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Présentations duales des groupes de tresses de type affine A

F. Digne

Abstract. Artin-Tits groups of spherical type have two well-known Garside structures, coming
respectively from the divisibility properties of the classical Artin monoid and of the dual monoid.
For general Artin-Tits groups, the classical monoids have no such Garside property. In the present

paper we define dual monoids for all Artin-Tits groups and we prove that for the type An we
get a (quasi)-Garside structure. Such a structure provides normal forms for the Artin-Tits group
elements and allows to solve some questions such as to determine the centralizer of a power of
the Coxeter element in the Artin-Tits group.

More precisely, if VF is a Coxeter group, one can consider the length Ir on W with respect to
the generating set R consisting of all reflections. Let c be a Coxeter element in W and let Pc be
the set of elements p e W such that c can be written c pp' with Ir (c) Ir (p) + Ir (p1). We
define the monoid M (Pc to be the monoid generated by a set P^ in one-to-one correspondence,

p \-?- p, with Pc with only relations pp' p.p' whenever p, p' and pp' are in Pc and

Ir (pp') Ir (p) + Ir (p1). We conjecture that the group of quotients of M(PC) is the Artin-Tits
group associated to W and that it has a simple presentation (see 1.1 (ii)). These conjectures are

known to be true for spherical type Artin-Tits groups. Here we prove them for Artin-Tits groups
of type A. Moreover, we show that for exactly one choice of the Coxeter element (up to diagram
automorphism) we obtain a (quasi-) Garside monoid. The proofmakes use of non-crossing paths
in an annulus which are the counterpart in this context of the non-crossing partitions used for
type A.

Mathematics Subject Classification (2000). Primary 20F36 ; Secondary 20F05.

Keywords. Garside monoid, dual monoid, non-crossing partitions, affine braids.

1. Introduction

Soit W, S) un système de Coxeter quelconque (avec S fini). Soit R l'ensemble des

réflexions de W (c'est-à-dire des conjugués des éléments de S). Appelons "longueur
de réflexion" Ir(w) d'un élément w g W le nombre minimum de termes dans une
décomposition de w en produits de réflexions. Nous dirons que v g W divise w g W,
noté v =4 w, si w vv' avec Ir(w) Ir(v) + Ir(v'). Comme Ir est invariant par
conjugaison ceci est équivalent à w v"v avec Ir{w) Ir{v") + Ir{v), autrement
dit il n'y a pas lieu de distinguer entre diviseurs à gauche et à droite. La relation =^
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est clairement une relation d'ordre. Fixons un élément c de Coxeter, c'est-à-dire un
produit de tous les éléments de S dans un certain ordre ; considérons l'ensemble Pc des

diviseurs de c et M{PC) le monoïde engendré par un ensemble P_c {w_ \ w g Pc)

en bijection avec Pc avec comme relations w_.w_' ww' si w et w' sont des éléments

de Pc tels que ww' g Pc et lR(ww') Ir(w) + Ir(w') (cf. [BDM, section 2] et [B,
0.2 et 0.4]). La longueur Ir s'étend à M(PC) en une longueur additive. Les notions
de divisibilité à gauche et à droite dans le monoïde étendent la relation de divisibilité
de Pc. Nous conjecturons

Conjecture 1.1. (i) Le groupe des fractions de M(PC) est isomorphe au groupe des

tresses d'Artin-Tits associé à W.

(ii) Le monoïde M(PC) (resp. son groupe de fractions) a la présentation suivante

comme monoïde (resp. comme groupe) : l'ensemble des générateurs est {r_ \ r g
R n Pc) et pour chaque couple (r, t) G R2 tel que rt divise c on a la relation
r_.t_ rtr.r.

Cette conjecture a été prouvée pour les groupes de Coxeter de type An dans [BKL]
et [BDM] et pour les autres types sphériques dans [B]. Dans cet article nous allons

prouver cette conjecture dans le cas où W est de type An. Nous montrons de plus que

pour exactement un choix cq de l'élément de Coxeter (à automorphisme du diagramme
près) le monoïde obtenu est un treillis pour la divisibilité (structure quasi-Garside),
ce qui implique l'existence de formes normales dans son groupe de fractions et donne
ainsi entre autres conséquences une nouvelle solution au problème des mots dans les

groupes d'Artin-Tits de type An. Les preuves utilisent en particulier l'introduction
d'objets "sans croisements" dans une couronne, et leur interprétation comme tresses

dans un cylindre.
Les symétries des présentations obtenues définissent des automorphismes du

groupe d'Artin-Tits dont on peut calculer les points fixes grâce à la théorie des structures

de Garside. Cela permet par exemple d'obtenir le centralisateur d'une puissance
de l'élément de Coxeter cq, qui s'avère être un groupe d'Artin-Tits de type B.

Dans la section 2 nous étudions la longueur Ir et déterminons Pc pour un groupe de

Coxeter de type A. Nous en donnons une interprétation topologique par des chemins

sans croisement dans une couronne. Dans la section 3 nous donnons une présentation
du monoïde dual M(PC). Dans la section 4 nous prouvons la conjecture 1.1 (i) dans

le cas À. Dans la section 5 nous prouvons qu'on a une structure de Garside et en
donnons un certain nombre de conséquences.

2. Longueur de réflexion ; diviseurs d'un élément de Coxeter

On sait par Dyer [D] que la longueur de réflexion d'un élément w d'un groupe de

Coxeter quelconque est égale au nombre minimum de termes qu'il faut effacer dans
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une suite minimale d'éléments de S de produit égal à w pour que le produit des termes

restants soit égal à 1. C'est aussi la longueur d'un plus court chemin (croissant) de 1

à w dans le graphe de Bruhat du groupe de Coxeter. Ceci montre immédiatement par
exemple que la longueur de réflexion d'un élément de Coxeter est égal à sa longueur
de Coxeter. Cela montre aussi que la restriction à un sous-groupe parabolique de Ir
est égale à la longueur de réflexion dans ce sous-groupe. Soit W un groupe de Coxeter
de type Ä„_i. Pour étudier M{PC) nous avons besoin d'une formule explicite pour lR

qui nous permettra en particulier de déterminer quels sont les diviseurs d'un élément
de Coxeter. Pour cela nous utilisons une représentation de W comme sous-groupe du

groupe des permutations de Z. Pour expliquer cette interprétation nous introduisons
les définitions suivantes :

Définition 2.1. • Nous dirons qu'une permutation de Z est n-périodique si elle vérifie
w(x + n) w(x) + n pour tout x G Z.

• Si w est une permutation n-périodique de Z, nous appelons décalage de w
l'entier \T^(Mx)-x).

On sait (cf. par exemple [S]) que W s'identifie aux permutations n-périodiques de

Z de décalage nul. On peut le voir de la façon suivante : le groupe de Coxeter affine de

type Ä„_i est le produit semi-direct du réseau des racines de type A„_i par le groupe
de Coxeter de ce type. Autrement dit W &n x {(a;) g Z" | J2 ai 0}- Notons w

l'image dans &n de w g &n x Z". On peut identifier le groupe &n x Z" au groupe des

permutations «-périodiques de Z, l'image de k g {1, n} par w w.{a\, an)
étant w{k) + nat. Alors le décalage d'une permutation n-périodique est donné par
le morphisme w.(a\, an) i->- a\ + ¦ ¦ ¦ + an et W s'identifie au noyau de ce

morphisme.
Si w; est une permutation n-périodique de Z, l'ensemble des orbites de w est

invariant par translation de n. Rappelons qu'on appelle support d'une permutation w
le complémentaire dans Z de l'ensemble des points fixes de w.

Définition 2.2. Soit w une permutation n-périodique de Z ; nous appelons décalage
d'une orbite O dew l'entier \ J2xe0n{i,...,n}(w(x) ~ x)-

Le décalage de G est donc l'entier h tel que pour tout a g G onaitu^(a) a+hn
où k est le cardinal de l'image de l'orbite modulo n. Une orbite est finie si et seulement
si elle est de décalage nul. Le décalage d'une permutation n-périodique est la somme
des décalages de ses orbites, donc une permutation n-périodique de Z est dans W si

et seulement si la somme des décalages des orbites infinies est nulle.
On peut décomposer un élément de W en produit d'éléments de W ayant deux à

deux des supports disjoints. On s'intéresse aux décompositions maximales de cette
forme. Ceci nous amène à poser la définition suivante :
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Définition 2.3. (i) Nous dirons qu'une permutation n-périodique est un cycle si elle
n'a qu'une orbite non triviale à translation de n près.

(ii) Nous dirons qu'un élément de W différent de l'identité est un pseudo-cycle si

la restriction de w; à toute partie stricte stable de son support n'est pas dans W.

Toute permutation périodique est produit de cycles disjoints et cette décomposition
est unique à l'ordre près. Mais un cycle n'est dans W que si son décalage est nul,
c'est-à-dire si les orbites de ce cycle sont finies. Tout élément de W est produit de

pseudo-cycles de supports disjoints, mais il n'y a pas unicité des pseudo-cycles ayant
des orbites infinies (voir par exemple 2.21 ci-dessous). Un pseudo-cycle ou bien est

un cycle, ou bien a toutes ses orbites non triviales infinies, de décalage total nul, et
dans ce cas toute sous-famille de ses orbites a un décalage total non nul.

Notation 2.4. • Un cycle sera représenté sous la forme (a, b, c, l)\h\ où h est

le décalage du cycle. Cette notation signifiant que a, b, c, ,1 sont tous distincts
modulo n et que w envoie a sur b, b sur c, et / sur a + hn. Pour simplifier les

notations, si le décalage est nul, nous omettrons l'indice [0].

• Nous représenterons toute permutation n-périodique de Z comme un produit de

cycles de supports disjoints non vides.

• On pose si i, i +1 pour i 1, n. Les s; sont les générateurs de Coxeter
de W.

Avec ces conventions les réflexions sont les éléments (a,b) avec a et b quelconques
distincts modulo n. On obtient exactement une fois chaque réflexion si on impose de

plus a < b et a G {1, n}.
Nous utiliserons à plusieurs reprises la formule suivante qui résulte d'un calcul

immédiat.

Lemme 2.5. On désigne par a\,... ,a\ des entiers distincts modulo n et par h et k
des entiers quelconques. On a

(ai, ...,ai,...,ai)[h](ai,ai + kn)

..,ahai+ hn)[h+k](a2, a3, a;)[_k].

Définition 2.6. Pour toute partie T c Z invariante par translation de n, notons Wj
le fixateur dans W du complémentaire de T et Wt le sous-groupe des éléments de

Wj n'ayant pas d'orbite infinie. Un sous-groupe du type Wj ou Wj sera dit "quasi-
parabolique".

Remarquons que WT et WT sont des groupes de Coxeter de types respectifs À -
et A.^._1 si T est l'image de T modulo n.
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Notation 2.7. Pour vu g W notons v{vu) le nombre de classes modulo n d'orbites de

vu et notons k (vu) le plus grand entier k tel que vu w\ W2 ¦ ¦ ¦ vuk où les vui g W sont

(des pseudo-cycles) de supports disjoints.

Remarquons que k{vu) est le plus grand entier k tel que vu soit dans le produit
direct de k sous-groupes quasi-paraboliques. On a k{vu) < v{vu).

La proposition suivante donne une formule explicite pour la longueur de réflexion
dans W.

Proposition 2.8. Pour vu g W on a Ir{vu) n + v{vu) — 2k(w).

Preuve. Onposef(vu) n+v{vu)—2K{vu). On montre les trois propriétés suivantes:

(1) Si f{vu) > 1, il existe r g R tel que f{vur) f{vu) - 1.

(2) Si f(w) 0 alors w; 1.

(3) f{w)<lR{vu).
Les propriétés (1) et (2) donnent l'inégalité Ir(w) < f{vu), d'où la proposition.

Prouvons (1). Si w a un cycle de la forme (a\, at,..., ai)[h] avec / ^ 1, la

multiplication par r {a\, ai), augmente v{w) et k{w) de 1 {cf. 2.5). Si tous les

cycles de w sont de la forme (a\)\h\, soit vu-, un des facteurs différents de l'identité
dans la décomposition vu w\ vuK(w) comme dans 2.7 ; comme la somme des

décalages des orbites de vu-, est nulle, il est produit d'au moins deux cycles (a\)\h\ et

(a2)[k\- Posons r {a\,at) ; on a (ai)\h\{at)[^(a\, at) {a\,at + kn)[h+k\- Donc
v{vur) v(vu) — 1 et K{vur) k(vu), donc f{vur) f(vu) — 1.

Montrons la propriété (2): Comme k{vu) < v{vu) < n, si f{vu) est nul on doit avoir
v{vu) n k{vu). La première égalité prouve que chaque orbite est un singleton
modulo n et la deuxième prouve alors que chaque orbite est de décalage nul, donc

w 1.

Pour montrer la propriété (3) nous montrons que pour reR et vueW on â

f{vur) < f{vu) + l. Ceci implique par récurrence que si vu est produit de k réflexions
on a f{vu) < k.

Soit r (a,b) une réflexion. Si a et b apparaissent modulo n dans la même orbite
de w le lemme 2.5 montre que v(wr) v(w) + 1. D'autre part K(wr) > k(w), d'où
le résultat dans ce cas. Si a et b sont modulo n dans deux orbites différentes du même

pseudo-cycle w\ de la décomposition w w\ vuK(w), le même lemme montre que
v{vur) v{vu) — 1 et on a K{vur) k{vu). Si a et b apparaissent dans deux pseudocycles

distincts, alors de même que précédemment v(wr) v{vu) — 1 et de plus vur

a une décomposition en produit de k{vu) — 1 éléments, donc K{wr) > k{vu) -1, ce

qui donne bien f{vur) < f{vu) + 1.

Corollaire 2.9. Si vu est dans un quasi-parabolique sa longueur de réflexion dans ce

sous-groupe est égale à sa longueur de réflexion dans W.
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Preuve. On a déjà vu que la restriction de Ir à un sous-groupe parabolique est la

longueur de réflexion dans ce sous-groupe, grâce au résultat de Dyer. On peut aussi

voir que la formule de la proposition 2.8 donne la longueur de réflexion dans un
parabolique standard. Ceci donne le résultat dans le cas d'un quasi-parabolique de

type A. D'autre part, si un élément w est dans le quasi-parabolique de type Ä„_m_i
fixant j + kn pour j dans une partie de cardinal m de [1, n] et pour tout k, les valeurs
de v (w) et k (w) diminuent de m dans le quasi-parabolique et n est remplacé par n — m

dans la formule donnant la longueur. Ceci prouve que Ir se restreint bien aussi dans

ce cas, d'où le résultat.

Nous allons maintenant chercher quelles réflexions divisent un élément de Coxeter
de W. La proposition suivante exprime un élément de Coxeter comme permutation.

Proposition 2.10. Soit c un élément de Coxeter de W, c'est-à-dire le produit des

générateurs de Coxeter dans un ordre arbitraire fixé ; alors il existe une partition en

deux parties non vides

telle que a<b<-<leta<ß<-<Xet que

c (a,b,

Preuve. L'ensemble des générateurs de Coxeter est {si,s2,... ,sn} avec les notations
de 2.4. On a c s-ns-n sin, où les indices i-} sont tous distincts. Quitte à changer c

en c"1, on peut supposer que dans la suite (s-n, s-n, s\n) l'élément s\ est à droite
de sn. Alors si commute avec tous les si qui sont à sa droite sauf éventuellement S2 qui
à son tour commute avec tous les éléments qui sont à sa droite sauf éventuellement

^3 etc... On peut alors réécrire c comme un produit qui se termine par si .^3 • • • s;

pour un certain i. On itère le procédé en commençant avec s;+i. Finalement on écrit
c sous la forme

avec 1 < ki < £2 < ¦ ¦ ¦ < h < n qui est une permutation^de la forme voulue

: elle s'écrit (kh, kh-i, ¦ ¦ ¦, &i)[_i](l, 2, ki ^2» • • • » k^, ¦ ¦ ¦, «)[i]> ou h
signifie que k\ ne figure pas.

Notation 2.11. Dans la suite nous fixons un élément de Coxeter c et posons
X {a, b, ...,/} + nL et H {a, ß, k} + nL comme dans la proposition
précédente.

Nous allons démontrer :
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Proposition 2.12. Avec les notations ci-dessus, si x et y sont deux entiers distincts,
la réflexion (x, y) divise c si et seulement si x et y vérifient l'une des propriétés
suivantes :

(i) x g X et y G H ou x g H et y G X.

(ii) x, y G X, et \y — x\ < n.

(iii) x, y G E et \y — x\ < n.

Preuve. On calcule c(x, y) dans tous les cas possibles.
Dans le cas (i), quitte à échanger les rôles de x et y et à changer de représentants

des cycles de c, on peut supposer x l et y a + n. Le produit c(x,y) vaut
(a, b, l, X, ß, a) dont la longueur de réflexion vaut bien n — 1.

Si x et y sont dans X, on peut supposer x a et on écrit c (a, b, t, y +
kn, z, ¦ ¦ ¦, l)[i](X, ß, a)[_i] pour un certain k. Le produit c(x,y) vaut
{y, b, t)[k]{z, ...,l,a + n)[i_,t](À, a)[_i]. Comme v(c(x, y)) 3, on a

Ir{c{x, y)) n — 1 si et seulement si k{c{x, y)) est égal à 2, c'est à dire si on peut
regrouper les trois orbites en deux parties de décalages nuls (sinon k (c (x y) est égal
à 1). On a donc k{c{x, y)) 2 si et seulement si k 0 ou k 1, ce qui donne le
cas (ii).

On fait un raisonnement analogue si x et y sont dans H et on obtient le cas (iii).
D

Les calculs faits dans la preuve précédente montrent aussi que

Corollaire 2.13. Soit s et t n — s les cardinaux respectifs des images de X et H

modulo n; un élément de longueur Ir(c) — 1 divise c si et seulement s'il est d'une
des trois formes suivantes :

(i) (ai, ci2, ¦ ¦ ¦, as, at, at_\, a\) où (a,) et (ai) sont des sous-suites croissantes

formées d'éléments consécutifs respectivement de X et de H,

(ii) (ai,a2, .,ar)(ar+i, .,as)[i](X, ß,a)[-i] avec (a;) suite croissante
d'éléments consécutifs de X,

(iii) (a,b, ,l)[\](at, at-\, ¦ ¦ ¦, ar+\)(ar, ar_i, ai)[_i] avec (a;) suite crois¬

sante d'éléments consécutifs de H.

Pour donner la liste des diviseurs de c nous avons besoin de la définition suivante.

Définition 2.14. On appelle diviseur élémentaire un pseudo-cycle de W de la forme

(ai, ...,ah,ctk, ai) avec h > 0, et k > 0 et h + k > 2, ou de la forme

(ai, a2, ¦ ¦ ¦, ah)[i](aic, ,ai, ai)[_i], avec h > 1 et k > 1, où les a; sont dans

X et les ai dans H, et où ai < 02 < ^3 < ¦ ¦ ¦ < au < ai + n et ai < 02 < • • • <
aie < ai + n.
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Remarquons qu'un diviseur élémentaire est un élément de Coxeter d'un quasi-
parabolique de W : dans le premier cas il s'agit d'un quasi-parabolique de type
Ah+k-i, dans le deuxième d'un quasi-parabolique de type Àh+k-i-

Nous allons donner une interprétation topologique des diviseurs de c en termes
de chemins dans une couronne.

Figure 1. Deux réflexions sans croisement.

On considère une couronne dans le plan orienté. On fixe des points étiquetés

a, b, ,1 sur le cercle extérieur, dans l'ordre cyclique et on fait de même sur le
cercle intérieur avec des points étiquetés a,..., X. Cette couronne peut être vue
comme le quotient par la translation de n d'une bande infinie orientée où les points
de X et de H respectivement sont marqués dans l'ordre croissant sur chacun des deux
bords. Nous allons associer à toute réflexion une classe de chemins continus dans la

couronne.

Notation 2.15. À la réflexion (x, y) on associe la classe d'homotopie à extrémités
fixes de l'image dans la couronne d'un chemin continu joignant x à y dans la bande

(voir figure 1, la représentation n'est bien définie qu'une fois fixée l'identification du

quotient de la bande par les translations avec la couronne).

Avec cette notation on a :

Corollaire 2.16. Une réflexion divise l'élément de Coxeter c si et seulement si elle

peut être représentée par un chemin sans auto-intersection dans la couronne.
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Ce corollaire est une constatation immédiate à partir de la liste donnée dans 2.12.

Pour pouvoir décrire tous les diviseurs d'un élément de Coxeter nous
utilisons la même interprétation topologique. À un diviseur élémentaire de la forme
(a\, ci2, ¦ ¦ ¦, au, au, ¦ ¦ ¦, ct2, ct\) nous associons la classe d'homotopie à extrémités
fixes du lacet composé des chemins associés aux réflexions {a\, ai), {a^-x, ah),
{ah, ctk), {&k, cfjfc-i), • • •, («2» oi\), (ai, ai) et à un diviseur élémentaire de la forme

(ai, ci2, ¦ ¦ ¦, ah)[i]{ak, ¦ ¦ ¦ a2, «i)[-i]> nous associons la classe d'homotopie à extrémités

fixes de l'union de deux lacets ne se coupant pas et composés respectivement de

chemins associés aux réflexions (ai, ai), {ah-i, ah), {an, a\ +n) et {au, ctk-\),
(«2, «î), («1, eck — n) (voir figure 2).

Figure 2. La représentation graphique de c.

Remarque 2.17. On peut définir de la même façon une interprétation topologique de

tout pseudo-cycle. Les diviseurs élémentaires correspondent exactement aux pseudocycles

qui ont une représentation (lacet ou union de deux lacets) orientée positivement
et sans autointersection.

Définition 2.18. On dit que deux diviseurs élémentaires sont sans croisement s'ils
admettent des représentations sans intersection.

En particulier si deux diviseurs élémentaires sont sans croisement, un seul des

deux au plus a des orbites infinies car deux lacets d'image non triviale dans le groupe



32 F. Digne CMH

fondamental de la couronne et ayant tous deux leur origine sur la même composante
du bord ont nécessairement une intersection.

Avec cette définition on peut caractériser les diviseurs d'un élément de Coxeter :

Proposition 2.19. Les diviseurs de l'élément de Coxeter c sont exactement les
produits de diviseurs élémentaires deux à deux sans croisement. La longueur d'un tel

produit est la somme des longueurs des facteurs et ces facteurs commutent deux à

deux.

La remarque qui précède la proposition implique alors qu'un diviseur de c a zéro

ou deux orbites infinies (et celles-ci, si elles existent, sont l'une de décalage 1, l'autre
de décalage -1).

Preuve. Montrons d'abord l'additivité des longueurs. Dans la formule donnant la

longueur, seul le terme k n'est pas toujours additif. Mais pour un élément qui a 0 ou 2

orbites infinies la décomposition en pseudo-cycles est unique, un des pseudo-cycles
étant formé de la permutation induite sur l'union des deux orbites infinies. Dans ce

cas k est bien additif.
Pour prouver l'assertion sur la forme des diviseurs de c nous utilisons le lemme

suivant :

Lemme 2.20. Soient x et y deux entiers distincts et v un élément de W ayant 0 ou 2

orbites infinies.

(i) La réflexion (x, y) divise v si et seulement si elle divise un des pseudo-cycles
de v.

(ii) La réflexion (x, y) divise un pseudo-cycle si et seulement si x et y sont dans

la même orbite de ce pseudo-cycle ou si chacun d'eux est dans une des orbites

infinies de ce pseudo-cycle.

Preuve. Si x est dans une orbite finie de v et y dans une orbite finie ou infinie distincte
de celle de x, alors le calcul de 2.5, appliqué avec a\ y, a-, x et k 0, et en
faisant passer (x, y) dans le membre de droite, montre que v{v{x, y)) v{v) — 1 et

que la suite des décalages non nuls des orbites est la même pour v et v(x, y). Donc

k{v{x, y)) k{v) — 1 et Ir(v(x, y)) Ir(v) + 1, donc (x, y) ne divise pas v.

Réciproquement, si x et y sont dans le support d'un même pseudo-cycle de v, 2.5

appliqué avec a\ x, ai y et h 0 et avec ou bien k 1 ou bien k 0

montre que (x, y) divise ce pseudo-cycle. Comme les longueurs des pseudo-cycles
de v s'ajoutent d'après le début de la démonstration de la proposition, on en déduit

que (x, y) divise v.

Nous prouvons maintenant, par récurrence descendante sur la longueur du diviseur,

l'assertion de la proposition 2.19 sur les diviseurs de c. Il y a exactement un
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diviseur de longueur n qui est c lui-même. Un diviseur de longueur k est le produit

d'un diviseur v de longueur k + 1 par une réflexion (x, y) qui divise v. Par

hypothèse de récurrence appliquée à v, les pseudo-cycles de v sont des diviseurs
élémentaires deux à deux sans croisement. D'après le lemme précédent la réflexion
(x, y) divise v si et seulement si elle divise un des pseudo-cycles v\ de v. On est

ramené à trouver tous les diviseurs de longueur Ir(v\) — 1 d'un diviseur élémentaire

v\. Si v\ a deux orbites infinies, c'est un élément analogue à c dans le sous-groupe
quasi-parabolique correspondant au support de v\. Les diviseurs cherchés sont donnés

par 2.13. Ce sont bien des produits de diviseurs élémentaires deux à deux sans

croisement, de supports inclus dans le support de v\, donc aussi sans croisement avec
les autres pseudo-cycles de v. Si v\ n'a pas d'orbite infinie il s'écrit (a\, ah)
où Ir{v\) h — 1 et ses diviseurs de longueur h — 2 sont exactement les éléments

(a\, ci2, a\-i, aj+i, ah)(ai, a;+i, a;+2, • • •, a/), ce qui est aussi de la forme
annoncée.

Réciproquement, si v est un produit de diviseurs élémentaires deux à deux sans

croisement et si Ir (v) < n on va montrer qu'on peut trouver une réflexion r telle que

r v soit de longueur Ir (v) + 1 et soit un produit de diviseurs élémentaires deux à deux

sans croisement. L'hypothèse de récurrence montre alors que rv divise c, donc que v

divise c. Distinguons plusieurs cas pour v.

• Si v a une orbite infinie, il en a alors exactement deux, d'après la remarque qui
suit 2.18 et ces orbites sont de décalages 1 et -1, donc les cycles correspondants
sont de la forme (ai, ci2, ¦ ¦ ¦, a/0[i] et («jt, «2, <*i)[-i] avec ai < a2 < ay <
¦¦¦< ah < ai+n et ai < c(2 <¦¦¦< a/t < ai+ n, les at étant dans X et les a;
dans H ; d'autre part v doit avoir aussi une orbite finie car u/c. Tous les points
d'une telle orbite finie sont compris entre deux éléments consécutifs d'une des

deux orbites infinies, puisque les diviseurs élémentaires sont sans croisement. On

peut supposer que cette orbite est comprise dans [ai, 02]. Notons-la {bi, bi}
avec ai < bi < b2 <¦¦¦< bi < a2. On â alors

(a2, bi)(at, ...,(X2,
(ak,

Si v n' a pas d'orbite infinie, il a au moins une orbite finie de la forme (ai, 02 • • • » <%,

ak,..., «2, «1 avec les mêmes conventions que précédemment (cette orbite peut être

un singleton). Quitte à échanger les rôles de X et de H on peut supposer que h ^ 0.

Soit bi le successeur de ah dans X. Il y a trois cas :

• Si bi ai + n alors

(bi,ak)(ai,a2 ah, ak, a2, ai)
(ai, a2, ah)[i](ak, ...,a2, «i)[_i].
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• Si k 7^ 0 et si le cycle de v dont le support contient b\ est de la forme

(b\, b2 ...,bu ßm, ß2, ß\) avec b\ < b2 < ¦ ¦ ¦ < b\ < b\ + n et ß\ <
ß2 < ¦ ¦ ¦ < ßm < ßi + n, les bi étant dans X et les ßi dans H ; alors

{b\,ak){a\,a.2, ...,ah,at, a2, a\){b\, b2, b\, ßm, ß2, ß\)

(ai,a2, ...,ah,bi,b2, ...,b{,ßm, ß2, ßi, ak, a2, a\).

• Si k 0 et si le cycle de v dont le support contient de b\ est de la forme

(bl,b2..., br, ßm,..., ß2, ßl, br+1, ...,bl)
avec br+i < br+2 < ¦ ¦ ¦ < bi < a\ < au < b\ < b2 < ¦ ¦ ¦ < br < br+\ + n et

ßi < ßi < ¦ ¦ ¦ < ßm < ßi + n, les bi étant dans X et les ß; dans H ; alors

(a\,bi)(ai, a2, ah)(b\,b2 ,br, ßm, ß2, ß\,br+\, ...,b{)
{a\,a2, ...,cih,b\,b2, ...,br,ßm, ß2, ß\, br+\, ...,bi).

Dans tous les cas le produit est bien comme annoncé.

Enfin puisque les longueurs de diviseurs élémentaires deux à deux sans croisements

s'ajoutent et que de tels diviseurs commutent dans W, ils commutent aussi

dans le monoïde.

Remarque 2.21. Il est faux que la longueur d'un produit de pseudo-cycles de supports
disjoints est la somme des longueurs des pseudo-cycles, comme le montre l'exemple
suivant dans Àn avec n > 5 :

w [(l)[-i](2)[_i](3)[2]][(4)[i](5)[i](6)[_2]].

La longueur de chacun des facteurs est égale à 4 (v 3, k 1, dans un quasi-
parabolique de type Ä2) et la longueur du produit vaut 6 car le même élément s'écrit

w [(l)[-i](4)[i]][(2)[_i](5)[i]][(3)[2](6)[_2]])

ce qui prouve que k vaut 3 (et on a v 6) dans un quasi-parabolique de type À5.

Par contre s'il y a au plus deux orbites infinies on a bien additivité des longueurs.

À tout diviseur w de c on peut associer la partition périodique de Z dont les parties
sont les supports des pseudo-cycles de w.

Nous dirons que deux parties A et B de Z sont sans croisement si pour tous x et

y dans A et tous z et t dans B il existe deux chemins sans intersection dans la bande

joignant respectivement x à y et z à t. On peut alors réexprimer 2.19 et 2.17 par :

Corollaire 2.22. Une partition périodique de Z dont toute partie infinie rencontre à

lafois X et H est associée comme ci-dessus à un diviseur (unique) de c si et seulement
si ses parties sont deux à deux sans croisement.
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3. Les monoïdes duaux

L'objectif de cette partie est de prouver la conjecture 1.1 (ii) pour le type À. Nous

suivons une démarche analogue à celle de [B] (ou de [BDM]). En particulier nous nous

plaçons dans le cadre des groupes positivement engendrés telle qu'elle est exposée
dans [B, 0.4 et 0.5]. Rappelons-en les résultats principaux dans un cadre plus général
car nous ne supposons pas que le nombre de générateurs est fini. Soit G un groupe
engendré comme monoïde par un ensemble R. On dit que (G, R) est un groupe
positivement engendré. On définit la longueur dans /«(g) par rapport à R de g G G

comme le nombre minimum de facteurs dans une décomposition de g en produit de

générateurs. On dit que h g G divise g G G à gauche et que k g G divise g à droite
si g hk avec h(g) h(h) + //?(£). On dit qu'un élément est équilibré si ses

diviseurs à droite et à gauche sont les mêmes.1 Ö"

Définition 3.1. Soit (G, R) un groupe positivement engendré, soit c g G un élément

équilibré et soit Pc l'ensemble des diviseurs (à gauche ou à droite) de c. On considère

un ensemble P^, {w_ \ w g Pc} en bijection avec Pc et on définit un monoïde
noté M(Pc) par la présentation suivante : l'ensemble des générateurs est P_c et les

relations sont w_.u/ vuvu' pour tous les couples (w, vu') tels que vu, vu' et vu vu' sont
des diviseurs de c et que Ir(ww') Ir(vu) + Ir(vu').

Les notions standard de divisibilité à gauche ou à droite dans le monoïde M(PC)
étendent les notions correspondantes de divisibilité définies dans Pc. Notons que les

atomes, i.e., les éléments différents de 1 qui ne sont pas produit de deux facteurs
différents de 1, sont des éléments de Pc.

Remarquons qu'on a un morphisme de monoïdes M(PC) --* G donné par w_ *--* vu

pour vu g Pc. L'existence de ce morphisme permet facilement de prouver que M{PC)
a une propriété de simplifiabilité partielle à gauche et à droite {cf. [B, 0.4.4]) : si

am bm ou si ma mb avec a et b dans Pcetm g M(PC) alors a b. On a de

plus :

Proposition 3.2. Pourtoutw g Pc Vélémentw' cwc~l estdans Pc et est l'unique
élément de Pc tel que u/.c_ c^.w_. L'application w_ i->- u/ définit un automorphisme
du monoïde M{PC).

On appellera "conjugaison par c" l'automorphisme ainsi défini.

Preuve. Onac xvu avec/#(c) Ir(w) + Ir(x). Comme c est équilibré, l'élément
x est aussi un diviseur de c à droite, donc on peut écrire c vu'x avec Ir(vu') +
Ir{x) Ir{c). On â vu' cvuc~l et c u/.x x_.w_, d'où c^.w_ w_'.x_.w_ u/.c_.

L'application w_ *--* u/ définit un morphisme de monoïdes. On a un morphisme en

sens inverse en faisant un raisonnement analogue en partant de vu'. D'où le résultat.
D



36 F. Digne CMH

Notons encore la propriété générale suivante de M(PC) :

Proposition 3.3. Tout élément de M(PC) divise une puissance suffisamment grande
de c

Preuve. Tout élément de M(PC) s'écrit w_l...wJk pour un certain k, où les w\ sont
des éléments de Pc. On montre par récurrence sur k que u^ w_k divise c_k : par
définition les éléments de P^. divisent c, donc il existe x G Pc tel que w_kx_ c_. Par

3.2 on a u^ w_kx_ cw[ -M^k-i °ùles wi sont des éléments de Pc. Par hypothèse
de récurrence w\... Ml't-i divise ck~1, d'où la proposition.

Remarquons que par définition la longueur Ir s'étend en une fonction additive
sur M(PC). Remarquons aussi que les diviseurs de c dans M(PC) sont exactement les

éléments de P_c. Les éléments r G P_c tels que r e R sont les atomes du monoïde

M(PC).
Revenons à la situation du groupe de Coxeter W de type Ä„_i et appliquons les

constructions précédentes à un élément de Coxeter c fixé de W comme dans la section

précédente, dont on garde les notations.
Nous prouvons maintenant dans ce cas la conjecture 1.1 (ii) :

Proposition 3.4. Le monoïde M(PC) est engendré par les r^oùr est une réflexion qui
divise c avec comme relations

L-L ZÎL-L (3-5)

si r et t sont deux réflexions distinctes telles que rt divise c.

Remarquons qu'un cas particulier de ces relations est que r_.t_ t_.r_ si rt divise c

et que r et t commutent.

Preuve. La preuve suit les mêmes grandes lignes que celle de [B, 2.1.4]. Le monoïde

M (Pc) est engendré par les r où r est une réflexion qui divisée et les relations 3.5 sont
vraies dans M(PC). Il suffit de voir que ces relations impliquent les autres, c'est-à-dire

que pour tout w G Pc on peut passer d'une écriture de w de longueur Ir(w) à une
autre uniquement par les relations

r.s (rsr).r (3.6)

si r et s sont deux réflexions distinctes telles que rs divise c. Prouvons ceci par
récurrence sur Ir(w). Si Ir(w) 1 il n'y a qu'une écriture de longueur minimale de

w. Dans le cas général il suffit de prouver que si t g R et t =^ w g Pc alors à partir
d'une écriture minimale de w fixée et par application des relations 3.6 on peut obtenir
une écriture minimale de w commençant par t. L'hypothèse de récurrence permet
alors de conclure. L'élément w, divisant c, est un produit de diviseurs élémentaires
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comme dans 2.19. On fixe une écriture minimale de vu obtenue par concaténation
d'une écriture minimale de chaque diviseur élémentaire. Par 2.20 une réflexion t
divise w si et seulement si elle divise un des diviseurs élémentaires de w. Comme
deux réflexions qui interviennent dans les écritures de deux diviseurs élémentaires de

w distincts commutent entre elles, t commute avec les réflexions qui interviennent
dans les écritures minimales des autres diviseurs élémentaires. On est donc ramené à

montrer le résultat pour un seul diviseur élémentaire. Si ce diviseur est un élément de

Coxeter d'un groupe de type A (c'est-à-dire a toutes ses orbites finies) le résultat est

connu (cf. [B] et [BDM]). On est ramené au cas d'un élément de Coxeter d'un groupe
de type À. Il suffit donc de prouver le résultat pour c lui-même. Quitte à faire une
permutation circulaire des réflexions élémentaires, ce qui revient à une conjugaison
donc laisse invariantes les relations 3.6, on peut ramener c à être de la forme {cf.

preuve de 2.10)

c (skhSkh+l ¦ • ••%+i-l)(-%_i'%_i+l • • -skh-l) ¦ ¦ ¦ (s\S2 S/ti-l),

avec 1 ko < k\ < k2 < ¦ ¦ ¦ < kh < k^+i n + 1 et s-, (i, i + 1). On part de

cette écriture et on veut faire apparaître t à gauche de c par application des relations
3.6. En fait il suffit de faire apparaître t dans une écriture de c ; on peut ensuite
le ramener à gauche par application des relations 3.6. Chaque (s^s^+i ¦ ¦ ¦ skl+l-\)
est un élément de Coxeter d'un groupe de type A, donc on peut faire apparaître
à gauche ou à droite, par application des relations 3.6 n'importe quelle réflexion
de support inclus dans [k;,k;+\]. On en déduit que si £,_i < a < k\ < kj <
b < kj+\, on peut faire apparaître dans l'écriture de c par application de 3.6 le

produit(£,-, b)(kj_i, kj)... {ki+\, k;)(k;, a) qui est l'écriture d'un élément de Coxeter
d'un groupe de type A, donc on peut faire apparaître (a, b) dans l'écriture de cet
élément. Le même type d'argument montre qu'on peut faire apparaître (b,a + n)
sous les mêmes hypothèses, en faisant apparaître le produit {b, 1 + n) à droite du

produit (skh ¦ ¦ ¦ skh+l (skj skj+l et (1 + n, a + n) (1, a) à gauche du produit
(Ski ••••%+i-l) •••(•% •••¦S'iti-l)-

II reste à voir qu'on peut faire apparaître toute réflexion t (a, a) où a g X
et a G H. Comme c est la translation d'une position dans le sens croissant de X
et d'une position dans le sens décroissant de H, il conjugue (a, a) sur (a', a') où
a' est translaté de a dans X d'une position dans le sens croissant et a' est translaté
de a dans H d'une position dans le sens décroissant. Donc {a, a) peut être ramené

par conjugaison par une puissance de c sur une réflexion d'une des formes (a, b) ou
{a,b -n), avec 1 < a, b < n, et par la première partie de cette démonstration on sait

qu'on peut faire apparaître une telle réflexion dans une écriture de c par application
des relations 3.6. La conjugaison par c est aussi une suite d'applications de 3.6, d'où
le résultat.
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4. Présentations duales pour les groupes d'Artin-Tits affines de type A

Nous gardons les notations des deux sections précédentes, en particulier c est un
élément de Coxeter du groupe de Coxeter W de type Ä„_i. Le premier but de cette
section est de prouver le théorème suivant (cf. conjecture 1.1 (i)) :

Théorème 4.1. Le groupe de fractions G(PC) de M(PC) est isomorphe au groupe
d'Artin-Tits de type An_\.

Nous noterons B(An-\) le groupe d'Artin-Tits de type Ä„-i • Il est engendré par
s\,S2, ¦ ¦ ¦ ,sn, avec comme relations sisi+\s\ Sj+iSiSi+i pour i 1, ...,«, si on

poses„+i s\,ets;Sj SjSt sif ^ j±l (mod n). Pour prouver le théorème 4.1 on
montre d'abord que dans G(PC) les éléments s_\, ¦ ¦ ¦, s_n vérifient les mêmes relations

de tresses. Ceci définit un morphisme 5(Ä„_i) —>¦ G(PC). On trouve ensuite dans

5(Ä„_i) des éléments dont les images par ce morphisme sont les générateurs r de

G{Pc) et qui vérifient les relations 3.5, ce qui prouve la bijectivité du morphisme.
Pour cette deuxième étape on utilisera l'interprétation de B(Ân-\) comme groupe
fondamental.

Proposition 4.2. L'application s\ \-> s_t pour i 1,..., n se prolonge en un homo-

morphisme B(Àn-\) -> G{PC).

Preuve. Cela revient à montrer que dans G{PC) on a ^ii+1i, s_i+\s_is_i+\ pour
i 1, n et s_js_j s_jS_{ si i, j G [1, n] et \i — j\ > 2. Par 3.4 on a SjSj+i
s_'s_i s_i+i^,oùsf (i, i + 2). On en déduit^?+1^?^?+1 s_i+i^s_i sjSj+iSj- On

a aussi par 3.4 s_{s_j s_jS_{ si \i — j\ > 2.

Avant de montrer que ce morphisme est un isomorphisme, nous rappelons
l'interprétation de 5(Ä„_i) comme sous-groupe du groupe de tresses à n brins dans C*
(cf. [GL] et [A]). On considère un n-uplet de points de C*. Le groupe des tresses

dans C* de base ce n-uplet ("tresses à n brins" dans C*), est isomorphe au groupe
d'Artin-Tits B(Bn) de type Bn. L'application qui associe à une telle tresse le nombre
de tours total des brins autour de 0 est un morphisme à valeur dans Z. Le groupe des

tresses de type Ä„_i est le noyau de ce morphisme. Notons aussi qu'on peut considérer

le groupe des tresses à n brins dans C* de base le n-uplet (x\, xn) comme
le sous-groupe du groupe des tresses à n + 1 brins dans C de base le n + 1-uplet
(0, x\, xn) tel que le brin issu de l'origine soit trivial (tresses pures relativement
à un brin fixé).

Nous nous plaçons dans le cadre de 2.15 et nous choisissons comme n-uplet de

base (a, b, l, a, X) comme dans 2.15. Nous associons à chaque r_ où r est

une réflexion de Pc une tresse de B(Àn-\) la façon suivante : r est représentée par
un chemin y dans la couronne, sans auto-intersection, reliant i à j où i et j sont les
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images dans la couronne de deux points de X U H. On associe à ce chemin la tresse
où tous les points sont fixes sauf les deux points partant respectivement de i et j
qui suivent y en sens inverse et s'"évitent par la droite" si l'orientation du plan est

choisie dans le sens horaire ce que nous supposerons dans les figures qui suivent. Plus

précisément, on peut supposer que y est une application différentiable de [0,1 ] dans la

couronne telle que les tangentes en 0 et 1 soient orthogonales au bord de la couronne.
Soit n{î) un vecteur normal dans le sens direct à y en y (t). On considère la tresse où
tous les brins sont fixes sauf un brin partant de i donné par t i->- y(t) + e sm(nt)n(t)
et un brin partant de j donné par t i->- y (1 — t) — e sin(7r(l — 0)^(1 — t) où e est

assez petit pour que la tresse soit dans la couronne.

Proposition 4.3. L'application que nous venons de définir se prolonge en un isomor-
phisme de G{PC) dans 5(Ä„_i) inverse de l'homomorphisme défini par 4.2.

Preuve. Il faut voir que les relations 3.5 sont vérifiées par les images des éléments r.
On déduit de 2.19 qu'il y a trois types de couples (r, t) G R2 tels que rt divise c.

• Si r et t correspondent à des chemins sans intersection r et £ commutent et il est

clair que leurs images dans 5(Ä„_i) commutent aussi.

• Si r (i, j) et t (j, k) où i, j et k sont deux à deux distincts modulo n et si

i, j,k sont les sommets d'un triangle curviligne direct dans la bande, la relation
est (i, j).(j, k) (i, k).(i, j). Cette relation est vérifiée par les tresses images :

si nous notons encore i, j et k les images respectives dans la couronne des

points i, j et k, les éléments (i, j), (j, k) et (i, k) correspondent à des chemins

respectivement de i kjdejkketdekk i formant le bord d'un triangle curviligne
direct inclus dans la couronne et la relation pour les tresses correspondantes n'est
autre que la relation classique pour les tresses à trois brins (voir figure 3) dans

le groupe de tresses de C* (ou de C).

• Si r (x, §) et t (x - n, §) avec x g X et § G H, la relation est

(x, §).(x — n, §) (x + n, §).(x, §). La relation correspondante est vraie dans

5(Ä„_i) : on considère l'automorphisme de M(PC) induit par l'identité sur X
et la translation de n sur H. La relation revient à dire que (x, §).(* - n, §) est

invariant par cet automorphisme. Dans B{Àn-\) on considère l'automorphisme
induit par une isotopie qui est l'identité sur le bord extérieur de la couronne et fait
tourner l'autre bord de la couronne d'un tour dans le sens positif. L'application de

l'énoncé est compatible avec ces automorphismes. On peut supposer x g [1, n] ;

en appliquant une puissance convenable de ces deux automorphismes on peut
ramener § dans [1, n] ; la relation résulte alors de la figure 4 qui permet de voir
l'invariance cherchée.

Les propositions 4.2 et 4.3 prouvent le théorème 4.1.
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J J

Figure 3. (i, /).(/, k) (/, k).(i, k).

Figure 4. (x, f ).(x, f + «).
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Nous avons ainsi défini pour chaque choix d'un élément de Coxeter c un sous-
monoïde M(PC) de B{An-\). Deux tels monoïdes correspondant à des ensembles

{a, ...,/} et {a, X] de mêmes cardinaux respectifs sont isomorphes. L'échange
de X et de H est aussi un isomorphisme (qui se traduit dans la représentation géométrique

par une rotation de n de la bande). On en déduit que la classe d'isomorphisme
de M(PC) ne dépend que de la partition de n en \X n [1, n]\ + | H n [1, n]\. Réciproquement

:

Théorème 4.4. L'application qui à c associe l'ensemble {\X n [1, n]\, | H n [1, n]|}
induit une bijection des classes d'isomorphisme des monoïdes M(PC) de la section 3

sur les partitions de n en deux parties.

Ce théorème résulte des considérations qui précèdent et de la proposition suivante

qui montre que | Xn [1, n] | et | H n [1, n] | sont déterminés par l'action de la conjugaison

par c sur les atomes.

Proposition 4.5. L'orbite par la conjugaison par c_ d'un atome (i, j) est finie de

cardinal \X n [1, n]\ (resp. | H n [1, n]\) si i et j sont tous deux dans X {resp. tous
deux dans H) et infinie si i g X et j g H.

Preuve. Par 3.2, si r et r' sont des réflexions de Pc on a rc_ c/ si et seulement
si rc cr'. On a vu dans la démonstration de 3.4 que la conjugaison par c revient
à décaler X d'une position dans le sens croissant et H d'une position dans le sens

décroissant. On en déduit le résultat.

5. Une structure à la Garside pour les groupes d'Artin-Tits affines de type A

Gardons les notations des sections précédentes. Nous allons étudier les propriétés
de la divisibilité dans Pc dans le cas où c s\s2- ¦ .sn. Dans ce cas on a c

(2, 3,..., ra)[i](l)[_i] et les ensembles H et X sont respectivement H {z G Z |

z 1 (mod n)} et X {z G Z | z # 1 (mod n)}.
La propriété fondamentale du monoïde M{PC) dans ce cas (théorème 5.4) est une

conséquence de la proposition suivante :

Proposition 5.1. Si c s\... sn, deux atomes quelconques de Pc ont un ppcm
dans Pc.

Preuve. Considérons deux atomes r (x, y) et r' (x1', y'). On sait que r (resp. r')
divise un élément p G Pc si et seulement si x et y (resp. x' et y') sont dans la même

partie de la partition associée à p comme dans 2.22. Il y a deux cas.
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• Si r et r' sont sans croisement, ils commutent et rr' est dans Pc par 2.19. Dans

la décomposition d'un multiple commun m de r et r' en produit de diviseurs

élémentaires, ou bien r et r ' divisent deux diviseurs élémentaires de m différents
et rr' divise alors m, ou bien r et r' divisent le même diviseur élémentaire c' de

m qui est un élément de Coxeter d'un sous-groupe quasi-parabolique W et on
conclut que rr' divise c' soit par 2.19 si W est de type Ä soit par [BDM, 1.8] si

W est de type A. Donc le ppcm de r et r' existe et vaut rr'.

• Si r et r' se croisent (i.e. ne sont pas sans croisement), supposons x < y, x' < y'
et x et x' dans [1, n] ; si m est un multiple commun de r et r', alors {x, y] et

{x;, y'} ne peuvent pas être dans deux parties distinctes de la partition associée à

m car ces deux parties ne seraient pas sans croisement. Donc il existe un diviseur
élémentaire m' qui divise m et qui est multiple de r et r'. Distinguons trois cas.

Si l'ensemble {x, y, x', y'} n X est inclus dans un intervalle de longueur
strictement inférieure à n, la partition dont les seules parties non triviales sont

{x, y, x', y'} + kn avec k G Z définit un élément de Coxeter c' d'un quasi-
parabolique de type A.

Si l'ensemble {x, y, x', y'} n X n'est pas inclus dans un intervalle de longueur
strictement inférieure à n et si {x, y, x', y'} n H est non vide, la partition dont
la seule partie non triviale est {x, y, x', y'} + nL définit un élément de Coxeter
c' d'un quasi-parabolique de type A.

Si l'ensemble {x, y, x', y'} n X n'est pas inclus dans un intervalle de longueur
strictement inférieure à n et si {x, y, x', y'} n H est vide, notons c' l'élément de

Coxeter d'un quasi-parabolique de type A défini par la partition dont la seule

partie non triviale est {l,x, y, x', y'} + n7L et remarquons que la partie associée
à m' étant infinie doit contenir 1.

Dans les trois cas l'élément c' divise m'par 2.19 appliqué à m' et il est multiple
de r et r'. C'est donc le ppcm de r et r' dans Pc.

On peut alors appliquer la généralisation immédiate suivante de [B, 0.5.2] :

Théorème 5.2. Soit (G, R) un groupe positivement engendré, soit c un élément équilibré

et soitM{Pc) comme précédemment. Supposons que deux éléments quelconques
de R ont un ppcm dans Pc ; alors la divisibilité à gauche et la divisibilité à droite
donnent à M{PC) deux structures de treillis.

Dans ce contexte on peut vérifier que les résultats de [BDM, section 2] et [B, 0.5]
s'appliquent.

Nous appellerons structure quasi-Garside une structure de monoïde vérifiant tous
les axiomes de [B, 0.5.1] sauf la finitude du nombre d'atomes. Nos axiomes seront
donc :
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Définition 5.3. Un monoïde M est dit quasi-Garside si

(i) Pour tout m g M le nombre de facteurs dans un produit égal à m est borné.

(ii) M est simplifïable à gauche et à droite.

(iii) La divisibilité à gauche et la divisibilité à droite donnent à M deux structures de

treillis.

(iv) II existe un élément À (élément de Garside) dont l'ensemble des diviseurs à

gauche est égal à l'ensemble des diviseurs à droite et engendre M.

L'axiome (i) signifie que le monoïde est atomique au sens par exemple de [B,
0.2.2] ;il est équivalent à l'existence d'une longueur/ sur le monoïde telle que l{ab) >
l(a) + l(b) pour tout couple (a,b).

Les axiomes (i), (ii) et (iv) étant vérifiés par un monoïde défini comme plus haut
à partir d'un groupe engendré et d'un élément équilibré, l'énoncé 5.2 devient :

Théorème 5.4. Sous les hypothèses de 5.2, le monoïde M(PC) est un monoïde quasi-
Garside avec c_ comme élément de Garside.

Ce théorème s 'applique en particulier à un élément c comme dans 5.1. Un tel choix
définit donc une structure quasi-Garside sur le groupe d'Artin-Tits de type Ä„_i.

Le résultat suivant montre que le choix de c fait dans 5.1 est à isomorphisme près
le seul pour lequel la divisibilité a une structure de treillis.

Proposition 5.5. Si c est un élément de Coxeterd'un groupe de type Ä„-i, le monoïde

M(PC) muni de l'ordre de la divisibilité a une structure de treillis (et est donc un
monoïde quasi-Garside) si et seulement si l'un des deux ensembles EouX est réduit
à un seul élément modulo n.

Preuve. L'échange de H et X définit un isomorphisme des monoïdes correspondants.
D'autre part deux éléments de Coxeter tels que les ensembles X correspondants
ont même nombre d'éléments modulo n sont conjugués, donc dans ce cas aussi les

monoïdes sont isomorphes. On en déduit par 5.1 que si H ou X a un seul élément
modulo n, on a bien une structure de treillis. Inversement supposons que modulo n,
à la fois H et X ont au moins deux éléments. Soient a < b dans X n [1, n] (resp.

a ^ ß dans H n [1, n]). Les éléments (a, b) et (b, a + n) divisent {a, è)[i](a)[_i] et

(a, b)[\\ (ß)[-i] qui sont de longueur 3 et n'ont aucun diviseur commun de longueur
2 d'après 2.19. Donc (a, b) et (b, a + n) n'ont pas de ppcm.

Remarquons que dans l'exemple précédent c'est le dernier cas de la preuve
de 5.1, dans lequel on a dû introduire le quasi-parabolique de type À défini par
{1, x, y, x', y'} + «Z, qui est en défaut. En fait les raisonnements des autres cas

s'appliquent pour tout élément de Coxeter c mais ce dernier cas utilise le fait que H est

un singleton modulo n.
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Donnons quelques conséquences de l'existence d'une structure quasi-Garside sur
B An _1 Ces conséquences sont de simples applications des propriétés générales des

monoïdes de Garside dont on vérifie qu'elles sont encore valables dans le cadre quasi-
Garside. Le premier est l'existence de formes normales telles que dues à Garside (voir
par exemple [M] ou [BDM, section 2], voir aussi [C]).

Proposition 5.6. (i) Tout élément de 5(Ä„_i) s'écrit de façon unique a~lb où a et
b sont des éléments de M{PC) premiers entre eux.

(n)Tout élément de M{PC) s'écrit defaçonunique a\ci2 .a^oùpouri 1, k
l'élément a\ g P_c est un (le) diviseur maximal dans P_c du produit ajaj+i .a^ et

Nous prouvons maintenant :

Proposition 5.7. Le centre de 5(Ä„_i) est trivial.

Preuve. La démonstration suit les mêmes idées que la démonstration classique pour
les monoïdes de tresses ou que la démonstration de [P, 4.1] ; ces démonstrations ne

s'appliquent pas telles quelles car elles supposent qu'il y a un nombre fini d'atomes.
On utilise le lemme suivant :

Lemme 5.8. Soit M un monoïde quasi-Garside et soit b un élément quasi-central de

M, c'est-à-dire tel qu'il existe un automorphisme r de M vérifiant xb bx(x) pour
tout x g M ; soit x un diviseur à gauche de b et y G M ; posons ppcm(x, y) yz
avec z g M : alors z divise b à gauche.

Preuve. Comme x divise b il divise bx(y) yb, donc yz divise yb et par simplifia-
bilité z divise b.

On en déduit la proposition : Soit g G B{Ân-\) central. On peut écrire g £nb

avec b g M(Pc) non divisible par c et n g Z convenable. On a alors b quasi-central.
Montrons par l'absurde que b 1. Sinon, soit r une réflexion de Pc telle que r_ divise
b. Pour tout triplet de réflexions (r, s,t) correspondant à un triangle direct comme
dans la preuve de 4.3 on a r_.s_ s_.t t_.r_ ppcm(r, s) ppcm(^, t). On en
déduit par le lemme que r_ et t_ divisent b. Comme à partir de r, de proche en proche
on peut faire apparaître n'importe quelle réflexion r' de Pc dans un triangle direct,
on en déduit que b est multiple de tous les atomes de M{PC) donc est multiple de

c, ce qui est contradictoire. Tout élément central est donc une puissance de c. Or la

conjugaison par c est un automorphisme d'ordre infini {cf. 3.4 ou 4.5), donc aucune

puissance de c autre que c° n'est centrale.

Donnons une dernière conséquence de l'existence de la structure quasi-Garside.
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Proposition 5.9. Soient c s\ .sn et c_ s_x ...s_n comme précédemment. Le

centralisateur de £h dans le groupe d'Artin-Tits de type Ä„_i engendré par s_x,..., s_n

est un groupe d'Artin-Tits de type 5pgcd(ft,n-i)-

Preuve. La théorie générale des monoïdes de (quasi-)Garside énonce que les points
fixes d'un automorphisme o dans un monoïde M de (quasi-)Garside forment un
monoïde Ma de (quasi-)Garside, avec pour atomes certains des ppcm des orbites des

atomes et même élément de Garside ; le groupe des fractions de ce monoïde est le

groupe des points fixes de o dans le groupe des fractions de M {cf. [BDM, 2.26]
dont la démonstration s'étend à la situation quasi-Garside). Nous appliquons ceci à

la conjugaison par c_h. Le centralisateur de £h dans G{PC) est donc engendré par les

ppcm des orbites des atomes sous la conjugaison par c_h. Comme le montre le calcul
fait dans 3.4 la conjugaison par c envoie (x, y) sur (x', y') où x' et y' s'obtiennent
à partir de x et de y en translatant X d'une position dans le sens croissant et H

d'une position dans le sens décroissant. Pour simplifier au lieu d'indexer comme
précédemment les éléments de X par les entiers non congrus à 1 modulo n, nous
renumérotons consécutivement les éléments de X, en les notant x; avec i g Z, et

nous faisons de même pour les éléments de H qui seront notés & avec i G Z. La
translation de n devient alors x, *--* xi+n_i et §, i->- §f+i. La conjugaison par c_h

envoie (x,, x;) sur (xi+h, xj+h). L'orbite de (x,, x;) ne dépend donc que du pgcd de

h et de n — 1. La conjugaison par £h envoie (§o, xj) sur (§o, xj+nh). Le ppcm d'une
telle orbite est (Ço)[-i](xj, xj+k, xj+2k, ¦ ¦ ¦, *(/+n-i-it))[i] où k est le pgcd de h et

n — 1. On voit que les ppcm des orbites d'atomes ne dépendent que du pgcd de n — 1

et h. Donc ç_h et cpgcd(" l'h) ont même centralisateur. On est donc ramené au cas

où h divise n — 1. Le lemme suivant est le cas particulier de la proposition quand

h=n-\.
Lemme 5.10. Le centralisateur de cn~1 est un groupe d'Artin-Tits de type Bn_\ et

l'image de c_ dans ce groupe est un élément de Coxeter de ce groupe.

On a appelé élément de Coxeter d'un groupe d'Artin-Tits le relevé canonique
d'un élément de Coxeter du groupe de Coxeter.

Preuve. Les éléments (x,, x/) sont centralisés par cn~1. L'orbite de (§o, x/) se compose

des éléments (§o, ¦*;+£«(«-1)) avec k g Z. Le ppcm d'une telle orbite est

](*/)[i]- Le centralisateur C(£n~1) de cn~1 est donc engendré par ces élé-
ments et toutes les relations s'obtiennent en égalant les décompositions de c comme
produits de ces générateurs. On a

C (X1,X2).(X2,X3) ¦ ¦ (Xn_2, Xn-l).(go)[-l](xn_l)[l].
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Pour construire un isomorphisme entre C(c_n 1) et le groupe d'Artin-Tits B(Bn-\)
de type Bn-\ nous revenons à l'interprétation de B(An-\) comme tresses dans une
couronne. Remarquons que les générateurs ci-dessus de C^c""1) sont des tresses
telles que le brin d'origine §o a pour extrémité §o (voir figure 5). Or on peut interpréter

le groupe de tresses de type 5„_i comme le groupe de tresses à n — 1 brins dans

la couronne, les points de base étant les points x\, X2, ¦ ¦ ¦, xn_\ (cf., [L]). On a donc

un morphisme de C^c""1) dans B(Bn-\) par oubli du brin issu de §o- Les générateurs

de C(cn~1) s'envoient sur les générateurs de la présentation duale du groupe
B(Bn-\) et l'image de c est l'élément de Coxeter de B(Bn-\). Donc les relations
entre les générateurs de ces deux groupes se correspondent. Le morphisme est donc

un isomorphisme.

Xn-1

Xn-2

Figure 5. (fo)[-i]On-i)[i]-

Prouvons alors la proposition. Si h divise n — 1, le centralisateur de £h est égal

au centralisateur de £h dans le centralisateur de c" 1. Le lemme permet donc de

terminer la démonstration de la proposition car le centralisateur d'une puissance d'un
élément de Coxeter dans un groupe de tresses de type B est connu par les résultats
de [BDM]. D

Remarque 5.11. On obtient des générateurs standards (i.e. vérifiant les relations
de tresses de type B) du centralisateur de cn~1 en prenant (x\, xi), (x2, xi),...,
(xn-2,xn-i), et (§o)[_i](x„_i)[i]. D'autre part il est facile de voir que le

centralisateur de (s\S2 ¦ ¦ -sn)n~l dans le groupe de Coxeter W(Ân-\) est le groupe le
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groupe engendré par {x\,x2), (x2, x3), (x„_2, x„_i), et (§o)[-i](*n-i)[i] donc

est l'image du centralisateur de cn~1 dans le groupe d'Artin-Tits. La présentation
de cette image s'obtient en ajoutant aux relations de tresses de type B le fait que les

n — 2 premiers générateurs sont d'ordre 2 (le dernier est d'ordre infini).
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