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Embeddings of Danielewski surfaces in affine spaces

A. Dubouloz

Abstract. We construct explicit embeddings of Danielewski surfaces [4] in affine spaces. The

equations defining these embeddings are obtained from the 2x2 minors of a matrix attached

to a weighted rooted tree y. We characterize those surfaces SY with a trivial Makar-Limanov
invariant in terms of their associated trees. We prove that every Danielewski surface S with a

nontrivial Makar-Limanov invariant admits a closed embedding in an affine space A^ in such a

way that every Ga .^-action on S extends to an action on A" defined by a triangular derivation. We
show that a Danielewski surface S with a trivial Makar-Limanov invariant and non-isomorphic
to a hypersurface with equation xz — P(y) 0 in A| admits nonconjugated algebraically
independent G^-actions.

Mathematics Subject Classification (2000). 14R20,14R25

Keywords. Danielewski surfaces, additive group actions, Makar-Limanov invariant.

Introduction

A Danielewski surface over a field k of characteristic zero is an integral affine surface
S equipped with a morphism n : S -> A\ Spec(£[x]) restricting to the trivial
line bundle over Aj, \ {0} and such that the fiber n 1(0) is nonempty and reduced,

consisting of a disjoint union of affine lines A\. For instance, a surface Sp>n c
Spec(£[x, y, z]) with equation xnz — P(y) 0, where P is a nonconstant polynomial

with deg(P) simple roots, is a Danielewski surface prx : Sp>n --* Spec(k[x]).
Danielewski surfaces appear naturally as locally trivial fiber bundles p : S ->¦ X over
an affine line with a multiple origin (see e.g. [5]). More precisely, see [4], every
such bundle p is a principal homogeneous bundle under the action of a line bundle

p: L —* it. These principal L-bundles are uniquely determined by data consisting
of an invertible sheaf X on X and a Cech 1-cocycle g with values in the dual Xv of X
for a suitable covering U of X. In turn, the pair {X, g) is encoded in a combinatorial
datum consisting of a rooted tree with weighted edges, which we call a weighted tree

(see [4, Example 1.6 and Theorem 3.2] and 2.2 below). Here we use weighted trees in
a different way to construct embeddings of Danielewski surfaces into affine spaces.
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More precisely, starting with a suitable class of ^-weighted trees y, we construct

explicit ideals of certain polynomial rings. In turn, these ideals define affine surfaces

Sy which are naturally Danielewski surfaces over the affine line Aj[.
The paper is divided as follows. In Section 1 we recall basic facts on weighted

trees. We associate to every fine k-weighted tree y (F, w) (see Definition 1.3

below) a polynomial ring k[F] and a collection of polynomials in k[F] defined recursively

through the weight function w.
In Section 2, we review the construction of Danielewski surfaces as locally trivial

bundles over the affine line with an n-fold origin given in [4]. Then we associate

to every fine ^-weighted tree y a closed affine subscheme Sy Spec(5y) of A], x
Spec(£[F]), and we prove the following result (Theorem 2.9).

Theorem. For every fine k-weighted tree y, the scheme Sy is a Danielewski surface
over Aj, for the restriction of the projection prj : Aj, x Spec(£[F]) —>¦ A],.

For instance, the surface corresponding to the following fine ^-weighted tree

ei,l
63,2

1

y c^O
-1

is the Bandman and Makar-Limanov surface [l] S c k[x][y, z,u] with equations

xz-y(y2-l)=0, yu - z(z2 - 1) 0, xu - (y2 - l)(z2 - 1) 0.

It is a Danielewski surface over X Spec(£[x]) via the projection morphism

prx:S^X.
Then we show that every embedded Danielewski surface Sy as above comes

canonically equipped with actions of the additive group Ga,k which are the restrictions
to Sy of certain Gat^-actions on the ambient space Aj, x Spec(k[F]) defined by explicit
locally nilpotent derivations dy (see Proposition 2.15). In Section 3, we prove the

following result (Corollary 3.8).

Theorem. Every Danielewski surface n : S --* X A\ is X-isomorphic to an
embedded Danielewski surface 7Ty : Sy Spec(5y) -> X for an appropriate fine
k-weighted tree y.

Moreover, we establish that every Ga,x -action on n : Sy ->¦ X is induced by a

locally nilpotent derivation dy as above. As a consequence of this description, we
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deduce that every Danielewski surface n : S --* X Aj, can be embedded in a

relative affine space A^ in such a way that every Gfljx-action on S extends to an

action on A^ (Corollary 3.11). This generalizes a result obtained by Makar-Limanov

([8], [9]) for the Danielewski hypersurfaces S>„ above.

The Makar-Limanov invariant [6] of an affine ^-scheme X Spec(5) is defined
as the sub-algebra ML(X) c B consisting of regular functions which are invariant
under all Ga^-actions on X. If ML(X) k, then we say that X has a trivial Makar-
Limanov invariant. For Danielewski surfaces with a nontrivial Makar-Limanov
invariant, we prove the following result.

Theorem. Every Danielewski surface with a nontrivial Makar-Limanov invariant
can be embedded in an affine space Af Spec(£[xi,..., xd]) in such a way that

every Ga,k-action on S extends to an action on A*. Furthermore, every such action
is induced by a triangular locally nilpotent derivation ofk[x\,..., xd\.

In Section 4, we study Danielewski surfaces with a trivial Makar-Limanov
invariant, that is, Danielewski surfaces S which admits two nontrivial Gfl^-actions
with distinct general orbits. We obtain the following criterion which generalizes
Theorem 5.4 in [4].

Theorem. An embedded Danielewski surface n : Sy Spec(5y) —>¦ A\ defined
by a fine k-weighted tree y has a trivial Makar-Limanov invariant if and only if y
is a comb, i.e. a tree such that every element has at most one non-terminal direct
descendant (see Definition 4.1 below).

A comb rooted in

We obtain the following description (see 4.7 below). For every Danielewski
surface S with a trivial Makar-Limanov invariant, there exists a collection of monic

polynomials Pq, Ph-i & k[t] with simple roots a( j G k*, i 0, ,h- 1, j
1, degj(Pf), such that S is isomorphic to the nonsingular surface 5'pO)...)^_1 c
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Spec(k[x][y_i,..., yh-2\[z\) defined by the equations

h-\
xz-yh-2\\Pi(yi-i)=0,

1=0

h-\ i

zyl-i-ylyh-2\\Pi(yi-i)=0, xyt - yt-i[\Pi(yi-i) 0, 0 < i < h - 2,

l=i+l 1=0

j
- yiyj-i ]~[ Pi(yi-i) =0, 0 < i < j < h - 2.

On an affine surface S Spec(5), two GajJt-actions m and H2 with associated

quotient fibrations tz\ : S --* Aj. and n2 : S --* Aj. respectively are said to be

algebraically independent if the general fibers of n\ and ni do not coincide. In this

situation, we say that m and H2 are conjugated if there exists an automorphism <fi of
S sending the fibers of n\ onto the fibers of ni. This means equivalently that there
exists an automorphism <fi* of B such that Ker(92) 0*(Ker(3i)), where d\ and 92

denote the locally nilpotent derivations of B corresponding to the actions [i\ and yu-2

respectively. Daigle [2] established that all the Ga ^-actions on a Danielewski surface

Spti {xz — P(y) 0} are conjugated. From the explicit description above, we
obtain the following result (Theorem 4.12).

Theorem. Ifa Danielewski surface S non isomorphic to a surface Spti admits two
independent Ga,k-actions, then it admits two algebraically independent nonconjugated
Ga,k-actions.

We also deduce the following characterization (Corollary 4.13) of the Danielewski
surfaces S>i, which generalizes the ones previously obtained by Bandman and

Makar-Limanov [1] and Daigle [2].

Theorem. For a Danielewski surface n : S ->¦ X A\with a trivial Makar-Limanov
invariant, the following are equivalent.

1) S admits afreeGa%x-action.

2) The canonical sheaf cos of S is trivial.

3) S is isomorphic to a surface SP)\ c A| Spec(£[x, y, z]) with the equation

xz — P(y) 0 for a certain nonconstant polynomial P with deg(P) simple
roots.

4) All Ga,k-actions on S are conjugated.
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1. Preliminaries

Weighted rooted trees. Aposetis a nonempty finite partially ordered set G (G, <).
A totally ordered subset C c Gis called a chain of length l(C) Card(C) — 1.

A chain which is maximal for the inclusion is called a maximal chain. For every
e g G, we let

j- e)G {e' G G, e < e'} and (| e)G {e' G N, e' < e}.

A subset e'e with two elements e' < e such that (t e')G n (\, e)G {e' < e} is called
an edge of G. We denote the set of all edges in G by E(G).

Definition 1.1. A (rooted) tree F (F, <) is a poset with a unique minimal element

eo called the root, and such that (| e)r is a chain for every e g F. A subposet F'cF
which is tree for the induced ordering is called a subtree of F. Given e g F, the

maximal (rooted) subtree of F rooted in e is the subtree F(e) (Î e)r-

1.2. An element e such that l(\, e)r m is said to be at level m. The maximal
elements e\ e-um, where m-, /(| e,)r, of a tree F are called the leaves of F. We
denote the set of those elements by L(F). The maximal chains of F are the chains

^ei.m, (4- ei,m;)r {ei,o eo < e;ti < ¦¦ ¦ < e?,mJ, eiim G L(F). (1.1)

We say that F has/idgfe h(F) max(m,). An element of F\L(F) iscalledaparenf,
and we denote the set of those elements by P(F). Given e g F \ {eo}, an element

of the chain Anc(e) (| «) \ je) is called an ancestor of e. The parent of e is the

maximal element Par(e) of Anc(e). More generally, the n-th ancestor of e is defined

recursively by Par"(e) Par(Par"~1(e)) g Anc(e). Given two different elements

e, e' G F, the first common ancestor of e and e' is the maximal element Anc(e, e')
of the chain Anc(e) n Anc(e). If e is not a leaf of F, then the minimal elements of
(t e)r \ {e} are called the children of e, and we denote the set of those elements by
Ch(e). The degree deg(e) of an element e is the number of its children.

Definition 1.3. Let F be a tree. A fine weight function on F, with values in afield k,

is a function w : E(T) -> k, which assigns an element <vjg w(e'e) g k to every

edge e'e of F, in such a way that <vjgl ^ ae^ei whenever e\ and e2 share the same

parent e'. A tree F equipped with such a function w is referred to as a fine k-weighted
tree y (F, w).

Definition 1.4. An morphism of fine ^-weighted trees r : y' (T', w') --* y
(F, w) is an order-preserving map r : F' -* F satisfying the following properties.

a) The image of a maximal subchain of F" is a maximal subchain of F.
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b) For every e' g F'', x~l (x(e')) is either e' itself or a maximal subtree of V.

c) For every edge e'e of V such that x(e) ^ r(e/),wehavew;/(e/e) vu(x(e')x(e)).

Remark 1.5. A morphism of fine £-weighted trees maps the root e'o of F" on the root
eo of F and a leaf e'. of V at level mi onto a leaf e/(f),m/(0 of F at level mj(j) < mi.

Then b) guarantees that x(ei ^) e/,min(m;W,jfc) for every £ 0, mi, and so,

condition c) above makes sense.

Genealogical matrix of a weighted tree. Here we associate to every fine £-weighted
tree y (F, w) a matrix with coefficients in a polynomial ring k[F].

Definition 1.6. Given a tree F rooted in eo, we associate to every parent e g P(F) a

symbol Xe. If e' e P(F) is the parent of a given e e P(F), then we will sometimes
denote Xe/ as Xpar(e). We also extend this relationship between the Xe 's by introducing
the symbol Xgl Xpar(eo). We let ^[F] k[(Xe)eef(r)u{e^1}] be the corresponding
polynomial ring in d(F) Card(P(F)) + 1 variables.

For every element e e P(F) of a given fine ^-weighted tree y (F, vu) rooted
in eo, we introduce below three polynomials Fe(y), Ae(y), Ge(y) e k[F], defined

recursively through the weight function w : E(T) -> k, e'e \-> ag/g w(e'e).

Definition 1.7. For every e' e P(F) and every subset / c Ch(e') we let

e0] C k[T].
ee(Ch(e')\J)

The polynomial Fei := F®, is called the fatherhood polynomial of e'.

The ancestral polynomial Ae Ae{y) of e G F is the polynomial defined

recursively by

Aeo 1 and Ae ^par(e)^Par(e) & k[Xe_t, (Xg/)g/eAnc(Par(g))] c k[T].

The genealogical polynomial of e G P(F) with respect to e' G Anc(e) is the polynomial

Ge',e Ge'te(y) A~, AeFe G k[Xe_t, (Xg//)g//eAnc(e)\Anc(Par(e'))] C k[F].

The polynomial Ge GgOjg is simply referred to as the genealogical polynomial
of e.

Remark 1.8. Up to changing the variables, Ge\e(y) coincides with the genealogical
polynomial Ge(y') of e as an element of the maximal weighted subtree y(e')
((t e')r, w|r(e')) °f V rooted in e', considered as a fine ^-weighted tree disregarding
the inclusion y(e') <-^ y.
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Definition 1.9. The genealogical matrix of a fine ^-weighted tree y (F, vu) is the

matrix M(y) g Mat^D-i^tF]) with the rows Me (Ge, Xe) G Mati,2(£[F]),
eGP(F).

2. Danielewski surfaces defined by weighted trees

In [4], the author gives a method to construct a Danielewski surface n : Sv --* X over
X Spec(£[x]) from the data consisting of a fine £-weighted tree y. Here we review

briefly this construction. Then we introduce a new procedure to associate to every
such tree y a second Danielewski surface n : Sy -> X, which comes embedded in a

relative affine space A^ I x Aj.

Notation 2.1. Throughout this section, we fix a field k of characteristic zero. We
let A k[x], X Spec(A) ~ A\, and we denote by X* ~ Spec(Ax) the open

complement in X of the origin xo éA{. We consider Danielewski surfaces over the

fixed base X. We denote by prx : A^ Spec(A[Xg_j]) ->¦ X the trivial line bundle
over X. The additive group scheme with base X is denoted by Ga,x Spec(A[T]).

Abstract Danielewski surface defined by a fine A-weighted tree. Given a fine

^-weighted tree y (F, w) of height h h(F) with leaves ei,mi, en>mn, we
construct a Danielewski surface n : Sv -* X as follows. Using the maximal weighted
subchains

Yelmi (d ei,mi), u>) {eo e?,0 < e?,l < ••• < ef,m,-l < ei,mt}w, ï 1, ...,«,
of y, we define a collection of polynomials

For every f ^ j, we let gy x~m'(aj — oi) G Ax. These transition functions gij
satisfy the cocycle relation g^ gy + xm^ ~m'

g;Jt in Ax for every triple i ^ j ^ k.

2.2. We let 7r : Sy --* X be the X-scheme obtained by gluing n copies 51,

Spec(A[Tf ]) of A^ over X^ by means of the Ax-algebra isomorphisms

rtj : Ax[7}] -> Ax[Ti], T; h> gfj + xml-mtTj, i £ j, i, j 1, n.

Since y is a fine ^-weighted tree, it follows from 2.8 in [4] that Sv is a Danielewski
surface n : Sv -> X. The irreducible components of n 1{xq) are the curves Q
n 1(xo) n Si ~ Spec(£[7}]), f 1, ...,«. It comes equipped with a canonical
birational X-morphism i}> : Sv -+ Alx Spec(A[Xg_J) corresponding to the section

se_x g Bv r(Sy,OSy) with restrictions se_x\s. o\ + xm'Ti g A[T?],
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i 1,...,«. By Theorem 3.2 in [4], every Danielewski surface n : S --* X is

X-isomorphic to an abstract Danielewski surface n : Sy —* X obtained by this
procedure.

2.3. A Danielewski surface n : S —>¦ X admits nontrivial actions of the additive

group scheme Ga,x- Indeed, since by definition S\xt is isomorphic to the trivial line
bundle A^ Spec(Ax [Xei ]) over X+, there exists r > 0 such that the A-derivation
xm dxe extends to a locally nilpotent A-derivation 9 of F (S, Os), corresponding to a

nontrivial Gfljx-action on S. By Proposition 2.12 in [4], every nontrivial Gfljx-action
on a Danielewski surface Sv is induced by the extension 9am to Bv of a locally
nilpotent A-derivation axmdXei of By ®A Ax ~ Ax[Xei], where m > A(f) and

a g A \ {0}. We denote the corresponding Gfljx-actions on A^ and i1'' by ta,m and

^a>m respectively. On the open subsets 51, Spec(A[7}]), ta>m coincides with the

twisted translation ta%m_mi defined by the group co-action homomorphism

A[Ti]^ A[Ti,T]~A[Ti]®AA[T], Tt ^ Tt + axm~miT, i l,...,n.
The canonical morphism ijr : Sv -* A^ is Gfljx-equivariant when Sv and A^ are

equipped with the Gfljx-actions tva>m and ta%m respectively.

Example 2.4. The collection of polynomials a corresponding to the following fine

^-weighted tree y (F, vu) with leaves e\t\, e2,i» ^3,2» ^4,2

62,1

is a {1, — 1, x, —x}. The associated transition functions g {gi7h<?</<4 are

gl2 £34 -2x \ gi3 -g24 X-1(x - 1),

g23 —gl4 X-1(x + 1).

The gluing homomorphisms {^7}i<f</<4 are given by

T.^\gij + Tj, if d, j) €{(1,2), (3, 4)},
1 ^ I ft7 + xl), if (i, j) € {(1, 3), (1,4), (2, 3), (2, 4)}.



Vol. 81 (2006) Embeddings of Danielewski surfaces in affine space 57

The Gfljx-action t\ 2 on n : Sv --* X is a non-free action which restricts on 51,

Spec(A[7)]) to the action

\Tx+xT, iff 1,2,

(r? + r, iff 3,4.

Letting P(t) t2 - 1 e £[>], we will see in Example 3.2 below that Sv is X-
isomorphic to the Bandman and Makar-Limanov surface [1] S c Spec(£[x][;y, z, u\)
with equations

xz-yP(y) 0, yu-zP(z) 0, xu - P(y)P(z) 0,

and that t\2 coincides with the action on S induced by the triangular derivation

dh2=x2dy+x(3y2-\)dz+(2P(y)(3y2-\)z+2xyP(z))du£'Derk[x](k[x][y,z,u]).

Embedded Danielewski surface defined by a fine A-weighted tree. Given a fine

^-weighted tree y (F, w), we construct a Danielewski surface n : Sy --* X which

comes embedded in a relative affine space Ax where d(T) Card(P(F)) + 1.

These surfaces are canonically equipped with the restrictions of certain actions of the

additive group Ga,x on the ambient space Ax defined by explicit locally nilpotent
derivations.

2.5. Given a fine ^-weighted tree y (F, w), we let A[F] A ®u k[F] ~
A[Xe_t, (Xe)eéP(r)] (see Definition 1.6). We let M(y) e Matd(r),2(Alr^) be me
matrix with the rows Mei (x, 1) and Me (Ge(y),Xe), e e P(F), i.e.

M{y) (Me_j, M{y)), where M{y) e Matd(r)-i,2(^[r]) denotes the genealogical
matrix of y (Definition 1.9).

Definition 2.6. Given a fine ^-weighted tree y (F, w), we let Iy c A[F] be the

ideal generated by the simplified genealogical minors of M{y)

AeV AeV(y)=Ag-1det(MPar(e0,Me)eA[r], {e,e')&V{F) x (| e)r. (2.1)

We let By A[F]/Iy, and we let n : Sy Spec(5y) —>¦ X be the corresponding

closed sub- X-scheme of the relative affine space A^(r) Spec(A[F]).

2.7. By construction, Ae := AgOjg xXe — Ge e A[(Xg/)g/e(|g)rU{gl}] for every
e G P(F), whereas Ag/g {XVwi^ — avm(e'),e')Xe — Xpar(g/)Gg/g for every pair
(e, e') G P(F) x ((\, e)r \{eo})- As a consequence, for every triple eo < e" < e' < e

in P(F), the following relations hold in A[F]:

(2.2)¦^Ag/jg (Xpar2(g/) - apar(g/)jg/)Ag - APar(g/)Gg/jg,

aPar(e"),e") Ag'jg (X?m.2(g,^ - apar(e'),e')Ag"jg - Ag//jg/Gg/jg.
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2.8. If y (F, w) is the trivial tree with just one element eo, then the first projection
n : Sy Spec(£[x][Xg_j]) —>¦ X is a Danielewski surface. Similarly, if F has

height 1, then Gg0 g k[Xe_t] is a monic polynomial with simple roots agOjg

ê g k, e g Ch(eo)- Therefore,

it : Sy Spec(A[F]//y) Spec(k[x][Xe_x, Xeo]/xXeo - Geo{Xe_x)) -> X

is a Danielewski surface, and the irreducible components of n~l (xo) are the curves
Cg ~ Spec(£[Xg0]) with defining ideals /Kjg (Iy,Xei — agjg0) C A[F], e G

Ch(eo)- More generally, we have the following result.

Theorem2.9. Foreveryfinek-weightedtreey (F, w)withleavese\>m, en>mn,

n : Sy ->¦ X is a Danielewski surface. Furthermore, the fiber tt~1{xq) is the disjoint
union of the curves Ceim. ~ Spec(^[Xgjm._j]) with defining ideals

h,ei.m- (Iy>x> (Xe; : i ~ ae; ;,e; ;+1)o<j<m;-l) C A[F], f 1, ...,«.

The proof is divided as follows. In 2.10, Lemmas 2.11 and 2.12 below, we show

that Sy is an integral scheme. Then, in Lemma 2.13, we describe explicitly the

irreducible components of n~1 (xo).

2.10. We first observe that S'y restricts to the trivial line bundleA^ Spec(Ax[Xg_j])
over X*. Indeed, the second relation of (2.2) guarantees that the ideal /yAx|T] of
AX[F] ~ A[F] ®a Ax is generated by the polynomials x~1Ag Xe — x~lGe,
e g P(F). Since Ge only involves the variables Xei, where e' G Anc(e), we
recursively arrive at an Ax-algebra isomorphism Ax[F]//yAx[F] ~ Ax[Xei]. Thus

Sy is a Danielewski surface with base (k[x], x) provided that x is not a zero divisor
in By and that By/xBy is isomorphic to a nonempty direct product of polynomial
rings in one variable over k. Indeed, the first condition guarantees that the canonical

map By --* By ®a Ax ~ Ax[Xg_j] is injective. In turn, this implies that By is a

sub-domain of Ax[Xei]. The second one means equivalently that the fiber n 1{xq)

decomposes as a nonempty disjoint union of affine lines A\.
To show that x is not a zero divisor in By, it suffices to find a covering of Sy by

principal affine open subsets Yi Spec(5; such that x is not a zero divisor in 5, for
every i 1, n.

Lemma 2.11. Ify (T, w) ifa fine k-weighted tree with the leaves e\, en, then

Sy is covered by the principal open subsets Yi Spec(A[F][r]/(/y, AgiT — 1)),
i \,...,n.

Proof. For every e G P(F) the polynomials F\e g A[Xpar(g)], e' g Ch(e) generate
the unit ideal of A[Xpar(g)] as y is a fine ^-weighted tree. Therefore, there exist
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polynomials Ag/ g A[F], e' g Ch(e), such that

e'eCh(e) e'eCh(e)

It follows by induction that the image of Aeo 1 in By belongs to the ideal generated

by the images a, G By of the ancestral polynomials A ei of the leaves of F. This means

equivalently that the open subsets Spec((By)ai) ~ Spec(A[T][T]/ (Iy, AeiT — 1))

cover Sy.

Lemma 2.12. For every i 1, ,n,Y\ is an integral scheme.

Proof. Let us denote by e/ e-uj, j 0, m rrii,the elements of the maximal
subchain (| ehnii)r of F associated with the leaf e-um. Foreveryf 1, m — 2,

the polynomial Agï+1divides Agm. Similarly, for every e G P(F) \ (| em), the first
common ancestor of e and em is an element e\,i < m — 1, such that e' Ch(e,) n
(| e) t^ e,-+i, and so (Xe;i — aeuei) divides Agm. Therefore, these polynomials
become invertible in A[F]Aem. We claim that the ideal IyA[F]Aem is generated by
the polynomials

Sei A-].Aei -(Xei_x - aeiM) + A-} xXet, i \,...,m-2,
/ y \ — 1 A

X Anc(e, em) ej,
— Xe \Xe;-\ aet,e') XeiLrei^e,

Indeed, the second relation of (2.2) guarantees that the polynomials Ag, where e G

P(F) \ {\, em)r, can be expressed in A[F]Aem in terms of the <5gï's and <5gï%g's. In
turn, we deduce from the first and the third ones that all the polynomials Ag jg,
(e, e') G P(F) x {{\, e)r\ {eo}) belong to the ideal of A[F]Aem generated by the <5gï 's

and the <5gjjg's. Since the polynomials Agj and Ggjjg above only involve the variables

corresponding to the elements in (| e;_2)r and(f e')r(^(i Anc(e))r respectively, we
conclude by induction that there exists a nonconstant polynomial/3 G A[Xgml] such

that A[r]Aem//yA[F]Aem — A[Xeml]p. Since A is a domain and P is nonconstant,
it follows that {By)ai ~ A[Xeml]p is a nonzero domain too.

Summing up, we have established that for every fine ^-weighted tree y,
n : Sy --* X is an integral affine scheme restricting to the trivial bundle A^ over X*.
The following result completes the proof of Theorem 2.9.

Lemma 2.13. For every fine k-weighted tree y (F, w) with leaves ei,mi, e«,m„,
the fiber n 1(xq) of n : Sy --* X is the disjoint union of the curves Ceim. ~
Spec(^[Xgïm._j]) with defining ideals

W™, (7K'X' (Xe;J-i ~ ae,.;,e,.;+l)0<i<m,-l) C A[F], ï 1, «.
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Proof. We proceed by induction on the height A of P. If h 0 then Sy

Spec(A[Xg_j]) and7T~1(xo) — Spec(k[Xe_1]). Otherwise, if Ch(eo) 7^ 0 then, since

y is a fine ^-weighted tree, it follows that the polynomials Xe_x-aeo, e,e g Ch(eo) are

pairwise relatively prime. Therefore n
1 (xo) Spec(A[F]/(x, Iy)) decomposes as

the disjoint union of curves De Spec(A[F]/(x, Xei —ae0)g, Iy)), e g Ch(eo)- We
let y(e) (F(e), w\r(e)) be the maximal fine £-weighted subtree of y rooted in e.

Clearly, the ideal (x, Xei — ae0)e,Iy) coincides with the ideal Ie c A[F] generated

by x, Xei — agOjg and the polynomials

Ae",e'(y), (e', e") G P(I») x (AncrW («')),

* ^v v /- ^ fe/eP(F)\({eo}UP(F(e))),

[y Ch(eo) n (4 e') 7t e.

By definition, we have A[F(e)] A[Xe_x, (^e')e'eP(r)] — A[Xeo, (Xe')e'e-p(r)] as

eo & F(e). This choice of coordinates yields the identities

Ge",e'(y(e)) G^Ay), (e', e") € P(F(e)) x kncr(e)(e'),

and we conclude that A[F]/(x, Xe_x - ae^e, ly) ~ A[F]//g ~ A[F(e)]/(x, Iy(e)).
This means equivalently that n~l (xo) is isomorphic to the disjoint union of the fibers

it h(xQ) of the corresponding surfaces ity(e) '¦ Sy(e) —>¦ X, e e Ch(eo)- Since the

fine ^-weighted tree y(e) has height h — 1, it follows from our induction hypothesis
that these fibers are nonempty and reduced, consisting of disjoint unions of affine
lines A\. So the same holds for n 1(xq). Finally, the precise description of the

irreducible components of n~l (xo) follows easily by induction again.

Remark 2.14. A Danielewski surface n : Sy —>¦ X Aj. is a flat (or rather a smooth)

X-scheme. In general, the scheme it : Sy —>¦ X with defining ideal ïy generated only
by the polynomials Ae, e e P(F), is not flat over X. The above discussion together
with the second relation of (2.2) imply that Sy coincides with the flat limit over X
of the trivial family of affine lines Sy \xt — A^ defined by the equations Ae 0,

e G P(F), in A^p Spec(Ax[F]). This explains why the polynomials Ag/g,
(e, e') G P(F) x ((4- e)r \ {eo}), should be added to the obvious ones Ae, e g P(F),
to define the surface Sy.

The following result shows that the embedded Danielewski surface n : Sy ->¦ X
defined by a fine ^-weighted tree y (F, w) admits nontrivial actions of the additive

group Ga,x, which come as the restrictions of certain Ga,x-actions on the ambient

space A^(r).
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Proposition 2.15. Let y (F, w) be a fine k-weighted tree of height h > 0. Then,

for every m > h and every a g A \ {0}, the derivation 9y,a,m G DerA(A[F], AX[F])
defined recursively by

dy,a,m =axmdXe_1+X~1 ^ dy,a,m(Ge(y))dxe
eeP(T)

w a triangular derivation of A[F] inducing a locally nilpotent A-derivation 9Kjajm

o/5y.

It suffices to prove the assertion for the derivation 3 9y,i,ft as 9Kjajm

axm hd. For every e G P(F) at level i < h, the polynomial Ge only involves
the variables Xç, and Xe/, e' g Anc(e). So we conclude recursively that d{Xe) g
xh~'~1 A[Xe_j, (^g')e'eAnc(e)]- Thus 3 restricts to a triangular A-derivation of A[F].
By construction, 3 annihilates Ae for every e G P(F). Moreover, x9(Ag/ g)

9(xAg/jg) g Iy for every pair (e, e') g (P(F) \ {eo}) x {{\, e)r \ {eo}) by virtue of
(2.2). Thus 9(Ag/ g) g Iy as Iy is a prime ideal which does not contain x. Hence

d(Iy) C Iy and so, 3 induces a locally nilpotent A-derivation 9 of By.

Example 2.16. We consider the following fine ^-weighted tree y (F, w) with the

leaves e\\, 62,i> e3,2> e4,2-

ei,i

WehaveA[F] Jt[jc][Xe_1; Xeo, XeJ and

Xe_xP{Xe_x) P(Xe_t)P(Xeo)

where P(t) t2 — 1 g ^[f]. Therefore 7r : 5^ -^- X is the surface with equations

xXeo — Xe_xP{Xe_x) 0, XgjAgj — XeoP{Xgo) 0,

Letting y Xei, z Xeo and u Xei, the locally nilpotent derivation 9y,i,2
DerA(A[F]) is simply the derivation 3^2 G Der^[x](^[x][}', z, m]) of Example 2.4.
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3. Embeddings of Danielewski surfaces in affine spaces

In this section, we compare the two constructions of Danielewski surfaces by means

of fine ^-weighted trees. We describe a certain class of morphisms of Danielewski
surfaces as the restrictions of suitable linear projections.

From abstract to embedded Danielewski surfaces. Here we prove the following
result.

Theorem 3.1. For every abstract Danielewski surface n : Sy —* X defined by a fine
k-weighted tree y (F, w), there exists another fine weight function w : E{T) -> k

on the tree F, and a closed embedding t; : Sv ^ Ad^ inducing an isomorphism
between Sy and the embedded Danielewski surface Sy defined by the fine k-weighted

tree y (F, w). Moreover, t; is equivariant when we equip Sv and A^ with the

Ga,x--actions corresponding to the locally nilpotent A-derivations da,m £ DerA(5y
{see 2.3) and 9y,a,m e DerA(A[F]) {Proposition 2.15) respectively.

Example 3.2. We consider the abstract Danielewski surface n : Sv —>¦ X defined

by the fine ^-weighted tree of Example 2.4. The canonical morphism tf/ : Sv --*
A^ Spec(^[x][Xg_j]) is given by the section se_x e Bv whose restrictions on the

canonical open subsets 51, Spec(£[x][7]]) are given by

_U-\)i+l+xTi, iff 1,2,
^-il^ |(_1)?+ix+x2r.) iff =34

Letting C, n~1{xo)nSi,i 1, 4, be the irreducible components of ^"^xo),
weseefhaUe_j restricts to a coordinate function on every fiber n~l{y), y e X^,and
is locally constant on ^"^xo) with the values 1,-1 and 0 on C\, C2 and C3 U C4

respectively. Therefore,letting P{t) {t2-X) e k[t],\he,secùonx~lse_1P{se_t) e
By ®^[x] k[x, x"1] extends to a section seo e By whose restrictions on the Si's are

given by
2 + x2ri3, iff l,

2T2 - 3xT22 + x2T23, if i 2,

— 1 — x T'x ~\~ x È^ (x T'x if i 3

- x^Èa(x Ta) if i 4

for certain polynomials &{x, t), %4{x, t) e k[x, t]. Thus seo restricts to a

coordinate function on C\ and C2, and is constant on C3 and C4 with the values -1
and 1 respectively. Again, x~1P{seo) e By ®k[x] ^[x.x"1] extends to a regular
function on S3 U S4 c Sy which restricts to a coordinate function on C3 and C4.

Clearly, x~lP{se_1)P{seo) extends to a section sei e Bv with the same property as
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P(se-i)\ci —1» J 3,4. The A-algebra homomorphism A[Xe_x, Xeo, Xei] --*
By ,Xe \-> se defines a closed embedding f : Sy —>¦ A3X, inducing an X-isomorphism
between Sy and the embedded Danielewski surface Sy defined by the fine ^-weighted
tree y (F, w) of Example 2.16.

3.3. To prove Theorem 3.1, we proceed in a similar way as in the previous example.
More precisely, given an abstract Danielewski surface Sv defined by a fine ^-weighted
tree/ (F, w),weconstructin3.4andLemmas3.5-3.7belowafineweightfunction
w : E(T) -^ionF and a collection of sections se e By, e e P(F) U {e_i}, which

define a closed embedding f : Sy <—> Ax inducing an X -isomorphism 4>: Sv ->
Sy between Sv and the embedded Danielewski surface defined by the tree y (F, w).

3.4. Given a fine ^-weighted tree y (F, w) with the leaves e\>m, e„,m„, we
denote by r, : Bv F(Sy, &sv) —^ A[Tj] the localization homomorphisms
corresponding to the canonical open covering of the abstract Danielewski surface Sy

by the open subsets Si Spec(A[7}]), i 1, ...,«. The canonical X-morphism

f: Sy -* A^ Spec(A[Xg_j]) (2.2) corresponds to the section se_x e By such

that

1=0

where

_
I w(eijeiJ+1), if 0 < j < mx - 1,

3

[Tt, if j=mt.
For every e G F, we let

Ce= LJ (7T-1(x0)n5'i)-Spec(
{elmieL((fe)r)} {eli

If y has height h 0 then F is the trivial tree with one element {eo} and tf/ : Sy —* A^
is an isomorphism. Otherwise, if h > 1, then we have the following result.

Lemma 3.5. If h > 1 f/ien f/iere exwte a y?ne weight function w: E(T) --* k,

e'e h^ àg/jg defining a fine k-weighted tree y (F, w), and a collection of
sections fe)eep(r)u{e_1} ^ -8y with the following properties.

a) For every eUj e P(F), ^; x ^^.(yX^j, ^eo, ^v, seij_x).

b) //Ch(e?i/) {e?i,/+i, efr,/+i}> thense;j_t is constant on Ce.;>/+1 ctt !(x0)
/ / / à i/ 1

ï ;+1 ei,/ 1 r.

c) T^or every leaf ei^mi ofY, sei m._1 induces an coordinate function on Ceim. ~ A],.
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Proof. We construct the weight function w and the sections se by induction as follows.
For every m 0, h, we denote by Fm the subtree of F with the elements e g F

at levels / < m. At step m, we suppose that the weight function wm : £(fm) ->
£ is constructed on Fm, as well as the sections se for every e g Fm_2, and we
define the sections se, e G Fm_i \ Fm_2. Then we extend w)m to a weight function

Wm+\\ E{Tm+\) -> fc.

5fep 0. We let ^g_j g 5y be the section corresponding to the canonical morphism
tf/: Sy —* A^. By definition, Xi(sei) wuo + x^i for a certain §,- g A [7]] for every
i 1, n. Thus b) is satisfied provided that we define the weight function w\ on
Ti \ {eo} by

for every e-u\ g Ch(eo). Note that if e-h\ e-h\, then wuo Wj^ as w-uo ^ wjto
if and only if eo is the first common ancestor of the leaves e-um and eim;. Thus

y\ (Fi, w)i) is a fine £-weighted tree and we are done with Step 0.

Step 1. By construction, the rational section x~1Geo(yi)(^yjg_1) g By ®a Ax
extends to a section seo of By satisfying a). Since y is a fine ^-weighted tree,

we deduce from Taylor's Formula that for every i 1, ...,«, there exists a pair
{a-h\ Fg01' {wifi), ß-u\) g k* x k depending only of the subchain (| e-u\)r, and a

polynomial ^-u\ G A[Tj] such that

Thus, if e-h\ is a leaf of F then wh\ T\ and so c) is satisfied. Otherwise, if e-h2

and ej't2 are children of e-u\ then ajti aji\ a-u\ and ß-h\ ßj^\ ß-u\ as

ei4 eJ'A e'4' wnereas w/,i 7^ w/',i as y is a fine ^-weighted tree. Thus

y2 (F2, V02) is a fine ^-weighted tree for the weight function ü>2 : E(T2) -> k

restricting to w\ on T\ c F2 and such that

By construction, b) is also satisfied. This completes Step 1.

Sfep m, m > 2. By induction hypothesis, ym (Fm, w)m) is a fine ^-weighted
tree, and the sections se e By, e e Fm_2, satisfying the hypothesis of Lemma 3.5

have been defined. So the formula

se;,m- i=X~1Geim_l(ym) (se_ 1>Se0, Se;, t, • • • SSlm_2)

makes sense and defines an element of By ®A Ax. Similarly as in Step 1, we
deduce from Taylor's Formula that for every j 0, m — 1 there exists a pair
(«1,/» ßij) & k* x k depending only on the subchain (| e?,/)r» and a polynomial
|f)y- G A[Tf] such that

+ x(â;tjW;tj+i + ßij) + X%j
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By applying Taylor's Formula again, we conclude that there exists a pair (a-hm ßi>m) G

k* x k depending only on the subchain (| e;,m)r and a polynomial §f,m G A[T\] such

that

ri(-%m_i) tti,mWi,m + ßi,m +Aî,m

Thus, if e?,m_i G (| e-hm.) then eijm_i e/,m_i and so r/(^m_j) G A[7)].
Otherwise, for every index 7 such that e?,m-i ^ (I ej,m}-)r, the first common ancestor

of e;,m-i and ejtm. is an element e;,/ e;,/ at level / < min(m - 2, nij — 1). Thus

(Xej ,_j -âej ,,«. m) divides the genealogical polynomial G^m_j (ym) of e?,m_i. Since

rj(sej,i-\ -äe]Ue]l+l) G xA[7)], we conclude that

xrj(s<%n,-i) Geim_x(ym)(Xj(se_x), Xj(seifi), Xj{se^), Tj(seim_2)) G XÄ[Tj].

Thus Tj(seiml) g A[7}] for every j I, ...n, and hence, sy^iml e By. If e-hm

is a leaf of F then whm whmi T\ by definition. Thus seiml satisfies a) and c).

Finally, the same argument as in Step 1 shows that ym+i (Fm+i, wm+\) is a fine

^-weighted tree for the weight function wm+\ : E(Tm+\) --* k restricting to wm on
Tm C Fm+i and such that

whenever e^m is not a leaf of F. This completes Step m as b) is satisfied by construction.

After h h (F) steps, the above procedure stops, and we obtain a fine £-weighted
tree y yu (T, vbh) and a collection of sections (^e)eep(r)u{e_1} £ By satisfying
conditions a), b) and c). This completes the proof.

The following lemma implies the first assertion of Theorem 3.1.

Lemma 3.6. The X-morphism f : Sv ->¦ A^-1 induced by the A-algebra homomor-

phismt;*: A[F] -> By, Xe \-> se, e G P(F)U{e_i}, is a closed embedding inducing

an X-isomorphism <fi: Sy -> S-p.

Proof. By construction, sei corresponds to the canonical birational morphism

ijr : Sv -* A^, whence induces a X*-isomorphism Sv\xt -> A^ By b) of
Lemma 3.5, for every pair ei>m.,ej>m. of leaves of F with first common ancestor e G F,
the section ^par(e) takes distinct constant values on Cgim. and Cgim.. Thus t,

distinguishes the irreducible components of the fiber n ~l (xq Finally, c) ofLemma 3.5

implies that for every i 1, n,se.m._x induces a coordinate function on Cei m. ~ A\.
This proves that t, : Sy -+ A^(r) is an embedding. By construction, f *(Ag(y)) 0

in 5^ for every e g P(F). Thus xf *(Ae/>e(y)) f *(jcAe/>e(y)) 0 for every
(e, e') G (P(F) \ {e0}) x ((| e)r \ {e0}) by virtue of (2.2), and so, f *(AeV(y)) 0
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as Bv is an integral A-algebra. This proves that the image of f in contained in the

embedded Danielewski surface Sy. It is clear by construction that the induced X-
morphism <fi: Sy -> Sy restricts to a bijection between the sets of closed points of
Sy and Sy respectively. So the result follows from Zariski's Main Theorem as Sy is

smooth over k, whence, in particular, normal.

The following result completes the proof of Theorem 3.1.

Lemma 3.7. For every nontrivialGa,x-actionty^a^m (2.3) onan abstract Danielewski

surface n : Sv --* X defined by a fine k-weighted tree y (F, w), the closed

embedding f : Sv ^ Adx^ in Lemma 3.6 is equivariant when we equip Adxr^ with
the Ga,x-action induced by the locally nilpotent A-derivation dy^a^m g Der^CAU1])
(Proposition 2.15).

Proof. By definition (see 2.3), the twisted translation ty,a,m on Sv is induced by
the extension da,m to By of the locally nilpotent derivation Sa,m axmdxe_x of
Bv ®a Ax ~ Ax[Xei], where m > h(T) and a g A \ {0}. By construction, for
every e e P(F), we have se x 1Ge(y)(se_1, seo, sVav{e)) eFc Ax[Xe_t]
and so,

da,m(Se)=X~1 ^2 3Xe/Ge(y)(se_1 SeQ SVw{e))da ,m(s e>) G BV ®A Ax.
e'eAnc(e)U{e_i}

In view of the definition of 9y,a,m G DerA(A[F]) (see Proposition 2.15), this means

precisely that the embedding f : Sv ^ A^(r) is equivariant when we equip Sv

and Ax with the actions corresponding to the locally nilpotent derivation 9am

yam.

Corollary 3.8. Every Danielewski surface n : S —* X equipped with a nontriv-
ial Ga,x-action is equivariantly X-isomorphic to an embedded Danielewski surface
Sy defined by a fine k-weighted tree y (F, w), equipped with the Ga%x-o-ction

corresponding to a suitable locally nilpotent derivation 9y,ajm g DerA(By), where

m >h(T)anda g A \ {0}.

Proof. By Theorem 3.2 in [4], every Danielewski surface S is isomorphic to an
abstract Danielewski surface Sv defined by a fine ^-weighted tree y. Moreover, by
Proposition 2.12 in loc. cit., every nontrivial Ga,x-action on Sy coincides with a

twisted translation ty%a%m for a suitable pair (m > h(T), a g A\ {0}). So the result
follows from Theorem 3.1.

Corollary 3.9. Every Ga,x-action on an embedded Danielewski surface Sy defined
by a fine k-weighted tree y (F, w) is induced by a locally nilpotent derivation
dy,a,m & DeTA(By).
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Since the locally nilpotent derivations 9Kjajm G Der^ (By are induced by locally
nilpotent derivations 9y,ajm G Der^OUT]), we obtain the following result.

Corollary 3.10. Every Danielewski surface n : S —* X admits a closed embedding

f : S <—> Ax into arelative affine space Adx, whered > 1, suchthat every Ga^x-action
on S extends to an action on Ax.

In particular, if the Makar-Limanov invariant of S is nontrivial, then n : S --* X is

a unique A^fibration on S up to automorphisms of X. Therefore, the general orbits
of a Ga,k-action on S coincide with the general fibers of n. This leads to the following
result.

Corollary 3.11. Every Danielewski surface S with a nontrivial Makar-Limanov
invariant admits a closed embedding into an affine space Af in such a way that every

Ga,k-action on S extends to an action on Af.

Morphisms of Danielewski surfaces as linear projections. A morphism ofDanie-
lewski surfaces is a birational X-morphisniß: S' --* S, restricting to an isomorphism
over X+. In other words, ß is an affine modification [7] restricting to an isomorphism
over the complement of the support of the principal divisor n~1 (xo) div(x) c S.

Thus, letting S Spec(5), there exists an ideal I c B containing a power xm of x
such that S' is isomorphic to the open subset Spec(5[/f]/(l - xmt)) of the spectrum
of the Rees algebra B[It]. In turn, this implies that Sf ~ Spec(5[fi, tr]/J) for
a certain ideal /. In these coordinates, the morphism ß: S' —>¦ S coincides with the

restriction to S' of the projection pr^ : A^.+1 Spec(5[fi, tr]) —>¦ S. Here we
give a more precise description of this situation.

3.12. To every morphism r : y' (F", w') --* y (F, w) of fine ^-weighted tree

(see Definition 1.4), we associate a morphism ßx : Sy' -> Sy between the associated

abstract Danielewski surfaces in the following manner. Weleta' {a- g A}i=i _„/
and a {ct, g A}i=i ...„ be the collection of polynomials associated with y' and

y, and we let g' {gi. g Ax] and g {gij g Ax) be the corresponding transition

functions. We denote by Si Spec(A[7;./]), i 1, ri, and Sj Spec(A[7>]),

j 1,...,«, the open subsets of the canonical coverings of Sy' and Sy respectively.
By Remark 1.5, the image of a leaf e'. of F' by r is a leaf e}(i),m]{l) of F such

that m¦ > nijd) and r{e'ik) e/(f),min(fe,m/(0) for every k 0,...,m'.. Since

w(r(e'lk)x{e'lk+l)) u)'(e';ke';k+1) whenever r{e\k) ^ r(e'ik+1), we conclude that

there exists a collection o" {a" g A}i=1.. .„/ such that o[ aj(j) + xmi®o" g A
for every i 1,..., n'. Then for every i 1,...,«', the A-algebra homomorphism

j(0] —? A[T{], Tj(f) h> a'J + x<~m>«T{
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defines a birational X-morphism ßr '¦ Si —>¦ 5)(?) restricting to an isomorphism over
X*. Since the transition functions satisfy the relation xmi'~mJ(l)g'n gj(j)j(i)

+ a"+ a" for every i,l 1, ...,«', it follows that these local morphisms

ßr glue to a morphism of Danielewski surfaces ßx : Sy> —>¦ Sy. By Proposition
3.8 and Corollary 3.9 in [4], for every morphism of Danielewski surfaces ß : S' —>¦

S, there exists X-isomorphisms 4>' : S' --* Sv and 4> '¦ S --* Sv for suitable fine
^-weighted trees y' and y such that <fi ° ß ° (,4>')~l is the morphism ßx induced by a

morphism of fine £-weighted tree r : y' --* y.

3.13. Every morphism of fine ^-weighted tree r : y' --* y factors through a surjective
morphism x' : y' --* x(y') followed by an injection x(y') <-^ y. As a consequence,

every morphism of Danielewski surfaces factors through a quasi-surjective morphism
ß'\ Sv' -> Sxiv'\ i.e. a morphism of Danielewski surfaces such that ^(C) ^ 0

for every irreducible component C of the fiber nx}lAxo) c Sx{yl) followed by the

open immersion of Sx(^v ^ in Sv as the complement of irreducible components of
TTy1 (xo) C Sy corresponding to the leaves of F which are not in the image of r.

3.14. Given a fine ^-weighted tree y (F, w), we consider the tree y (F, w;)

constructed in Lemma 3.5. For every edge e'e of F, the weight w(e'e) g k is

uniquely determined by the weights w of the edges of the subtree of F with elements

j e)r U \Je'e(U')r Ch(eO- Therefore, every surjective morphism of fine ^-weighted
trees r : y' (F", w') -> y gives rise to a surjective morphism of fine ^-weighted
trees r : y' (F', w') --* y which restricts to the same morphism as r between the

underlying trees F' and F of y' and y respectively1. Since the subset F;/ {e' e

F', r~1(r(e/)) W)} C F' is a subtree of F' isomorphic to F, we obtain that

A[T']

Moreover, for every e' e P(F//), the genealogical polynomial Gei{y') of e' is

an element of A[r/;] c A[F'] which coincides with the genealogical polynomial
Gx(e'){Y) ^ A[F] of x(e') via the isomorphism above. In turn, this implies that the

genealogical matrix (see Definition 1.9) M(y) of y is obtained from M(y')by deleting

the rows corresponding to the elements in P(F') \ P(F//). By construction of the

embedding of Sy into Ax as the Danielewski surface Sy, we obtain the following
result.

Theorem 3.15. Let x : y' (F', u/) --* y (F, w) be a surjective morphism
offine k-weighted trees and let x : y' -+ y be the morphism obtained above. Let

Actually, the functor y h» y, x M»- f is an automorphism of the category 5"^ ^ of fine £-weighted trees

equipped with surjective morphisms.
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f ' : Sv' ^ A^(r/) and Ç: Sy ^ A^(r) are the embeddings from Lemma 3.6 ofSv'
and Sv as the Danielewski surfaces Sy/ and Sy respectively. Then Ç o ß pr// r°Ç',
where pr'/r'- &x ~* ^x ^ the projection induced by the inclusion A[F] ~
A[r"] c

4. Danielewski surfaces with a trivial Makar-Limanov invariant

The Makar-Limanov [6] invariant of an affine variety V Spec(5) over a field
k of characteristic zero is the sub-algebra ML(V) c B of regular functions on V
which are invariant under every Ga^-action on V. A surface S has a trivial Makar-
Limanov invariant ML(5) k if and only if it admits two nontrivial Ga^-actions
with distinct general orbits. In view of the correspondence between nontrivial Ga^-
actions Ga,k x S --* S on S and quotient A1-fibrations n : S --* X S//Ga,k, this

means in turn that S has a trivial Makar-Limanov invariant if and only if it admits

two A1-fibrations with distinct general fibers. In this section, we characterize among
Danielewski surfaces the ones with a trivial Makar-Limanov invariant.

Danielewski surfaces denned by weighted combs

Definition 4.1. A nontrivial (oriented) comb of height h > 1 is a tree F such that for
every e G P(F) of degree degr(e) > 1, all but possibly one of the children of e are
leaves of F. This means equivalently that the subtree Cr P(F) {eç, < ¦ ¦ ¦ <
e/j_i} of F is a nonempty chain of length h — 1, called the dorsal chain of F.

A comb rooted in

4.2. By Theorem 5.4 in [4], a Danielewski surface S defined over an algebraically
closed field k k of characteristic zero has a trivial Makar-Limanov invariant if
and only if it is isomorphic to an abstract Danielewski surface Sv defined by a fine

^-weighted comb. This result is based on a characterization of normal affine surfaces
S with a trivial Makar-Limanov invariant in terms on the boundary divisors of certain
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minimal completions S of S (see [3]). Unfortunately, no such criterion exists for a

normal affine surface defined over an arbitrary field k of characteristic zero. However,
the following result shows that the combinatorial characterization of Danielewski
surfaces with a trivial Makar-Limanov invariant remains valid in this more general
setting.

Theorem 4.3. A Danielewski surface S ^ A^, defined over afield k of characteristic

zero, has a trivial Makar-Limanov invariant if and only if it is isomorphic to

an abstract Danielewski surface Sv defined by a fine k-weighted comb. If this is

the case, then there exist an integer h > 1 and a collection of monic polynomials
Po, Ph-i &k[t] with simple roots a;j ek*, i=0, h — l, j 1, degt(P;),
such that S is isomorphic to the surface SpOi,,,iphl c Spec(£[x][;y_i, yh-i\[z\)
defined by the equations

h-l
xz - yh-i[\Pi(yi-i) =0,

1=0

h-\ i

zyt-i - ytyh-2 \\ Pi(yi-i) 0, xyi - yt-iY\Pi(yi-i) °> 0 < i < A - 2,

/=i+l 1=0

j
yt-iyj - ytyj-i fl p'^-i) °> 0 < i < y < A - 2.

4.4. The proof is given in 4.5^1.7 below. We first observe that the condition is

necessary. Indeed, suppose that the Makar-Limanov invariant of S is trivial. We
let y (F, w) be a fine £-weighted tree such that S ~ Sy, and we let i : k <—> k
be the injection of k in an algebraic closure k. Then the Danielewski surface S^

S xspeciT) Spec(ÄJ) ->¦ X~k X xspec(jt) Spec(^) is X^-isomorphic to the abstract

Danielewski surface Sv xspec(jt) Spec(^) defined by the tree y considered a fine
^-weighted tree via the weight function i o w : E(T) --* k. Since every nontrivial
Ga^-action on S lifts to a nontrivial action of Gaj( Ga,k ^Spec(k) Spec(^) on S^,

we conclude that Sk has a trivial Makar-Limanov invariant too. Thus the tree y is a

comb by virtue of Theorem 5.4 in [4].

4.5. Conversely, the same argument shows that if S is isomorphic to an abstract
Danielewski surface Sy defined by a fine ^-weighted comb y, then Sk has a trivial
Makar-Limanov invariant. Unfortunately, in general, there is no guarantee that a

given Ga ^-action on S^ appears as the lifting of an action of Ga,k on S. Therefore,
to show that the condition is sufficient, we must proceed in a different way. We will
exploit the fact that S is isomorphic to an embedded surface Sy defined by a fine

^-weighted comb y to construct two explicit A1-fibrations on S with distinct general
fibers.



Vol. 81 (2006) Embeddings of Danielewski surfaces in affine space 71

4.6. By construction, a Danielewski surface S is isomorphic to A^ if and only if it is

isomorphic to an abstract surface Sy defined by a fine ^-weighted chain y. In this case

it is also isomorphic to the surface S{eo] defined by the trivial tree with one element
{eo}- More generally, it follows from Theorem 3.10 in [4] that every Danielewski
surface S qt à}x isomorphic to an abstract Danielewski surface Sy defined by a fine

^-weighted comb y is also isomorphic to a surface Sn defined by a fine ^-weighted
combyo (I\ wo) ofheight/? > 1, with dorsal chain Cr {eç, <. e\ <¦¦¦<. e^_i},
satisfying the following properties:

a) The root eo of F as at least two children.

b) For every i 0, ...,h — 2, wo(e;e;+i) 0 G k.

c) There exists eh G Ch(eh-i) such that wo(éh-ieh) 0 G k.

By definition, the restriction of the canonical morphism ijr : Svo —>¦ A^ to an open
subset Sf Spec(A[7}]) corresponding to a leaf e-um of F at level m, > 1 is

induced by the section wq {èmi_\eumi)xmi~l +xm T\. Thus, by applying the procedure
used in the proof of Lemma 3.5 to this comb yo, we obtain a fine ^-weighted comb

y0 (F, wo) with the same underlying comb F as yo such that ù>o(eï~e7+ï) 0 G k
for every i 0, h — 1.

4.7. By construction of the tree yo, there exists monic polynomials Po, Ph-i &

k[t], of degrees deg(Pj) degr(e;) — 1, with simple roots àgjgï g k*, e g Ch(e,) \
{ei+i} respectively, such that Fe.(yo) Xe;iP;(Xe;i) for every i 0, ...,h — 1.

Letting y_i Xei, yo Xeo, yu-i ^eh2, z Xehl, we conclude that
the embedded Danielewski surface Sy0 is X-isomorphic to the surface SP0)m)Phl of
Theorem 4.3. This shows that every abstract Danielewski surface Sv qt A^ defined

by a fine ^-weighted comb y is X-isomorphic to a surface SpOtmtph_1 c A^+1.
Thus, to complete the proof of Theorem 4.3, it suffices to show that a surface S

Spo,—,.Pft-i Spec(5) has a trivial Makar-Limanov invariant. A similar argument as

in 2.10 shows that B ®k[z] k[z, z"1] — k[z, z l][yh-i\- This means equivalently that
the projection 7T2 prz |^ : S ->¦ Z Spec(^[z]) in an A1 -fibration restricting to the

trivial line bundle A^ Spec(£[z, z~1][yh-2l) over Z*. Since the general fibers
of the two projections it\ prx |^ : S ->¦ X Spec(^[x]) and jt2 : S -* Z do not
coincide, we conclude that S has a trivial Makar-Limanov invariant. This completes
the proof of Theorem 4.3.

Remark 4.8. The same argument as in the proof of Proposition 2.15 applied to the

fibration n2 shows that the locally nilpotent derivation zhdyh2 of B ®k[z] ^k> z 1] —

k[z, z~lMyh-2\ extends to a locally nilpotent derivation of B, induced by a triangular
£[z]-derivationof k[z][yh-2, ¦ ¦ ¦, y-i,x]. This proves that every Danielewski surface
S with a trivial Makar-Limanov invariant can be embedded in an affine space A^ in
such a way that at least two algebraically independent Ga^-actions on S extend to
Ga ^-actions on A^.
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Nonconjugated Ga-actions on a Danielewski surface. By a result of Daigle [2],
all the Ga^-actions on a Danielewski surface SPi\ {xz — P(y)} are conjugated
under the action of the automorphism group Aut(S>,i) of Spti.

4.9. This means that for every pair of nontrivial locally nilpotent derivations d\ and

92 of B r(Spti, Osp i), there exists a ^-algebra automorphism 4> of B such that

0(Ker(3i)) Ker(92)- This implies in particular that the fibers of corresponding
quotient A1-fibrations tz\ : SP%\ --* Aj, and H2 : Spt\ --* Aj, have the same scheme-

theoretic structures. By 4.7 above, a Danielewski surface S SP0)m)Phl Spec(5)
admits two A1-fibrations tz\ : S --* X Spec(£[x]) and H2 : S --* Z Spec(k[z]).
Moreover n2 restricts to the trivial line bundle over Z* Spec(£[z, z~1]), and a

similar argument as in Lemma 2.13 shows that the fiber (n^1 (0))red decomposes as

a disjoint union of curves isomorphic to the affine line A],. However, we have the

following result.

Lemma 4.10. If h > 2, then jt2 : S SP0)m)Phl -> Z is not a Danielewski surface
over Z.

Proof. It suffices to show that the intersection of the fiber jt2
1

(0) with the complement
of the fiber jt11(0) is a nonreduced scheme. By (2.2), the defining ideal /* of S \
n^1 (0) ~ A^ in k[x, x~1][}'_i, yh-2~\[z\ is generated by the polynomials c\

yi - x-1yi_1n|=0JP/(y/_1), i=0,...,h-2mdd z- x-hh-iUi^oPiiyi-i)-
We conclude recursively that there exists a polynomial R e k[x, x~1][y_i] such that

modulo co, ch-2- Since the polynomial Pq is nonconstant (see 4.6),

(S \ Tt^1 (0)) n TT^1 (0) ~ Spec (k[x, x"1] [y_i, yh_2, z]/(h, z))

is clearly nonreduced whenever h > 2. This completes the proof.

4.11. The above result implies that if h > 2, then the degenerate fibers of tz\ and H2

have different scheme-theoretic structures. Therefore two GajJt-actions on SP0)m)Phl
with associated quotient A1 -fibrations tz\ : S --* X and JT2: S —* Z respectively can
not be conjugated in the sense of (4.9) above. This leads to the following result.

Theorem 4.12. A Danielewski surface S ¦£. SPi\ with a trivial Makar-Limanov
invariant admits two algebraically independent nonconjugated Ga,k-actions.

As a consequence of this description, we obtain the following characterization of
ordinary Danielewski surfaces Spt\.
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Corollary 4.13. Let n : S —* X Spec(k[x]), where k is an arbitrary field of
characteristic zero, be a Danielewski surface with a trivial Makar-Limanov invariant.
Then the following are equivalent.

a) S admits afreeGa,x-action.

b) S is isomorphic to a surface Spt\ {xz — P(y) 0} in A3k Spec(k[x, y, z\),
where P is a nonconstant polynomial with deg P simple roots.

c) The canonical sheaf ws is trivial.

d) All Ga,k-actions on S are conjugated.

Proof. The equivalence b)-o-d) follows from [2] and the above discussion. All the

other equivalences can be obtained in the same way as in Corollary 5.7 in [4].
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