De plus, ,u},il (n=1,9, 17) estatteinte
par un unique point modulo ©¢ (correspondant a 77 et Df[) pourn+1 =2, 10).

Preuve. On note ici Eg la matrice donnée dans [Bou, p. 270] ou [Ser, p. 89] (matrice
de Gram d’une base de racines d’un systéme «de type Eg »), eton pose U = (9}).
Pour k& € N, soit f la forme bilinéaire dont la matrice, dans la base canonique (¢;) de
R est formée de k blocs diagonaux Fg suivis d'un bloc Uy (n +1 = 8k +2). Pour
k=0, 1, 2,une application directe de [Vinl] a partir du point base [0, ..., 0,1, —1]
permet d’expliciter un polyedre Iy de volume fini (K = 1, 2) au moyen des racines
suivantes :

€ = —&; (jzl,...,n—l),
€y = —&p — Ep41,

ent1 = 261 + 3ex + de3 + 6e4 + Se;
+deg + 367+ 288 +en1 (=9, 17),

e190 = 289 4 3810 + 4e11 + 6212 + Se13
+4de14 + 3615 + 2616 + 18 (n =17).

| (11)

Sin =9, Il estun simplexe etona 'y = ©f. Sin = 17, I1¢ est une pyramide de
base Ag x Ag ([Vinl]) et I'y est d’indice 2 dans ®¢ comme le suggere la syméitrie
du diagramme de Coxeter de Iy (figure 1).

1 3 4 5 6 7 8 18 17 19 16 15 14 13 12 11 9

I2 i10

Figure 1. Diagramme de Coxeter de ITy.
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Pour n = 1 et 9, I1; admet un unique sommet a I’'infini ,1, et on vérifie que la
longueur associée [, est maximale en un unique sommet b, de Ty :

'bl — [_13 1]3

(12)
by =12,5/2,7/2,5,4,3,2,1, -1, 1].

Le point bg est le sommet opposé a la face x - e; = 0 de TIy. D’apres 1.5 on a
de plus pi(by) = 1., (by) (n = 1,9); les réseaux correspondants sont isométriques
respectivement 2 Z2 et Dﬁ). Pour n = 17, on considere le point

b17 = [46, 68,91, 135, 110, 84, 57, 29, 46, 68, 91, 135, 110, 84, 57, 29, —30, 31].
(13)
Ce point est équidistant de foutes les faces de Ily. En procédant comme au §1.6
(cf. lemme 1.3) on obtient la majoration p(p) < 621/310 (p € Hy), avec inégalité
stricte i p # b7 modulo Oy . 1l se trouve (cf. §1.5) que p(b17) = 621/310 (avec 19
paires de vecteurs minimaux (=e;)1<;<19), ¢e qui acheve la preuve. Noter que dans
ce dernier cas le maximum de g est lié au rayon interne de Iy. O

1.5. Etude des maxima de densité. Nous prouvons maintenant que les bornes
établies en 1.3 et 1.4 (voir table 1 et 2) correspondent a des valeurs de la densité.
Rappelons que I'invariant d’Hermite du réseau associé a x € Hy est le minimum de

(u-x)?

X X

LX) =u-u—2 (x € Hy), (14)
le vecteur u décrivant Z"+! \ {0}, et que les valeurs de u? sur les vecteurs minimaux
peuvent &tre bornées grace a 'indgalité (4).

Commengons par le cas ot 3 < n < 7 (donc le type est impair) et considérons

xo = (1,...,1,3)". Onaalors I,(x0) = u® + 2(u - x0)>/(9 — n) et on observe que
I’entier u? — u - xg est toujours pair. Si n = 7, le réseau est donc isomorphe A Eg et le
minimum vaut 2. S1 3 < n < 6, on peut grice a (4) se restreindre a u?=—1,00ul.

Sachant que I, (xg) > 0, on voit que (9 — n)l, (xp) est respectivement minoré, suivant
ces trois valeurs de u?, par 9+n, 8 et 11 — n ; d’ou 1’on conclut que le minimum vaut
(11 —n)/(9 — n).

Pour les cas restants, nous utilisons de plus une autre inégalité. Soit A une matrice
carrée d’ordre m définie positive. Si u et v sont des vecteurs de R™, on pose (u, v) =
u'v et A[u] = u' Au. En choisissant une racine carrée de A, on prouve la relation

(u, v)* < Alu)A™1v]. (15)

Considérons maintenant n € {1, 2, 8,9, 10, 11} avec f de type impair. Soit g, le
point de Hy défini par 1’équation (10}, complétée par g11 = [2, 1, ..., 1, 4]. Traitons
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lescas 8 <n < 11, ensupposant que (g11) < 2. Soit u = (u;) un vecteur minimal.
L’indgalité (15) montre que

wp <1 el (u—u))> <1 (2<i,j<n) (16)

En particulier les #; pour 2 < i < n ontle m&me signe. Par suite, I, (g,) ne dépend que
des trois variables entidres u1, Y i, u; et un41. Par ailleurs, u? = u + | Y7, ui| —
u% = —1,00u 1. L'examen des diverses possibilités (i1 et u,41 étant aussi bornées
par (15)) conduit aisément aux valeurs de la table 1. Le cas n = 2 se traite de facon
analogue et n = 1 donne le réseau équilatéral.

Passons au type pair. Soit b, (n = 1, 9 ou 17) le point défini par (12) et (13). Les
vecteurs entiers seront écrits sous la forme u = (u;) = (v, uy, typ1) € ZT? avec
k=0, lou2.Sin = 1,leréseau estisomorphe 2 Z*. Sin = 9, considérons un vecteur
minimal u € Z!°. Onal,(bo) = u?+ (41 —2u10+2u9)? /2 avec u? = Eglv]+2ugu1g
(voir au §1.4 la définition de f). Supposons que p(bg) < 2; alors ur =0 (inégalité
(4)), en particulier v n’est pas nul, et /,(bg) = 1/2. Mais d’apres (15),0on a |ug| <1,
l10] < 1 et |u1p — uo| < 1, ce qui contredit u? =0.Restelecasn = 17. Ona

16

2
1,(b17) = u® + 3‘11—0 aveca = Y u; + 3lusy — 30uss, (17)
i=1

et u? = (Eg ® Eg)[v] + 2u17us. Supposons que u(b17) < 621/310. Soit u € Z!8
minimal, donc vérifiantu® = —2, Oou2.Siu? = —2, onvoit, toujours grice  (4), que
la| > 36, ce quiest absurde. Si«? = 0, alors |a| < 24etpar (15) |u17] < 2, |uig] < 2.
Ou bien v = 0, ou bien (quitte a changer u en —u), le triplet (117, u1s, g ® Eg[v])
vaut (1, —1,2), (1, =2, 4), (2, —1,4) ou (2, —2, 8). Soit w € Z® tel que Eg[w] = 2,
4, 6 ou 8 ; en appliquant (15) a chaque coordonnée, on voit que | Zf’:l w; | est major¢
respectivement par 33, 46, 59 et 69. 1l en résulte que |a| > 25 dans tous les cas, ce
qui est absurde. Enfin, si u? = 2, u est une racine de (Z'8, f) et I’inégalité [, (b17) <
621/310 signifie que I"hyperplan u* coupe I'intéricur du domaine fondamental IT 1
de I'y, ce qui est impossible (voir §1.4 pour la description géométrique de I1¢). On
pourrait aussi exclure ce dernier cas en procédant comme plus haut.

Remarque 1.3. L.a méthode indiquée ci-dessus permet aussi d’expliciter les vecteurs
minimaux dans chaque cas.

1.6. Estimations géométriques supplémentaires. On considere une forme entiere
feommeenl.2,derang n +1 < 20, etonnote pi5 la valeur maximale de 'invariant
d’Hermite des réseaux lorentziens de type f.

Lemme 1.3. Soit p € [y, Pourl = 1,2, on note ri(p) le maximum des distances
d(p, H) quand H décrit ’ensemble des faces de Iy définies par des racines de



Vol. 82 (2007) Invariant d’Hermite isotrope 49

carré l. On a alors la majoration
py < max{cosh(2ri(p)), 2 cosh(2ra2(p))}. (18)

Preuve. 1l suffit de majorer p sur ITy qui contient un domaine fondamental de ©¢.
Par ailleurs on peut supposer que p est intérieur a ITz. On décompose alors I1y en
pyramides de sommet p et sur chacune d’elles, ;¢ est majoré en fonction de la distance
a la base (face de I1y), d’ou le résultat. O

Proposition 1.4. La valeur maximale 4,1 de Uinvariant d’Hermite des réseaux
lorentziens de type impair et de rang n + 1, 13 < n 41 < 23, est estimée dans la
table 3, oit B12 = (1507 4+ 114/2246)/1014, p17 = (114 — J2)/36 et les nombres
(Bn)13<n<16 sont algébriques de degré 4 sur Q.

Table 3. Estimations de w, 1 pour 13 <n + 1 < 23,

n+1 Mn,1 = Hu,1 < n+1 Hn,1 =
13 B12 =~ 2.0003 651/325 ~ 2.0031 19 184/91 ~ 2.0219
14 B1z =~ 2.0007 507/253 ~ 2.0040 20 112/55 ~ 2.0363
15 B14 == 2.0004 772/385 ~ 2.0052 21 31/15 = 2.0666
16 B1s = 2.0026 572/285 ~ 2.0071 22 15/7 ~ 2.1428
17 B1e = 2.0048 205/102 ~ 2.0099 23 12/5 ~ 2.4000
18 B ~2.0104  141/70 ~ 2.0143

Preuve. Considérons le point
cn =[24,23,...,25 —n,70]. (19)

Noter que ¢, est invariant par le groupe d’isométries G, de IT, pour n < 19 (par
exemple G1g == 44 et G19 = 85, [V-K]). Si n < 18, ce point ¢, est équidistant de
toutes les faces de I, associées aux racines de carré 2, et la valeur commune des
longueurs correspondantes vaut

_ = 26)(2n% —95n + 1131)
" (n—=25)(2n —49)(n —24)

(20)

De plus, pour n < 17 onari(cy) < rz2(cy), d’ou la majoration p, 1 < v, (lemme);
I’inégalité stricte s’obtient par la preuve du lemme. Pour n = 18, 19, on a la relation
plcy) = vy. Cette égalité restant valable pour 20 < n < 22, on conclut que 11, > vy
pour 18 < n < 22. On vérifie également que pour 12 < n < 22, ¢, est parfait et
eutactique (voir §3.1) relativement au systeme de longueurs valant v, ; par suite
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([Bavl, §2.1]) si 12 < n < 17 la majoration par v, est localement optimale pour ce
systeme, et v, est un maximum local de densité pour 18 < n < 22.

La construction de réseaux lorentziens assez denses (12 < n < 17) s’effectue en
utilisant les autres éléments géométriques de I1,. Les faces de ce polyedre étant nu-
mérotées comme dans la table 6 de [Vinl], onnote (Ix)1 <k <n, les longueurs associées.
Les points donnant les minorations de la table 3 pour 12 < » < 17 sont uniquement
définis dans I1,, par I'égalité de certaines longueurs (Ix), k € {1,..., Ny} \ J,, et
d’une longueur [, associée a un sommet de I1, si 13 < n < 16, avec les valeurs
suivantes :

Jio = {13}, Ji7 =1{5,13},
Ji3=1{5,6}, w3z =1[2,1,1,1,1,1,1,1,1,1, 1,1, 1, 4],
Jigy =16,7,8}, Ji5s=1{5,6,9}, wiy, w15=12,2,2,2,2,2,2,1,1,...,1,1, 6],
Jie ={3,11,17}, wis=11,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 4].
Les sommets wy,, n = 13, 15, 16 sont situés a 1’infini. Le calcul montre que pour
13 < n < 16, B, appartient au corps quartique Q(6,,) défini par
O — 16 635 — 136 613 — 566 = 0,
07, — 1154 6%, — 16512 14 + 46036 = 0,
Ofs — 2 675 — 122 6% + 2466 615 — 6561 = 0,
O — 267 — 620} — 786 616+ 57 = 0.

(21)

De plus, on a g8, = P,(6,), ou &, estune racine convenable de (21), avec :

Pi3(r) = 2(1071832 2 — 770492 1? — 38450040 1 + 5237155223) /5285302305,
Pi4(1) = (7776 13 — 191652 1% — 5034720 ¢ + 3095413193) /1536378935,

Pi5(1) = (16382 > + 1410467 % + 17516168 ¢ + 9589881744) /4797591903,
Pis(f) = (—=2437 12 + 32231 t — 74617 1 + 67058907)/33168576. O

Remarques 1.4. (1) Les valeurs relativement faibles de p, 1 pour 12 < n < 17
refletent 1a forme géométrique « étroite » de I1,,.

(2) On vérifie (voir ci-dessus) que les valeurs B, (12 <n < 17)etv, (18 <n <
22) correspondent a des maxima locaux de densité pour les réseaux lorentziens.

(3) Les minorations données en dimension 13 et 15 améliorent 1égerement celles
de [C-S, table 1].
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2. Autres aspects géométriques

2.1. Réseaux marqués. Actions de groupes. Compacité. Dans celie section, nous
poursuivons I'étude des réseaux orthogonaux en signature quelconque. Ces objets
sont décrits par des espaces symétriques riemanniens. Nous en donnons quelques
propriétés topologiques générales qui seront illustrées a la section 3 avec I'invariant
d’Hermite isotrope du cas lorentzien.

Considérons R”™ muni de la structure euclidienne (u, v) = u'v et de la forme
indéfinie de signature (p, ¢) «usuelle » «w(u, v) = Zle uiv; — Z;":pﬂ uivi (u, v €
R", p + q = m). D’autre part, soit f une forme bilinéaire symétrique enticre in-
définie sur Z™ de signature (p, g) et de discriminant £1, et soit fr son extension
aR"™ = R ® Z™. Un réseau orthogonal marqué de type f est un R-isomorphisme
unimodulaire de fp sur «. 11 est clair que tout réseau orthogonal dont le type est
isomorphe 4 f (voir §1.1) peut s’ écrire sous cette forme, ¢.-a-d. PTZ™ avec

PeSL,(R) et «(P'x,P'y)y=Ffx,y) (x,yeZ™). (22)

Notons P, I'ensemble des matrices symétriques réelles m x m positives de déter-
minant 1. C’est un espace symétrique riemannien sur lequel SL,, (R) agit isométri-
quement et transitivement par P.A = PAP' (P € SL,(R), A € P,). Soit Vs
I’ensemble des matrices de Gram des réseaux orthogonaux marqués de type f (ma-
trices P P! ou P vérifie (22)). On sait (cf. [Bav4, §2.7]) que Vi est une sous-variéré
connexe, complete et totalement géodésique de P, ; de plus, s1 F est la matrice de f
dans la base canonique, on a

Vi={Ae P, AF1A=F}. (23)

Le quotient SO’ ( f, Z)\ V s’identifie avec I’ensemble des réseaux orthogonaux dont le
type estisomorphe a f, modulo isométrie directe de réseaux orthogonaux. Observons
que I'indgalité (4) se traduit vig (22) en termes de formes quadratiques : tout élément
A € Vy satisfait I'inégalité

|fr(x, x)| < Alx]  (x € R™). (24)

On voit ainsi que Vy coincide avec I'ensemble des majorantes minimales, ou majo-
rantes d’Hermite de la forme quadratique fp (cf. [Bor, §1.5]).

Il est naturel de considérer, comme dans la théorie usuelle, des réseaux orthogo-
naux stables par une action préservant la structure orthogonale, ¢’est-a-dire en termes
de formes, préservant V. Notons GO(f, R) (resp. GO, ,(R)) le groupe des simili-
tudes orthogonales relativement a f (resp. 4 «) de rapport =1. Alors le stabilisateur
de Vg, pour I’action sur P, des P € GL,,(R) avec det(P) = =1, coincide avec
GO'(f, R) ([Bav4, §2.8, prop. 2.14]).

Soit p : T — GO'( f, Z) une représentation entiére d’un groupe fini IT. On pose
oV = (p") L etonnote ZZ% le Z[IT]-module correspondant. Un réseau orthogonal de



52 Ch. Bavard CMH

type (f, p) estunréseau A stable par une représentation de IT dans O,, (R)NGO,, ,(R)
et tel que f soit isomorphe & «p par un isomorphisme de Z[I1]-modules entre Z7,
et A. La notion de réseau orthogonal marqué de type (f, p) est analogue a celle du
cas particulier ou p est triviale (voir plus haut).

Considérons I’ensemble ij’ des formes A € Vy invariantes par o, ¢’est-a-dire
p(m)Ap () = A pour tout 7w dans TT. Si G est un sous-groupe de Lie de GL, (R), on
note G, le commutantde p dans GNSL,, (R). Le groupe SOfO (f, R) (d’indice fini dans
GOfO (f, R))agitsur pr Il est clair que I’ensemble des réseaux orthogonaux marqués
(resp. non marqués) de type ( f, p), considérés modulo isométrie directe conjuguant
les actions, s'identifie via les matrices de Gram a V' (resp. 2 SO, (f, Z)\V/). Voici

les principales proprictés de V.

Proposition 2.1. ([Bav4, §2.5]) (1) L’ensemble ij) est une sous-variété non vide,
connexe, complete et totalement géodésique de I'espace Py,. C’est une orbite du
commutant SO, (f, R).

(2) L’application SOL( f Z)\Vf — SL(m, Z)\ Py, est propre et a fibres finies.

Corollaire 2.2, L’invariant d’Hermite isotrope des réseaux orthogonaux tend vers 0
a Ulnfini de ["espace de modules SO"'; (f, Z)\Vf’o .

Preuve. Soit e > 0 et (V{)=* = {A € V[ u(A) = e}. Alors SO (f, Z\(V;)=*
est compact (proposition 2.1 (2) et critere de Mahler usuel). Mais d’apres I'inégalité
fondamentale (4), o coincide avec 1 en dehors de (Vf L O

2.2. Classes minimales. Rétractions équivariantes. L’espace Vﬁ est partitionné
comme dans la théorie classique par les configurations de vecteurs minimaux (cf.
[Mar, ch IX]). Deux formes A et B de VJ’f sont dans la méme classe minimale si elles
ont le méme ensemble de vecteurs minimaux pour £, La décomposition obtenue est
dvidemment SO"'; (f, Z)-invariante. En remplagant p par 10, on définit une partition
analogue de V.

On dira qu’une classe minimale est isotrope si le sous-espace engendré par les
vecteurs qui la définissent est totalement isotrope pour f. Cette notion est invariante
par SOfO (f, Z). D apres I'inégalité (4), 1es classes isotropes (pour p ou 12y recouvrent
VJLO \(Vj’f )=! et décrivent done I’infini de SO ( f, Z)\pr (voir proposition 2.1 (2)). De
plus elles posseédent une structure géométrique particuliere qui permet de les rétracter
sur les classes non isotropes.

Proposition 2.3 (rétraction des classes isotropes). Soit p une représentation de T1
dans GO'( f, Z). On note N }{ p (resp. N¢,) la réunion des uO-classes (resp. des -

classes) minimales non isotropes de VJLO .
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(1) Les gquotients SOfO (f, Z)\ng et SOfO(f, Z)\Ny , sont compacts et le nombre
de classes non isotropes est fini modulo SOj;( 1, Z).
(2) Chaque classe isotrope (pour j ou 1) est feuilletée par des arcs géodésiques.

(3) L’espace V]f se rétracte par déformation SO"';( I, L)-équivariante sur N}{ o €
sur Ny p.

Preuve. (1) Les ensembles Nﬁ o et Ny, sont fermés, invariants par SOfO( I Z) et
d’apres (4) inclus dans (Vf'o izl donla compacité (proposition 2.1 (2)). La finitude
résulte du fait que les partitions en classes minimales sont localement finies.

(2) Soit U un sous-espace de R™ totalement isotrope pour f et stable par p . Pour
tout A € pr , o1 note pg et qAU les matrices des projections A-orthogonales de R

sur U et sur F~LAU = (UL)14, et on pose
Xy(A) = A(py —qy). (25)

Remarquer que F “LAU est A-orthogonal a U (en particulier X7 (A) # 0), que pg et
qg commutent et sont conjuguées par F~! A (qui conserve I’orthogonalité pour A).
On vérifie aussi que X7 (A) est tangent a pr au point A. De plus, les orbites du flot

cpr de Xy sur VJ’CO sont des géodésiques. En effet soit y4(r) = A exp(A‘lXU(A)t).
A partir de la relation v (1) = Xy (A)A~1ya(1), on voit que les décompositions

(x) RE=U@UM e () RE=UUNMeUunus (26

sont y4 (f)-orthogonales pour tout ¢ € IR. On a donc p)[/]A(t) = pg et il est facile de

vérifier que <I>lU (A) = pa(t). Danslecasou U = Ru estde dimension 1, le champ X7
est proportionnel au gradient relatif a Vf de la fonction longueur /,, (1,(A) = Alu]):

Xy = (2/1,)VP,. 27)

Soit ¢ une classe minimale isotrope de pr définie par S < Z™ \ {0}, soit U le
p " -module engendré par S et soit A € c. Pour tout u € R™ considérons la fonction
ou = Ly o ya, que 'on note ¢o s1i 4 € S. En utilisant la décomposition ya(f)-
orthogonale (), on montre que ¢, vérifie ’'inéquation différentielle @], < ¢, avec
égalité si et seulement si u € U, d’ou I’on voit que ¢, /@ est décroissante. Par suite
il existe t4 > O tel que y(¢) € cpourt €] — o0, tal.

(3) Soit Dy = pr et Dy (k > 1) le complémentaire dans pr de la réunion des p°-

classes minimales définies par des configurations isotropes de rang < k (D = NJ(% 5
pour k£ assez grand). De fagon analogue au cas symplectique traité dans [Bav3],
on montre que les flots des champs Xy (eq. (25)) associés aux classes isotropes
permettent de construire une rétraction équivariante par déformation de Dy, sur Dyy 1,
donc de pr sur NJ?, o (voir les arguments détaillés dans [Bav3, §2.3]). On procede de
méme pour Ny, . O
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Remarques 2.1. (1) [’avantage de 10 est de fournir un rétracte de codimension non
nulle quand p est triviale.

(2) Laproposition 2.3 et sa preuve sont valables plus généralement pour les réseaux
b-autoduaux (avec b réflexive) définis dans [Bav4].

Quand p est triviale, une étude algébrique des classes 1sotropes montre que les
p-classes minimales de réseaux orthogonaux de type f sont en nombre fini modulo
SO'(f, Z) ([Bav4, §2.9]). Dans les cas lorentzien, cette finitude est donnée par un
argument purement topologique valable pour toute représentation.

Proposition 2.4 (finitude des classes minimales). Soit f de signature (n,1) et p
une représentation de Il dans GO'( f, Z). Alors I’ensemble des j-classes (resp. des
ul-classes) minimales de VJLO est fini modulo "action de SOfO( 1, Z).

Preuve. En signature (n, 1), les classes minimales isotropes sont ouvertes, donc de
frontiere non vide puisque pr est connexe. Soit A un point frontiere d’une telle classe

(pour 11 ou 12%). Le sous-espace engendré par les vecteurs minimaux de A est de rang
> 2, donc non totalement isotrope. Par (24) on a u(A) > 1. Sachant que les classes
non isotropes sont incluses dans (V}O =L il existe donc un compactde SOL (f, Z)\ Vf
qui rencontre toutes les projections des classes minimales, d’ou la finitude. O

3. Invariant d’Hermite isotrope des réseaux lorentziens

3.1. Algorithme de Voronoi. L’algorithme de Voronoi pour les réseaux permet de
classer les réseaux parfaits au sens usuel ([Vor]). En utilisant un graphe géodésique,
nous &tablissons 'existence d’un algorithme analogue pour I'invariant d’Hermite
1sotrope des réseaux lorentziens. Un autre exemple de graphe de Voronoi géodésique
a été construit dans [Bav2] dans le contexte des réseaux symplectiques.

On reprend les notations du §1.2, a ceci prés que Hy sera ici identifié a I'une des
nappes de I’hyperboloide x> = —1, choisic une fois pour toutes. Soit x € Hy et
soit K le convexe engendré par les différentielles ¢/, (x) quand u décrit I’ensemble
des vecteurs f-isotropes tels que [, (x) = 10(x). Rappelons que x est parfait si K}
engendre affinement I’ espace cotangent en x, et que x est eutactique si K contient 0
dans son intérieur affine ([Bavl]). Par exemple les maxima locaux de 1% sont parfaits
¢t eutactiques car ,uo vérifie le théoreme de Voronoi (d’apres [Bavl, §2.2], les [, étant
1C1 strictement convexes, proposition 1.2).

Théoréme 3 (description géométrique de uh. (1) La partition P en classes mini-
males pour ¥ est un pavage © ¢-invariant de Hy par des polyedres hyperboliques.
Les classes minimales sont les cellules ouvertes de P et sont bornées sauf en dimen-
sion maximale n. De plus, © ¢\ P est une décomposition finie de © p\Hy.
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(2) On suppose n > 2. Le squelette unidimensionnel P de P est un graphe
géodésique Oy-invariant dans Hy dont les sommets sont les points parfaits (et les
arétes de longueur finie). Ce graphe est connexe et on peut décrire explicitement le
complexe cellulaire fini @f\J’l (« algorithme a la Voronoi » ).

Preuve. (1) D’apres (14),onal,(x) = 2(x )%, Sivest isotrope, f (., v) estde signe
constant sur Hy. Par suite, les égalités entre longueurs définissent des sous-espaces
hyperboliques (sous-variétés completes totalement géodésiques) de Hy, éventuelle-
ment vides. En particulier s1 S est un ensemble de vecteurs 1sotropes minimaux de
rang au moins 2, I’égalité entre toutes les (/,,), <5 définit un sous-espace hyperbolique
C de H,. D’apres la proposition 1.2, le champ de gradients —V/, est dirigé vers
le point a I'infini . Il en résulte que C est orthogonal au sous-espace hyperbolique
engendré par S* = {u; u € S}. Remarquer que la fonction longueur commune /,
(u € S)est propre sur @ car I’ensemble S* est disjoint de I’infinm1 de ©. Sachant que
10 est borné, on en déduit que la classe minimale Cy est I’intérieur relatif d’un poly-
¢dre hyperbolique borné de C. L’invariance de la décomposition par ® est claire.
Enfin, la finitude modulo ® des classes minimales est établie a la proposition 2.4.

(2) Soit ¥ une géodésique de Hy, ¢.-a-d. une solution de I’équation différentielle

= (x" - x")x. Alors toutes les fonctions ¢ = [, o ¥ (u isotrope) sont solutions de
la méme ¢quation différentielle

209" =4Cp* +¢* on C=y" -y (28)

Par suite les fonctions longueur sont déterminées le long de v par leur jet d’ordre 1
en un point. On voit ainsi que 1’adhérence d’une classe minimale Cg coincide avec la
réunion | J g4 Cr (on retrouve aussi le fait que les classes sont géodésiques). Soit p
un point non parfait et soit S I’ensemble des vecteurs minimaux de p. D’apres I’obser-
vation précédente, un vecteur tangent orthogonal au sous-espace affine engendré par
(VI0,(p))yes donne une variation de p dans sa classe Cg. D’autre part un point parfait
est toujours 1solé dans sa classe ([Bav4, §1.4]) qui est donc par connexité réduite A ce
point. Les sommets de 7, ou classes minimales réduites a un point, correspondent
donc aux points parfaits.

Soit p et ¢ deux points parfaits et soit [p, g] le segment géodésique qui les
joint. Alors [ p, g] est recouvert par un nombre fini de polyedres fermés Cq, ..., Cy,
chaque C; étant I’adhérence d™une classe isotrope, c.-a-d. de dimension maximale.
Les polyedres C; et Ci41 se coupent sur [p, ¢, donc ont au moins un sommet p;
en commun. Posons pp = p et py = g en supposant p € Cy etg € Cy. On peut
joindre p; et p;+1 par des arétes de 2 danslebordde C;1 ¢ =0, ..., n —1),d’ou
un chemin de p 4 ¢ dans 2.

Soit x € Hy et soit € sa classe. 51 x n’est pas parfait, on peut faire une variation
géodésique de x dans € jusqu’a atteindre le bord de € (voir ci-dessus, si dim C = n,
il suffit d’éviter la direction qui mene a 1'infini). Ainsi, au bout d’un nombre fini
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d’étapes, on aboutit sur un point parfait. Remarquons ensuite que 1’on peut expliciter
les sommets voisins d’un sommet donné de #!. Tn effet soit p parfait et soit K
le convexe engendré par les (VI ), es(p). Chaque face F de dimension n — 1 de K
sépare 1’espace tangent en deux hyperplans affines. On note & le vecteur unitaire
orthogonal a F et dirigé vers I’hyperplan contenant K. D’ apres I’observation sur les
L-jets des longueurs, les arétes de & 1ssues de p sont des arcs géodésiques de direction
initiale &g ; chacune conduit, en un temps fini (voir I’assertion (1)), a un autre point
parfait voisin de p. On peut trouver ainsi un voisinage combinatoire arbitrairement
grand de p, et en tenant compte de I'action de ®, décrire le complexe cellulaire
fini et connexe @ f\J’l. L’équivalence de deux points de Hy sous ® peut se traiter
en terme de formes quadratiques (on sait algorithmiquement tester 1’équivalence et
le cas échéant obtenir la liste finie des GL,1(Z)-¢quivalences entre deux formes
données). O

3.2. Graphe de Voronoi pour z < 5. A titre d’exemple, nous décrivons ici @7\ P!
pour 2 < n < 5. Pour tout point parfait p, on note p* le polyédre convexe engendré
par les points A 1’infini associés aux vecteurs n°-minimaux de p. Rappelons que
pour n petit, le polyedre IT, = I1 (avec les notations de 1.3) est un simplexe décrit
par les relations (9). Afin d’expliciter le graphe de Voronot, nous prenons comme point
de départ le sommet s, = [0, ..., 0, 1] € I1, qui est toujours parfait (¢’est méme un
maximum local de ). Soit p» = [1,1,2], p, = [1,..., 1,3] (n > 3) le sommet
de T1, opposé a la face X, = O (n petit) et soit s;, le symétrique de s, par rapport
a pu. Le polyedre s, est un hyperoctagdre (régulier) et ®¢ agit transitivement sur
ses faces de codimension 1. Si1 # = 2 ou 3, le domaine fondamental IT,, est contenu
dans s et p, est situé au centre d’une face de s, ; il y a un unique point parfait
modulo ©Of et @ f\J"1 est un quotient de ’aréte [s,, s, ] (figure 2). Pour n = 4, le
point p4 est parfait et p} est un simplexe dont toutes les faces sont ®¢-équivalentes.

Sn =y 54 Pa 55 Ps g P
o - @  —" ——®
n=273 n=4 n=2>35

Figure 2. Graphe de Voronoi pour 2 < n < 5.

Ona® f\&"1 ~ [s4, pa] (deux points parfaits mutuellement voisins modulo ©y).
Enfin i n = 5, ps est parfait et pf est un hyperoctaédre avec deux classes de faces
modulo ®¢. L'une des faces de pz est contenue dans ’hyperplan X5 = 0 et centrée
au sommet g5 = [1, 1,1, 1, 0, 3] de I1s5. Le quotient @f\J’l est alors donné par la
figure 2, ou ps désigne le symétrique de ps par rapport a gs.
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3.3. Sur les points parfaits ou eutactiques. Certaines formules liant entre eux
les objets particuliers associés a 1’invariant 1.0 pour les réseaux lorentziens (points
parfaits ou ecutactiques, classes minimales) se déduisent des rés bonnes propriéics
géométriques de cet invariant. Nous appellerons groupe d’automorphismes d’un point
x € Hy ou d’une classe minimale € son stabilisateur pour I’action de ®¢, noté Aut x
ou Aut C.

En associant a toute classe minimale Cg le polyédre hyperbolique engendré par
S* = {u; u € S}, nous définissons un pavage hyperbolique #* géométriquement
dual de #. En particulier, les cellules de dimension maximale de &7, notées p*, sont
en bijection avec les points parfaits p. Chacune est de volume fini (on suppose n > 2)
et leurs int€rieurs sont mutuellement disjoints.

Proposition 3.1 (formule de masse pour les points parfaits). Soit P F un systeme de
représentants des points parfaits modulo ®¢. Alors

Vol p*
— = Vol(®,\H 29
EM|Autp| (@f\Hy) (29)
e F

ou Vol désigne le volume hyperboligue (on suppose n > 2).
Preyve. On décompose ® ¢\Hy a partir du pavage ® g-invariant 5~ O

Remarque 3.1. 1l existe une formule analogue a (29) pour les réseaux parfaits usuels.
L'application de ces formules est limitée par la faible connaissance du calcul des
volumes.

Proposition 3.2 (formule d’Euler pour les classes non isotropes). Soit N un systéme
de représentants modulo © ¢ des classes minimales non isotropes, ¢ est-d-dire définies
par des systemes de vecteurs (isotropes) de rang au moins 2. Alors

(_1>dim@

S = Hi0p (30)
(;f | Aut C|

ou x est la caractéristique d’Euler.

Preuve. Les classes isotropes sont ici définies par une seule paire de vecteurs mi-
nimaux +u, et de dimension maximale. En utilisant les lignes de gradient de /,,,
¢’est-a-dire les géodésiques 1ssues du point a I’ infint #, on peut rétracter par déforma-
tion les classes isotropes sur la réunion N des classes non isotropes (voir eq. (27) et
proposition 2.3). Par ailleurs (théoréme 3 (1)), N admet une décomposition cellulaire
finie modulo ®. Pour conclure, on prend un sous-groupe I' sans torsion (c.-a-d.
sans points fixes) et d’indice fini dans ®¢, et on obtient des informations de nature
cohomologique, notamment sur la caractéristique d’Euler, a partir de I'\ N qui est un
K(I', 1) cellulaire fini. 0
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Remarque 3.2. On a x(®7) = 0 si n est impair. En effet soit I' comme dans la
preuve ci-dessus. La variété I'\Hy estun K (I', 1) ; elle se rétracte sur une variété X
compacte a bord telle que x (0 X)) = 0 et dont le double est de caractéristique nulle.

Considérons maintenant les points eutactiques pour 10 (voir §3.1). Comme les
longueurs sont strictement convexes, chaque classe minimale € contient au plus un
point eutactique ([Bav4, §1.3]) ; ces points sont donc en nombre fini modulo ®¢. De
plus, si e € C est eutactique, on a Aut G = Aut e (unicité). Rappelons que le rang
d’unpointx € Hy pour 1P estle rang des gradients VI, (x) pour les u réalisant w1l (x).

Proposition 3.3 (formule d’Euler pour les eutactiques). Soit & un systéme de repré-
sentants modulo Oy des points eutactiques pour ul. Alors

—1)range
> ﬁ = x(©f) (31)
eel

ou x est la caractéristique d’Euler.

Preuve. C’estune conséquence directe de [Akr]. Puisque Ie hessien des [, est défini
positif (voir (28)), on sait que 1¥ est une fonction de Morse topologique sur H ¢ dont
les points critiques d’indice » sont exactement les eutactiques de rang » ([Akr]), ici
en nombre fini modulo ®¢. On conclut comme d’habitude en prenant un sous-groupe
d’indice fini et sans torsion de O. O

I est tres facile de comparer les relations (30) et (31). La classe € d’un point
eutactique e est non isotrope ([Bav4, §2.8, thm. 1]). De plus on a Aute = AutC
et rang e + dim C = n (voir §3.1). Le premier membre de (—1)"(30) contient celui
de (31). Compte tenu de la rem. 3.2, on a donc 2@(—1)djm@/| Aut €| = 0, somme
sur les classes minimales (modulo ©¢ ) non isotropes et non « eutactiques ». 11 serait
intéressant d’obtenir directement cette relation.

3.4. Valeur maximale en petite dimension

Proposition 3.4 (maximum de u®). La valeur maximale de pi° pour les réseaux
lorentziens de dimension n + 1 < 16 est donnée par la table 4. Elle est atteinte
uniquement (modulo ©y) par les points suivants :

sp=10,...,0,1] (1 =n <35),
pe=11,...,1,3] 5 <n<8§),

dy =1Ll Ll s 150600 3] @< 115
v =1(2,1,...,1,4] (11 <n <12),



Vol. 82 (2007) Invariant d’Hermite isotrope 59

zi3=1[1,...,1,0,4],

274=102,...,2,1,1,1,1,1,1, 1, 6],

715 = [1, ..., 1, 4] pour le cas impair et by, bg (eq. (12)),
di7=14,6,8.12,10,8,6,3,5, 8,10, 15,12, 9, 6, 3, =3, 3] pour le cas pair.

Table 4. Maximum de «° en petite dimension.

0,11

n-+1 ,uvg,l n+1 “2,1 n+1 ,(,Lg’l n+1 1
2,3,4,5,6 2 9 8 14 9/2 2 1
7 8/3 10,11,12 4 15,16 8 10 4

3 4 13 3 18 9/2

Preuve. Dans le cas impair, on proceéde comme au §1.3, avec une longueur sin < §,
et par découpage pour 9 < n < 15. Noter que le réseau associé€ a s, (point base) est
isomorphe & Z"t!, Le cas pair résulte directement de la preuve du théoréme 2 (cf.
§1.4) pour n = 1 ou 9, et d'un découpage en deux sous-polyedres pourn = 17. 0O
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