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Erratum to “A gap theorem for hypersurfaces with constant scalar
curvature one”

H. Alencar, M. do Carmo and W. Santos

Proof of Lemma 4.1

In our paper [AdCS], the following lemma is stated.

Lemma 4.1. Let M" — S"t! be a closed orientable hypersurface with scalar
curvature R =1 (i.e. S = 0). Then the index of the quadratic form

I f) = — /M{fL1f + (= 1)Sy —385)f2) dM

is greater than one.

Here S,,r = 1,...,n,1is the r‘h-symmetric function of the principal curvatures
of the immersion and L1 is the linearized operator corresponding to the equation of
hypersurfaces of S"+! with S, = 0.

The proof of Lemma 4.1 presented in [AdCS] is incorrect. We had set N =
Zl”ilz nie;, where {e1, ..., es12} is an orthonormal basis of R"*? and N is the unit
normal vector to the immersion of M" — §"+!  R**+2_ By assuming the index of
[ is greater than one and noticing that I (n;, n;) < 0, we concluded that all »; but one
were zero. This is not true. Replace the proof of the lemma by the following.

Proof. To prove that Ind(M) is greater than one, we will follow Simons [S], where a
similar proposition is proved for the minimal case in arbitrary codimension (Propo-
sition 5.1.1 of [S]). The crucial point is that Simons argument in codimension one
does not depend on minimality. For convenience of the reader we present here the
details.

Let & denote the (n + 2)-dimensional space of vector fields that are tangential
projections to §"+! of parallel vector fields in R**2 > §"*!. Clearly at each point
p € M, & spans the entire tangent space T}, (S"1). Let £V be the space of all normal
vector fields of the form (a, N)N, where a is a fixed vector of R*t2 and N is the unit
normal of M.



102 H. Alencar, M. do Carmo and W. Santos CMH

We first show that restricted to £, the index form is negative definite. Indeed,
setting f, = {(a, N), g4 = (a, x) and noticing that

Li(fa) = —(5182 — 383) fu — 25284,

we obtain, since S, = 0, that L{(f,) = 353 f,.
Thus,

I(fa, fa) = _/M(faLl(fa) +(n— 1S —3831f7) dM

:—/(n—l)Slfasz<O,
M

since S; > 0. It follows that the index formula restricted to £% is negative definite,
hence Ind(M) > 1. B
To show that Ind(M) > 1, we need a few lemmas taken from [S]. Let V, V and

V the covariant derivatives of M", S"*+! and R"*2, respectively.
Lemma 1.1. Let Z € &. Then, given p € S"T1, there exists a A such that, for any
x € T,(S"h, B

Vel = &x. (1

Proof. Since Z = WT, where W is a parallel field in R"*2, we have, by setting
w=wl4+whV,

ViZ = VoW = (VW7 = ix,
because S"*! is umbilic. a

Lemma 1.2. Let Z € & and write Z = ZT 4+ ZN, where ZV is the projection into
N(M) and ZT is the projection into T (M). Then, for any x € T,(M),

vNzN = —B(x, Z7). )
Proof. By using (1),
vNZN = (V,ZMN = (V,Z -V, ZzT)N
=(x =V, ZDH)Y = (v, . Z")N = —B(x, ZT). m]

Lemma 1.3. Assume that dim N = 1. Then given z € T, (M), there exists Z € &
such that Z(p) = z and Z is everywhere tangent to M.
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Proof. Let n be the kernel of the homomorphism & — £V If Z € n, then ZT = Z at
every point of M. Now, for some p € M, let B, be the kernel of the homomorphism
£ — N,(M) defined by Z + Z¥(p). Clearly n C B,. On the other hand,
dim B, = n+2—1and the assumption thatdim £V = 1implies thatdim n = n+2—1.
Thus n = B,. Since Z — ZT(p) maps f3, onto T,,(M), it also maps n onto T,,(M).
This implies the claim of the lemma. u

We can now conclude our proof. By using Lemma 1.3 and (2), we obtain
B(x,z) = B(x, Z) = B(x, zT) = —v¥zVN = .

Thus B = 0 and M is totally geodesic. Since S1 > 0, this is a contradiction and
shows that Ind(M) > 1. O
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