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Permutation complexes for profinite groups

Peter Symonds

Abstract. An important tool in the analysis of discrete groups of finite virtual cohomological
dimension is the existence of a finite dimensional contractible CW-complex on which the group
acts with finite stabilizers. We develop a purely algebraic analogue for profinite groups.

This enables us to reveal the connection between finiteness conditions on the cohomology
of the group and those on the normalizers of the finite p-subgroups.

Mathematics Subject Classification 2000). 20J06; 20E18, 20C07.
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1. Introduction

The main aim of this paper is to develop the cohomology theory of profinite groups
along the lines of that done for discrete groups, as in the book of Brown [6] for
example. Some of this was addressed by the author andWeigel in [33], but here we
areparticularly interested inconstructing an algebraic analogue of afinite dimensional
contractible space on which the group acts with finite stabilizers and in developing
its consequences. The torsion free case was considered by Serre [26].

We start with a review of the basic module theory behind the cohomology of
profinite groups. This originated in the work of Brumer [7], and is well explained
in the books of Ribes and Zalesskii [22] and ofWilson [35], but we collect together
the main properties that we will use and describe them from our point of view. This
part might be of independent interest. We devote relatively little space to basic

homological algebra, since this is a routine adaptation of the methods used in the
discrete case once the module theory is understood.

We pay particular attentiontopermutation modulesand the Brauer quotient, adapting

some results of Swan on the cohomology of fixed point sets and work of Bouc on
complexes of these modules. This enables us to formulate precisely thecomplexeswe
want and their properties. We then define the Tate–Farrell cohomology for a profinite
group of finite virtual cohomological dimension and use the complexes to develop its
properties.
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There are applications toquestions about the finitenessof the number of conjugacy
classes of finite subgroups and to the local cohomology of the cohomology of the
group.

We wish to thank the referee for his patience and advice.

2. Background

2.1. Ambient ring. Let R be a commutative local ring with maximal ideal m and

finite residue class field k R/m of characteristic p. We assume that dimk m/m2 <
8 and that R is complete, i.e. R ~= lim.-R/mr We give the quotients R/mr the
discrete topology and then let R have the inverse limit topology.

The obvious example is when R is the p-adic integers, Ẑp, but we also allow such

things as R k or power series rings k[[x1, xn]].

2.2. Modules. We consider principally three categories of R-modules: the finite
modules, FR; the pseudocompact modules, CR, which are inverse limits of modules

inFR; and thediscrete torsion modules, DR, which aredirect limits ofmodules inFR.
Both are given their limit topologies: the objects of CR are profinite, hence compact
and the objects of DR are discrete). All morphisms are supposed to be R-linear and
continuous and the set of all morphisms is denoted by HomR. Both CR and DR are
abelian categories in which the notions ofkernel and cokernel are compatible with the
underlying abelian group structure, and CR has exact inverse limits andDR has exact
direct limits. All limits will be over directed systems, although we do not assume
that all the maps are epimorphisms or monomorphisms.) We will refer to modules
in CR and DR as compact and discrete respectively.

It is possible to allow k to be infinite if we are prepared to deal with
pseudocompact modules as in [7].

Let T be the injective hull of k as an abstract) R-module and let T be its torsion
submodule, i.e. the maximal submodule in DR. Equivalently T Hom(R, Q/Z).
For example, if R k then T k, if R Ẑp then T Z/p8 p-torsion in Q/Z.

The categories CR and DR are dual by HomR(-,T ); this is an instance of
Pontryagin duality. We will denote HomR(A, T by A*. Thus results for one category
can be translated into results for the other. ([7], 2.3, [22], [14].)

It is sometimes also convenient to consider the category ER of modules which are

p.

inverse limits

p.

of modules inDR. This contains both CR andDR as full subcategories
and, in particular, if R Ẑp then ER contains Q̂p, since it is the inverse limit of the

system · · · Z/p8 Z/p8.
We can, of course, consider continuous morphisms from an object of one category

of R-modules to an object of another. If A CR and B ER then HomR(A, B) is



Vol. 82 2007) Permutation complexes for profinite groups 3

naturally an object of ER. It is in DR if also B DR and in CR if B CR and A is
finitely topologically) generated.

In particular, it makes sense to claim that HomR(A, B)~= HomR(B*,A*), A
CR, B DR, and this is proved by taking the limit of the finite case.

2.3. Operations. On DR we have the usual direct sum The dual of on CR is
just the product Of course is the same as the usual when we are only taking
the product of a finite number of modules, and in this case we will often write

For A,Ai, Ci CR and B, Bi DR we have ([22], 5.1.4):

HomR(lim
.-Ai, B)~= lim-.

HomR(Ai, B),
HomR(A, lim

-.Bi)~= lim
-.

HomR(A, Bi

HomR(A, lim
.-Ci)~= lim.-HomR(A, Ci

and so

HomR( Ai, B)~= HomR(Ai, B),
HomR(A,.Bi)~= HomR(A, Bi

HomR(A, Ci)~= HomR(A, Ci

On FR we have the usual tensor product R. A sort of tensor product ˆ R can be

defined on CR as follows. If A lim
.-Ai and B lim.-Bj with Ai, Bj FR then

A ˆ R B lim.-(Ai R Bj ([18], [7])
The product ˆ R is symmetric, associative and commutes with inverse limits, in

particular products. It is the ordinary tensor product if one of A or B is finitely
generated.

We define another sort of product R on DR as the dual of ˆ R, so A R B~=
A* ˆ R B*)* for A, B DR. Equivalently, A R B ~= HomR(A*, B). This

product commutes with direct limits.
This is not the usual tensor product, since Z/p8 Ẑp Z/p8 0 but Z/p8 Ẑp

Z/p8~= Z/p8.
CR satisfiesa form of Nakayama’s Lemma, that ifU V is closed andU+mV

V then U V The dual statement also holds ([7], 1.4). Notice that U does not need
to be topologically finitely generated.

For any D DR, socD I k for some indexing set I and hence the injective
hull of D is T By duality, the projective cover of C CR is the same as theI
projective cover of C/ rad C~= Ik, which is IR.

As a consequence, every projective in CR is of the form IR and there are enough
projectives, and dually for DR.

However, IẐp is not always projective in the category of abstract Ẑp-modules;
see [16].
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2.4. Modules for groups. If G is a profinite group then we can consider the
categories consisting of objects in one of the categories above endowed with a continuous
action ofG, and we denote these by CR(G), DR(G) and ER(G). The morphisms will
be denoted by HomG. All the constructions and identities above are natural, hence

equivariant, and so yield versions for these new categories. CR(G) and DR(G) are

still abelian categories and Pontryagin dual, but of course we take the contragredient
module to ensure that all our modules are left G-modules.

Every object in CR(G) is, in fact, an inverse limit of objects in FR(G), and similarly

forDR(G) and ER(G) ([22], 5.3.3, [18], II 2.2.6). They both satisfy a version of
the Krull–Schmidt property, that ifM CR(G) is a product of indecomposable modules

or N DR(G) is a sum of indecomposable modules) with local endomorphism
rings then this decomposition is essentially unique ([14]).

Recall that being indecomposable is equivalent to having a local endomorphism
ring for finitely generated R[F]-modules when F is a finite group. For M CR(G)
and N an open normal subgroup of G let MN denote the module of coinvariants,

i.e. the largest continuous quotient on which N acts trivially; it is a G/N-module.
ThenEndCR(G)(M)~= lim

.- EndR[G/N](MN). Suppose thatM is topologically finitely
generated and, for each open normal subgroup N < G, there is an open normal
subgroup N such that N < N and MN is indecomposable as a G/N -module.
Then M is an indecomposable module with local endomorphism ring.

Suppose that G lim
.-G/Ni for some system Ni of open subgroups. Then we

define the complete group algebra R[[G]] CR by R[[G]] lim
.-R[G/Ni ]. An

object of ER has a continuous action of G if and only if it has a continuous action of

R[[G]]. This implies that, as a left module over itself, R[[G]] is projective in CR(G).
The dual of R[[G]] is F(G), the functions on G see §3 for more details).

Again there is a form of Nakayama’s Lemma. We let rad R[[G]] denote the
intersection of the maximal two-sided ideals of R[[G]]. Then if V CR(G) and

U V is closed such that U + rad R[[G]])V V then U V ([7], 1.4).

We can define A ˆ R[[G]] B for A,B CR(G) either as lim.-(Ai RG Bj where

A lim.-Ai and B lim
.- Bj with Ai, Bj FR(G), or simply as the coinvariants

of A ˆ R B under the diagonal action of G. Similarly we can define C
G

D for
C, D DR(G) to be the invariants of C R D.

H MInduction on CR(G) and coinduction on DR(G) are defined by IndG

H N F(G)
H

R[[G]] ˆ R[[H]] M and CoindG N. The latter is called induced by
Serre [27].) They are exact, dual to each other, and satisfy the customary adjointness
properties ([22], 6.10):

HomG(IndGH M, N)~= HomH(M, ResGH N),
M CR(H), N CR(G) orDR(G);
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HomG(M,CoindGH N)~= HomG(ResGH M, N),
M CR(G) orDR(G),N DR(H).

As a consequence, restriction to a subgroup preserves projectives in CR(G) and

injectives in DR(G). Also Ind preserves projectives and Coind preserves injectives.
Thismakes it easy to showthatCR(G) has enough projectives andDR(G)has enough
injectives see also 2.5 below).

H
ResG

H M ~=There are the usual formulas IndG R[[G/H]] ˆ R M and its dual

CoindG
H

ResG
H M~= F(G/H) R M.

2.5. Projectives. The following are equivalent for an object P of CR(G) ([7], 2.2,
3.6):

• i) P is projective in CR(G),

• ii) HomG(P,-) is exact on DR(G),

• iii) HomG(P,-) is exact on FR(G).

The dual formulation is also true. From the formulas in 2.3, we see that projectives
are preserved under products.

Since ER(G) is not abelian, the question of whether HomG(P,-) is exact is more
involved, even when P is projective in CR(G). First note that, since P is a summand
ofamodule induced from the trivialsubgroup, it is enough toconsider thecase without

group action. Let A i. B j. C be a sequence in ER that is short exact as a sequence

of abelian groups. If we want it to remain exact after applying HomR(P,-) then
we need i to induce a homeomorphism between A and its image under the subspace

topology. This is sufficient if P is finitely generated. Otherwise we also need every
compact submodule of C to be the image of a compact submodule in B, which is
guaranteed under several general conditions, e.g. A compact, the sequence split over
R, or R a discrete valuation ring and B a finite dimensional vector space over the
quotient field.

A useful result is that if A CR(G) and A~= lim.-Ai for Ai CR(G) such that
for each Ai there is an open normal subgroup Ni < Gwhich acts trivially on Ai and

such that Ai is projective over G/Ni then A is projective. ([7], 3.3, but surjections
are not necessary everywhere: compare A3 there with 2.3.)

Each module D DR(G) has an injective hull ID DR(G). This can be seen

as follows [8]. Let I be the injective hull of D as an abstract RG-module, and let

ID be its smallest submodule in DR(G), i.e. the set of elements that are m-torsion
and such that the stabilizer in G is open. It is straightforward to see that this has the
correct properties. Taking injective hulls commutes with by 2.3.

Dually, every C CR(G) has a projective cover PC CR(G).
Let S CR(G) besimple and hence finite; letPS be its projective cover. From the

definition of projective cover it follows that the non-isomorphisms in EndCR(G)(PS)
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form an ideal, so EndCR(G)(PS) is local. Let N be a normal open subgroup of G that
acts trivially on S and let PS,N be the be the module of coinvariants, as in 2.4. Then

PS,N is projective over R[G/N] and there is still a surjection PS,N S. But the natural

map EndCR(G)(PS) EndCR(G/N)(PS,N) is surjective, so EndCR(G/N)(PS,N)
is local and PS,N is the projective cover of S as an R[G/N]-module.

By a similar argument, each projective in Ck(G) is the reduction modulo m of
one in CR(G).

The socle of any D DR(G) is of the form i.I Si where the Si are simple
modules. Thus ID~= i.I ISi Dually, for C CR(G) we have PC~= i.I PSi
where C/ rad(C)~= i.I Si This expression is unique by 2.4 and every projective
has this form.

2.6. Cohomology. We define Ext*G A, B) on CR(G) × DR(G) in the usual way,
using either a projective resolution of A or an injective resolution of B. It naturally
takes values in DR, is balanced and has long exact sequences in either variable. We

will write ExtR[[G]] if we need to emphasize the role of R. This Ext*G is continuous
in the sense that

Ext*G(lim.-Ai, B)~= lim-.
Ext*G(Ai, B),

Ext*G(A, lim
-.Bi)~= lim-.

Ext*G(A, Bi)

see [7], 3.4, [22], 6.5.3). In fact, Ext*
G A, B) can be defined on DR(G) × DR(G),

by using an injective resolution of B, or on CR(G) × CR(G), by using a projective
resolution of A. In these cases it just takes values in abelian groups. Slightly more
generally, Ext*G A, B) can even be defined on CR(G) ×ER(G), by using a projective
resolution of A. Again it just takes values in abelian groups, although it will take

values in CR if A is of type FP8 in CR(G) and B CR(G). If these conditions hold
then we also have by [33], 3.7.2 that

Ext*G(A, lim
.-Ci)~= lim

.-
Ext*G(A, Ci

We obtain long exact sequences in the second variable if the conditions of 2.5 are

satisfied, e.g. if A is of type FP8 or the terms in the second variable are compact.
We can define restriction maps from Ext*G to Ext*H in the usual way for any closed
subgroup H, using the fact that projective modules remain projective after restriction
of the group 2.4).

There is also a derived functor TorG* defined on CR(G)×CR(G) and taking values

in CR. By duality, TorGr A, B)*~= G A,B*).Extr
The cohomology of the group is defined to be H*(G, M) Ext*G R, M). There

are the usual bar resolutions, which can be used to show that if M DR(G) then

H*(G, M)~= lim
-.

H*(G/N, MN) as N runs through the open normal subgroups of

G and the maps are inflations ([22], 6.5.6).



Vol. 82 2007) Permutation complexes for profinite groups 7

Cup products can be defined in the usual way, by taking the tensor product of the
projective resolutions.

The usual Eckmann–Shapiro isomorphisms hold:

Ext*G(IndGH M, N)~= Ext*H(M, ResGH N), M CR(H), N CR(G)orDR(G);
Ext*G(M,CoindGH N)~=

Ext*H(ResG
H M, N), M CR(G) orDR(G),N DR(H).

There is a Lyndon–Hochschild–Serre spectral sequence Hp(G/H, Hq(H, M))
Hp+q(G, M) for any closed normal subgroup H and M DR(G) ([22], 7.2.4). We

can also allow M CR(G) if G is of type FP8 and H is open ([33], 4.2.6).

3. Permutation modules

Let X be a profinite space and M a discrete torsion R-module. Define F(X, M) to
be the R-module of continuous functions X M. We write F(X) for F(X, T

If G is a profinite group that acts continuously on X then X can, in fact, be

expressed as the inverse limit of finite G-sets ([22], 5.6.4).

If G also acts continuously onM then G acts continuously on the discrete torsion
module F(X, M) by gf x) gf g-1x), g G, f F(X,M), x X.

Definition 3.1. A discrete permutation G-module is an F(X) as above. An
Rpermutation module is a summand of a permutation module. A compact R)-permutation

module is the Pontryagin dual of a discrete one and we write R[[X]] F(X)*.

If H G also acts on the right of X and M is an H-module, then F(X, M) is
a G × H-module by g, h)f x) hf g-1xh) g G, h H, f F(X,M),
x X.

If X and M are finite then F(X, M)~= F(X) R M, where H has the diagonal
action and G acts trivially on M. By taking direct limits we see that in general

F(X,M)~= F(X) R M.
If we take X G in the above, with the usual left and right actions by

multiplication, then the submodule of H-fixed points F(G, M)1×H is isomorphic to the
coinduced G-module CoindGH M.

Note that if H G and X is an H-set then F(G×H X)~= CoindGH F(X).
We only ever consider closed subgroups of G, so the notationH < Gwill imply

that H is a closed subgroup. We writeH <o G to mean that H is an open subgroup
of G so also closed). Similarly H o G means that H is open and normal in G.
If M is a G-module andH <o G then we define trG MH MG by trG m)H : H

g.
gm, m M. Dually, we let MG denote the module of coinvariants andG/H

define corG H m) g.H\G
gm, m M.H : MG MH by corG
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Definition 3.2 Brauer Construction). IfM is a topological) G-module and P G,
define M[P] k MP / Q oP

trP
Q MQ), where the summation is over all proper

open subgroups of P. Thus M[P] is a module for NG(P)/P over k. Normally we
will have M CR(G), in which case M[P] Ck(NG(P )/P Sometimes M[P] is
referred to as the Brauer quotient.

Dually, for N DR(G) we set N[P] k nQ oP
ker(corPQ: MP MQ))

Dk(NG(P )/P
In all cases the definition extends to morphisms in the obvious way, yielding a

functor.

Remark. 1) Our definition for CR(G) is not quite the usual one because we reduce
modulo m. As a consequence M[1] k R M.

2) The two definitions will not always agree on FR(G). We will apply the Brauer
construction only to R-permutation modules, where the problem does not arise, in
view of 3.5 and 3.6.

Lemma 3.3. Let G be a profinite group and H a closed subgroup; all limits are over
G-equivariant directed systems.

1) lim
-.Mi)[H]~= lim-.(Mi[H]) and lim

-.
Mi)[H]~= lim-.(

M[H]
i where the Mi are

discrete.

2) lim
.-

Mi)[H]~= lim.-(
M[H]

i where the Mi are compact.

3) The Brauer construction commutes with products for compact modules and
with direct sums for discrete modules.

4) M*)[H]~= M[H])*, where M CR(G) and * denotes the Pontryagin dual.

Proof. 1) and 2) follow easily from the definitions and 3) is a special case of them.
4) also follows from the definitions.

The importance of the Brauer construction is that it allows us to recover F(XP
from F(X), as is well known in the finite case see e.g. [5]).

Lemma 3.4. If X is a profinite space on which G acts continuously and P G is a

pro-p subgroup then F(X)[P]~= k R F(XP as discrete NG(P)/P-modules and,
dually, R[[X]][P]~= k[[XP ]].

Proof. This is well known when X is finite, in which case the action of G factors
through that of a finite group. Let X lim

.- Xi Then F(XP ~= i ~=F(lim.-
XP

lim
-.F(XPi )~= lim-.(F(Xi)[P])~= lim-.F(Xi))[P]~= F(X)[P], by 3.3 1).
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Lemma 3.5. For an R-permutation module M over a pro-p group P and Q P
we have M[Q])[P/

Q]~= M[P]~= k R M)[P] if M is compact and M[Q])[P/Q]~=
M[P]~= k R M)[P] if M is discrete.

Proof. This follows from 3.4.

Lemma 3.6. If P is a finite p-group and M Dk(P is a k-permutation module
then there is a natural isomorphism M[P]~= M[P], i.e. the two sides are isomorphic
as functors on the full subcategory of k-permutation modules.

Proof. Let us write [m]P to denote the class of m M in MP We claim that the
assignment m [m]P for m MP induces a mapf : M[P] M[P].

First we need to check that [m]P is in the kernel of corP
Q for m MP But

Q([m]P [ g.Q\P gm]Q [|P/Q|m]Q 0.

Second we need to check that [trP
corP

Q m]P 0 for m MQ. But again the left hand
side is just |P/Q|[m]P 0.

It is easy to check that f is an isomorphism when M F(P/Q, k), hence also
when M F(X, k), where X is finite. The case of general M follows by taking
direct limits. Finally, the naturality gives the result for k-permutation modules.

Lemma 3.7. If H, K < G and H is finite then F(G/H)[K] is isomorphic to some

F(X,k), where X is a profinite NG(K)-set with a finite number of orbits. The
stabilizers are of the form NG(K) n gH)/K for g G such that K gH.

Proof. NoticethatF(G/H)[K]~= k.RF((G/H)K)~= F((G/H)K,k), and(G/H)K

consists of the cosets gH such that Kg H. Thus the stabilizers have the form
claimed.

Also NG(K)\(G/H)K is finite because it is in bijection with the conjugacy
classes of subgroups of H whose members are conjugate to K in G, by the map

NG(K)gH Kg.

Lemma 3.8. Let G be an abstract) group and suppose that we have subgroups

H G and S G such that S n H 1 and also P G/H. Let SH(P denote the
set of subgroups Q G such that Q n H 1 and QH/H P; H acts on this by
conjugation. Then we have

G/HS)P
~= Q.SH P )/HNH(Q)\(G/S)Q

Proof. Let : G G/H and s : G/S G/HS be the quotient maps. Let Y

s-1((G/HS)P so that G/HS)P~= H\Y
Notice that Y {gS|P gS)}. We claim that Y SH Q)(G/HS)Q; the

result follows.
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First we show that the G/S)Q are disjoint for different Q. If gS G/S)Q1 n
G/S)G2 then gS G/S) Q1,Q2 and so Q1, Q2 gS. Now Q1, Q2 n H

gS n H 1, so restricted to Q1, Q2 is injective. But Q1, Q2 P, so

Q1 Q2.
Now if gS G/S)Q then Q gS, so P gS) and gS Y Conversely, if

gS Y then let Q |gS)-1(P and we find that gS G/S)Q.

Corollary 3.9. In the circumstances of the previous lemma, but with G profinite, H
open and P a p-group we have

F(G/HS)[P]~= Q.SH P )/H F(G/S)[Q])
NH Q),

where the sum has only a finite number of non-zero terms.

Proof. This follows from 3.8 and 3.4. Note that, since H is open in G, both sides are

finite dimensional after applyingk.
Lemma 3.10. IfGacts continuously on the profinite setX andX is finitely generated
under this action then we can write X~=

n

i=1 G/Si for some finite collection of
closed subgroups Si We have F(X)~=

n

i=1 F(G/Si).

Proof. Each orbit is both open and closed.

We want to generalize the above observation.
Suppose that G acts continuously on X and that * X is a fixed point. We say

that G acts freely on X,*) if it acts freely on X \ {*}.
If Y X is closed, we define F(X,Y) to be the kernel of restriction F(X)

F(Y), i.e, those functions that vanish on Y Note that F(X, Y)~= F(X/Y, *) where

* denotes the image of Y We write R[[X,Y ]] for the dual of F(X,Y).

Lemma 3.11. If G acts freely on X, *) then F(X, *) is injective as a discrete
Gmodule, hence isomorphic to a summand of a sum of F(G)’s. Dually, R[[X, *]] is
projective as a compact G-module and is isomorphic to a summand of a product of

R[[G]]’s.

Proof. cf. [22], 5.6). This is well known in the case when X is finite. We will prove
the compact case.

First suppose that G is finite. Then, by [22], 5.6.4(c)), we know that X, *)
lim.-(Xi *) for some system of finite G-sets Xi such that G acts freely on Xi *)
Then the result is true by the result in 2.5 about an inverse limit of projectives.

For the general case, for each N o G, G/N acts freely on X/N, *) so, by the
previous paragraph, R[[X/N,*]] is projective over G/N. Now apply the result from
2.5 again.



Vol. 82 2007) Permutation complexes for profinite groups 11

For the last part, we saw in 2.5 that any projective cover is a product of PS’s,
where S is a simple and PS is its projective cover. But PS is a summand of R[[G]].

Lemma 3.12. If G acts freely on X then F(X) is injective and R[[X]] is projective.
Conversely any injective in DR(G) is a summand of some F(X) and any projective
in CR(G) is a summand of some R[[X]], where G acts freely on X.

Proof. Cf. [22], 5.7.1.) The first part follows from 3.11 by adding a disjoint
basepoint.

For the second part let I be injective in DR(G), so its dual I* is profinite. Notice
that the action map G × I * I * induces an equivariant injection I ~= I*)* ~=

F(I*) F(G × I*), where G acts on G × I* by left multiplication on the first
factor only. This map splits because I is injective.

For any two subgroups A,B of G, we write A G B if some G-conjugate of B
is a subgroup of A. We write A >G B if B is conjugate to a proper subgroup of A.
Since G is compact we can not haveA >G A.

Define:

X=H {x X| StabG(x) H}, X>H {x X| StabG(x) > H},
X(=H) {x X| StabG(x) G H}, X(>H) {x X| StabG(x) >G H}.

Clearly X=H XH is closed. So is X(=H), because it is the image of the map

G × X=H X, g, x) gx.

Lemma 3.13. R is a continuous Zp-ˆ module and F(X,T )~= F(X, Z/p8) ˆ TZp

Proof. The first part is clear. Now by duality for Ẑp-modules, T ~= Z/p8 Ẑp
T

thus the natural map from rightto left in the statement of the lemma isan isomorphism
if X is finite. The general case follows by taking the limit of the finite case.

This means that when dealing with permutation modules we can usually assume

that R Ẑp and k Z/p.

Lemma 3.14. Let X be a profinite G-set and Y X closed. Suppose that F(X, Y)
is a summand of a sum of terms F(G/S), where only finitely many different S occur
and each S is finite and satisfiesH1(S, R[[Y ]]) 0. Then F(X)~= F(X, Y).F(Y)
in DR(G).

Proof. There is a short exact sequence F(X, Y) F(X) F(Y); we need

to show that it splits in DR(G). The sequence is classified by an element of
Ext1

G F Y F(X, Y)); we show that this Ext-group is zero.
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We can write F(X, Y) as a summand of a finite sum of terms
S F(G/S)

for some finite subgroups S and indexing sets S. Thus Ext1
G F Y F(X, Y

G F Y
S

is a summand of a sum of terms Ext1 F(G/S)) ~= Ext1
G F Y

S S T ~=CoindG Ext1
S SG F Y CoindG T ~= S F Y

S
Ext1 T

see 2.6).
Since S is finite, Ext1

S
agrees with the Ext-group in the category of ordinary

RS-
Mod. Also

S
RS-modules, which we denote by Ext1 T is injective as an
Rmodule e.g. by Baer’s Criterion [34], 2.3.1), so it is a summand of

ST Hence
Ext1

RG F Y F(X, Y isasummand ofasumof termsExt1
S-Mod(F Y ST )~=

S
Ext1

S-Mod(F Y T )~= S
Ext1

S F Y T
It follows from Pontryagin duality that Ext1

S F Y T is isomorphic to
Ext1

S R,R[[Y ]])~= H1(S,R[[Y ]]), which is zero, by hypothesis.

Lemma 3.15. If G is finite and R is torsion free then for any profinite G-set Y we

have H1(G, R[[Y]]) 0.

Proof. Since G is finite we can certainly use 2.6 to see that if Y ~= lim
.- Yi then

H1(G, R[[Y ]])~= H1(G, lim.-R[Yi ])~= lim
.-

H1(G,R[Yi]).
But Yi is a finite union of G-sets of the form G/H, so H1(G,R[Yi]) is a sum of

terms of the formH1(G, R[G/H])~= H1(G, IndG
H R)~= H1(H,R)~= Hom(H, R),

which is 0 because R is torsion free.

Corollary 3.16. LetX be a profiniteG-set and Y X closed. Suppose that F(X, Y)
is a summand of a sum of terms F(G/S), where only finitely different S occur and
each S is finite. Then F(X)~= F(X, Y) F(Y) in Dp(G).

Proof. By 3.13 we may assume thatR isẐp. Nowwe can just combine 3.14 and 3.15.

Now we suppose that the action of G on X has only a finite number of conjugacy
classes of stabilizers, with representatives S1, Sn. Then each X>Si is closed,
because it is the intersection ofX=Si with the union of theX(=Sj for which Sj >G Si;
hence each X(>Si is also closed.

Lemma 3.17. For each i, F(X(=Si X(>Si is a summand of a sum of F(G/Si)’s.

Proof. The map G×NG(Si X=Si)/(G×NG(Si X>Si X(=Si)/X(>Si is a continuous

bijection of compact Hausdorff spaces, hence a homeomorphism. Thus

F(X(=Si X(>Si ))~= F(G×NG(Si X=Si

G ×NG(Si X>Si )~= CoindG
NG(Si F(X=Si X>Si )~= CoindG

NG(Si F(X=Si/X>Si *).
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We have already seen in 3.11 that F(X=Si /X>Si *) is a summand of a sum of

F(NG(Si)/Si)’s.

Lemma 3.18. Let X be a profinite G-set such that there are only finitely many
conjugacy classes of stabilizers and all the stabilizers are finite. Then F(X) ~=

n

i=1 F(X(=Si X(>Si

Proof. Use induction on the number of conjugacy classes of stabilizers that appear.

The result is trivial if this number is 0. Otherwise let S1, say, be minimal amongst
these stabilizers, and let Y n

i=2 X(=Si Now the induction hypothesis shows that

F(Y)~=
n
i=2 F(X(=Si X(>Si

Since S1 is minimal, it follows that X(=S1) is open in X, because its complement
is the union of the X(=Si where Si contains no conjugate of S1 as a subgroup. Thus

F(X,Y)~= F(X(=S1), X(>S1)). Now 3.17 shows that the hypotheses of 3.16 hold,
completing the proof.

Lemma 3.19. Discrete R-permutation modules are closed under hence compact
ones are closed under

Proof. We need to showthat the sum of anarbitrary collection of discrete permutation
modules is an R-permutation module. Let {Xs|s S} be a set of profinite G-sets, so

Xs~= lim
.-i.Is i where the Xsi are finite G-sets.Xs

To each Is add an element 0s with the property that i > 0s for all i Is and call
the new directed set I0

s Let Xs0
s

be a point *s ; there is just one map Xsi Xs0
s

We

still have that Xs~= lim
.-i.I0

s iXs

For each s S choose an element f s) I0
s in such a way that for all but finitely

many s S we have f s) 0s Consider the infinite sets Yf s.S
Xsf s) for all

possible choices of f These can be made into an inverse system using the obvious
maps. Now, in each Yf identify all the points *s for different s to obtain Yf This

is consistent with the maps, and the Yf form an inverse system of finite G-sets. Let

Y lim.- Yf
Y has a fixed point *, and it is easy to check that F(Y, *)~= s.S F(Xs). Also

F(Y)~= T F(Y, *), because the inclusion* Y is split by Y *.

Definition 3.20. A strict discrete permutation module is a sum of discrete permutation

modules of the form F(G/H). A strict compact permutation module is a

product of compact permutation modules of the form R[[G/H]]. As usual, a strict
R-permutation module is a summand of a strict permutation module.

Notice that a strict permutation module is an R-permutation module by 3.19.
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Corollary 3.21. If the action ofGon X has only a finite number of conjugacy classes
of stabilizers and these stabilizers are finite then R[[X]] is a strict R-permutation
module. If G is finite then any R-permutation module is a strict R-permutation
module.

Lemma 3.22. Any strict R-permutation module is a summand of a strict permutation
module on a set on which all the stabilizers are pro-p groups.

Proof. This is well known for finite groups. Because we are dealing with strict
permutation modules, it suffices to deal with the case of one orbit G/H. Let S H
be a Sylow pro-p subgroup. We want to show that the natural map s : R[[G/S]]
R[[G/H]] splits.

For any open normal subgroup N o G we know, from the finite case, that
the quotient map R[[G/H]] R[G/NH] factors through the map R[G/NS]
R[G/NH]. Let LN be the set of all such factorizations. Then LN is compact, since

R[[G/H]] isfinitely generated, and theLN forman inversesystem. Thus their inverse
limit is non-empty, and an element of it is our desired splitting.

~=

Lemma 3.23. Let U and V be compact R-permutation modules for a finite group G.
Then the reduction map HomR[G](U, V Homk[G](k U, k V is onto.

Proof. By 3.21 we know that V is strict so, because of the way that Hom commutes
with products 2.3), we may assume that U R[[X]] and V R[G/H]. But
now HomR[G](R[[X]], R[G/H]) HomR[H](R[[X]],R), so we are reduced to
considering the map HomR[H](R[[X]],R) Homk[H](k[[X]], k). But any map

k[[X]] k must factor through k[Xi ], where Xi is some finite quotient of X. But
Xi is a finite union of orbits, so we can reduce to considering the reduction modulo
m of HomR[H](R[H/K], R)~= HomR[K](R, R), where our result is obvious.

Lemma 3.24. Let G be finite andM CR(G). Suppose thatM is projective over R
and that M[P] 0 for all non-trivial p-subgroups P. Then M is projective.

Proof. It is easy to see, by induction on |P|, that Ĥ0(P, M) 0. In particular, this
is the case for the Sylow p-subgroup S, so M[1] is projective over kS, by [6], VI 8.5
see also [4], 2.8), hence M is projective over RG.

Now we record some results of Bouc, in the form in which we will need them
rather than their most general form. These appeared in [3] for finitely generated
modules and [4] for infinitely generated modules.

Theorem 3.25. Let G be a finite group. If f : L M is a morphism between two
discrete strict k-permutation kG-modules such that for every p-subgroup P G the
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induced map L[P] M[P] is surjective resp. injective) then f is a split surjection
resp. split injection).

Proof. See [4], 1.3.

Note that as long as L and M are k-permutation modules they are bound to be
strict, by 3.21, so this hypothesis is unnecessary.

Corollary 3.26. In the circumstances of the previous theorem we can make either
one of the following alterations.

1) Each L[P] M[P] is surjective/injective instead of each L[P] M[P]).

2) L and M are compact k-permutation modules rather than discrete).

3) L and M are compact R-permutation modules and each L[P] M[P] is sur¬

jective.

Then f is still split.

Proof. Part 1) follows from 3.6; part 2) is its dual.
For part 3) we reduce modulo m, using 3.5, and obtain a splitting s there. By

3.23 we can lift s to a map s : M L. But sf is the identity modulo m, so it is
surjective, by Nakayama’s Lemma. It must split over R, so the kernel is a summand,
hence 0, by Nakayama’s Lemma again, so sf is an isomorphism. The splitting that
we want is sf )-1s.

Recall that a complex is called bounded if only a finite number of the modules
are non-zero.

Corollary 3.27. Let G be a finite group.

1) Let C be a bounded below complex of compact R-permutation RG-modules
such that C[P] is exact for every p-subgroup P of G including the trivial one).
Then C is split exact.

2) Let C be a bounded complex of compact R-permutation RG-modules. So for
some n Z we have Cr 0 for r > n. Suppose that C[P] is exact in degrees

r < n for every p-subgroup P of G. Let K be the kernel of Cn Cn-1.

Then K is a summand of Cn, hence an R-permutation module, and the complex

Cn/K Cn-1 · · · is split exact. If, in addition, we assume that C[P] is
exact in degree n for all non-trivial p-subgroups P then K is projective.

3) Let C be a bounded resp. bounded below) complex of compact R-permutation
RG-modules such that C[P] is exact for every non-trivial p-subgroup P of G.
Then C is homotopy equivalent to a bounded resp. bounded below) complex
of compact projective RG-modules.
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Proof. We prove 1) and 2) by induction on the length of the splitting, i.e. if we let

Zm denote the kernel of Cm Cm-1 then we assume that for some m the sequence

Zm Cm Cm-1 · · · is split and use induction on m. The assumption
implies that Zm is an R-permutation module. Since the complex is bounded below,
the induction starts.

But each complex · · · C[P]
m+2

C[P]
m+1

Z[P]m also satisfies the hypotheses of
the theorem, so, by 3.26, we have a splitting Zm Cm+1, hence Zm+1 Cm+1

Cm · · · is split.
In case 1) we take the union of the splittings for all m.
In case 2) we stop when m n. The additional hypothesis implies that K is

projective, by 3.24.
For 3), let f : J C be a projective resolution of C, i.e. J is a bounded

below complex of projectives and f is a quasi-isomorphism. Then our assumptions

imply that each f [P] : J [P] C[P] is also a quasi-isomorphism. Therefore cone(f
satisfies the conditions of part 1), so cone(f is split exact and thus f is a homotopy
equivalence.

IfC is boundedabove, let n be such thatCr 0 for r n. Then in degrees greater
than or equal to n, cone(f is just J with a degree shift. In particular, Jn Jn-1 is
the same as cone(f n+1 cone(f n, so the kernel K is a summand of Jn and hence

projective.
NowK Jn Jn-1 · · · isalsoa projective cover of C, using therestriction

off toC as the map. By theargument above, themap is ahomotopyequivalence.

Another approach to permutation modules is taken by Mel’nikov [19] see also

[32]).

4. Tate hyper-cohomology

Definition 4.1. If C is a complex of kG-modules and P G is a finite p-subgroup
then let q : CP C[P] be the quotient map. A base map s : C[P] CP is a

map of complexes of vector spaces such that the composite qs: C[P] C[P] is
homotopic to the identity We say that s is equivariant if it is a map of complexes of

NG(P )/P-modules and qs Id equivariantly.

Remark. If P is a finite p-group which acts admissibly on a CW-complex X i.e.

the stabilizer of each cell fixes it pointwise) and C(X) is the CW-chain complex of X
over k then the inclusion XP X induces an isomorphism C(X)[P]~= C(XP and

hence a base map.

Lemma 4.2. Let P be a finite p-group and let C be a complex of modules in Ck(P
zero in negative degrees. Let C̃ denote the augmented complex · · · C1 C0
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H0(C). Suppose that both C̃P and C̃[P] are exact e.g. if C̃ is split exact over kP
and that q induces an isomorphism q-1 : H0(C)P H0(C)[P]. Then there is a base

map s : C[P] CP
If, in addition, C is a complex of modules in Ck(G) andP < Gin such a way

that C[P] is a complex of projective compact k[[NG(P)/P]]-modules then the base

map can be made equivariant.

Proof. The hypotheses imply that both CP and C[P] are projective resolutions of

H0(C)P over k. Thus the map q : CP C[P] must be a homotopy equivalence.
In the presence of the extra hypothesis, C[P] is a projective resolution over

k[[NG(P)/P ]]. Thus q-1)-1 lifts to an equivariant chain map s: C[P] CP
and qs Id equivariantly, by an application of the basic comparison theorem ([34],
2.2.6, [6], I 7.4).

We define Tate hyper-cohomology groups over a finite group G in the usual way.

If C is a bounded complex i.e. bounded above and below) of compact G-modules
then we take a complete resolution FC of C over G by compact modules. We
define Ext*G(C, D) H*(HomG(FC,D)) whenever D is a bounded complex of
Gmodules, either compact or discrete. When C R we write Ĥ *

P D).

Remark. a) The complete resolution of a bounded complex C can be formed in the
same way as for a module see [6], VI, X), and has similar uniqueness properties.
Take a projective resolution P for C and choose a degree n higher than the upper
bound on C. Truncate P by removing all terms in degree less than n. Now add

projectives in all degrees less than n in such a way that the resulting complex is exact,
just as in the case of a single module.

If C is projective over R then there is an alternative description of FC. Let FR be

the complete resolution of the trivial module R. Then we can take FC to be FR ˆ C.
In full generality the complete resolution should be defined as the total complex

of the complete version of a Cartan–Eilenberg complex see [34], 5.7), where
all the projective resolutions of modules in the definition are replaced by complete
resolutions.

b) This definition isnotquitewhatwewould expect from [6], VII),which uses the
cohomology of HomG(FR, HomR(C, D)). But this is isomorphic to HomG(FR ˆ
C, D), and since in [6] C is always projective over R we have that FR ˆ C is a

complete resolution of C. For us such a definition would have the disadvantage that
HomR(C, D) might only be in ER if D is compact.

c) The construction of complete resolutions via Cartan–Eilenberg resolutions
leads formally to two cohomology spectral sequences:

p,q
1 p -p p ExtqIE G(Cp Dp Extp+q

G C, D),
p,q
2 q -q q ExtpIIE G(Hq C), Hq D)) Extp+q

G C,D).
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The Cartan–Eilenberg resolutions are themselves double complexes, so the filtration
is built in. The case of ordinary hyper-Tor is treated in [34], 5.7, and we can proceed
analogously, or simply use the duality of 2.6 to turn our spectral sequence for Ext
into one for Tor.

The boundedness condition on the complexes ensures that there are no convergence

problems.
d) The first spectral sequence shows that Ext*G(C, D) ignores projective

summands of the Cp, so it vanishes if C is a complex of projectives. The second shows
that it is invariant under a quasi-isomorphism of C or D.

e) Since C is quasi-isomorphic to its projective resolution P, remark d) shows
that there would be problems associated with allowing unbounded complexes.

The next two lemmas are based on [6], VII 10, [28].

Lemma 4.3. Let P be a cyclic group of order p and let C be a bounded complex of
compact permutation kP-modules with base map s. Then Ĥ * C)~= Ĥ* C[P]).

P P

Proof. Since C consists of permutation modules and both k and kP are indecomposable

it follows from 3.21 that, in each degree, Cr~= k) kP).
Let cone(s) be the mapping cone of s : C[P] C. Consider what happens when

we apply the Brauer construction. From the definition, cone(s)[P] cone(s where

s is the induced map s : C[P] C[P]. But s qs is a homotopy equivalence, by
the definition of base map, so cone(s is exact.

Now 3.27 3) implies that cone(s) is homotopy equivalent to a bounded complex
of projectives. Since Ĥ *P vanishes on such a complex it follows that Ĥ*P s) induces
an isomorphism.

Proposition 4.4. Let P be a finite p-group and letC beabounded complex of discrete
permutation modules over k for P, with a base map for each subgroup of P. Then

r
dimHr(C)

r
dimHr(C[P])

i.e. if the left hand side is finite then so is the right hand side and the inequality
holds).

Proof. Consider a composition series 1 P0 < P1 < · · · < Pn P, where

|Pi| pi Let s be a base map for C as a Pi+1-module. Then, by 3.5, the composite

C[Pi])[Pi+1/Pi ]~= C[Pi+1] s. CPi+1 CPi C[Pi] is a base map for C[Pi ] as a

Pi+1/Pi-module. Thus we have a proof by induction on i provided that we can prove
the case when |P| p.

Note that, since P is cyclic, dimĤ r
P M) dimĤr(P, M) dimM, for any

finite dimensional kP-module M.
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Consider the spectral sequence

p,q
2 ĤIIE p+q

P C).p
P Hq(C)) Ĥ

We see that

r
dimHr(C)

r
dimĤ -r

P Hr(C)) dimĤ0
P C).

Now, by 4.3, dimĤ 0
P C) dimĤ0

P C[P]). Also, by the Künneth Theorem,

Ĥ 0
P C[P])~= r Hr(C[P]) Ĥ-r(P

P C[P]) r dimHr(C[P]).and dimĤ-r(P 1 so dimĤ 0

5. Weak R-permutation resolutions

Definition 5.1. A compact weak R-permutation resolution of the profinite group G
is an exact complex of compact G-modules

· · · Jn ·· · J1 J0 R 0 J•),
where each Ji is a summand of a permutation module R[[Xi]] for some profinite
space Xi on which G acts with finite stabilizers.

The discrete version is just the Pontryagin dual.
A signed weak R-permutation resolution is similar except that we allow each Ji

to be a summand of a product of modules of the form R[[Xi,j]] R where Xi,j is
as before and R is a copy of R on which G acts as ±1.

Remark. Allowing the sign makes no difference to the class of possible modules Ji
unless char k 2 and 2R 0, but we want it for the next result.

The next theorem uses amethod of Swan [29], following Serre. It was first proved
in the profinite case by Scheiderer [25], [24].

Theorem 5.2. If the profinite group G has finite virtual cohomological dimension
over R then it has a signed weak R-permutation resolution of finite length.

Proof. For some H o G there is a finite projective resolution

0 Pn · · · P1 P0 R 0,

where each Pi is of the form R[[Xi]] for some profinite space Xi on which H acts

freely using the Eilenberg swindle).
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Take J• to be the tensor induced complex, as defined in [1] or [29]. Note that there
is a rather subtle sign convention. The terms areallsummands ofR[[( p

s

i=1giXpi ]],
where{g1, gs} arecosetrepresentatives ofG/H andp : {1, s} {1, n},
except that they might be twisted by a sign.

Lemma 5.3. IfH < Gis closed and M is a discrete G-module and N a compact

G-module then Ext*
H N, M) lim-.H<K<oG

Ext*K N,M) the limit over restriction

maps).

Proof.
Ext*H(N, M)~= Ext*G(N,CoindG

H
ResG

H M)
~= Ext*G(N,F(G/H) M) by 2.4

~= Ext*G(N, lim-.H<K<oG
F(G/K)) M)

~= Ext*G(N, lim-.H<K<oG F(G/K) M))

~= lim-.H<K<oG
Ext*G(N, F(G/K) M)

~= lim
-.H<K<oG

Ext*K(N, M).

Proposition 5.4. Let G act on the profinite space X and let M be a discrete
Gmodule and N a compact G-module. Suppose that, for some n and every x X,

StabG(x)(N, M) 0. Then ExtnExtn
G N ˆ R R[[X]], M) 0.

StabG(x)(N,M) 0 for every x X \ {*} thenSimilarly, if X is based and Extn

G N ˆ R R[[X, *]], M) 0.Extn

Proof. The unbased result follows from the based one by adding a disjoint basepoint,
so we prove the based statement.

Let X lim.-Xi where i runs through some inverse system I each Xi is a finite
G-set, and for j i I let .i,j denote the map Xj Xi and .j the map X Xj
ThenExtn

G N ˆ R[[X,*]], M)~= G N ˆ lim
.-R[[Xi *]],M)~=Extn

G
lim
.-(N ˆExtn

R[[Xi *]]),M)~= G N ˆ R[[Xi *]],M).lim
-.

Extn

For H <o G we use the Eckmann–Shapiro isomorphism in order to obtain

G N ˆ R[G/H],M) ~=Extn Extn H
ResG

H N,M) ~=G IndG H N, M) ~=Extn

x.G/H ExtnStabG(x)(N, M)
G where the map from the left hand side to the right

hand side is induced by restriction to StabG(x) and then inclusion of the summand

N x N R[G/H].
G N ˆ R[[Xi *]], M)~=Thus lim-.

Extn lim-. x.Xi\{*}
Extn

StabG(x)(N,M) G ~
lim
-. x.Xi \{*}

Extn
StabG(x)(N, M) G We will describe explicitly the maps in the

limit system in the last term before taking fixed points).
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Let Ai x.Xi \{*}
ExtnStabG(x)(N, M) and x Xi \ {*}, and let moreover

a Extn
StabG(x)(N, M) be regarded as an element of Ai Then for any j > i the

image of a in Aj has component at y Xj equal to 0 if .i,j y) x and equal to
resStabG(x)

StabG(y) a if .i,j y) x.
We need to show that, for every i I x Xi and t ExtnStabG(x)(N, M) there is

a j > i such that if z Xj with .i,j z) x then resStab(x)
Stab(z) t 0.

It is helpful if, given i, x, t we let H StabG(x) and Yj .i,j )-1(x), for

j i. Then the Yj are H-sets and .i)-1(
x)~= lim

.-j=i Yj is a profinite H-set. We

need to show that there is a k i such that if z Yk then resH
StabH z) t 0.

Let y Y so StabG(y) H and, by hypothesis, Extn
StabH y)(N, M) 0. By

5.3 there is an open subgroup Hy <o H such that StabH(y) Hy and resH
Hy t 0.

Now there must be a jy i such that StabH(.jy y)) Hy.
Let Uy .jy )-1(.jy y)) Y Then {Uy| y Y} is an open covering of Y

Since Y is compact we can let {Uy1, Uyr } be a finite subcover and let k I be
such that k jyi i 1, r.

Now if z Yk we have z .k(z̃) for some z̃ Y, so z̃ Uym for some m
and thus StabH(.ym z̃)) Hym But .ym z̃) .k,ym z) so StabH(z) Hym and
resHStabH z) t 0.

Corollary5.5. IfGhas a signed weakR-permutation resolution of finite lengthn,and

M CR(G) is projective on restriction to each finite elementary abelian subgroup,
then M has projective dimension less than or equal to n in CR(G).

There is a dual result for discrete modules.

Proof. By Chouinard’s Theorem see e.g. [1], Vol. II, 5.2.4), M is projective on
restriction to any finite subgroup. In particular, it is projective over R so we can
tensor the resolution

0 Jn · · · J1 J0 R 0

with M over R to obtain

0 Jn ˆ M · · · J1 ˆ M J0 ˆ M M 0.

By 5.4, each Ji ˆ M satisfies Ext*
G Ji ˆ M, N) 0 for all discrete modules N and

so, by 2.5, is projective.

The next useful lemma is taken from [2].

Lemma 5.6. LetH <o G and suppose that M is a compact module for G of finite
projective dimension whose restriction to H is projective. Then M is projective.
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Proof. Let Y be the cokernel of the co-augmentation R R[G/H]. We obtain a

short exact sequence

0 M R[G/H] ˆ M Y ˆ M 0.

The middle term is projective by 2.5, and if M has projective dimension r then we
can take a projective resolution of length r and tensor it with Y to see that Y ˆ M
has projective dimension at most r. It follows that eitherM has projective dimension
at most r - 1, a contradiction, or that M is projective.

Lemma 5.5 and the theory of profinite duality groups discussed in [33] are
precisely what is needed to carry over the algebraic proof of the local cohomology
theorem of Benson and Greenlees [2] from discrete virtual duality groups to profinite
ones. In particular we obtain the following result.

Theorem5.7. IfGis a virtual duality group of virtual dimension nand with dualizing
module I then for any compact G-module M there is a spectral sequence

E*,*
2

H*,*
J H*(G, M)) n

H*(G, I ˆ M),

where J is the ideal of positive degree elements in H*(G).

6. R-permutation resolutions

In this section we consider algebraic analogues of some geometricresults of Kropholler

and Mislin [17].
We continue to suppose that char k p > 0 and we count the trivial group as

a finite p-subgroup. Recall that the Brauer quotient at the trivial group is taken to
mean reduction modulo m.

Definition 6.1. By an R-permutation resolution for G of we mean a complex of
compact G-modules

· · · Cr · · · C1 C0 R C̃

where each Ci is an R-permutation module with finite stabilizers.
In addition, if we apply the Brauer quotient at any finite p-subgroup P G, the

resulting complex C̃[P] is required to be exact.
We say that the R-permutation resolution is of finite type if each Ci is finitely

generated. It is of length n if Cn 0 but Cr 0 for r > n. It is strict if all the Cr
are strict.
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We adopt the convention that C denotes the unaugmented complex and C̃ the
augmented one.

Definition 6.2. The smallest possible length of a strict R-permutation resolution for
Gis called the permutationdimension ofGoverR possibly8), which we abbreviate
to permdimG.

Notice that if H < Gthen the restriction of an R-permutation resolution or a

signed weak permutation resolution for G to H is still a resolution of the same sort
for H. However it might no longer be of finite type or strict, even if it was before.

A resolution of finite type is necessarily strict, by 3.10.

Lemma 6.3. If C is an R-permutation resolution for G and P < Gis a finite
Psubgroup then C[P] is a k-permutation resolution for NG(P)/P. If C is strict or of
finite type then so is C[P].

Proof. The first part is by 3.4. The second by 3.7 and 3.10.

We have given thedefinition ofan R-permutation resolution in terms of the Brauer
construction, because this is what corresponds betterwith the geometricmethods used

for discrete groups. However, there isan alternative description, by a theoremof Bouc
mentioned previously 3.27).

Proposition 6.4. The condition that the resolution be exact at every Brauer quotient
at a finite p-subgroup is equivalent to the condition that it be split exact on restriction
to every finite p-subgroup or equivalently on restriction to every finite subgroup).

Remark. Let F denote the class of strict R-permutation modules with finite
stabilizers in CR(G). Then, in the language of relative homological algebra, a strict
R-permutation resolution for G is the same thing as a right F -resolution of R in
CR(G) ([11]) or a projective resolution of R for the class F ([10]).

An obvious analogue for CR(G) of the comparison theorem in relative homological

algebra now tells us that if a strict R-permutation resolution for G exists then it
is unique up to homotopy.

The usual proof that such resolutions always exist only transfers to CR(G) if G
has only a finite number of conjugacy classes of finite p-subgroups, otherwise we
run into a problem with direct sums cf. the proof of 6.6).

The relative Ext groups are defined by setting Ext*G,F R, N) to be the homology of
HomG(C, N), where C is a strict R-permutation resolution for G. Thus permdimG
can be characterized as the largest degree in which not all of these groups vanish.
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Definition 6.5. The relative dimension of G over R, reldimR G, is the least integer n
such that every compact module for G that is projective on restriction to every finite
p-subgroup has projective dimension less than or equal to n. If no such n exists then
we set reldimR G=8.

If M CR(G) is projective on restriction to every finite P-subgroup then the
same is true of k R M Ck(G). Also if M CR(G) is projective over R then
its projective dimension is the same as that of k R M Ck(G). It follows that
reldimR G reldimk G.

We saw in 5.5 that reldimk G permdimG.
Recall that a moduleM is said to be of type FPn if there is a projective resolution

· · · P1 P0 M in which Pi is finitely generated for i n see [6], VIII 4.3).

Proposition 6.6. Let G be a profinite group with only a finite number of conjugacy
classes of finite p-subgroups P, and let N CR(G). Then there is a short exact

sequence L M f. N such that M is a strict R-permutation module M with finite
stabilizers and f [P]: M[P] N[P] is surjective for every finite p-subgroup P. This
can be done in such a way as to satisfy the following properties.

1) If, for some p-subgroup P, we have N[Q] 0 for all finite p-subgroupsQ > P
then also M[Q] 0 for all Q > P and f [P] : M[P] N[P] is a projective
cover of k[[NG(P)/P ]]-modules. Also N[P] is projective on restriction to any

Q/P for P Q.
2) If N becomes R-permutation on restriction to some P then f is split over P,

so L is R-permutation on restriction to P and there is a short exact sequence

L[P] M[P] N[P].

3) If each N[P] is finitely generated over k[[NG(P )/P ]] then M is finitely gener¬

ated.

4) If each N[P] is of type FPn over k[[NG(P )/P ]] for some n 1 then each

ker(f [P] : M[P] N[P]) is of type FPn-1. If, in addition, we assume that N is
R-permutation on restriction to each P then L[P] is of type FPn-1.

Proof. For each finite p-subgroup P, letKP i. N[P] be the projective cover of N[P]
as an R[[NG(P )/P ]]-module, which we inflate to an R[[NG(P)]]-module. Lift i to

KP f. NP and let IndG
NG(P KP

˜f. N be the adjoint map.

NG(P KP and let f be the product of the f̃P’s. This isLet M P.P/G IndG
permissible because P/G is finite. Then L ker(f and the surjectivity condition
is guaranteed by Lemma 6.8 below.

For 1), the first two conditions are consequences of lemmas 6.7 and 6.8 below.
The last is because the hypothesis implies that Ĥ0(Q/P, N[P]) 0 so the claim
follows by 3.24.
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2) follows from 3.26 and 3) is by construction.
For 4), notice that, since M is a finitely generated R-permutation module with

finite stabilizers, so is each M[P], by 3.7. Since G contains only a finite number
of conjugacy classes of finite p-groups, there is an open normal p-torsion-free
subgroup U. Given P, let H be the image of U n NG(P in NG(P)/P which is still an

open subgroup.
An NG(P)/P-module is of type FPr if and only if its restriction to H is of type

FPr cf. [6], VIII 5.1). On restriction to H, M[P] is finitely generated and projective.
Thus ker(f [P]) is of type FPn-1 over H, and hence over NG(P)/P by Schanuel’s
Lemma see [6], VIII 4.3).

We still need to prove the two lemmas, so let P be a finite p-subgroup ofGand K
a projective module in CR(NG(P)/P which we inflate to an NG(P )-module.

Lemma 6.7. If Q is another p-subgroup of G that is not conjugate to a subgroup
of P then IndG

NG(P K)[Q] 0.

NG(P K ~=Proof. It suffices to treat the case when K R[[NG(P)/P]], so IndG

R[[G/P]]. But, by 3.4, R[[G/P]][Q]~= k[[(G/P Q]] 0.

Continuing with the same notation, suppose thatN is aG-module and that there is

an NG(P)-module map i : K N[P]. Suppose that i factors as K f. NP q. N[P],

NG(P K ˜f.where q is the quotient map. Let IndG N be the adjoint map to f.
Lemma 6.8. The map f̃[P]: IndG

NG(P K)[P] N[P] has the same image as i, and

NG(P K)[P]~=IndG k R K.

Proof. First we treat the case when K R[[X]], where X is a profinite NG(P )/P -
set with a free action. Then IndG

NG(P K~= R[[G ×NG(P X]]. The inclusion of X in

G×NG(P X as NG(P ×NG(P X yields an isomorphism j : k[[X]] R[[G×NG(P

X]][P]~= k[[G]] ˆ k[[NG(P )]] k[[X]])[P], and f̃[P]j i.
There is a map Endk[[NG(P )/P ]](k[[X]]) Endk[[G]](k[[G]] ˆ k[[NG(P)]] k[[X]])

given by f Id ˆ f and this is compatible with j
In the general case, K is a summand of such an R[[X]] and the isomorphism j is

compatible with the idempotent splitting off K.

Theorem 6.9. Suppose that there are only finitely many conjugacy classes of finite
p-subgroups P of G. Then the following are equivalent.

1) Each NG(P )/P has a signed weak k-permutation resolution of finite length.

2) G has a strict R-permutation resolution of finite length.
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3) Each reldimk NG(P)/P is finite.

Proof. 2) implies 1) by 6.3 and 1) implies 3) by 5.5, so we assume that each

reldimk NG(P)/P is finite and construct a strict R-permutation complex for G.
In fact, starting with any module N CR(G) that is an R-permutation module on

restriction to each finite p-subgroup, we will construct a complex with all the same

properties except that the last term is N instead of R.
Define r(N) to be the smallest r for which N[P] 0 for all finite p-subgroups P

with |P| pr The size of the finite p-subgroups is bounded, so r exists.

Use 6.6 repeatedly to produce a resolution ·· · Cr · · · C1 C0 N
C̃ by R-permutation modules with finite stabilizers. In fact, in the notation of

6.6, if N is R-permutation with finite stabilizers on restriction to any finite subgroup
then so is L and r(L) r(N). Each C̃[P] is exact, by 6.6 2), so the problem is to
show C̃ is of finite length.

If r(N) 0 then N[1] 0, so N 0.

If r(N) 1 then for any P oforderpr(N)-1, 6.6 1) shows thatC̃ [P] is the minimal
projective resolution of N[P] in Ck(NG(P)/P The last part of 6.6 1) also shows
that N[P] is projective on restriction to any finite p-subgroup, so our assumption that
reldimk NG(P)/P is finite implies that the resolution C̃ [P] stops.

Since there are only finitely many subgroups of order pr(N)-1 up to conjugacy, if
we progress far enough along the resolution then N ker(Cn Cn-1) will satisfy

r(N < r(N). But · · · Cn+2 Cn+1 N is the resolution for N so it must
stop, by induction.

Lemma6.10. LetGbeagroup offinitevirtual cohomologicaldimension t overR and
let P be a finite p-subgroup of G. Then NG(P)/P has finite virtual cohomological
dimension less than or equal to t

Proof. LetU < Gbeopen andof cohomological dimension t ThenH UnNG(P
is open in NG(P and has cohomological dimension less than or equal to t But H
can contain no p-torsion, so it is isomorphic to its image in NG(P)/P

The construction in the next proof is based on one introduced by Samy-Modeliar
[23] for finite p-groups.

Proposition 6.11. LetGbea profinite group of finitevirtual cohomological dimension
such that its Sylow pro-p-subgroup has only a finite number of conjugacy classes of
finite p-subgroups P, and let N CR(G). Assume that N is R-permutation on

restriction to each P and that each N[P] is projective on restriction to some open
subgroup of NG(P )/P Then N is an R-permutation module with finite stabilizers.
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Proof. Let S denote the Sylow pro-p-subgroup of G. From 3.22 we know that R is a

summand of R[[G/S]], so N is a summand of R[[G/S]] ˆ N~= IndG
S

ResG
S

N, thus

it is enough to prove the result for N restricted to S, and we will assume that G is a

pro-p-group.
We follow the proof of 6.6, but we construct M in a more economical way.

By downward induction on r we will construct an R-permutation module with finite
stabilizersMr which is in fact a product ofmodules R[[G/P]] for finite p-subgroups

P with |P| pr and a map fr : Mr N such that f [P]r : M[P]r N[P] is an

isomorphism for all finite p-subgroups P with |P| pr
For large enough r we can take Mr 0, so the induction starts. Suppose that we

have fr+1 and we want to construct fr
Let P be a subgroup of order pr and consider f [P]

r+1 : M[P]
r+1 N[P]. Let

q : N[P] N[P]/ Im(f[P]
r+1) be the quotient map and let p : KP N[P]/ Im(f [P]

r+1)
be a projective cover in CR(NG(P)/P Lift this to a map i: KP N[P], which
factors through a map KP k KP N[P], and combine the latter with f [P]

r+1 to

obtain a surjection g : KP M[P]
r+1 N[P]. We claim that g is an isomorphism.

In order to prove this, let LP be the kernel of g, so we have a short exact sequence

LP KP M[P]
r+1 N[P] in Ck(NG(P)/P If we restrict to any p-subgroup

Q/P then this is split and LP is projective over Q/P, by 3.27.
By hypothesis, N[P] is projective over some open subgroupH < NG(P )/P Also

KP and M[P]
r+1 are projective over H, by construction, so LP is projective over H. It

follows from 5.5, using 5.2, 5.5 and 6.10, that LP is projective over NG(P )/P
Thus LP is injective relative to H and, since the short exact sequence is split

over H, it is also split over NG(P )/P
Let V be an indecomposable factor of LP and let a : V KP M[P]

r+1 be the
inclusion map and ß a splitting. Let eK and eM be the idempotent endomorphisms

of KP M[P]
r+1 corresponding to the summands. So IdV ßa ßeKa + ßeMa.

Since End(V is local, at least one of ßeKa and ßeMa must be an automorphism.

If it is ßeKa then eKa(V is a summand of KP But 0 qga qgeKa +
qgeMa qieKa +qf [P]

r+1eMa peKa. This contradicts the definition of p as a

projective cover. Therefore eMa(V is a summand of M[P]
r+

1. This is not possible
either, by Lemma 6.12 below.

We have proved that g is an isomorphism, so, in fact, N[P]/ Im(f [P]
r+1) was

projective and q was split from the beginning).

NowconsiderKP as anNG(P )/P -module and lifti toamapfP : KP NP Let

f̃P : IndG
NG(P KP. N be the adjoint map. LetMr Mr+1. P.Pr/G IndG

NG(P KP
wherePr is theset ofp-subgroups oforder pr There is an obvious map fr : Mr N
with components fr+1 and the f̃P’s. This fr induces an isomorphismM[P]r N[P]
when |P| pr
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This completes the induction, so we have a map f0 : M0 N that is an isomorphism

modulo m, hence an isomorphism.

This construction ofMr can be used, instead of the one in 6.6, in the proof of 6.9,
to produce a smaller resolution.

Lemma 6.12. Let G be a pro-p group and P a finite subgroup of order pr Suppose
that M CR(G) is a product of R[[G/Q]]’s for finite subgroups Q with |Q| > pr
Then M[P], considered as a module for NG(P )/P does not contain a projective
summand.

Proof. Since we are dealing with pro-p groups, each R[[(NG(P)/P)/S]] is
indecomposable. This is because there is only one simple module k and

Hom(R[[(NG(P)/P)/S]], k) has dimension 1.
In particular, the only indecomposable projective is the free module of rank 1, so,

to obtain a contradiction, assume that R[[NG(P )/P ]] is isomorphic to a summand

of a product of R[[G/Q]][P]’s.
We haveasurjection R[[G/Q.]][P] R[[NG(P )/P ]]. Compose thiswith the

augmentation R[[NG(P )/P ]] k. Since k is finite and the maps are continuous,
the composition factors through a finite product. But now one of this finite set of
factors must map onto k, and, by Nakayama’s Lemma, it maps onto R[[NG(P)/P ]].
The latter is projective, so the map is split, and R[[NG(P )/P ]] is a summand of some

R[[G/Q]][P]~= R[[(G/Q)P
]].

But, by 3.7, StabNG(P )/P gQ) NG(P n gQ)/P where P < gQ. Since

Q is a p-group, NgQ(P is strictly bigger than P, so the stabilizer is non-trivial.
Thus R[[(G/Q)P

]] is a finite sum of terms R[[(NG(P )/P )/S]] for some non-trivial
S NG(P)/P and each of these is indecomposable. This contradicts theassumption
that R[[NG(P)/P ]] is a summand.

Corollary 6.13. Suppose that there is a bound on the number of conjugacy classes
of finite p-subgroups of a Sylow p-subgroup of G. If G has virtual cohomological
dimension t over R then permdimG reldimk G reldimR G t

Proof. Let · · · Cr ·· · C1 C0 R C̃ be any strict permutation
resolution. Let N ker(Ct-1 Ct-2).

For each P we know that N is R-permutation on restriction to P. Also NG(P)/P
contains an open subgroup H of cohomological dimension less than or equal to t, by
6.10; if we restrict C̃[P] to H we see that N is the tth syzygy of k, so is projective.

Now 6.11 shows that N is an R-permutation module with finite stabilizers, so we
can finish the resolution with 0 N Ct-1 Ct-2 · · ·

Thus permdimG t and reldimk G permdimG by 5.5. Also reldimR G
reldimk G, by the remark after 6.5. Finally, it is easy to see that t reldimR G, by
considering IndGH R, where H o G is of cohomological dimension t
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Example. Let p 3 and G PSL2(Z3).ˆ The structure of this group is well known
see [15] for example), but the reader can also consider this example as applying to

any group with the following properties. G is virtually pro-3, and by the theory of
Lazard [18]), vcdG 3. It is easy to verify that there is only one non-trivial finite 3-
subgroup up to conjugacy,

Q~= Z/3 generated by 0 1

-1 -1 and NG(Q)~= Q×Ẑ3.
By 5.2 and 5.5, G satisfies condition 3) of 6.9.

We apply the construction of 6.6. R[Q] ~= k and its projective cover over

NG(Q)/Q~= Ẑp is IndNG(Q)/Q
1 R~= R[[NG(Q)/Q]], whichwe inflate toanNG(Q)-

module. Also R[1]~= k and we denote the projective cover of this by Pk. We could
in fact use any projective module that maps onto k, such as a free module. So our
resolution starts · · · Pk R[[NG(Q)/Q]] R. Let N be the kernel.

Now N[Q] 0, so N is projective on restriction to Q. Since reldimk G is finite,
N has a finite projective resolution Cr · ·· C1 N any one will do), and we
have an R-permutation resolution Cr · · · C1 Pk R[[NG(Q)/Q]] R.

Let K ker(C2 C1). Let H be an open subgroup of finite cohomological
dimension. Over H, the module K is a third syzygy, so must be projective. It follows
from 5.6 that K is projective over G.

So we have an R-permutation resolution

K C2 C1 Pk R[[NG(Q)/Q]] R.

If we use the construction of 6.11 instead, the only significant difference is that
we do not use Pk at the first stage, so we obtain a resolution of the form K C2

C1 R[[NG(Q)/Q]] R.

Recall that a group G is said to be of type FP over R) if there is a projective
resolution of R in CR(G) of finite type and finite length. It is of type v FP if it
possesses an open subgroup of type FP. G is of type FP8 if there is a projective
resolution of R of finite type.

Theorem 6.14. The following are equivalent.

1) G has a strict R-permutation resolution of finite type and finite length.

2) G has only finitely many conjugacy classes of finite p-subgroups P and each

NG(P )/P including G) is virtually of type FP.

3) There are only finitely many conjugacy classes of finite p-subgroups P and each

NG(P )/P including G) is of type FP8 and reldimk NG(P )/P < 8.
Proof. 1) 2): Let C be a strict R-permutation resolution for G of finite type and

finite length and letP < Gbe a finite p-subgroup. Exactness of C̃[P] implies that
C[P]

0 0. But if C0 is a summand of n
i=1 R[[G/Si ]] then P must be conjugate to
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a subgroup of some Si Thus there are only a finite number of conjugacy classes of
finite p-subgroups.

Now we can find an open subgroup H G that avoids all the finite p-subgroups.
The restriction of the resolution to H is then a projective resolution, and still of finite
type, so G is virtually of type FP.

NowC[P] isa strict k-permutation resolution forNG(P)/P of finite type and finite
length by 6.3, so the same argument shows that NG(P)/P is virtually of type FP.

2) 3): This follows the fact that type v FP implies type FP8 ([6], VIII 5.1)
and from 5.2 and 5.5.

3) 1): The construction of Theorem 6.9 yields a complex of finite type at

each step by 6.6 parts 3) and 4).

Let H be a profinite group, Q a finite group and X a finite Q-set. We write

H wrX Q for the wreath product HX Q, where the commutation relation is given
by qfq-1)(x) f q-1x), q Q, f HX, x X.

If Sn denotes the symmetric group on the set n {1, n} then H Sn

H wrn Sn.

Lemma 6.15. If H is p-torsion free then H Sn has only finitely many conjugacy
classes of finite p-subgroups.

Proof. Any finite p-subgroup maps isomorphically to its image in Sn, so we only
need to show that any two finite p-subgroups with the same image, P say, in Sn
are conjugate. This is equivalent to showing that all sections of H wrn P P are

conjugate, which in turn is equivalent to showing that the non-abelian cohomology
group H1(P, Hn is trivial see [27], I 5).

But H1(P,HX Y
)~= H1(P, HX) × H1(P, HY so we can reduce to the case

of a transitive P-set P/Q. But then H1(P, HP/Q)~= H1(Q, H)~= Hom(Q, H),
by [27], I 5.7, so is trivial.

Corollary 6.16. If H is of finite cohomological dimension over R then H Sn has a
strict R-permutation resolution of finite length.

Proof. H Sn is of finite virtual cohomological dimension, so by 6.10 so is each

NG(P )/P for each finite p-subgroup P. In view of 6.15 we can apply 6.9; condition
1) is satisfied, by 6.10, and condition 2) is our desired conclusion.

Corollary 6.17. If G is of finite virtual cohomological dimension then it has an

R-permutation resolution of finite length.

Proof. LetH < Gbe open of finite cohomological dimension and set n |G/H|.
Then H Sn has an R-permutation resolution of finite length, by 6.16. But G embeds

in H Sn, so we can restrict this resolution to G.
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From now on we write H*(G) for H*(G,k).

Proposition 6.18. If G has an open normal subgroup of finite cohomological dimension

and with finite dimensional homology i.e. finite dimensional in each degree and
zero in large degrees), then there are only finitely many conjugacy classes of finite
p-subgroups P, and each NG(P has an open normal subgroup of finite cohomological

dimension and with finite dimensional homology. If G is virtually pro-p then
this subgroup may be taken to be pro-p.

Proof. Cf. [6], IX 13.2.) Let H o G be of finite cohomological dimension and

with finite homology, hence p-torsion free H can be chosen to be pro-p if G is
virtually pro-p). Let X be a compact R-permutation resolution of G of finite length,
which exists by 6.17. The restriction of X to H is a projective resolution of R. Let
Y k H X, so that H*(Y)~= H*(H), by the definition of homology, and so H*(Y
is finite.

Let P be a p-subgroup of G/H. We claim that Y has a base map over P. Recall
from 3.8 that SH(P is the set of finite p-subgroups of G that map isomorphically
to P < G/H, and H acts on this by conjugation. Assume for the moment that

SH(P )/H is finite.
Observe that each module in X is a summand of a module of the form R[[V ]],

where V is a profinite G-set with finite stabilizers. Now 3.8 becomes V/H)P
~=

Q.SH P)/HV Q/NH(Q), and this is a homeomorphism because the union is finite.
The dual of 3.9 is thus

R[[V/H]][P]~= Q.SH P )/H k NH Q) R[[V ]][Q] (†)

and so

Y [P]~= Q.SH P )/H k NH Q) X[Q].

Now X[Q] is a complex of projectives over NH(Q)/Q, so each XQ X[Q] has
an NH(Q)/Q-equivariant base map, by 4.2, and these piece together to give a base

map

Y [P]~= Q.SH P )/H k NH Q) X[Q]
Q.SH P)/H k NH Q) XQ

k H X)P Y.

It follows that H*(Y [P]) is finite, by 4.4.
Now from the identity † and the fact that X[Q] is a projective resolution of

NH(Q)/Q we see that

H*(Y[P])~= Q.SH P)/H H*(NH(Q)).

It follows that for each Q, H*(NH(Q)) is finite.
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It remains to prove our assertion that SH(P)/H is finite. Our argument is based

on the one in [20], but is technically more elementary see the remark before 6.20).
Notice that this claim for all P of order pr is equivalent to the claim that G has only
finitely many conjugacy classes of finite p-subgroups of that order. The proof is by
induction on the order of P. We know that H*(G) is finitely generated by a spectral
sequence argument and the theory of Evens [12], [13], [1], so a theorem of Quillen
[21] implies that the number of conjugacy classes of elementary abelian p-subgroups
is finite see also [20]).

Otherwise P, of order pr contains a central cyclic subgroup C of order p, and

P NG(C). We may conjugate in such a way that C is one of a given finite set of
representatives. It now suffices to show that there are only finitely many conjugacy
classes of subgroups of NG(C) of order pr containing C or, equivalently, that there
are only finitely many conjugacy classes of subgroups of NG(C)/C of order pr-1.

Since SH(C) is finite, we can certainly apply the argument above with C in
place of P. We find that NH(C) o NG(C) is open normal of finite cohomological
dimension and with finite homology, and this injects into NG(C)/C. Our induction
hypothesis now applies to NG(C)/C and we are done.

Theorem 6.19. If G is a virtual pro-p group then the following conditions are equivalent.

1) G has a strict R-permutation resolution of finite type and finite length.

2) G is virtually of type FP.

3) There are only finitely many conjugacy classes of finite p-subgroups P and
reldimk NG(P )/P < 8 and for each simple R[[NG(P )/P ]]-module S each

Hi(NG(P )/P S) is of finite dimension.

4) For each simple R[[G]]-module S its cohomology H*(G,S) is noetherian as a
module over H*(G).

Proof. We claim that conditions 1),(2) and 3) are equivalent to those of 6.14 under
the hypothesis that G is a virtual pro-p-group.

Clearly 1) is the same in both. Also the present 2) is equivalent to 6.14 2) using
6.18, because if H is a torsion free pro-p subgroup of NG(P with finite dimensional
homology then it injects into NG(P )/P and for a pro-p group finite homology
implies type FP.

The two conditions 3) are equivalent, because the Hi(NG(P )/P S) measure the
growth of the minimal projective resolution ([33], 4.2.3).

Now 2) implies 4), by considering the Lyndon–Hochschild–Serre spectral
sequence. The converse is shown for pro-p groups in [20]. In fact, the method of that
paper shows that there is an open pro-p subgroupK <o G such that res : H*(G)
H*(K) is zero in positive degrees. This can be seen by using 5.3 with H 1. Let
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x1, xm generate H*(G) as a k-algebra. For each xi there is an open subgroup

Ki <o G such that resG
Ki xi 0. Let K niKi Since H*(K)~= H*(G, CoindGK k)

K k has a finite filtration by simple modules it follows that H*(K) isand CoindG
finitely generated over H*(G). Since the xi act as 0, we see that H*(K) must be

finite-dimensional and K must be of type FP.

Remark. The deeper part of [20] shows that if G is a pro-p group and H*(G) is
finitely generated then the number of conjugacy classes of finite p-subgroups of G
is finite. It uses results of Dwyer and Wilkerson [9], and also work of Lannes on
unstable algebras over the Steenrod algebra, to obtain a version of 6.20 below see

also [15]). The method of the present paper bypasses that.

We simplify the statement of the next result by restricting ourselves to pro-p
groups.

Theorem 6.20. LetGbe a pro-p group with finitely generated cohomology as a ring.
Then there are only finitely many conjugacy classes of finite p-subgroups P, and for
each one H*(NG(P )/P is finitely generated as a ring and H*(NG(P is finitely
generated as a module over H*(G).

Proof. The first claim is just part of 6.19. For the second assertion we use 6.19 to
change the question to one about the existence of a strict k-permutation resolution of
finite type and finite length. But this is inherited by NG(P)/P by 6.3.

For the third claim, let U o G be pro-p of type FP using 6.19 condition 2)).
Now NG(P)/P is virtually of type FP, by the first claim and 6.19 again. It follows
that the image of U n NG(P in NG(P)/P is of type FP, and this is isomorphic to

U n NG(P
Consider the diagram

U n NG(P ----. NG(P ----. NG(P)/(U n NG(P

U ----. G ----. G/U

The Lyndon–Hochschild–Serre spectral sequence for the top row has E2 page

H*(NG(P)/(U n NG(P H*(U n NG(P Via inflation this is noetherian over

H*(NG(P)/(U n NG(P hence so is H*(NG(P by the theory of Evens [12],

[13, 1].
By the same theory, H*(NG(P )/(U n NG(P is noetherian over H*(G/U) via

restriction we are dealing with finite groups here).
Combining these, we find that H*(NG(P is noetherian over H*(G/U) via the

natural map NG(P G/U. But this map factors through G, so H*(NG(P must
be noetherian over H*(G).



34 P. Symonds CMH

7. Tate–Farrell cohomology

For any group of finite virtual cohomological dimension we can construct a complete
resolution as in [6], X, and so deal with the Tate–Farrell cohomology or hypercohomology,

just as we did for the Tate cohomology of a finite group in §4. This was first
considered for profinite groups by Scheiderer [25], but the approach given here is
more elementary and allows compact coefficients, as required in certain applications,

[30] and [31] for example.
This cohomology has the expected properties, as in [6]. In particular it can be

calculated using subgroup complexes, but in order to state this we need to define the
chain complex of the Quillen complex.

For any group U, let U) denote the usual Quillen complex for U, with
nsimplices corresponding to the elements of n(U), the chains of elementary abelian
p-subgroups of U. For U finite and X a finite poset with an action of U, let T
D0 · · · Dr D̃ |X|)) denote the complex ofcochains on |X|with coefficients
in T and Cr · ·· C0 R C̃ |X|)) the dual complex of chains over R.
These are complexes of permutation modules over U.

For N o Gp-torsion free, let Nn G) denote the image of n(G) in n(G/N).
If M < N there are natural maps Mn G) Nn G). Notice that n(G) ~=

lim
.-

Nn G) as sets, and in this way we give n(G) a profinite topology.

Define D̃ G)) lim
-. D̃ N(G)) and C̃ G)) lim

.- C̃ N(G)). Thus

Dn( G))~= lim-.F( Nn G)).

Lemma 7.1. For any non-trivial finite p subgroup P G both D̃ G))[P] and
C̃ G))[P] are exact.

Proof. Denote by N,P
n G) the image of n(G)P in Nn G), so that we have

n(G)P~= lim
.-

N,P
n G).

The simplicial complex N,P G) is contractible via the usual poset maps

E EP EPZp(P Zp(P where bars denote images in G/N, E is an
elementary abelian p-subgroup of G invariant under conjugation by P and Zp(G) is
the maximal central elementary abelian p-subgroup of P. Notice that EPZp(P is
actually an elementary abelian subgroup of G, and if E and E have the same image

in G/N then so do EPZp(P and E PZp(P Thus D̃ N,P G)) is exact.

Now F( n(G))[P]~= F( n(G)P
)~= F(lim.-

N,P
n G))~= lim

-.F( N,P
n G)), so

D̃( G))[P]~= lim
-. D̃ N,P G)) is exact.

The compact case is dual.

Lemma 7.2. If there are only finitely many conjugacy classes of elementary abelian
p-subgroups then Dn( G))~= s. G)n/G F(G/ StabG(s and Cn( G))~=

s. G)n/G R[[G/ StabG(s )]].
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Proof. Dn( G)) lim
-.Dn( N(G)) ~= lim

-.F( Nn G)) ~= F(lim.-
Nn G)) ~=

F( n(G)) and F( n(G)) has the form claimed by 3.10.
The compact case is dual.

Remark. In [20] it is shown that a pro-p group has a finite number of conjugacy
classes of elementary abelian p-subgroups if and only if its cohomology is finitely
generated as a ring modulo nilpotent elements.

Let C( G)) denote the complex C̃ G)), but without the augmentation. By
analogy with the case of discrete groups we expect the following result.

Theorem 7.3. Let M be a G-module, discrete or compact. Then

Ext*G(C( G)), M)~= Ĥ * G, M).

Proof. From the long exact sequence associated to C C̃ R we see that it
suffices to show that Ext*G(C̃ G)), M) 0.

By induction on r we can add projectives to C̃ G)) in degrees less than or
equal to r in such a way that the resulting complex C̃r( G)) is exact in degrees

strictly less than r. Let d be the length of the longest chain of elementary abelian

p-subgroups and consider C̃d( G)). This is zero in degrees greater than d and has

homology only in degree d; call this homology group K.
By 3.27 2), K is projective over any finite p-subgroup, so, by 5.2 and 5.5, K has

finite projective dimension, e say, over G.
Now consider C̃d+e( G)). It has only one homology group, L say, in degree

d + e. But L is the eth syzygy of K, so is projective. Let C( G)) be the complex
obtained from C̃d+e( G)) by adding L in degree d + e + 1, with the obvious
boundary map. Then C( G)) is exact.

But adding projective modules to a complex does not effect Ext, since it need not

change the complete resolution, so Ext*G(C̃( G)), M)~=
Ext*G(C( G)), M), and

a complete resolution for C( G)) is just 0, so Ext*G(C( G)), M) 0.

Remark. Ext*G(C( G)), M) can be computed using the spectral sequence

p,q
1 ExtqIE G(C( G))p, M) Extp+q

G C( G)), M).

If there are only a finite number of conjugacy classes of elementary abelian
psubgroups p,q

1 ~=then, by 7.2, IE
s. p(G)/G Ĥ q StabG(s̃ M), where s̃ denotes

a chain in the class s).
This is known to be a powerful tool for calculation in the case of discrete groups.

In the context of profinite groups, the case of p-rank 1 and coefficients k already
appears in the work of Henn [15], where it is used to make calculations.
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