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Embeddings of Danielewski surfaces in affine spaces

A. Dubouloz

Abstract. We construct explicit embeddings of Danielewski surfaces [4] in affine spaces. The
equations defining these embeddings are obtained from the 2 x 2 minors of a matrix attached
to a weighted rooted tree y. We characterize those surfaces S, with a trivial Makar-Limanov
invariant in terms of their associated trees. We prove that every Danielewski surface S with a
nontrivial Makar-Limanov invariant admits a closed embedding in an affine space AJ in such a
way thatevery G, -action on S extends to an action on A" defined by a triangular derivation. We
show that a Danielewski surface S with a trivial Makar-Limanov invariant and non-isomorphic
to a hypersurface with equation xz — P(y) = 0 in Az admits nonconjugated algebraically
independent G, x-actions.

Mathematics Subject Classification (2000). 14R20,14R25.
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Introduction

A Danielewski surface over a field k of characteristic zero is an integral affine surface
S equipped with a morphism 7: § — A}{ = Spec(k[x]) restricting to the trivial
line bundle over A}C \ {0} and such that the fiber 7 ~1(0) is nonempty and reduced,
consisting of a disjoint union of affine lines A}{. For instance, a surface Sp, C
Spec(k[x, y, z]) with equation x"*z — P(y) = 0, where P is a nonconstant polyno-
mial with deg(P) simple roots, is a Danielewski surface pr,: Sp, — Spec(k[x]).
Danielewski surfaces appear naturally as locally trivial fiber bundles p: S — X over
an affine line with a multiple origin (see e.g. [S]). More precisely, see [4], every
such bundle p is a principal homogeneous bundle under the action of a line bundle
p: L — X. These principal L-bundles are uniquely determined by data consisting
of an invertible sheaf £ on X and a Cech 1-cocycle g with values in the dual £ of £
for a suitable covering U of X. In turn, the pair (L, g) is encoded in a combinatorial
datum consisting of a rooted tree with weighted edges, which we call a weighted tree
(see [4, Example 1.6 and Theorem 3.2] and 2.2 below). Here we use weighted trees in
a different way to construct embeddings of Danielewski surfaces into affine spaces.
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More precisely, starting with a suitable class of k-weighted trees y, we construct
explicit ideals of certain polynomial rings. In turn, these ideals define affine surfaces
S, which are naturally Danielewski surfaces over the affine line A

The paper is divided as follows. In Section 1 we recall basic facts on weighted
trees. We associate to every fine k-weighted tree y = (I', w) (see Definition 1.3
below) a polynomial ring k[I'] and a collection of polynomials in k[I'] defined recur-
sively through the weight function w.

In Section 2, we review the construction of Danielewski surfaces as locally trivial
bundles over the affine line with an n-fold origin given in [4]. Then we associate
to every fine k-weighted tree y a closed affine subscheme S, = Spec(B,,) of A,lc X
Spec(k[T']), and we prove the following result (Theorem 2.9).

Theorem. For every fine k-weighted tree y, the scheme S, is a Danielewski surface
over A}{for the restriction of the projection pry : A}( x Spec(k[T']) — A}{.

For instance, the surface corresponding to the following fine k-weighted tree

€1,1

/‘ €32
€Q 1 _1/0
y = oéo—o<l
—1 \.
e €42

€1
is the Bandman and Makar-Limanov surface [1] S C k[x][y, z, ] with equations
xz—y(P =1 =0, yu—z(@-1)=0, xu—("-DE"-1)=0.

It is a Danielewski surface over X = Spec(k[x]) via the projection morphism
pr,: S — X.

Then we show that every embedded Danielewski surface S, as above comes
canonically equipped with actions of the additive group G, which are the restrictions
to S, of certain G, i-actions on the ambient space A}C x Spec(k[I']) defined by explicit
locally nilpotent derivations 5y (see Proposition 2.15). In Section 3, we prove the
following result (Corollary 3.8).

Theorem. Every Danielewski surface w: S — X = A}( is X-isomorphic to an
embedded Danielewski surface m, . S, = Spec(B,) — X for an appropriate fine
k-weighted tree y.

Moreover, we establish that every G, x-action on 7 : S, — X is induced by a
locally nilpotent derivation d,, as above. As a consequence of this description, we
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deduce that every Danielewski surface 7: S — X = A}C can be embedded in a
relative affine space A‘)i( in such a way that every G, y-action on S extends to an
action on A‘)Z( (Corollary 3.11). This generalizes a result obtained by Makar-Limanov
([81, [9]) for the Danielewski hypersurfaces Sp , above.

The Makar-Limanov invariant [6] of an affine k-scheme X = Spec(B) is defined
as the sub-algebra ML(X) C B consisting of regular functions which are invariant
under all G, i-actions on X. If ML(X) = k, then we say that X has a trivial Makar-
Limanov invariant. For Danielewski surfaces with a nontrivial Makar-Limanov in-
variant, we prove the following result.

Theorem. Every Danielewski surface with a nontrivial Makar-Limanov invariant
can be embedded in an affine space Ai = Spec(k[x1, ..., xq]) in such a way that
every Gg k-action on S extends to an action on A,ICV . Furthermore, every such action
is induced by a triangular locally nilpotent derivation of k[x1, ..., x4].

In Section 4, we study Danielewski surfaces with a trivial Makar-Limanov in-
variant, that is, Danielewski surfaces S which admits two nontrivial G, -actions
with distinct general orbits. We obtain the following criterion which generalizes
Theorem 5.4 in [4].

Theorem. An embedded Danielewski surface w: S, = Spec(B,) — Al defined
by a fine k-weighted tree y has a trivial Makar-Limanov invariant if and only if y
is a comb, i.e. a tree such that every element has at most one non-terminal direct
descendant (see Definition 4.1 below).

A comb rooted in eg.

We obtain the following description (see 4.7 below). For every Danielewski
surface S with a trivial Makar-Limanov invariant, there exists a collection of monic
polynomials Py, ..., Py—1 € k[t] with simpleroots a; ; € k*,i =0,...,h—1,j =
1,...,deg,(P;), such that S is isomorphic to the nonsingular surface Sp,, .. p, ; C
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Spec(k[x][y—1, ..., yn—2]1[z]) defined by the equations

h=1
xz =2 [ [Pevi-1) =0,
1=0
h-1 i
ict=yivi-2 [ | Bi-1) =0, xy —yica] [Ri-1) =0, 0<i<h -2,

I=i+1 1=0
J
vieryj = yivie1 [ Pi-1) =0, 0<i<j<h—2.
I=i+1

On an affine surface S = Spec(B), two G r-actions p; and o with associated
quotient fibrations 7r1: S — Al and 71 § — Al respectively are said to be al-
gebraically independent if the general fibers of 1 and 72 do not coincide. In this
situation, we say that p1 and po are conjugated if there exists an automorphism ¢ of
S sending the fibers of 71 onto the fibers of 2. This means equivalently that there
exists an automorphism ¢* of B such that Ker(d;) = ¢*(Ker(91)), where 9; and 9
denote the locally nilpotent derivations of B corresponding to the actions p¢1 and o
respectively. Daigle [2] established that all the G, i-actions on a Danielewski surface
Sp1 = {xz — P(y) = 0} are conjugated. From the explicit description above, we
obtain the following result (Theorem 4.12).

Theorem. If a Danielewski surface S non isomorphic to a surface Sp,1 admits two in-
dependent G i-actions, then it admits two algebraically independent nonconjugated
Gy k-actions.

We also deduce the following characterization (Corollary 4.13) of the Danielewski
surfaces Sp 1, which generalizes the ones previously obtained by Bandman and
Makar-Limanov [1] and Daigle [2].

Theorem. Fora Danielewskisurfacem: S — X = A}( with a trivial Makar-Limanov
invariant, the following are equivalent.

1) S admits a free G, x-action.

2) The canonical sheaf ws of S is trivial.

3) S is isomorphic to a surface Sp1 C Al = Spec(k[x, v, z]) with the equation
xz — P(y) = 0 for a certain nonconstant polynomial P with deg(P) simple
roots.

4) All G r-actions on S are conjugated.
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1. Preliminaries

Weighted rooted trees. A poset isanonempty finite partially orderedset G = (G, <).
A totally ordered subset C C G is called a chain of length I[(C) = Card(C) — 1.
A chain which is maximal for the inclusion is called a maximal chain. For every
e € G,welet

(te)g={ecGe<e} and ([e)g={ eN,d <e}.

e
A subset €’e with two elements e’ < e such that (1 )N (] e)g = {¢’ < e}iscalled
an edge of G. We denote the set of all edges in G by E(G).

Definition 1.1. A (rooted) tree I' = (I', <) is a poset with a unique minimal element
eo called the root, and such that (| e)r is a chain forevery e € I". AsubposetIV c T’
which is tree for the induced ordering is called a subtree of I'. Given ¢ € I', the
maximal (rooted) subtree of T rooted in e is the subtree I'(e) = (1 e)r.

1.2. An clement e such that /(| e)r = m is said to be at level m. The maximal
elements ¢; = ¢; ,;,, where m; =[({ ¢;)r, of a tree I are called the leaves of I". We
denote the set of those elements by L(I"). The maximal chains of I" are the chains

Pe = eim)r ={eio=e0 <ei1 < - <eim}, eim€L@). (11)

We say that I" has height h(I") = max(m;). Anelement of I'\ L(I") is called a parent,
and we denote the set of those elements by P(I'). Given e € I' \ {ep}, an element
of the chain Anc(e) = (| e) \ {e} is called an ancestor of e. The parent of e is the
maximal element Par(e) of Anc(e). More generally, the n-th ancestor of e is defined
recursively by Par”(e) = Par(Par"~!(e)) € Anc(e). Given two different elements
e, ¢ €T, the first common ancestor of e and €' is the maximal element Anc(e, e’)
of the chain Anc(e) N Anc(e). If e is not a leaf of I', then the minimal elements of
(1 e)r \ {e} are called the children of e, and we denote the set of those elements by
Ch(e). The degree deg(e) of an element e is the number of its children.

Definition 1.3. Let I" be a tree. A fine weight function on I', with values in a field k,
<~
is a function w: E(I") — k, which assigns an element a,/ , = w(e’e) € k to every

<
edge ¢’e of T, in such a way that a, ,, # a, ., whenever e; and e; share the same
parent ¢’. A tree I" equipped with such a function w is referred (o as a fine k-weighted
tree y = (I', w).

Definition 1.4. An morphism of fine k-weighted trees 7: y’ = (I, w') — y =
(T, w) is an order-preserving map 7 : I — I satisfying the following properties.

a) The image of a maximal subchain of I'” is a maximal subchain of I".
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b) Forevery ¢/ € I, =1 (z(¢")) is either ¢’ itself or a maximal subtree of I"’.

<~ <« «—
¢) Foreveryedgee’e of IV suchthatt(e) # t(e'), wehavew/(e'e) = w(z(e)t(e)).

Remark 1.5. A morphism of fine k-weighted trees maps the root ¢;, of I'” on the root
eo of I and a leaf e;’mg of I atlevel m; onto aleaf e; i) m;, of I" atlevel m;iy < mj.
Then b) guarantees that f(el{’k) = €j,min(m;(.k) for every k = 0, ..., m}, and so,
condition ¢) above makes sense.

Genealogical matrix of a weighted tree. Here we associate to every fine k-weighted
tree y = (I', w) a matrix with coefficients in a polynomial ring k[T'].

Definition 1.6. Given a tree I rooted in eg, we associate to every parent e € P(I") a
symbol X,. If ¢ € P(T") is the parent of a given ¢ € P(I"), then we will sometimes
denote X/ as Xpar (o). Wealsoextend thisrelationship between the X, ’s by introducing
the symbol X, | = Xpar(e). Welet k[I'] = k[(Xe)eepyuie_q}] be the corresponding
polynomial ring in d(I") = Card(P(I")) + 1 variables.

For every element e € P(I") of a given fine k-weighted tree y = (I', w) rooted
in eg, we introduce below three polynomials F,(y), A.(y), G.(y) € k[I'], defined
<« <«
recursively through the weight function w: E(I') — k, €'e — ay , = w(e'e).
Definition 1.7. For every ¢’ € P(I") and every subset J C Ch(e’) we let
ng/ = ng/(y) = l—[ (XPar(e/) - ae’,e) € k[XPar(e/)] C k[I'].
ee(Ch(e)\J)

The polynomial F, := Fff is called the fatherhood polynomial of ¢’
The ancestral polynomial A, = A.(y) of e € I is the polynomial defined
recursively by

A =1 and A, =FL Abue) € KXe ;, (Xo)oeanctPare] C KIT.

The genealogical polynomial of e € P(I") with respect to ¢ € Anc(e) is the polyno-
mial

Ge/,e = Ge/,e(y) = A(;lAeFe € k[xe,l, (Xe”)e“eAnc(e)\Anc(Par(e’))] C k[T'].

The polynomial G, = G, . is simply referred to as the genealogical polynomial

of e.

Remark 1.8. Up to changing the variables, G .(y) coincides with the genealogical
polynomial G,.(y’) of e as an element of the maximal weighted subtree y (¢/) =
(1 €)r, wlre)) of y rooted in €', considered as a fine k-weighted tree disregarding
the inclusion y (&) < .
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Definition 1.9. The genealogical matrix of a fine k-weighted tree y = (I", w) is the
matrix M (y) € Matyry—1,2(k[["]) with the rows M, = (G., X.) € Maty 2(k[T"]),
e e P(IN).

2. Danielewski surfaces defined by weighted trees

In [4], the author gives a method to construct a Danielewski surface 7w : S¥ — X over
X = Spec(k[x]) from the data consisting of a fine k-weighted tree . Here we review
briefly this construction. Then we introduce a new procedure to associate to every
such tree y a second Danielewski surface 7 : S), — X, which comes embedded in a
relative affine space A% = X x A{.

Notation 2.1. Throughout this section, we fix a field k of characteristic zero. We
let A = k[x], X = Spec(A) ~ Al, and we denote by X, ~ Spec(A,) the open
complement in X of the origin xo € A}C. We consider Danielewski surfaces over the
fixed base X. We denote by pry : A}( = Spec(A[X._,]) — X the trivial line bundle
over X. The additive group scheme with base X is denoted by G, x = Spec(A[T]).

Abstract Danielewski surface defined by a fine k-weighted tree. Given a fine
k-weighted tree y = (I', w) of height 27 = h(I") with leaves e ,, ..., énm,, We
construct a Danielewski surface 7 : S¥ — X as follows. Using the maximal weighted
subchains

Yeim, = (I €im), w) ={eo=eij0 <ej1 < - <em—1<€imltw, i=1....n,

of y, we define a collection of polynomials
i_l - s e— i
o={oi = ZT:O w(e; jei j+1)x’ € k[x]}i=1,...,n'
For every i # j,welet gi; = x ™ (0; — 0;) € Ay. These transition functions gi;
satisfy the cocycle relation g;x = gi; + x" ~™ig; in A, for every triple i # j # k.

22. Welet m: S¥ — X be the X-scheme obtained by gluing n copies S; =
Spec(A[T;]) of A}( over X, by means of the A -algebra isomorphisms

i AT = ATy, T gy +x"™ T, i#j, i j=1,...,n.

Since y is a fine k-weighted tree, it follows from 2.8 in [4] that S” is a Danielewski
surface 77 : S¥ — X. The irreducible components of 7 ~!(xg) are the curves C; =
7 Y xo) N'S; ~ Spec(k[Ti]), i = 1,...,n. It comes equipped with a canonical
birational X-morphism ¢r: S¥ — A& = Spec(A[X,_,]) corresponding to the sec-
tion s, , € BY = I'(SY, Ogr) with restrictions s, ,|s, = o; + x™1T; € A[T;],
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i = 1,...,n. By Theorem 3.2 in [4], every Danielewski surface w: S — X is
X -isomorphic to an abstract Danielewski surface w: S¥ — X obtained by this pro-
cedure.

2.3. A Danielewski surface 7: S — X admits nontrivial actions of the additive
group scheme G, x. Indeed, since by definition S| x, is isomorphic to the trivial line
bundle A}(* = Spec(Ax[X,_,]) over X,, there exists » > O such that the A-derivation
x™3 s 4 extends to a locally nilpotent A-derivation d of I'(S, Oy), corresponding to a
nontrivial G, x-action on S. By Proposition 2.12 in [4], every nontrivial G, x-action
on a Danielewski surface S” is induced by the extension 9, ,, to B of a locally
nilpotent A-derivation ax’"&xu of BY ®4 Ay =~ Ax[X. ], where m > h(I") and
a € A\ {0}. We denote the corresponding G, x-actions on Ak and S” by ¢4, and
tﬁz’,m respectively. On the open subsets S; = Spec(A[T;]), tg,m coincides with the
twisted translation t, ;,—p,; defined by the group co-action homomorphism

AT — AT, T1>= AlTi1®a AT, T Ti+ax™™T, i=1,...,n

The canonical morphism ¢ : SV — A& is G4, x-equivariant when S¥ and A}( are
equipped with the G, x-actions t%l/’m and ¢, ,, respectively.

Example 2.4. The collection of polynomials ¢ corresponding to the following fine
k-weighted tree y = (I', w) with leaves e1,1, €21, €32, €42

€1,1
/. €32
€Q 1 e1 1 _—
Oé 0—e
-1 e
e €4,2
el

iso = {1, —1, x, —x}. The associated transition functions g = {g;;}1<i< ;<4 are
gn=gu=-2x"", gu=-gu=x'x-1),
g =—gus =x"(x+1).
The gluing homomorphisms {7;;}1<; < j<4 are given by
vy ke, x ML) = ke, 27T,

7 &+ G € {(1.2), 3. )}
l gij +xTj, if (i, j) € {(1,3),(1,4),(2,3), (2, 4)}.
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The G,, x-action ti/,z onm: SY — X is a non-free action which restricts on S; =
Spec(A[T;]) to the action

T, +xT, ifi=1,2,

T, +T, ifi=3,4.
Letting P(tr) = t* — 1 € k[t], we will see in Example 3.2 below that S” is X-
isomorphic to the Bandman and Makar-Limanov surface [1] S C Spec(k[x][y, z, u])
with equations

xz—yP(y)=0, yu—-zP(z)=0, xu—-P(y)P(z)=0,

and that £} , coincides with the action on S induced by the triangular derivation

i

31,2 = x20y+x(3y>—1)3,+(2P () (3y*—1)z+42xy P(2))d, € Derrp) (k[x1[y, 2, ul).

Embedded Danielewski surface defined by a fine k-weighted tree. Given a fine
k-weighted tree y = (I', w), we construct a Danielewski surface 7 : S, — X which

comes embedded in a relative affine space A;i((r), where 4(I') = Card(P(I")) + 1.
These surfaces are canonically equipped with the restrictions of certain actions of the
additive group G, x on the ambient space A;i((r) , defined by explicit locally nilpotent

derivations.
2.5. Given a fine k-weighted tree y = (I', w), we let A['] = A ® k[['] ~

AlX._;, (Xo)eer(m)] (see Definition 1.6). We let 1\71(;1/) € Matyr) 2(A[I']) be the
matrix with the rows M, , = (x,1) and M, = (G.(y),X.), e € P(I'), i.e
M(y) = (M,_,, M(y)), where M(y) € Maty(r)—1,2(k[T']) denotes the genealogical
matrix of y (Definition 1.9).

Definition 2.6. Given a fine k-weighted tree y = (I', w), we let I, C A[I'] be the
ideal generated by the simplified genealogical minors of M(y)

Ae/,e = Ae/,e(y) :Azl det(MPar(e/)a M) eA[T], (e, e,) ePT) x({ e)r. (2.1)
We let B, = A[Il']/I,, and we let 7 : S, = Spec(B,) — X be the corresponding
closed sub- X -scheme of the relative affine space A‘;((F) = Spec(A[l']).

2.7. By construction, A, 1= Ay, = xX, — G, € A[(Xo)oeeruie_qy] for every
e € P(I'), whereas Ay , = (XParz(e/) — apar(ey,e') X e — Xpar(en) G o fOT every pair

(e, e) e P(T) x (({ e)r \ {eo}). As a consequence, for every tripleeg < ¢’ < ¢’ < e
in P(T"), the following relations hold in A[T"]:

Ae/Ae’,e = XPar(e’)Ae - APa.r(e/)Xey
XAy, = (Xparz(e/) — Qpar(e’),e ) Do — APar(e/)Ge/,e’ 2.2)
(XPaIZ(g//) — QPar(e’),e") Aol = (Xparz(g/) — aPar(e) e ) Dere — Dot e Gel e
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2.8. If y = (I', w) is the trivial tree with just one element g, then the first projection
m: S, = Spec(k[x][X._,;]) — X is a Danielewski surface. Similarly, if I" has
height 1, then G,, € k[X. ,] is a monic polynomial with simple roots a.y. =
w(eo(_e) € k, e € Ch(ep). Therefore,

m: S, =Spec(A['l/1,,) = Spec(k[x][X.o_|, Xegl/xX ey — Gog(Xe_ ) — X

is a Danielewski surface, and the irreducible components of a1 (xg) are the curves
C, =~ Spec(k[X,,]) with defining ideals I, . = (I,, X, | — aee,) C A[l'], e €
Ch(ep). More generally, we have the following result.

Theorem 2.9. Foreveryfine k-weightedtreey = (I, w)withleavesei m,, ..., eén.m,,
7Sy, — X is a Danielewski surface. Furthermore, the fiber 7~V (xo) is the disjoint
union of the curves Ce,,, =~ Spec(k[X,;,, 1) with defining ideals

Iy,ei,mi = (Iyrxv (Xei’jﬁl - a€i1j,ei’j+])0§j§mi—l) C A[F], i = 1,...,n.

The proof is divided as follows. In 2.10, Lemmas 2.11 and 2.12 below, we show
that S, is an integral scheme. Then, in Lemma 2.13, we describe explicitly the
irreducible components of 7 (xp).

2.10. Wefirst observe that S, restricts to the triviallinebundleAk* = Spec(Ax[X. ;]
over X4. Indeed, the second relation of (2.2) guarantees that the ideal I, Ax[I'] of
Ax[T'] ~ A[T'] ®a4 A, is generated by the polynomials x 1A, = X, — x~1G,,
e € P(I'). Since G, only involves the variables X,, where ¢ € Anc(e), we re-
cursively arrive at an A -algebra isomorphism Ay [I']/I, Ax[T'] = Ax[X._,]. Thus
S, is a Danielewski surface with base (k[x], x) provided that x is not a zero divisor
in B, and that B, /x B, is isomorphic to a nonempty direct product of polynomial
rings in one variable over k. Indeed, the first condition guarantees that the canonical
map B, — B, ®a Ax = Ax[X. ] is injective. In turn, this implies that B, is a
sub-domain of Ax[X. ,]. The second one means equivalently that the fiber P (x0)
decomposes as a nonempty disjoint union of affine lines A}{.

To show that x is not a zero divisor in B, , it suffices to find a covering of S, by
principal affine open subsets ¥; = Spec(B;) such that x is not a zero divisor in B; for
everyi =1,...,n.

Lemma 2.11. Ify = (', w) if a fine k-weighted tree with the leaves ey, . . ., e,, then
S, is covered by the principal open subsets Y; = Spec(A[T'1[T1/(1,, A, T — 1)),

i=1,...,n

Proof. For every e € P(I") the polynomials Fe{el} € A[Xpar(e)], € € Ch(e) generate
the unit ideal of A[Xpa ()] as y is a fine k-weighted tree. Therefore, there exist
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polynomials A, € A[I'], ¢’ € Ch(e), such that
Ae=Ac Y AF = Y AoA..
e’eCh(e) e’eCh(e)

It follows by induction that the image of A,, = 1in B, belongs to the ideal generated
by the images a; € B,, of the ancestral polynomials A, of the leaves of I". This means
equivalently that the open subsets Spec((By )g;) =~ Spec(A[U1[T]/(I,, A, T — 1))
cover Sy . o

Lemma 2.12. Foreveryi =1,...,n, Y; is an integral scheme.
Proof. Letusdenotebye; =e¢; ;,j =0,...,m = m;, the elements of the maximal
subchain (| e; ,,,)r of I' associated with the leaf ¢; ,,,. Foreveryi =1,...,m — 2,

the polynomial A, ,divides A,, . Similarly, for every e € P(I') \ ({ e,;), the first
common ancestor of e and e, is an element ¢;, i < m — 1, such that ¢/ = Ch(e;) N
(I e) # ej41, and so (X, ; — a,; ) divides A, . Therefore, these polynomials
become invertible in A[I"]4,, . We claim that the ideal I, A[I']4,, is generated by
the polynomials

b =AY Ay = —(Xop | — e )+ A xXe, i=1,...,m—2,

€i+1 €i+1 €

. cP(I ,
Sei, = (Xei,l - aei,e’) 1Aei,e € ( ) \ (\L em)
Anc(e, en) = e¢;,

= Xe = Ko =0, 0)™ X G ¢ =Ch(e) N (} or.

Indeed, the second relation of (2.2) guarantees that the polynomials A,, where e €
P(I") \ (| em)r, can be expressed in A[I']4, in terms of the &,’s and d, .’s. In
turn, we deduce from the first and the third ones that all the polynomials A, ,,
(e,¢) e P(I') x (({ e)r \ {eo}) belong to the ideal of A[I"]4,, generated by the 8,,’s
and the &, .’s. Since the polynomials A,, and G, . above only involve the variables
corresponding to the elementsin (| ¢; _2)r and (1 ¢/)rN(]} Anc(e))r respectively, we
conclude by induction that there exists a nonconstant polynomial P € A[X,,, ,]such
that A[F]AEM/I),A[F]AEM ~ A[X,, ,]p. Since A is a domain and P is nonconstant,
it follows that (B, )., >~ A[X,,_,]p is a nonzero domain too. a

Summing up, we have established that for every fine k-weighted tree y,
7 : Sy — X is anintegral affine scheme restricting to the trivial bundle Ak* over X.
The following result completes the proof of Theorem 2.9.

Lemma2.13. Foreveryfine k-weighted treey = (I', w) with leaves e1 p,, . . . , €n,my»
the fiber w1 (xo) of 7: Sy — X is the disjoint union of the curves Ce;,, =~
Spec(k[Xei’mf1 1) with defining ideals

I}’:ei,mi = (Iy’xv (Xei,j,] - a€i1j,ei’j+])0§j§mi—1> C A[FL I = l, RN (N
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Proof. We proceed by induction on the height # of I'. If & = 0 then S, =
Spec(A[X. 1) and 7~ (xg) ~ Spec(k[ X, ,]). Otherwise, if Ch(eg) # @ then, since
y is afine k-weighted tree, it follows that the polynomials X, | —ae, e, ¢ € Ch(ep) are
pairwise relatively prime. Therefore a1 (x0) = Spec(A[I"']/(x, I,)) decomposes as
the disjoint union of curves D, = Spec(A[T']/(x, X, | —dege, 1)), € € Ch(eg). We
let y(e) = (I'(e), w|r()) be the maximal fine k-weighted subtree of y rooted in e.
Clearly, the ideal (x, X,_, — @ e, I,,) coincides with the ideal I, C A[I'] generated
by x, X, | — ae,,. and the polynomials

Gee(v), ¢ e P(I'(e)),
Aere(y), (¢/,e") e P(I'(e)) x (Ancr(e (€)),

e € P(T)\ ({eo} UP(I'(e))),

S, 4 = — NX,) — X..G, P
e =il Gl o Coat i {e//:cmeomue')#e.

By definition, we have A[T'(e)] = A[X. |, (Xe)eep(r)] = AlXey, (Xe)eep(ry] as
eo ¢ I'(e). This choice of coordinates yields the identities

Go(y(e)) =Geo(y), € eP(l(e),
Ge”)e/('}/(e)) = Ge”,e/('}’)a (e,, e”) e P(I'(e)) x Ancl"(e) (e/>,

and we conclude that A[I']/(x, X, | — agye, 1)) 2 A[l']/1. > A[I'(e)]/(x, I, (o).
This means equivalently that 7 ~! (x¢) is isomorphic to the disjoint union of the fibers
ny_ (16) (xo) of the corresponding surfaces 7,0y Sy ) — X, e € Ch(ep). Since the
fine k-weighted tree y (e) has height 4 — 1, it follows from our induction hypothesis
that these fibers are nonempty and reduced, consisting of disjoint unions of affine
lines A}{. So the same holds for 7 ~!(xq). Finally, the precise description of the
irreducible components of 77 ~! (xg) follows easily by induction again. O

Remark 2.14. A Danielewski surface 7 : S, — X = Al is aflat (or rather a smooth)
X-scheme. In general, the scheme 77 : S‘y — X with defining ideal I~y generated only
by the polynomials A, e € P(I"), is not flat over X. The above discussion together
with the second relation of (2.2) imply that S,, coincides with the flat limit over X
of the trivial family of affine lines S’y |3, o= Ak* defined by the equations A, = 0,

e € P(I), in AY") = Spec(Ax[I']). This explains why the polynomials A, ..
(e, ) e P(T") x (({ e)r \ {eo}), should be added to the obvious ones A,, e € P(I"),
to define the surface S,,.

The following result shows that the embedded Danielewski surface 7w : S, — X
defined by a fine k-weighted tree y = (I', w) admits nontrivial actions of the additive
group G, x, which come as the restrictions of certain G, y-actions on the ambient

space A?((F).
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Proposition 2.15. Let y = (I', w) be a fine k-weighted tree of height h > 0. Then,
Sforeverym > h and every a € A\ {0}, the derivation 0y 4.m € Dera(A[l'], Ax[T'])
defined recursively by

Byam = ax"dx, +x7" Y 8y am(Gu(y)ix,
ecP(I")

is a triangular derivation of A[T'] inducing a locally nilpotent A-derivation 9, 4 m
of By.

Proof. Tt suffices to prove the assertion for the derivation 8 = 9,14 as 3y 4m =
ax™"3. For every e € P(I') at level i < h, the polynomial G, only involves
the variables Xy and X, ¢/ € Anc(e). So we conclude recursively that 3(X,) €
xh_i_lA[Xefl, (Xer)e'eAnc(ey]- Thus d restricts to a triangular A-derivation of A[T'].
By construction, 9 annihilates A, for every e € P(I'). Moreover, xé(Ae/’e) =
5(er/’e) € I, for every pair (e, ¢’) € (P(T") \ {eo}) x (4 e)r \ {eo}) by virtue of
(2.2). Thus 5(A8/78) € I, as I, is a prime ideal which does not contain x. Hence
d(I,) C I, and so, § induces a locally nilpotent A-derivation 3 of B,,. a

Example 2.16. We consider the following fine k-weighted tree y = (I", w) with the
leaves eq,1,e2,1, €32, e42.

el
€3
€ 1 a4y —9
0 ~ 1
-1 e
e €4

We have A[I'] = k[x][X. ,, X¢y, Xe,] and

I = (ch Xe,lié(zoXe,l) P(Xej();)(xeo)>’

where P(t) = t* — 1 € k[t]. Therefore 7 : Sy — X is the surface with equations
XXeo - Xe,]P(Xe,l) = 07 X871X21 - XEOP(XEO) = 0,
xXep — P(X. )P (Xg) =0.

Letting y = X, |,z = X,, and u = X, the locally nilpotent derivation 5;’1,2 =
Der 4 (A[I']) is simply the derivation 91 2 € Derx(k[x][y, z, u]) of Example 2.4.
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3. Embeddings of Danielewski surfaces in affine spaces

In this section, we compare the two constructions of Danielewski surfaces by means
of fine k-weighted trees. We describe a certain class of morphisms of Danielewski
surfaces as the restrictions of suitable linear projections.

From abstract to embedded Danielewski surfaces. Here we prove the following
result.

Theorem 3.1. For every abstract Danielewski surface w: S¥ — X defined by a fine
k-weighted tree v = (I', w), there exists another fine weight function w: E(I') — k
on the tree ', and a closed embedding ¢ : SV — Aff{(r) inducing an isomorphism
between SY and the embedded Danielewski surface Sy defined by the fine k-weighted
tree y = (I', w). Moreover, ¢ is equivariant when we equip SY and A‘;}F) with the
Gu, x-actions corresponding to the locally nilpotent A-derivations d4,m € Dera(BY)
(see 2.3) and 517,,1,,,1 € Dera(A[T']) (Proposition 2.15) respectively.

Example 3.2. We consider the abstract Danielewski surface 7 : S¥ — X defined
by the fine k-weighted tree of Example 2.4. The canonical morphism ¢ : S¥ —
A& = Spec(k[x][X. ,]) is given by the section s, , € BY whose restrictions on the
canonical open subsets S; = Spec(k[x][7;]) are given by

| (—DI* 4xT;,  ifi=1,2,
S — .
bk (—D)i*lx + 275, ifi =3,4.

Letting C; = P (x0)NS;,i =1,...,4, be the irreducible components of n_l(xo),
we see that s._; restricts to a coordinate function on every fiber 77 (y),y € X4, and
is locally constant on zr‘l(xo) with the values 1, —1 and O on Cy, Cy and C3 U C4
respectively. Therefore, letting P(t) = (12 —1) € k[z], the section x‘lsef1 P(s, ;) €
B” Qi[x) klx, x~1] extends to a section s¢, € B” whose restrictions on the S;’s are
given by

2T + 3xTE + 22T}, ifi =1,

2T, — 3xTF + 215, ifi =2,

—1 —xT3 4+ x2&(x, T3), ifi =3,

1 —xTy+x284(x, Ty), ifi=4,

Seo|S,' =

for certain polynomials &3(x, ), &4(x,t) € k[x,t]. Thus s,, restricts to a coor-
dinate function on C7 and Cp, and is constant on C3 and C4 with the values —1
and 1 respectively. Again, x ' P(s,) € B, ®kx k[x, x~!] extends to a regular
function on S3 U S4 C SY which restricts to a coordinate function on C3 and Cjy.
Clearly, x1 P(s._,) P(se,) extends to a section s,, € B” with the same property as
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P(s. )lc; = —1,i = 3,4. The A-algebra homomorphism A[X, |, X, X¢ ] —
BY, X, +> s, defines a closed embedding ¢ : S¥ — A}, inducing an X -isomorphism
between S and the embedded Danielewski surface Sy defined by the fine k-weighted
tree y = (I', w) of Example 2.16.

3.3. To prove Theorem 3.1, we proceed in a similar way as in the previous example.
More precisely, given an abstract Danielewski surface S¥ defined by a fine k-weighted
treey = (I', w), we constructin 3.4 and Lemmas 3.5-3.7 below a fine weight function
w: E(I') = kon I and a collection of sections s, € BY, e € P(I') U {e_;}, which
define a closed embedding ¢ : ¥ — A‘;((F) inducing an X-isomorphism ¢: SV =
Sy between S” and the embedded Danielewski surface defined by the tree y = (I", w).

3.4. Given a fine k-weighted tree y = (I', w) with the leaves €1, ..., €n,m,, We
denote by 7;: BY = I'(S”, Osr) — A[T;] the localization homomorphisms cor-
responding to the canonical open covering of the abstract Danielewski surface S
by the open subsets S; = Spec(A[T;]),i = 1, ..., n. The canonical X-morphism
v SV — A§( = Spec(A[X. ,]) (2.2) corresponds to the section s, ;, € BY such
that

mi
Ti(se ) = Y wi;x’ € A[T],
=0
where
w = JWEge ), 0 <j<m—1,
R it j = m;.

Forevery e € T", we let

.= || @ leons)= Spec( I Spec(k[Ti])).
{eimeLh o) (eimy LRI}

If y hasheight 7 = O then I is the trivial tree with one element {eg} and ¢ : SV — Ak
is an isomorphism. Otherwise, if 2 > 1, then we have the following result.

I(fmma 3.5. If h > 1 then there exists a fine weight function w: E(I') — k,

e — ay , defining a fine k-weighted tree 7 = (I', ), and a collection of sec-
tions (s¢)ecP(MUfe_y) € BY with the following properties.

a) Forevery e;j € P(T), 5o, = x 7 Gy ;(F)(Se_y» Seqs Sei1s -+ -1 Seg j_1)-

b) If Ch(e; ;) = {fil’ﬂ'l’ ooy iy jy), thense, ; isconstantonCe, ;.\ C 71 (x0)
with the value de; j e 41 € kil=1,...,r.

¢) Forevery leaf eim; of I, se; ,,,_, induces an coordinate function on Ce,,, ~ A}C.
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Proof. We construct the weight function w and the sections s, by induction as follows.
For every m = 0, ..., h, we denote by I';, the subtree of I with the elements e € I
at levels I < m. At step m, we suppose that the weight function wy,: E(T',) —
k is constructed on I'y,, as well as the sections s, for every e € I'y,_2, and we
define the sections s,, ¢ € I';;—1 \ I';—2. Then we extend w,, to a weight function
Wit1: E(Cpy1) — k.

Step 0. Welet s,_, € BY be the section corresponding to the canonical morphism
¥ S¥ — Ak By definition, 7; (s, ) = w; o+ x& foracertain&; € A[T}] for every
i =1,...,n. Thus b) is satisfied provided that we define the weight function w; on
I'1 \ {eo} by

~ Ny —
anvei,l - wl(@Oei,l) = SE,] |Cei,1 = wi,O = k

for every €1 € Ch(eg). Note that if €1 = €1, then Wi = Wj 0 as Wi - wj o
if and only if e is the first common ancestor of the leaves ¢; ,,; and ¢; ;. Thus
y1 = (I'1, wy) is a fine k-weighted tree and we are done with Step 0.

Step 1. By construction, the rational section x‘lGeo(;?l)(sy’H) € BY @4 Ay
extends to a section s., of BY satisfying a). Since y is a fine k-weighted tree,
we deduce from Taylor’s Formula that for every i = 1, ..., n, there exists a pair
(i1 = FL (w; 0), Bi1) € k* x k depending only of the subchain ({ e 1)r, and a
polynomial &; 1 € A[T;] such that

Ti(Sep) = i 1wi1 + Bi1 +x€i1 € AlT;].

Thus, if e; 1 is a leaf of T" then w; 1 = T; and so ¢) is satisfied. Otherwise, if ¢; >
and ejr 5 are children of ¢; 1 then «j 1 = «jr 1 = o1 and Bj1 = Bjr1 = Pi1 as
ej1 = ej1 = e;1, whereas w; 1 # wjr 1 as y is a fine k-weighted tree. Thus
72 = (['p, W) is a fine k-weighted tree for the weight function wy: E(I') — &
restricting to w1 on I'1 C I'z and such that

~ ~ .
ey = W2(€i112) = Selc,,, = (@iowin +pi1) €k, i=1....n

By construction, b) is also satisfied. This completes Step 1.

Step m, m > 2. By induction hypothesis, ¥, = (I'm, W) is a fine k-weighted
tree, and the sections s, € BY, e € I',,_», satisfying the hypothesis of Lemma 3.5
have been defined. So the formula

1 ~
Se;m1 =X G@i,m—l (Vm)(se_la Segs Sej1s e v Sei)m_z)

makes sense and defines an element of BY ®4 A;. Similarly as in Step 1, we
deduce from Taylor’s Formula that for every j = 0, ..., m — 1 there exists a pair
(i, js Bi ;) € k* x k depending only on the subchain (| ¢; ;)r, and a polynomial
& ; € A[T;] such that

~ e 25
Ti(Se; ;1) = Qe j ey T x(@jwij+1+ Bij) +x7& ; € AlTi].
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By applying Taylor’s Formula again, we conclude that there exists a pair (&, Bi m) €
k* x k depending only on the subchain (| ¢; »)r and a polynomial &; ,, € A[7;] such
that

T (Sei,m,l) =djmWim + ﬁi,m + xéi,m € AlT;].

Thus, if ¢; ,—1 € ( ej’mj) then e; ;,—1 = €j,,—1 and so tj(SQi’mil) € A[T;]. Oth-
erwise, for every index j such that e; n—1 ¢ (| €jm;)r, the first common ancestor
of ¢; m—1 and €j,m; is an element ¢; ; = ¢;; atlevel | < min(m — 2, m; — 1). Thus
(Xej; | —ae;p,e;,,,) divides the genealogical polynomial G, , | (¥m) of ej m—1. Since
Tj(Sej ;1 — Qejpei41) € XA[T}], we conclude that

XTj (Sei’mfl) = Gei’mﬁl (fM)(tj(Se_])’ Tj (Sei,0)3 Tj (Sei’l)’ ey rj(sei’mﬁz)) € XA[T]]

Thus 7;(s;,,_,) € A[T;] for every j = 1,...n, and hence, sy, , € BY. If e; n
is aleaf of I' then wi = wi,m; = T; by definition. Thus s.,,, , satisfies a) and c).
Finally, the same argument as in Step 1 shows that y,,, 11 = (I'yg1, Wipa1) 18 a fine
k-weighted tree for the weight function w,,;y1: E(I';,41) — k restricting to w,,; on
Iy, € I'yy41 and such that

~ o~ %
Aej . eimr1 — Wm+l (ei,mei,m+l) = Sei’m,1|C(ei’m+1) = (ai,mwi,m + lgi,m) €k,

whenever ¢; ,, is not a leaf of I'. This completes Step m as b) is satisfied by construc-
tion.

After h = h(I") steps, the above procedure stops, and we obtain a fine k-weighted
tree y =y, = (I', wy,) and a collection of sections (s¢).ecp(ryue_} € BY satisfying
conditions a), b) and ¢). This completes the proof. O

The following lemma implies the first assertion of Theorem 3.1.

Lemma 3.6. The X-morphism ¢: S¥ — A‘;((F) induced by the A-algebra homomor-
phism¢*: A['] - BY, X, > se, e € P(I')U{e_1}, is a closed embedding inducing
an X-isomorphism ¢ S = Sj.

Proof. By construction, s, , cotresponds to the canonical birational morphism
v SY — Ak, whence induces a X,-isomorphism S”|x, = Ak*. By b) of
Lemma 3.5, for every pair e; ., €j.m i of leaves of I" with first common ancestore € I,
the section spar(e) takes distinct constant values on Ce;,, and C Thus ¢ distin-

guishes the irreducible components of the fiber 7 ~! (x). Finally, ¢) of Lemma 3.5 im-
plies thatforeveryi =1,...,n,s,,, _, induces a coordinate functionon C; , > A}C.
This proves that ¢: SV — A‘;((F) is an embedding. By construction, {*(A.(y)) =0
in BY for every e € P(I'). Thus x¢*(Ap (7)) = ¢*(xAy (7)) = 0 for every
(e, ') € (P(I") \ {eo}) x ((J e)r \ {eo}) by virtue of (2.2), and s0, £* (A (7)) =0

ei,mj $

€i,m;
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as B” is an integral A-algebra. This proves that the image of ¢ in contained in the
embedded Danielewski surface S;. It is clear by construction that the induced X-
morphism ¢ : S¥ — S restricts to a bijection between the sets of closed points of
S and S respectively. So the result follows from Zariski’s Main Theorem as Sy is
smooth over k, whence, in particular, normal. O

The following result completes the proof of Theorem 3.1.

Lemma 3.7. Forevery nontrivial G, x-actiont, , » (2.3) onan abstract Danielewski
surface w: S — X defined by a fine k-weighted tree y = (I', w), the closed

embedding ¢: S7 — A;i(m in Lemma 3.6 is equivariant when we equip AL;((F) with

the G, x-action induced by the locally nilpotent A-derivation 59’,1,,” € Dera(A[T')])
(Proposition 2.15).

Proof. By definition (see 2.3), the twisted translation ¢, 4, on S” is induced by
the extension dq,m to BY of the locally nilpotent derivation 8, = ax™dx, | of
B” @4 Ax >~ Ax[X._ ], where m > h(I') and a € A\ {0}. By construction, for
every e € P(I'), we have s, = x71G.(7)(se_» Seqs - - - » SPar(e) € BY C Ax[X, ]
and so,

8“»”1(‘9@) :x_l Z axe/Ge();)(Se,pSeoy --wSPar(e))aa,m(Se/) € BV®AA)C'
¢/ €Anc(e)Ufe_1}

In view of the definition of 5);,,1’,” € Derg (A[T']) (see Proposition 2.15), this means
precisely that the embedding ¢: SV < A‘}i((r) is equivariant when we equip S”
and A;i((r) with the actions corresponding to the locally nilpotent derivation 9,
and 95 4 . O

Corollary 3.8. Every Danielewski surface w: S — X equipped with a nontriv-
ial G, x-action is equivariantly X -isomorphic to an embedded Danielewski surface
S, defined by a fine k-weighted tree y = (I', w), equipped with the G, x-action
corresponding to a suitable locally nilpotent derivation 9y 4., € Dera(B, ), where
m>h(l')anda € A\ {0}

Proof. By Theorem 3.2 in [4], every Danielewski surface S is isomorphic to an
abstract Danielewski surface S defined by a fine k-weighted tree y. Moreover, by
Proposition 2.12 in [oc. cit., every nontrivial G, y-action on S¥ coincides with a
twisted translation £,, , ,, for a suitable pair (m > h(I"),a € A\ {0}). So the result
follows from Theorem 3.1. (W

Corollary 3.9. Every G, x-action on an embedded Danielewski surface S, defined
by a fine k-weighted tree v = (I', w) is induced by a locally nilpotent derivation
0y am € Deryg(By).
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Since the locally nilpotent derivations dy, 4, € Der4 (B,,) are induced by locally
nilpotent derivations éy’a’m € Dery (A[I']), we obtain the following result.

Corollary 3.10. Every Danielewski surface 7w : S — X admits a closed embedding
{: S — A‘)i( into a relative affine space A%, where d > 1, such that every Gyq, x-action
on S extends to an action on A‘j{.

In particular, if the Makar-Limanov invariant of S is nontrivial, then7 : S — X is
a unique A!-fibration on S up to automorphisms of X. Therefore, the general orbits
of a G, r-actionon S coincide with the general fibers of 7. This leads to the following
result.

Corollary 3.11. Every Danielewski surface S with a nontrivial Makar-Limanov in-
variant admits a closed embedding into an affine space Ai in such a way that every
Gy k-action on S extends to an action on Ai .

Morphisms of Danielewski surfaces as linear projections. A morphism of Danie-
lewski surfaces is a birational X-morphism 8: S’ — S, restricting to an isomorphism
over X . In other words, B is an affine modification [7] restricting to an isomorphism
over the complement of the support of the principal divisor 7 ~!(x¢) = div(x) C S.
Thus, letting S = Spec(B), there exists an ideal / C B containing a power x™ of x
such that S’ is isomorphic to the open subset Spec(B[1]/(1 — x™¢)) of the spectrum
of the Rees algebra B[I¢]. In turn, this implies that S” ~ Spec(B|[t1, ..., ]/ J) for
a certain ideal J. In these coordinates, the morphism B: S” — S coincides with the
restriction to S’ of the projection prg: Ag“ = Spec(B[t, ..., t]) = S. Here we
give a more precise description of this situation.

3.12. To every morphism t: ¥’ = (I, w’) — y = ([, w) of fine k-weighted tree
(see Definition 1.4), we associate a morphism f; : S¥" — SY between the associated
abstract Danielewski surfaces in the following manner. We leto” = {0/ € A}i—1 . »
and 0 = {o; € A}j=1,..» be the collection of polynomials associated with y” and
y,and welet g/ = {glf ;€ Ay} and g = {gi; € Ay} be the corresponding transition
functions. We denote by S; = Spec(A[T/]),i =1,...,n", and S; = Spec(A[T}]),
J =1, ..., n, the open subsets of the canonical coverings of Sv" and S¥ respectively.
By Remark 1.5, the image of a leaf ez{,mg of I'" by 7 is a leaf ¢;()m;; of I' such

that m; > mj(y and t(el{’k) = €j(i),min(k,m;) for every k = 0, ,m;

Since
/ / o 4 / /

w(‘f(ei’k)t(ei)]H_l)) = w'(¢; € 1) wheneverr(ei’k) £ (€} g11) We conclude that

there exists a collection o” = {0/" € A};_; v suchthato/ = oji) + x"i0o/ € A

foreveryi =1,...,n". Thenforeveryi =1, ..., n/, the A-algebra homomorphism

AlTyo) — AT Ty o> of +x"WOT;
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defines a birational X-morphism A" : S} — S;() restricting to an isomorphism over
X,. Since the transition functions satisfy the relation x™" "% ¢!, = g;iy;0) +
x"Mi0 Mo/ + o forevery i, =1, ..., n, it follows that these local morphisms

S) glue to a morphism of Danielewski surfaces f; : s Y. By Proposition
3.8 and Corollary 3.9 in [4], for every morphism of Danielewski surfaces 8: S’ —
S, there exists X -isomorphisms ¢/: §' — S and ¢: S S S” for suitable fine
k-weighted trees " and y such that ¢ o B o (¢/)~! is the morphism £, induced by a
morphism of fine k-weighted tree 7: y/ — y.

3.13. Every morphism of fine k-weighted tree 7 : ' — y factors through a surjective
morphism t’: " — 7(y’) followed by an injection 7 (y’) < y. As a consequence,
every morphism of Danielewski surfaces factors through a quasi-surjective morphism
B8 — 570 e a morphism of Danielewski surfaces such that /~1(C) # ¢
for every irreducible component C of the fiber nf_(}//) (x0) C SO followed by the

open immersion of STV in S7 as the complement of irreducible components of
T, (x0) C S” corresponding to the leaves of I" which are not in the image of .

3.14. Given a fine k-weighted tree y = (I', w), we consider the tree y = (I', w)

constructed in Lemma 3.5. For every edge e(’_e of I, the weight u?(e/(_e) € kis
uniquely determined by the weights w of the edges of the subtree of I" with elements
Jearul, clor Ch(e’). Therefore, every surjective morphism of fine k-weighted
trees 7: ¥y’ = (I'V, w’) — y gives rise to a surjective morphism of fine k-weighted
trees 7: y' = (I, w’) — y which restricts to the same morphism as T between the
underlying trees I and " of 7’ and § respectively'. Since the subset ' = {¢/
IV, t= Yz (¢))) = {¢’}} C I is a subtree of I' isomorphic to I', we obtain that

A"l = A[T"1®aAl(X ) e epynaipam] = AT IQAA[(X ) e eprynapay -

Moreover, for every ¢/ € P(I'”), the genealogical polynomial G, (y’) of ¢ is
an element of A[I"”] C A[I""] which coincides with the genealogical polynomial
G()(7) € A[I'] of 7(¢’) via the isomorphism above. In turn, this implies that the
genealogical matrix (see Definition 1.9) M (7) of y is obtained from M (7’) by delet-
ing the rows corresponding to the elements in P(I'") \ P(I'”). By construction of the
embedding of S” into A;i((r) as the Danielewski surface S;;, we obtain the following
result.

Theorem 3.15. Let 7: y/ = (I'V,w') — y = (I, w) be a surjective morphism
of fine k-weighted trees and let T: 9’ — y be the morphism obtained above. Let

1Actually, the functor y + 7, t > T is an automorphism of the category 7.5 , of fine k-weighted trees
equipped with surjective morphisms.
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¢S A‘;{(F/) and ¢: SV — A?((F) are the embeddings from Lemma 3.6 of i
and S” as the Danielewski surfaces Sy and Sy respectively. Then ¢ off = pr/yro?’,

where prir: A()j((r/) — A”)i((r) is the projection induced by the inclusion A[l'] =~
Al C A[T].

4. Danielewski surfaces with a trivial Makar-Limanov invariant

The Makar-Limanov [6] invariant of an affine variety V = Spec(B) over a field
k of characteristic zero is the sub-algebra ML(V) C B of regular functions on V
which are invariant under every G, r-action on V. A surface S has a trivial Makar-
Limanov invariant ML(S) = k if and only if it admits two nontrivial G, x-actions
with distinct general orbits. In view of the cotrespondence between nontrivial G, -
actions G, x S — S on S and quotient A!-fibrations 7: S — X = S//G ., this
means in turn that S has a trivial Makar-Limanov invariant if and only if it admits
two A!-fibrations with distinct general fibers. In this section, we characterize among
Danielewski surfaces the ones with a trivial Makar-Limanov invariant.

Danielewski surfaces defined by weighted combs

Definition 4.1. A nontrivial (oriented) comb of height 1 > 11is a tree I" such that for
every e € P(I") of degree degr-(e¢) > 1, all but possibly one of the children of e are
leaves of I'. This means equivalently that the subtree Cr = P(I') = {eg < -+ <
ep—1} of I' is a nonempty chain of length /2 — 1, called the dorsal chain of T.

A comb rooted in eg.

4.2. By Theorem 5.4 in [4], a Danielewski surface S defined over an algebraically
closed field k = k of characteristic zero has a trivial Makar-Limanov invariant if
and only if it is isomorphic to an abstract Danielewski surface S” defined by a fine
k-weighted comb. This result is based on a characterization of normal affine surfaces
S with a trivial Makar-Limanov invariant in terms on the boundary divisors of certain
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minimal completions S of S (see [3]). Unfortunately, no such criterion exists for a
normal affine surface defined over an arbitrary field k of characteristic zero. However,
the following result shows that the combinatorial characterization of Danielewski
surfaces with a trivial Makar-Limanov invariant remains valid in this more general
setting.

Theorem 4.3. A Danielewski surface S # AL, defined over a field k of character-
istic zero, has a trivial Makar-Limanov invariant if and only if it is isomorphic to
an abstract Danielewski surface SV defined by a fine k-weighted comb. If this is
the case, then there exist an integer h > 1 and a collection of monic polynomials
Po, ..., Ph_y ekltlwithsimplerootsa; j€k*, i=0,...,h—1,j=1,...,deg,(P),

such that S is isomorphic to the surface Sp,,...p, , C Spec(k[x][y-1, ..., ya—21[z])
defined by the equations
h—1
Xz — yh—zl_[Pz(yZ—l) =0,
1=0
h—1 i
i —yivi2 [ | P =0, xyi —yica[ [Pi-1) =0, 0<i<h -2,

I=i+1 1=0
J
vieryj = vivie1 [[ Bi-) =0, 0<i<j<h-2.
I=i+1

4.4. The proof is given in 4.5-4.7 below. We first observe that the condition is
necessary. Indeed, suppose that the Makar-Limanov invariant of S is trivial. We
let y = (T, w) be a fine k-weighted tree such that S ~ S¥, and we leti: k — k
be the injection of k in an algebraic closure k. Then the Danielewski surface S; =
S Xspec(iy Spec(k) — Xz = X Xspec(ky Spec(k) is Xj-isomorphic to the abstract
Danielewski surface S7 Xspec(i) Spec(k) defined by the tree y considered a fine
k-weighted tree via the weight function i o w: E(I') — k. Since every nontrivial
Gy, r-action on S lifts to a nontrivial action of Ga, i = Ga,k Xspech) Spec(lE) on Sg,
we conclude that Sy has a trivial Makar-Limanov invariant too. Thus the tree y is a
comb by virtue of Theorem 5.4 in [4].

4.5. Conversely, the same argument shows that if S is isomorphic to an abstract
Danielewski surface S” defined by a fine k-weighted comb y, then Sj has a trivial
Makar-Limanov invariant. Unfortunately, in general, there is no guarantee that a
given Ga’ z-action on Sy appears as the lifting of an action of G, ; on S. Therefore,
to show that the condition is sufficient, we must proceed in a different way. We will
exploit the fact that S is isomorphic to an embedded surface S, defined by a fine
k-weighted comb y to construct two explicit A!-fibrations on S with distinct general
fibers.
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4.6. By construction, a Danielewski surface S is isomorphic to A; if and only if it is
isomorphic to an abstract surface S” defined by a fine k-weighted chain y . In this case
it is also isomorphic to the surface Sy, defined by the trivial tree with one element
{eo}. More generally, it follows from Theorem 3.10 in [4] that every Danielewski
surface S % Ak isomorphic to an abstract Danielewski surface S¥ defined by a fine
k-weighted comb y is also isomorphic to a surface S7 defined by a fine k-weighted
comb yy = (I', wo) of height 2 > 1, withdorsalchain Cr = {eg < €1 < --- < €31},
satisfying the following properties:

a) The root eg of I" as at least two children.

b) Foreveryi =0,...,h —2, wo(&eiz1) =0 € k.

¢) There exists e, € Ch(ep—1) such that wo(M) =0¢€k.

By definition, the restriction of the canonical morphism ¢ : S0 — A% to an open
subset S; = Spec(A[T;]) corresponding to a leaf ¢; ,,, of I' at level m; > 1 is
induced by the section w (&, _1¢;.m; )x™i ~!+x™ T;. Thus, by applying the procedure
used in the proof of Lemma 3.5 to this comb yy, we obtain a fine k-weighted comb
vo = (I, wo) with the same underlying comb I" as y such that Wo(dieir1) =0 €k
foreveryi =0,...,h —1.

4.7. By construction of the tree yp, there exists monic polynomials Py, ..., P,_1 €
k[z], of degrees deg(P;) = degr(e;) — 1, with simple roots a. ., € k*, e € Ch(e;) \
{ei+1} respectively, such that F,, (yo) = X, Pi(X,, ) foreveryi =0,...,h —1.
Letting y_1 = X, ;, y0o = X¢po -, -2 = X¢p 5,2 = Xg, ;, we conclude that
the embedded Danielewski surface S, is X-isomorphic to the surface Sp, ... p,_, of
Theorem 4.3. This shows that every abstract Danielewski surface S¥ % A}( defined
by a fine k-weighted comb y is X-isomorphic to a surface Sp,,.. . p, , C A’;(“.
Thus, to complete the proof of Theorem 4.3, it suffices to show that a surface S =
Spo,....p,_; = Spec(B) has a trivial Makar-Limanov invariant. A similar argument as
in 2.10 shows that B ®g[z) k[z, z7'] = k[z, z~'1[ys—2]. This means equivalently that
the projection 7y = pr, |s: § — Z = Spec(k[z]) in an Al fibration restricting to the
trivial line bundle Alz* = Spec(k[z, z‘l][yh_z]) over Z,. Since the general fibers
of the two projections 71 = pr, |s: S — X = Spec(k[x]) and 72: S — Z do not
coincide, we conclude that S has a trivial Makar-Limanov invariant. This completes
the proof of Theorem 4.3.

Remark 4.8. The same argument as in the proof of Proposition 2.15 applied to the
fibration 72 shows that the locally nilpotent derivation z*3y, , of B ®xz klz, z71] =
klz, z7 [ yr—2] extends to a locally nilpotent derivation of B, induced by a triangular
k[z]-derivation of k[z][yr—2, - . ., ¥—1, x]. This proves that every Danielewski surface
S with a trivial Makar-Limanov invariant can be embedded in an affine space Ai in
such a way that at least two algebraically independent G, x-actions on S extend to
Gy k-actions on Ai .
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Nonconjugated G,-actions on a Danielewski surface. By a result of Daigle [2],
all the G, r-actions on a Danielewski surface Sp.1 = {xz — P(y)} are conjugated
under the action of the automorphism group Aut(Sp, 1) of Sp 1.

4.9. This means that for every pair of nontrivial locally nilpotent derivations d; and
9 of B =T'(Sp1,0s;,), there exists a k-algebra automorphism ¢ of B such that
¢ (Ker(d1)) = Ker(dz). This implies in particular that the fibers of corresponding
quotient A!-fibrations 7 : S P — A}( and mp: Sp1 — A}C have the same scheme-
theoretic structures. By 4.7 above, a Danielewski surface S = Sp,.... p, ; = Spec(B)
admits two A!-fibrations 7r1: S — X = Spec(k[x]) and 75: S — Z = Spec(k[z]).
Moreover mp restricts to the trivial line bundle over Z, = Spec(k[z, z‘l]), and a
similar argument as in Lemma 2.13 shows that the fiber (7, o (0))req decomposes as
a disjoint union of curves isomorphic to the affine line A}C. However, we have the
following result.

Lemma 4.10. Ifh > 2, then 7y : S = Spy,....p,_, — Z is not a Danielewski surface
over Z.

Proof. Itsuffices to show that the intersection of the fiber 5~ 1(0) with the complement

of the fiber 7, 1(0) is a nonreduced scheme. By (2.2), the defining ideal I, of S\

77 0) ~ Ak* in k[x, x [y_1, ..., yp—21[z] is generated by the polynomials ¢; =

vi —x il Pivi—). i = 0,....h —2and d = g — x~ y, o[ 1120 Pi(vi-1).

We conclude recursively that there exists a polynomial R € k[x, x~1[y_1] such that
d=z—x"y 1(Poy-1))"R(y-1)

modulo co, ..., cp—2. Since the polynomial Py is nonconstant (see 4.6),

(S\7 @) Nyt (0) = Spec (Klx, x ™M [y—1, -, w2, 21/ (L, 2)
= Spec (klx, x~ ly-11/ " yo1 (Po(y-1)" R(y-1)))
is clearly nonreduced whenever 4 > 2. This completes the proof. O
4.11. The above result implies that if 2 > 2, then the degenerate fibers of 771 and mp
have different scheme-theoretic structures. Therefore two G, r-actions on Sp;. ... p, ,

with associated quotient A!-fibrations 71 : S — X and 75: S — Z respectively can
not be conjugated in the sense of (4.9) above. This leads to the following result.

Theorem 4.12. A Danielewski surface S # Sp1 with a trivial Makar-Limanov
invariant admits two algebraically independent nonconjugated G, r-actions.

As a consequence of this description, we obtain the following characterization of
ordinary Danielewski surfaces Sp 1.
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Corollary 4.13. Let 7: S — X = Spec(k[x]), where k is an arbitrary field of
characteristic zero, be a Danielewski surface with a trivial Makar-Limanov invariant.
Then the following are equivalent.

a) S admits a free G, x-action.

b) Sisisomorphic to a surface Sp1 = {xz— P(y) =0} in Ai = Spec(k[x, y, z]),
where P is a nonconstant polynomial with deg P simple roots.

¢) The canonical sheaf ws is trivial.

d) All Gg k-actions on S are conjugated.

Proof. The equivalence b)<-d) follows from [2] and the above discussion. All the
other equivalences can be obtained in the same way as in Corollary 5.7 in [4]. O
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