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Présentations duales des groupes de tresses de type affine A

F. Digne

Abstract. Artin—Tits groups of spherical type have two well-known Garside structures, coming
respectively from the divisibility properties of the classical Artin monoid and of the dual monoid.
For general Artin—Tits groups, the classical monoids have no such Garside property. In the present
paper we define dual monoids for all Artin—Tits groups and we prove that for the type A, we
get a (quasi)-Garside structure. Such a structure provides normal forms for the Artin—Tits group
elements and allows to solve some questions such as to determine the centralizer of a power of
the Coxeter element in the Artin—Tits group.

More precisely, if W is a Coxeter group, one can consider the length /g on W with respect to
the generating set R consisting of all reflections. Let ¢ be a Coxeter element in W and let P, be
the set of elements p € W such that ¢ can be written ¢ = pp’ with Ig(c) = Ir(p) + Ir(p’). We
define the monoid M (P.) to be the monoid generated by a set P in one-to-one correspondence,
p — p, with P, with only relations pp’ = p.p’ whenever p, p’ and pp’ are in P, and
Ir(pp") = Ir(p) +1r(p"). We conjecture that the group of quotients of M (P,) is the Artin—Tits
group associated to W and that it has a simple presentation (see 1.1 (ii)). These conjectures are
known to be true for spherical type Artin—Tits groups. Here we prove them for Artin—Tits groups
of type A. Moreover, we show that for exactly one choice of the Coxeter element (up to diagram
automorphism) we obtain a (quasi-) Garside monoid. The proof makes use of non-crossing paths
in an annulus which are the counterpart in this context of the non-crossing partitions used for
type A.

Mathematics Subject Classification (2000). Primary 20F36 ; Secondary 20F05.

Keywords. Garside monoid, dual monoid, non-crossing partitions, affine braids.

1. Introduction

Soit (W, S) un systeme de Coxeter quelconque (avec S fini). Soit R ’ensemble des
réflexions de W (c’est-a-dire des conjugués des éléments de S). Appelons “longueur
de réflexion” [g(w) d’un élément w € W le nombre minimum de termes dans une
décomposition de w en produits de réflexions. Nous dirons que v € W divisew € W,
noté v < w, si w = vv’ avec [g(w) = Ig(v) + Ig(v'). Comme /g est invariant par
conjugaison ceci est équivalent a w = v”v avec Ig(w) = [g(v") + [ (v), autrement
dit il n’y a pas lieu de distinguer entre diviseurs a gauche et a droite. La relation <
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est clairement une relation d’ordre. Fixons un élément ¢ de Coxeter, ¢’est-a-dire un
produit de tous les €léments de S dans un certain ordre ; considérons I’ensemble P, des
diviseurs de ¢ et M (P;) le monoide engendré par un ensemble P, = {w | w € P}
en bijection avec P, avec comme relations w.w’ = ww’ si w et w’ sont des éléments
de P, tels que ww’ € P etlg(ww’) = Ig(w) + [g(w’) (cf. [BDM, section 2] et [B,
0.2 et 0.4]). La longueur Ig s’étend 2 M (P.) en une longueur additive. Les notions
de divisibilité a gauche et A droite dans le monoide étendent la relation de divisibilité
de P,. Nous conjecturons

Conjecture 1.1. (i) Le groupe des fractions de M (P.) est isomorphe au groupe des
tresses d’Artin-Tits associé a W.

(i1) Le monoide M (P.) (resp. son groupe de fractions) a la présentation suivante
comme monoide (resp. comme groupe) : I’ensemble des générateurs est {r | r €
R N P} et pour chaque couple (r,1) € R? tel que rt divise ¢ on a la relation
r.t =rtr.r.

Cette conjecture a été prouvée pour les groupes de Coxeter de type A, dans [BKL]
et [BDM] et pour les autres types sphériques dans [B]. Dans cet article nous allons
prouver cette conjecture dans le cas out W est de type A,. Nous montrons de plus que
pour exactementun choix ¢ de1’élément de Coxeter (a automorphisme dudiagramme
pres) le monoide obtenu est un treillis pour la divisibilité (structure quasi-Garside),
ce qui implique I’existence de formes normales dans son groupe de fractions et donne
ainsi entre autres conséquences une nouvelle solution au probleme des mots dans les
groupes d’Artin-Tits de type A,. Les preuves utilisent en particulier 1’introduction
d’objets “sans croisements” dans une couronne, et leur interprétation comme tresses
dans un cylindre.

Les symétries des présentations obtenues définissent des automorphismes du
groupe d’ Artin—Tits dont on peut calculer les points fixes grice a la théorie des struc-
tures de Garside. Cela permet par exemple d’obtenir le centralisateur d une puissance
de I’é1ément de Coxeter cg, qui s’avere étre un groupe d’ Artin—Tits de type B.

Dans la section 2 nous étudions la longueur / g et déterminons P, pour un groupe de
Coxeter de type A. Nous en donnons une interprétation topologique par des chemins
sans croisement dans une couronne. Dans la section 3 nous donnons une présentation
du monoide dual M (P.). Dans la section 4 nous prouvons la conjecture 1.1 (i) dans
le cas A. Dans la section 5 nous prouvons qu’on a une structure de Garside et en
donnons un certain nombre de conséquences.

2. Longueur de réflexion ; diviseurs d’un élément de Coxeter

On sait par Dyer [D] que la longueur de réflexion d’un élément w d’un groupe de
Coxeter quelconque est égale au nombre minimum de termes qu’il faut effacer dans
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une suite minimale d’éléments de S de produit égal a w pour que le produit des termes
restants soit égal a 1. C’est aussi la longueur d’un plus court chemin (croissant) de 1
a w dans le graphe de Bruhat du groupe de Coxeter. Ceci montre immédiatement par
exemple que la longueur de réflexion d’un élément de Coxeter est égal a sa longueur
de Coxeter. Cela montre aussi que la restriction a un sous-groupe parabolique de [
est égale a la longueur de réflexion dans ce sous-groupe. Soit W un groupe de Coxeter
de type A,_1. Pour étudier M (P.) nous avons besoin d’une formule explicite pour [
qui nous permettra en particulier de déterminer quels sont les diviseurs d’un élément
de Coxeter. Pour cela nous utilisons une représentation de W comme sous-groupe du
groupe des permutations de Z. Pour expliquer cette interprétation nous introduisons
les définitions suivantes :

Définition 2.1. e Nous dirons qu’une permutation de Z est n-périodique si elle vérifie
w(x 4+ n) = w(x) 4+ n pour tout x € Z.

e Si w est une permutation r-périodique de Z, nous appelons décalage de w
Pentier 2 3"V (w(x) — x).

On sait (cf. par exemple [S]) que W s’identifie aux permutations n-périodiques de
Z de décalage nul. On peut le voir de 1a fagon suivante : le groupe de Coxeter affine de
type A,_jestle produit semi-direct du réseau des racines de type A,_1 par le groupe
de Coxeter de ce type. Autrement dit W = &, X {(a;) € Z" | " a; = 0}. Notons w
I’'image dans &, de w € &, x Z". On peut identifier le groupe &, X Z" au groupe des
permutations n-périodiques de Z, I'image de k € {1, ...n} par w = w.(ay, ..., a,)
étant w(k) + nag. Alors le décalage d’une permutation n-périodique est donné par
le morphisme w.(ai, ..., ay) +— a1 + -+ + a, et W s’identifie au noyau de ce
morphisme.

Si w est une permutation n-périodique de Z, 1’ensemble des orbites de w est
invariant par translation de n. Rappelons qu’on appelle support d’une permutation w
le complémentaire dans Z de I’ensemble des points fixes de w.

Définition 2.2. Soit w une permutation n-périodique de Z ; nous appelons décalage
d’une orbite O de w I'entier 1 > xeon(l,...np(Wx) — x).

Le décalage de O est donc ’entier / tel que pour touta € O onaitwk(a) = a+hn
ou k est le cardinal de I’image de I’orbite modulo ». Une orbite est finie si et seulement
si elle est de décalage nul. Le décalage d’une permutation n-périodique est la somme
des décalages de ses orbites, donc une permutation n-périodique de Z est dans W si
et seulement si la somme des décalages des orbites infinies est nulle.

On peut décomposer un élément de W en produit d’éléments de W ayant deux a
deux des supports disjoints. On s’intéresse aux décompositions maximales de cette
forme. Ceci nous amene a poser la définition suivante :
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Définition 2.3. (i) Nous dirons qu’une permutation n-périodique est un cycle si elle
n’a qu’une orbite non triviale a translation de n pres.

(i1) Nous dirons qu’'un élément de W différent de 1’identité est un pseudo-cycle si
la restriction de w a toute partie stricte stable de son support n’est pas dans W.

Toute permutation périodique est produit de cycles disjoints et cette décomposition
est unique a I’ordre preés. Mais un cycle n’est dans W que si son décalage est nul,
c’est-a-dire si les orbites de ce cycle sont finies. Tout élément de W est produit de
pseudo-cycles de supports disjoints, mais il n’y a pas unicité des pseudo-cycles ayant
des orbites infinies (voir par exemple 2.21 ci-dessous). Un pseudo-cycle ou bien est
un cycle, ou bien a toutes ses orbites non triviales infinies, de décalage total nul, et
dans ce cas toute sous-famille de ses orbites a un décalage total non nul.

Notation 2.4. e Un cycle sera représenté sous la forme (a, b, ¢, ..., ) ot h est
le décalage du cycle. Cette notation signifiant que a, b, c, ..., [ sont tous distincts
modulo n et que w envoie a sur b, b sur c, ... et ! sur a + hn. Pour simplifier les
notations, si le décalage est nul, nous omettrons I’indice [0].

o Nous représenterons toute permutation n-périodique de Z comme un produit de
cycles de supports disjoints non vides.

eOnposes; = (i,i+1)pouri =1, ..., n. Less; sontles générateurs de Coxeter
de W.

Avec ces conventions les réflexions sont les éléments (a, b) avec a etb quelconques
distincts modulo n. On obtient exactement une fois chaque réflexion si on impose de
plusa <betae{l,...,n}

Nous utiliserons a plusieurs reprises la formule suivante qui résulte d’un calcul
immédiat.

Lemme 2.5. On désigne par ay, ..., a; des entiers distincts modulo n et par h et k
des entiers quelconques. On a

(a1, ....ai,...,a)m(ar, aj + kn)
= (ait1,---,a, a1 +hn)ppapa, as, . .., ;)i

Définition 2.6. Pour toute partie T C Z invariante par translation de n, notons Wr
lg fixateur dans W du complémentaire de 7 et Wr le sous-groupe des éléments de
Wr n’ayant pas d’orbite infinie. Un sous-groupe du type Wr ou Wr sera dit “quasi-
parabolique”.

Remarquons que Wy et Wr sont des groupes de Coxeter de types respectifs A
etA si T est 'image de T modulo ~.

1711
IT|-1
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Notation 2.7. Pour w € W notons v(w) le nombre de classes modulo »n d’orbites de
w et notons « (w) le plus grand entier k tel que w = wiws ... wi olles w; € W sont
(des pseudo-cycles) de supports disjoints.

Remarquons que «(w) est le plus grand entier k tel que w soit dans le produit
direct de k sous-groupes quasi-paraboliques. On a « (w) < v(w).

La proposition suivante donne une formule explicite pour la longueur de réflexion
dans W.

Proposition 2.8. Pour w € W onalg(w) =n + v(w) — 2c(w).

Preuve. Onpose f(w) = n+v(w)—2«(w). Onmontre les trois propriétés suivantes :
(1) Si f(w) = 1,ilexister € Rtel que f(wr) = f(w) — 1.

2) Si f(w)y=0alorsw =1.

(3) f(w) <Ir(w).

Les propriétés (1) et (2) donnent I’inégalité Iz (w) < f(w), d’ou la proposition.

Prouvons (1). Si w a un cycle de la forme (a1, a2, ..., a)p avecl # 1, la
multiplication par r = (a1, a2), augmente v(w) et «(w) de 1 (cf. 2.5). Si tous les
cycles de w sont de la forme (a1)(s], soit w; un des facteurs différents de I'identité
dans la décomposition w = wy ... Wy(y) comme dans 2.7 ; comme la somme des
décalages des orbites de w; est nulle, il est produit d’au moins deux cycles (aj)(s] et
(a2)[x). Posons r = (a1, a2) ; on a (a1 (a2) k) (a1, a2) = (a1, az + kn)[p44). Donc
v(wr) =v(w) — letk(wr) = k(w),donc f(wr) = f(w) — 1.

Montrons la propriété (2) : Comme « (w) < v(w) < n,si f(w) estnul on doit avoir
v(w) = n = «(w). La premiere égalité prouve que chaque orbite est un singleton
modulo z et la deuxiéme prouve alors que chaque orbite est de décalage nul, donc
w=1.

Pour montrer la propriété (3) nous montrons que pour » € Retw € W on a
S (wr) < f(w)+ 1. Ceci implique par récurrence que si w est produit de k réflexions
ona f(w) <k.

Soitr = (a, b) une réflexion. Sia et b apparaissent modulo n dans la méme orbite
de w le lemme 2.5 montre que v(wr) = v(w) + 1. D’autre part « (wr) > «(w), d’ou
le résultat dans ce cas. Si a et b sont modulo » dans deux orbites différentes du méme
pseudo-cycle w; de la décomposition w = wy . .. Wy(w), le méme lemme montre que
v(wr) = v(w) — leton ax(wr) = k(w). Si a et b apparaissent dans deux pseudo-
cycles distincts, alors de méme que précédemment v(wr) = v(w) — 1 et de plus wr
a une décomposition en produit de « (w) — 1 éléments, donc «k (wr) > «k(w) — 1, ce
qui donne bien f(wr) < f(w) + 1. O

Corollaire 2.9. Si w est dans un quasi-parabolique sa longueur de réflexion dans ce
sous-groupe est égale a sa longueur de réflexion dans W.
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Preuve. On a déja vu que la restriction de /g a un sous-groupe parabolique est la
longueur de réflexion dans ce sous-groupe, grace au résultat de Dyer. On peut aussi
voir que la formule de la proposition 2.8 donne la longueur de réflexion dans un
parabolique standard. Ceci donne le résultat dans le cas d’un quasi-parabolique de
type A. D’autre part, si un élément w est dans le quasi-parabolique de type P
fixant j 4 kn pour j dans une partie de cardinal m de [1, n] et pour tout k, les valeurs
de v(w) et « (w) diminuent de m dans le quasi-parabolique et n est remplacé par n —m
dans la formule donnant la longueur. Ceci prouve que [g se restreint bien aussi dans
ce cas, d’ou le résultat. a

Nous allons maintenant chercher quelles réflexions divisent un €lément de Coxeter
de W. La proposition suivante exprime un élément de Coxeter comme permutation.

Proposition 2.10. Soit ¢ un éiément de Coxeter de W, c’est-a-dire le produit des
générateurs de Coxeter dans un ordre arbitraire fixé ; alors il existe une partition en
deux parties non vides

{1,...,n}:{a,b,...,l}]_[{a,,@,...,x}
tellequea <b < - - <letax < p <--- < Xretque
c=(ab,....Dmk, ..., B -1

Preuve. 1’ensemble des générateurs de Coxeter est {s1, 52, .. ., s, } avec les notations
de24.0nac =s;si,...s,,oules indices i; sont tous distincts. Quitte & changer ¢
en ¢!, on peut supposer que dans la suite (Siys Siy, - .., 8i,) Iélément s1 est a droite
de s,,. Alors 51 commute avec tous les s; qui sont a sa droite sauf éventuellement s, qui
a son tour commute avec tous les éléments qui sont a sa droite sauf éventuellement
s3 etc. .. On peut alors réécrire ¢ comme un produit qui se termine par 515253 ... 5
pour un certain . On itere le procédé en commencant avec s; 1. Finalement on écrit
¢ sous la forme

(St Skp+1 -+ - Sn) Sk Shep_1 41+« - Skp—=1) + - (Sky Sky+1 + - - Sky—1) (5152 -+ - Sy —1),

avec 1 < k; < kp < -+ < kp < n qui est une perr/r\lutatiog\ de la forme vou-
lue : elle s’écrit (kh, kk—ly ey k])[_l](l, 2, ey k] ey kz, ey kh, ey n)[u, ou ki
signifie que k; ne figure pas. O

Notation 2.11. Dans la suite nous fixons un élément de Coxeter ¢ et posons
X ={a,b,....} +nZet B = {«,f,...,A} + nZ comme dans la proposition
précédente.

Nous allons démontrer :
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Proposition 2.12. Avec les notations ci-dessus, si x et y sont deux entiers distincts,
la réflexion (x,y) divise c si et seulement si x et y vérifient [’une des propriétés
suivantes :

i) xeXetye BouxeBetyeX.
) x,ye X,et|ly —x| <n.
(i) x,ye Bet|y — x| < n.
Preuve. On calcule c(x, y) dans tous les cas possibles.

Dans le cas (1), quitte a échanger les roles de x et y et a changer de représentants
des cycles de ¢, on peut supposer x = [ et y = « + n. Le produit c(x, y) vaut

(a,b,.... 1, A, ..., B, ) dont la longueur de réflexion vaut bien n — 1.
Si x et y sont dans X, on peut supposet x = a eton écritc = (a, b, ..., t,y +
kn,z,....Dpyp(A, ..., B, @)1 pour un certain k. Le produit c(x,y) vaut

b, ..., Oz, .. La+ n)p—g’, ..., «)—1. Comme v(c(x,y)) = 3, 0na

[r(c(x,y)) = n — 1 sietseulement si x(c(x, y)) est égal a 2, ¢’est a dire si on peut

regrouper les trois orbites en deux parties de décalages nuls (sinon « (c(x, y)) est égal

a1). On a donc «(c(x,y)) = 2 si et seulement si k = 0 ou k = 1, ce qui donne le
cas (ii).

On fait un raisonnement analogue si x et y sont dans & et on obtient le cas (iii).

O

Les calculs faits dans la preuve précédente montrent aussi que

Corollaire 2.13. Soit s et t = n — s les cardinaux respectifs des images de X et &
modulo n; un élément de longueur Ig(c) — 1 divise c si et seulement §’il est d’une
des trois formes suivantes :

) (ar,a2,...,a5, s, 051, ...,a1) 00 (a;) et («;) sontdes sous-suites croissantes
Jormées d’éléments consécutifs respectivement de X et de B,

(1) (a1, a2,...,a7)(@rq1, ..., a9k, ..., B, a)[—1] avec (a;) suile croissante
d’éléments consécutifs de X,

(i) (a,b, ..., Dmer, =1, o ooy Crg1) (o, Ar—1, . .., a1)[=1] AVeC (&) Suite crois-
sante d’éléments consécutifs de E.

Pour donner la liste des diviseurs de ¢ nous avons besoin de la définition suivante.

Définition 2.14. On appelle diviseur élémentaire un pseudo-cycle de W de la forme
(ar,...,an, g, ...,a1) avec h > 0, etk > Oet h+ k > 2, ou de la forme
(a1, a2, ...,ap)p)(k, ..., a2, a1)[—1], avec b > 1 et k > 1, ou les a; sont dans
Xetlesojdans E,etolla; <ay <a3 < ---<ap<ay+tneta] <ay < -+ <
o < a1+ n.
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Remarquons qu’un diviseur élémentaire est un ¢lément de Coxeter d’un quasi-
parabolique de W : dans le premier cas il s’agit d’un quasi-parabolique de type
Apik—1, dans le deuxieme d’un quasi-parabolique de type Ap4i—1.

Nous allons donner une interprétation topologique des diviseurs de ¢ en termes
de chemins dans une couronne.

Figure 1. Deux réflexions sans croisement.

On considere une couronne dans le plan orienté. On fixe des points étiquetés
a, b, ..., 1 sur le cercle extérieur, dans I’ordre cyclique et on fait de méme sur le
cercle intérieur avec des points étiquetés «, ..., . Cette couronne peut &tre vue
comme le quotient par la translation de n» d’une bande infinie orientée ou les points
de X et de E respectivement sont marqués dans 1’ordre croissant sur chacun des deux
bords. Nous allons associer a toute réflexion une classe de chemins continus dans la
couronne.

Notation 2.15. A la réflexion (x, y) on associe la classe d’homotopie 2 extrémités
fixes de I'image dans la couronne d’un chemin continu joignant x a y dans la bande
(voir figure 1, la représentation n’est bien définie qu’une fois fixée I’identification du
quotient de la bande par les translations avec la couronne).

Avec cette notation on a :

Corollaire 2.16. Une réflexion divise [’élément de Coxeter c si et seulement si elle
peut étre représentée par un chemin sans auto-intersection dans la couronne.
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Ce corollaire est une constatation immédiate a partir de la liste donnée dans 2.12.

Pour pouvoir décrire tous les diviseurs d’un élément de Coxeter nous uti-
lisons la méme interprétation topologique. A un diviseur élémentaire de la forme
(a1,az,...,ap, , ..., a2, a1) nous associons la classe d’homotopie a extrémités
fixes du lacet composé des chemins associés aux réflexions (ap, a2), . .., (ap—1, an),
(ap, ap), (@, Ap_1), ..., (g, 1), (@1, ap) et a un diviseur élémentaire de la forme
(a1,az, ..., ap)py(ck, - - ., A, o1)[—1], DOus associons la classe d’homotopie a extré-
mités fixes de I'union de deux lacets ne se coupant pas et composés respectivement de
chemins associés aux réflexions (a1, a2), ..., (an—1, an), (an, a1 +n) et (o, dp—1),
ooy (a2, 1), (01, o — ) (voir figure 2).

a

Figure 2. La représentation graphique de c.

Remarque 2.17. On peut définir de la méme fagon une interprétation topologique de
tout pseudo-cycle. Les diviseurs élémentaires correspondent exactement aux pseudo-
cycles qui ont une représentation (lacet ou union de deux lacets) orientée positivement
et sans autointersection.

Définition 2.18. On dit que deux diviseurs élémentaires sont sans croisement s’ils
admettent des représentations sans intersection.

En particulier si deux diviseurs élémentaires sont sans croisement, un seul des
deux au plus a des orbites infinies car deux lacets d’image non triviale dans le groupe
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fondamental de la couronne et ayant tous deux leur origine sur la méme composante
du bord ont nécessairement une intersection.
Avec cette définition on peut caractériser les diviseurs d’un élément de Coxeter :

Proposition 2.19. Les diviseurs de [’élément de Coxeter ¢ sont exactement les pro-
duits de diviseurs élémentaires deux a deux sans croisement. La longueur d’un tel
produit est la somme des longueurs des facteurs et ces facteurs commutent deux a
deux.

La remarque qui précede la proposition implique alors qu’un diviseur de ¢ a zéro
ou deux orbites infinies (et celles-ci, si elles existent, sont I’une de décalage 1, I’autre
de décalage —1).

Preuve. Montrons d’abord 1’additivité des longueurs. Dans la formule donnant la
longueur, seul le terme « n’est pas toujours additif. Mais pour un élément qui a 0 ou 2
orbites infinies la décomposition en pseudo-cycles est unique, un des pseudo-cycles
étant formé de la permutation induite sur 1'union des deux orbites infinies. Dans ce
cas « est bien additif.

Pour prouver 1’assertion sur la forme des diviseurs de ¢ nous utilisons le lemme
suivant :

Lemme 2.20. Soient x et y deux entiers distincts et v un élément de W ayant 0 ou 2
orbites infinies.

(1) La réflexion (x,y) divise v si et seulement si elle divise un des pseudo-cycles
de v.

(1) La réflexion (x,y) divise un pseudo-cycle si et seulement si x et y sont dans
la méme orbite de ce pseudo-cycle ou si chacun d’eux est dans une des orbites
infinies de ce pseudo-cycle.

Preyve. Six estdans une orbite finie de v et y dans une orbite finie ou infinie distincte
de celle de x, alors le calcul de 2.5, appliqué avec a; = y, a; = x etk = 0, eten
faisant passer (x, y) dans le membre de droite, montre que v(v(x, y)) = v(v) — let
que la suite des décalages non nuls des orbites est la méme pour v et v(x, y). Donc
k(v(x,y)) = k(v) — 1 etlg(v(x,y)) = Ir(v) + 1, donc (x, y) ne divise pas v.
Réciproquement, si x et y sont dans le support d’'un méme pseudo-cycle de v, 2.5
appliqué avec a1 = x, a2 = yeth = Oetavecoubienk = 1l oubienk = 0
montre que (x, y) divise ce pseudo-cycle. Comme les longueurs des pseudo-cycles
de v s’ajoutent d’apres le début de la démonstration de la proposition, on en déduit
que (x, y) divise v. O

Nous prouvons maintenant, par récurrence descendante sur la longueur du divi-
seur, 1’assertion de la proposition 2.19 sur les diviseurs de c. Il y a exactement un
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diviseur de longueur n qui est ¢ lui-méme. Un diviseur de longueur k est le pro-
duit d’un diviseur v de longueur k + 1 par une réflexion (x, y) qui divise v. Par
hypothése de récurrence appliquée a v, les pseudo-cycles de v sont des diviseurs
élémentaires deux a deux sans croisement. D’apres le lemme précédent la réflexion
(x,y) divise v si et seulement si elle divise un des pseudo-cycles vy de v. On est
ramené a trouver tous les diviseurs de longueur [z (v1) — 1 d’un diviseur élémentaire
v1. Si vy a deux orbites infinies, ¢’est un élément analogue a ¢ dans le sous-groupe
quasi-parabolique correspondant au support de vy. Les diviseurs cherchés sont don-
nés par 2.13. Ce sont bien des produits de diviseurs élémentaires deux a deux sans
croisement, de supports inclus dans le support de v, donc aussi sans croisement avec
les autres pseudo-cycles de v. Si v1 n’a pas d’orbite infinie il s’écrit (ay, ..., an)
oulg(vy) = h — 1 et ses diviseurs de longueur /2 — 2 sont exactement les éléments
(a1, a2, ai—1,aj41, ..., ap)(a;, ai41, Giy2, - .., a;), ce qui est aussi de la forme an-
noncée.

Réciproquement, si v est un produit de diviseurs élémentaires deux a deux sans
croisement et si /g (v) < n on va montrer qu’on peut trouver une réflexion r telle que
rv soit de longueur [ (v) 4 1 et soit un produit de diviseurs élémentaires deux a deux
sans croisement. L'hypothese de récurrence montre alors que rv divise ¢, donc que v
divise c. Distinguons plusieurs cas pour v.

e Si v a une orbite infinie, il en a alors exactement deux, d’apres la remarque qui
suit 2.18 et ces orbites sont de décalages 1 et —1, donc les cycles correspondants
sontdelaforme (a1, az, ..., ap)pyet(a, ..., w2, d1)[—1]avecal < az < az <
e<ap <artneto] < ap < - < @ < a1 +n,les a; étant dans X etles «;
dans E ; d’autre part v doit avoir aussi une orbite finie car v # c. Tous les points
d’une telle orbite finie sont compris entre deux éléments consécutifs d’une des
deux orbites infinies, puisque les diviseurs élémentaires sont sans croisement. On
peut supposer que cette orbite est comprise dans [a1, ap]. Notons-la {b1, ..., b;}
avecal; < by <by < --- < by < ap. Ona alors

(a2, b1) (g, - . ., 02, a1)p-11(ar, az, ..., an)y (b, - - ., br)
= (g, ...,z ) —1ya1, b1, ..., by, az, ... ap)p-
Sivn’apasd’orbite infinie, il a au moins une orbite finie de laforme (ay, a3 . . . , ayp,
a, - . ., a2, 1) avec les mémes conventions que précédemment (cette orbite peut étre

un singleton). Quitte a échanger les roles de X et de E on peut supposer que i # 0.
Soit b1 le successeur de ay, dans X. 11y a trois cas :

e Siby =aj + nalors
(b1, ap)ar, az ..., ap, o, ..., a2, 1)
= (a1, az, ..., ap)(, . .., @2, A1)[-1]-
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e Sik # 0O etsilecycle de v dont le support contient by est de la forme
(b1,bo.... by, B,y ..., B2, B1)avechy < by < --- < by <bi4+netf <
Br < -+ < B < B1+n,les b; étant dans X et les B; dans E ; alors

(b1, ax)(ar, az, ..., an, iy ..., 2, 1) (b1, b2, ... by, B, oo, B2, B1)
= (a1, az,...,ap, b1, ba, ... by, By ooy B2, BL gy oo, ).

e Sik = 0etsile cycle de v dont le support contient de b1 est de la forme

(bl,b2‘~~7br7:8ﬂ’hH~’ﬁ2vﬁlybr+1,“'7bl)

aveC b4l < bpyp < - <by<ay <ap<by<by<---<b <by1+net
B1 < Py < -+ < By < P14+ n,les b; étant dans X et les B; dans E ; alors

(alvbl)(al’az’ --',ah)(blybz"'ybr’ﬁma "'aﬂ2$1317br+1"--’bl)
= (ar,az,...,ap,b1,b2, ..., by, By oo, B2, B1, brg1, ... By).

Dans tous les cas le produit est bien comme annoncé.

Enfin puisque les longueurs de diviseurs élémentaires deux a deux sans croise-
ments s’ajoutent et que de tels diviseurs commutent dans W, ils commutent aussi
dans le monoide. o

Remarque 2.21. Ilest faux quelalongueur d’un produit de pseudo-cycles de supports
disjoints est la somme des longueurs des pseudo-cycles, comme le montre I’exemple
suivant dans A, avecn > 5

w = [(D-112) 113 211l D 113 [11(6) [—-21].

La longueur de chacun des facteurs est égale a 4 (v = 3, « = 1, dans un quasi-
parabolique de type A;) et la longueur du produit vaut 6 car le méme élément s’ écrit

w = [(D—y@® =)l 21 (6) =211,

ce qui prouve que « vaut 3 (et on a v = 6) dans un quasi-parabolique de type As.
Par contre s’il y a au plus deux orbites infinies on a bien additivité des longueurs.

A tout diviseur w de ¢ on peut associer la partition périodique de Z dont les parties
sont les supports des pseudo-cycles de w.

Nous dirons que deux parties A et B de Z sont sans croisement si pour tous x et
y dans A et tous z et ¢ dans B il existe deux chemins sans intersection dans la bande
joignant respectivement x 2 y et z a t. On peut alors réexprimer 2.19 et 2.17 par :

Corollaire 2.22. Une partition périodique de Z dont foute partie infinie rencontre a
lafois X et B est associée comme ci-dessus a un diviseur (unique) de c si et seulement
si ses parties sont deux a deux sans croisement.
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3. Les monoides duaux

L’objectif de cette partie est de prouver la conjecture 1.1 (ii) pour le type A. Nous
suivons une démarche analogue a celle de [B] (oude [BDM]). En particulier nous nous
plagons dans le cadre des groupes positivement engendrés telle qu’elle est exposée
dans [B, 0.4 et 0.5]. Rappelons-en les résultats principaux dans un cadre plus général
car nous ne supposons pas que le nombre de générateurs est fini. Soit G un groupe
engendré comme monoide par un ensemble R. On dit que (G, R) est un groupe
positivement engendré. On définit la longueur dans [z (g) par rapporta Rde g € G
comme le nombre minimum de facteurs dans une décomposition de g en produit de
générateurs. On dit que i € G divise g € G a gauche et que k € G divise g a droite
si g = hk avec Ir(g) = Ig(h) + [r(k). On dit qu'un €élément est équilibré si ses
diviseurs a droite et a gauche sont les mémes.

Définition 3.1. Soit (G, R) un groupe positivement engendré, soit ¢ € G un élément
équilibré et soit P, I’ensemble des diviseurs (2 gauche ou a droite) de ¢. On considere
un ensemble P, = {w | w € P.} en bijection avec P, et on définit un monoide
noté M (P.) par la présentation suivante : 1’ensemble des générateurs est P, et les
relations sont w.w’ = ww’ pour tous les couples (w, w’) tels que w, w’ et ww’ sont
des diviseurs de ¢ et que [g(ww’) = Ig(w) + Ig(w’).

Les notions standard de divisibilité a gauche ou a droite dans le monoide M (F.)
étendent les notions correspondantes de divisibilité définies dans P.. Notons que les
atomes, i.e., les éléments différents de 1 qui ne sont pas produit de deux facteurs
différents de 1, sont des éléments de P..

Remarquons qu’on a un morphisme de monoides M (P.) — G donné par w +— w
pour w € P.. L’existence de ce morphisme permet facilement de prouver que M (P,)
a une propriété de simplifiabilité partielle a gauche et a droite (cf. [B, 0.4.4]) : si
am = bm ou si ma = mb aveca etb dans P. etm € M(P.) alors a = b. On a de
plus :

Proposition 3.2. Pour tout w € P, [’élément w' = cwe estdans P, et est Punique
élément de P, tel que w'.c = c.w. L’application w v+ w' définit un automorphisme
du monoide M(P.).

On appellera “conjugaison par ¢” I’automorphisme ainsi défini.

Preuve. Onac = xw aveclg(c) =Ir(w)+Ir(x). Comme c est équilibré, I’élément
x est aussi un diviseur de ¢ a droite, donc on peut écrire ¢ = w’'x avec Ig(w’) +
Ir(x) =Ig(c).Onaw = cwcletc=wx =xw,dotlcw=wxw=uw.c
L’application w +> w’ définit un morphisme de monoides. On a un morphisme en
sens inverse en faisant un raisonnement analogue en partant de w’. D’ou le résultat.

O
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Notons encore la propriété générale suivante de M (P,) :

Proposition 3.3. Tout élément de M (P.) divise une puissance suffisamment grande
de c.

Preuve. Tout élément de M (P,) s’écrit w; ...w; pour un certain k, ol les w; sont
des éléments de P.. On montre par récurrence sur k que w; ... w, divise c* : par
définition les éléments de P divisent ¢, donc il existe x € P, tel que wyx = c. Par
320onaw; ... wpx = cwj...w, ;oulesw]sontdes éléments de P.. Par hypothése
de récurrence w/ ... w}_; divise ¢¥~1, d’olt Ia proposition. a

Remarquons que par définition la longueur /r s’étend en une fonction additive
sur M (P,). Remarquons aussi que les diviseurs de ¢ dans M (P,) sont exactement les
éléments de P.. Les éléments r € P, tels que r € R sont les atomes du monoide
M(P,).

Revenons 2 la situation du groupe de Coxeter W de type A,_1 et appliquons les
constructions précédentes a un élément de Coxeter ¢ fixé de W comme dans la section
précédente, dont on garde les notations.

Nous prouvons maintenant dans ce cas la conjecture 1.1 (ii) :

Proposition 3.4. Le monoide M (P.) est engendré par les r oii r est une réflexion qui
divise c avec comme relations
r.t=rtr.r 3.5)

sir ett sont deux réflexions distinctes telles que rt divise c.

Remarquons qu’un cas particulier de ces relations est que r.t = t.r sirt divise ¢
et que r et ¢t commutent.

Preuve. La preuve suit les mémes grandes lignes que celle de [B, 2.1.4]. Le monoide
M (P.) est engendré par les r ol r est une réflexion qui divise ¢ et les relations 3.5 sont
vraies dans M ( P.). Il suffit de voir que ces relations impliquent les autres, ¢’est-a-dire
que pour tout w € P, on peut passer d’ une écriture de w de longueur /g (w) a une
autre uniquement par les relations

r.s = (rsr).r 3.6)

si r et s sont deux réflexions distinctes telles que rs divise c. Prouvons ceci par
récurrence sur [p(w). Silgp(w) = 1 il n’y a qu'une écriture de longueur minimale de
w. Dans le cas général il suffit de prouver que sit € Rett < w € P alors a partir
d’une écriture minimale de w fixée et par application des relations 3.6 on peut obtenir
une écriture minimale de w commengant par 7. L’hypothese de récurrence permet
alors de conclure. Iélément w, divisant ¢, est un produit de diviseurs élémentaires
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comme dans 2.19. On fixe une €criture minimale de w obtenue par concaténation
d’une écriture minimale de chaque diviseur élémentaire. Par 2.20 une réflexion ¢
divise w si et seulement si elle divise un des diviseurs élémentaires de w. Comme
deux réflexions qui interviennent dans les écritures de deux diviseurs élémentaires de
w distincts commutent entre elles, ¢+ commute avec les réflexions qui interviennent
dans les écritures minimales des autres diviseurs élémentaires. On est donc ramené a
montrer le résultat pour un seul diviseur élémentaire. Si ce diviseur est un élément de
Coxeter d’un groupe de type A (c’est-a-dire a toutes ses orbites finies) le résultat est
connu (cf. [B] et [BDM]). On est ramené au cas d’un élément de Coxeter d’un groupe
de type A. 11 suffit donc de prouver le résultat pour ¢ lui-méme. Quitte A faire une
permutation circulaire des réflexions élémentaires, ce qui revient a une conjugaison
donc laisse invariantes les relations 3.6, on peut ramener ¢ a étre de la forme (cf.
preuve de 2.10)

¢ = (SkySkp+1 - - - Shpy1=1) (Shy_1 Skp—_1+1 - - - Shy—1) + - - (152 + + - Sy —1)

avecl = ko <ky <kpy < - <kp <kpp1 =n+1lets; = (i,i 4+ 1). On part de
cette écriture et on veut faire apparaitre ¢ & gauche de ¢ par application des relations
3.6. En fait il suffit de faire apparaltre ¢ dans une écriture de c¢; on peut ensuite
le ramener a gauche par application des relations 3.6. Chaque (s, Sk, +1 .. - Sk, —1)
est un élément de Coxeter d’un groupe de type A, donc on peut faire apparaitre
a gauche ou a droite, par application des relations 3.6 n’importe quelle réflexion
de support inclus dans [k;, k;11]. On en déduit que si ki1 < a < k; < k; <
b < kji1, on peut faire apparaitre dans I’écriture de ¢ par application de 3.6 le
produit (k;, b)(k;_1, k;) . .. (ki1, ki) (k;, @) quiest]’écriture d’un élément de Coxeter
d’un groupe de type A, donc on peut faire apparaitre (a, b) dans 1’écriture de cet
élément. Le méme type d’argument montre qu’on peut faire apparaitre (b, a + n)
sous les mémes hypothéses, en faisant apparaitre le produit (b, 1 + r) a droite du
produit (sk; . . - Skyyy) - - - (Sk; - - - Sk; ;) €L (1 +n, a+n) = (1, a) a gauche du produit
(Sk; =+~ Skyyq—1) + - (Skp -+ - Sk —1)-

Il reste & voir qu’on peut faire apparaitre toute réflexion 1 = (a, @) ona € X
et € E. Comme c est la translation d’une position dans le sens croissant de X
et d’une position dans le sens décroissant de E, il conjugue (a, o) sur (a’, &) ol
a’ est translaté de a dans X d’une position dans le sens croissant et o’ est translaté
de « dans B d’une position dans le sens décroissant. Donc (a, ) peut étre ramené
par conjugaison par une puissance de ¢ sur une réflexion d’une des formes (a, b) ou
(a,b—n),avecl < a, b < n, et par la premicre partie de cette démonstration on sait
qu’on peut faire apparaitre une telle réflexion dans une écriture de ¢ par application
des relations 3.6. La conjugaison par ¢ est aussi une suite d’applications de 3.6, d’ou
le résultat. ]
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4. Présentations duales pour les groupes d’Artin-Tits affines de type A

Nous gardons les notations des deux sections précédentes, en particulier ¢ est un
élément de Coxeter du groupe de Coxeter W de type A,—1. Le premier but de cette
section est de prouver le théoréme suivant (¢f. conjecture 1.1 (1)) :

Théoreme 4.1. Le groupe de fractions G(Pc) de M(Pc) est isomorphe au groupe
d’Artin-Tits de type A, _1.

Nous noterons B(A,_1) le groupe d’ Artin—Tits de type A,_1. Il est engendré par

$1,582, ..., 8y, avec comme relations §;8;4+18; = §;418;8;41pouri =1,...,n,si0n
pose ;41 = S1,ets;s; =s;8; 811 # j=£1 (mod n). Pour prouver le théoréme 4.1 on
montre d’abord que dans G(P,) les €éléments s, .. ., s, vérifient les mémes relations

de tresses. Ceci définit un morphisme B(An_l) — G(P.). On trouve ensuite dans
B(A,_1) des éléments dont les images par ce morphisme sont les générateurs r de
G(P.) et qui vérifient les relations 3.5, ce qui prouve la bijectivité du morphisme.
Pour cette deuxiéme étape on utilisera I’interprétation de B(A,_1) comme groupe
fondamental.

Proposition 4.2. L’application s; — s; pouri =1, ..., n se prolonge en un homo-
morphisme B(An_1) — G(P.).

Preyve. Cela revient a montrer que dans G(Pc) on a s;5;,15; = §;,15;5;,1 pour

i=1...,nets;s; =s;8;81i,j €[L,n]et]i —j| =2 Par34onas;s; ) =
s's; = 8,418,008 = (i,i +2). Onen déduit s; 5,5, 1 = 5;,15's; = 5;5;,15;.On
aaussipar 3.4 5;5; = s;5; 81 |i — j| = 2. O

Avant de montrer que ce morphisme est un isomorphisme, nous rappelons I’in-
terprétation de B(A,_1) comme sous-groupe du groupe de tresses 2 n brins dans C*
(cf. [GL] et [A]). On considere un r-uplet de points de C*. Le groupe des tresses
dans C* de base ce n-uplet (“tresses a n brins” dans C*), est isomorphe au groupe
d’ Artin-Tits B(B;,) de type B,. L’application qui associe a une telle tresse le nombre
de tours total des brins autour de 0 est un morphisme a valeur dans Z. Le groupe des
tresses de type A,_1estle noyau de ce morphisme. Notons aussi qu’on peut consi-
dérer le groupe des tresses a n brins dans C* de base le n-uplet (x1, ..., x,) comme
le sous-groupe du groupe des tresses a n + 1 brins dans C de base le n 4+ 1-uplet
(0, x1, ..., x,) tel que le brin issu de I’origine soit trivial (tresses pures relativement
a un brin fixé).

Nous nous plagons dans le cadre de 2.15 et nous choisissons comme n-uplet de
base (a,b,...,l,«, ..., X) comme dans 2.15. Nous associons a chaque r ou r est
une réflexion de P, une tresse de B(A,_1) la facon suivante : r est représentée par
un chemin y dans la couronne, sans auto-intersection, reliant  a j ou i et j sont les



Vol. 81 (2006) Présentations duales des groupes de tresses de type affine A 39

images dans la couronne de deux points de X U E. On associe a ce chemin la tresse
ou tous les points sont fixes sauf les deux points partant respectivement de i et j
qui suivent y en sens inverse et s”“évitent par la droite” si I’orientation du plan est
choisie dans le sens horaire ce que nous supposerons dans les figures qui suivent. Plus
précisément, on peut supposer que y estune application différentiable de [0, 1] dans la
couronne telle que les tangentes en O et 1 soient orthogonales au bord de la couronne.
Soit 71(¢) un vecteur normal dans le sens direct 2 ¥ en y (¢). On considere la tresse oll
tous les brins sont fixes sauf un brin partant de i donné par ¢ — y (¢) + & sin(w ) (t)
et un brin partant de j donné par ¢t — y (1 — ) — esin(m (1 — 1))n(l — ) ou & est
assez petit pour que la tresse soit dans la couronne.

Proposition 4.3. L'application que nous venons de définir se prolonge en un isomor-
phisme de G(P.) dans B(A,—1) inverse de ’homomorphisme défini par 4.2.

Preyve. 11 faut voir que les relations 3.5 sont vérifiées par les images des éléments r.
On déduit de 2.19 qu’il y a trois types de couples (r, 1) € R? tels que r¢ divise c.

e Sirett correspondent a des chemins sans intersection r et ¢t commutent et il est
clair que leurs images dans B(A,_1) commutent aussi.

e Sir=(i,j)ett = (j,k)oui, jetksontdeux a deux distincts modulo » et si
i, j, k sont les sommets d’un triangle curviligne direct dans la bande, la relation
est (i, j).(J, k) = (1, k).(i, j). Cette relation est vérifiée par les tresses images :
si nous notons encore i, j et k les images respectives dans la couronne des
points i, j et k, les éléments (i, j), (J, k) et (i, k) correspondent a des chemins
respectivementde: a j de j a ketde k a i formant le bord d’un triangle curviligne
direct inclus dans la couronne et la relation pour les tresses correspondantes n’est
autre que la relation classique pour les tresses a trois brins (voir figure 3) dans
le groupe de tresses de C* (ou de C).

e Sir = (x,8 ett = (x —n, & avecx € Xeté € &, la relation est
(x,8).(x = n, &) = (x+n,&).(x, §). Larelation correspondante est vraie dans
B(An_l) : on considere I’automorphisme de M (P,) induit par I’identité sur X
et la translation de » sur E. La relation revient a dire que (x, £).(x —n, §) est

invariant par cet automorphisme. Dans B(A,_1) on considére I’automorphisme
induit par une isotopie qui est I’identité sur le bord extérieur de la couronne et fait
tourner I’ autre bord de la couronne d’un tour dans le sens positif. L’ application de
I’énoncé est compatible avec ces automorphismes. On peut supposer x € [1, n];
en appliquant une puissance convenable de ces deux automorphismes on peut
ramener & dans [1, n] ; la relation résulte alors de la figure 4 qui permet de voir
I’invariance cherchée. o

Les propositions 4.2 et 4.3 prouvent le théoreme 4.1.
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Figure 4. (x,&).(x,& +n).
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Nous avons ainsi défini pour chaque choix d’un élément de Coxeter ¢ un sous-
monoide M(P.) de B(A,_1). Deux tels monoides correspondant a des ensembles
{a,...,l}et{a, ..., A} de mémes cardinaux respectifs sont isomorphes. L’échange
de X et de E est aussi un isomorphisme (qui se traduit dans la représentation géomé-
trique par une rotation de 7 de la bande). On en déduit que la classe d’isomorphisme
de M (P.) ne dépend que de la partition de n en | X N [1, n]| 4 |E N [1, n]|. Récipro-
quement :

Théoreme 4.4. L’application qui a c associe 'ensemble {|X N [1, n]|, |EN[1, n]|}
induit une bijection des classes d’isomorphisme des monoides M (P;) de la section 3
sur les partitions de n en deux parties.

Ce théoreme résulte des considérations qui précedent et de la proposition suivante
qui montre que | X N[1, n]| et |EN[1, n]| sont déterminés par I’action de la conjugaison
par ¢ sur les atomes.

Proposition 4.5. L’orbite par la conjugaison par ¢ d’un atome (i, j) est finie de
cardinal | X N [1, n]| (resp. |E N [1, n]|) sii et j sont tous deux dans X (resp. tous
deux dans B) et infinie sii € X et j € E.

Preuve. Par 3.2, si r et #/ sont des réflexions de P. on a rc = cr’ si et seulement
si re = ¢r’. On a vu dans la démonstration de 3.4 que la conjugaison par ¢ revient
a décaler X d’une position dans le sens croissant et 2 d’une position dans le sens
décroissant. On en déduit le résultat. O

5. Une structure a la Garside pour les groupes d’Artin-Tits affines de type A

Gardons les notations des sections précédentes. Nous allons étudier les propriétés
de la divisibilité dans P, dans le cas ou ¢ = s1s52...5,. Dans ce cas on a ¢ =
(2,3, ..., m)p(1)[=17 et les ensembles E et X sont respectivement & = {z € Z |
z=1 (mod n)}etX ={z€Z|z#1 (mod n)}.

La propriété fondamentale du monoide M (P;) dans ce cas (théoréme 5.4) est une
conséquence de la proposition suivante :

Proposition 5.1. Si ¢ = s1...s,, deux atomes quelconques de P. ont un ppcm
dans P..

Preuve. Considérons deux atomes r = (x, y) etr’ = (x/, ¥’). On sait que r (resp. r’)
divise un élément p € P. si et seulement si x et y (resp. x’ et y’) sont dans la méme
partie de la partition associée a p comme dans 2.22. 1l y a deux cas.
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e Sir et r’ sont sans croisement, ils commutent et rr” est dans P, par 2.19. Dans

la décomposition d’un multiple commun m de r et ’ en produit de diviseurs
élémentaires, ou bienr et 7’ divisent deux diviseurs élémentaires de m différents
et rr’ divise alors m, ou bien r et r’ divisent le méme diviseur élémentaire ¢’ de
m qui est un élément de Coxeter d’un sous-groupe quasi-parabolique W’ et on
conclut que r7’ divise ¢’ soit par 2.19 si W’ est de type A soit par [BDM, 1.8] si
W’ est de type A. Donc le ppcm de r et r’ existe et vaut 7’

o Siretr’ secroisent (i.e. ne sont pas sans croisement), supposons x < y,x’ < y’

et x et x’ dans [1, n]; si m est un multiple commun de r et 7/, alors {x, y} et
{x’, ¥'} ne peuvent pas étre dans deux parties distinctes de la partition associée a
m car ces deux parties ne seraient pas sans croisement. Donc il existe un diviseur
élémentaire m’ qui divise m et qui est multiple de r et ', Distinguons trois cas.

Si ensemble {x, y, x’, ¥’} N X est inclus dans un intervalle de longueur stric-
tement inféricure a n, la partition dont les seules parties non triviales sont
{x,y,x', ¥’} + kn avec k € Z définit un élément de Coxeter ¢’ d’un quasi-
parabolique de type A.

Si ’ensemble {x, y, x’, ¥’} N X n’est pas inclus dans un intervalle de longueur
strictement inférieure a n et si {x, y, x’, ¥’} N E est non vide, la partition dont
la seule partie non triviale est {x, y, x, y’} + nZ définit un élément de Coxeter
¢’ d’un quasi-parabolique de type A.

Si ’ensemble {x, y, x’, '} N X n’est pas inclus dans un intervalle de longueur
strictement inférieure a n et si {x, y, x’, ¥’} N E est vide, notons ¢’ I’élément de
Coxeter d’un quasi-parabolique de type A défini par la partition dont la seule
partie non triviale est {1, x, y, x’, y'} + nZ et remarquons que la partie associée
a m’ étant infinie doit contenir 1.

Dans les trois cas 1’élément ¢’ divise m’ par 2.19 appliqué a m’ et il est multiple
de r etr’. C’est donc le ppcm de r et v’ dans P.. a

On peut alors appliquer la généralisation immédiate suivante de [B, 0.5.2] :

Théoreme 5.2. Soit (G, R) un groupe positivement engendré, soit c un élément équi-
libré et soit M (P.) comme précédemment. Supposons que deux éléments quelconques
de R ont un ppcm dans P.; alors la divisibilité a gauche et la divisibilité a droite
donnent a M(P.) deux structures de treillis.

Dans ce contexte on peut vérifier que les résultats de [BDM, section 2] et [B, 0.5]

s’appliquent.

Nous appellerons structure quasi-Garside une structure de monoide vérifiant tous

les axiomes de [B, 0.5.1] sauf la finitude du nombre d’atomes. Nos axiomes seront
donc :
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Définition 5.3. Un monoide M est dit quasi-Garside si
(1) Pour tout m € M le nombre de facteurs dans un produit égal a m est borné.
(i) M est simplifiable a gauche et a droite.

(111) La divisibilité a gauche et la divisibilit€ a droite donnent a M deux structures de
treillis.

(iv) Il existe un élément A (élément de Garside) dont 1’ensemble des diviseurs a
gauche est égal a ’ensemble des diviseurs a droite et engendre M.

L’axiome (i) signifie que le monoide est atomique au sens par exemple de [B,
0.2.2] ; il estéquivalent a I’existence d’une longueur / sur le monoide telle que I (ab) >
[(a) 4+ 1(b) pour tout couple (a, b).

Les axiomes (i), (ii) et (iv) étant vérifiés par un monoide défini comme plus haut
a partir d’un groupe engendré et dun élément équilibré, 1I’énoncé 5.2 devient :

Théoreéme 5.4. Sous les hypothéses de 5.2, le monoide M (P.) est un monoide quasi-
Garside avec ¢ comme élément de Garside.

Ce théoreme s’ applique en particulier a un élément c comme dans 5.1. Un tel choix
définit donc une structure quasi-Garside sur le groupe d’Artin—Tits de type An1.

Le résultat suivant montre que le choix de c fait dans 5.1 est & isomorphisme pres
le seul pour lequel la divisibilité a une structure de treillis.

Proposition 5.5. Si c est un élément de Coxeter d’un groupe de type A,_1, le monoide
M (P.) muni de I’ordre de la divisibilité a une structure de treillis (et est donc un
monoide quasi-Garside) si et seulement si [’un des deux ensembles B ou X est réduit
a un seul élément modulo n.

Preuve. 1’échange de E et X définit un isomorphisme des monoides correspondants.
D’autre part deux éléments de Coxeter tels que les ensembles X correspondants
ont méme nombre d’éléments modulo » sont conjugués, donc dans ce cas aussi les
monoides sont isomorphes. On en déduit par 5.1 que si E ou X a un seul élément
modulo 7, on a bien une structure de treillis. Inversement supposons que modulo 7,
a la fois E et X ont au moins deux éléments. Soient a < b dans X N [1, n] (resp.
a # B dans EN[1, n]). Les éléments (a, b) et (b, a + n) divisent (a, b)17(«)[-1] et
(a, b)[11(B)[=1) qui sont de longueur 3 et n’ont aucun diviseur commun de longueur
2 d’apres 2.19. Donc (a, b) et (b, a 4+ n) n’ont pas de ppcm. O

Remarquons que dans I’exemple précédent c’est le dernier cas de la preuve
de 5.1, dans lequel on a di introduire le quasi-parabolique de type A défini par
{1, x,y,x', y'} +nZ, qui est en défaut. En fait les raisonnements des autres cas s’ap-
pliquent pour tout élément de Coxeter ¢ mais ce dernier cas utilise le fait que E est
un singleton modulo n.
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Donnons quelques conséquences de I’existence d’une structure quasi-Garside sur
B(A,—1).Ces conséquences sont de simples applications des propriétés générales des
monoides de Garside dont on vérifie qu’elles sont encore valables dans le cadre quasi-
Garside. Le premier est1’existence de formes normales telles que dues a Garside (voir
par exemple [M] ou [BDM, section 2], voir aussi [C]).

Proposition 5.6. (i) Tout élément de B(A,_1) s’écrit de facon unique a~'bonaet
b sont des éléments de M (P.) premiers entre eux.

(1) Tout élément de M (P,) s écritde faconunique ayay . . .aryoupouri = 1,...,k
Uélément a; € P est un (le) diviseur maximal dans P du produit a;a;y1 ... ay et
ar # 1.

Nous prouvons maintenant :
Proposition 5.7. Le centre de B(A,_1) est trivial.

Preuve. La démonstration suit les mémes idées que la démonstration classique pour
les monoides de tresses ou que la démonstration de [P, 4.1] ; ces démonstrations ne
s’ appliquent pas telles quelles car elles supposent qu’il y a un nombre fini d’atomes.
On utilise le lemme suivant :

Lemme 5.8. Soit M un monoide quasi-Garside et soit b un élément quasi-central de
M, c’est-a-dire tel qu’il existe un automorphisme t de M vérifiant xb = bt (x) pour
tout x € M ; soit x un diviseur a gauche de b et y € M ; posons ppcm(x, y) = yz
avec z € M : alors z divise b a gauche.

Preyve. Comme x divise b il divise bt (y) = yb, donc yz divise yb et par simplifia-
bilité z divise b. m]

On en déduit la proposition : Soit g € B(An_ﬂ central. On peut écrire g = ¢"*b
avec b € M(P.) non divisible par ¢ et n € Z convenable. On a alors b quasi-central.
Montrons par I’absurde que b = 1. Sinon, soit r une réflexion de P, telle que r divise
b. Pour tout triplet de réflexions (r, s, t) correspondant a un triangle direct comme
dans la preuve de 43 onar.s = s.t = t.r = ppem(r,s) = ppem(s, £). On en
déduit par le lemme que r et ¢ divisent . Comme a partir de r, de proche en proche
on peut faire apparaitre n’importe quelle réflexion ' de P, dans un triangle direct,
on en déduit que b est multiple de tous les atomes de M (P.) donc est multiple de
¢, ce qui est contradictoire. Tout élément central est donc une puissance de ¢. Or la
conjugaison par ¢ est un automorphisme d’ordre infini (¢f. 3.4 ou 4.5), donc aucune
puissance de ¢ autre que ¢” n’est centrale. O

Donnons une derni¢re conséquence de 1’existence de la structure quasi-Garside.
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Proposition 5.9. Soient ¢ = s1...5, et ¢ = sy...5, comme précédemment. Le
centralisateur de ¢ dans le groupe d’Artin-Tits de type A,_1 engendré par S1sees S,
est un groupe d’Artin-Tits de type Bpgcd(h,n—1)-

Preuve. La théorie générale des monoides de (quasi-)Garside énonce que les points
fixes d’'un automorphisme o dans un monoide M de (quasi-)Garside forment un
monoide M de (quasi-)Garside, avec pour atomes certains des ppcm des orbites des
atomes et méme ¢lément de Garside ; le groupe des fractions de ce monoide est le
groupe des points fixes de o dans le groupe des fractions de M (c¢f. [BDM, 2.26]
dont la démonstration s’étend a la situation quasi-Garside). Nous appliquons ceci a
la conjugaison par ¢”. Le centralisateur de ¢ dans G(P,) est donc engendré par les
ppem des orbites des atomes sous la conjugaison par ¢’*. Comme le montre le calcul
fait dans 3.4 la conjugaison par ¢ envoie (x, y) sur (x/, ¥') olt x” et y’ s’obtiennent
a partir de x et de y en translatant X d’une position dans le sens croissant et &
d’une position dans le sens décroissant. Pour simplifier au lieu d’indexer comme
précédemment les éléments de X par les entiers non congrus a 1 modulo n, nous
renumérotons consécutivement les éléments de X, en les notant x; avec i € Z, et
nous faisons de méme pour les éléments de E qui seront notés & avec i € Z. La
translation de n devient alors x; +— xj41,—1 et & +— &41. La conjugaison par gh
envoie (x;, x;) Sur (xj4p, xj44). L’orbite de (x;, x;) ne dépend donc que du pged de

h etde n — 1. La conjugaison par gh envoie (&9, x;) sur (£, xj4n5). Le ppcm d’une
telle orbite est (§0)[—11(X}, Xj4ks Xj42k> - - - » X(j+n—1—k))[1] OU k est le pged de A et
n — 1. On voit que les ppcm des orbites d’atomes ne dépendent que du pgedde n — 1
et i. Donc ¢ et ¢Pd*=1) ont méme centralisateur. On est donc ramené au cas

ou & divise n — 1. Le lemme suivant est le cas particulier de la proposition quand
h=n-—1.

Lemme 5.10. Le centralisateur de "~ est un groupe d’Artin-Tits de type B,_1 et
Uimage de c dans ce groupe est un élément de Coxeter de ce groupe.

On a appelé élément de Coxeter d’un groupe d’Artin-Tits le relevé canonique
d’un élément de Coxeter du groupe de Coxeter.

Preuve. Les éléments (x;, x;) sont centralisés par "1, Lorbite de (&, x j) se com-
pose des €léments (£o, xjtknmn—1)) avec k € Z. Le ppcm d’une telle orbite est

(§0)[=11(xj)n1]. Le centralisateur C(c" 1) de ¢*! est donc engendré par ces €lé-
ments et toutes les relations s’obtiennent en égalant les décompositions de ¢ comme
produits de ces générateurs. On a

c = (x1,x2).(x2, x3) ... (xp—2, xp—1).(§0) =11 (Xn—=1)[1]-
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Pour construire un isomorphisme entre C (" Hetle groupe d’ Artin—Tits B(B,_1)
de type B,_1 nous revenons a I’interprétation de B(An_o comme tresses dans une
couronne. Remarquons que les générateurs ci-dessus de C(c"~!) sont des tresses
telles que le brin d’origine &y a pour extrémité &y (voir figure 5). Or on peut interpré-
ter le groupe de tresses de type B,_1 comme le groupe de tresses a n — 1 brins dans
la couronne, les points de base étant les points x1, x2, . .., x,—1 (¢f., [L]). On a donc
un morphisme de C(c"~!) dans B(B,_1) par oubli du brin issu de &. Les généra-
teurs de C(c"~!) s’envoient sur les générateurs de la présentation duale du groupe
B(B;—_1) et I'image de ¢ est I’élément de Coxeter de B(B,_1). Donc les relations
entre les générateurs de ces deux groupes se correspondent. Le morphisme est donc
un isomorphisme. O

Xn—1

X3

X4

Figure 5. (§o);—11(*n—1Dp1]-

Prouvons alors la proposition. Si % divise n — 1, le centralisateur de " est égal
au centralisateur de ¢ dans le centralisateur de ¢"~!. Le lemme permet donc de
terminer la démonstration de la proposition car le centralisateur d une puissance d’un
élément de Coxeter dans un groupe de tresses de type B est connu par les résultats
de [BDM]. m]

Remarque 5.11. On obtient des générateurs standards (i.e. vérifiant les relations
de tresses de type B) du centralisateur de g"‘l en prenant (x1, x2), (x2,x3),...,
(xn—2, xp—1), et (§0)[—11(xn—1)[1]- D autre part il est facile de voir que le centra-

lisateur de (sys2...s5,)" "1 dans le groupe de Coxeter W(A,_1) est le groupe le
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groupe engendré par (x1, x2), (x2, x3), ..., (Xp—2, Xn—1), et (&o)[—1](xx—1)[1] donc
est I’image du centralisateur de ¢"~! dans le groupe d’Artin—Tits. La présentation
de cette image s’obtient en ajoutant aux relations de tresses de type B le fait que les
n — 2 premiers générateurs sont d’ordre 2 (le dernier est d’ordre infini).
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