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Arithmetic properties of ¢(n)/A(n) and the structure of the
multiplicative group modulo n

William D. Banks, Florian Luca and Igor E. Shparlinski

Abstract. For a positive integer n, we let ¢(n) and A(n) denote the Euler function and the
Carmichael function, respectively. We define £ (n) as the ratio ¢(n)/A(n) and study various
arithmetic properties of & (n).

Mathematics Subject Classification (2000). 11A25.

Keywords. Euler function, Carmichael function.

1. Introduction and notation

Let ¢(n) denote the Euler function, which is defined as usual by

o) =#@Z/n2)" = [] P’ p—1, n=1.
pVlln

The Carmichael function A(n) is defined for all n > 1 as the largest order of any
element in the multiplicative group (Z/nZ)*. More explicitly, for any prime power
p’, one has

Ap") = P’ Hp—1) ifp>3orv<2,
Fo—d if p=2andv >3,

and for an arbitrary integer n > 2,

AMn) =lem (A(PY), ... A (p9)),

where n = py' ... p/f is the prime factorization of n. Clearly, A(1) = 1.

Despite their many similarities, the functions ¢ (r) and A (rn) often exhibit remark-
able differences in their arithmetic behavior, and a vast number of results about the
growth rate and various arithmetical properties of ¢(n) and A(n) have been obtained;
see for example [4], [5], [7], [8], [9], [11], [15]. In this paper, we consider the
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arithmetical function defined by

o

§(n) = o

and we study some of its arithmetic properties.

In particular, letting P (k) denote the largest prime factor of a positive integer k
(with the convention that P(1) = 1), we study the behavior of P (£(n)). Our results
imply that typically &(n) is much “smoother” than a random integer k of the same
size. To make this comparison, it is useful to recall that Theorem 2 of [9] implies that
the estimate

£(n) = exp (logy nlogs n + Clog, n + o(log, n)) (1)

holds on a set of positive integers n of asymptotic density 1 with some absolute
constant C > (. Here, and in the sequel, for a real number z > 0 and a natural number
£, we writelog, z for the recursively defined function givenby log; z = max{log z, 1},
where log z denotes the natural logarithm of z, and log, z = max{log(log,_; z), 1}
for £ > 1. When £ = 1, we omit the subscript (however, we still assume that
all the logarithms that appear below are at least 1). Of course, when z is sufficiently
large, then log, z is nothing more than the £-fold composition of the natural logarithm
evaluated at z.

We also use Q2(n) and w(n) with their usual meanings: €2(n) denotes the total
number of prime divisors of n > 1 counted with multiplicity, while o (n) is the
number of distinct prime factors of n > 1; as usual, we put (1) = (1) = 0. In
this paper, we also study the functions €2 (£ (n)) and w (§(n)).

Observe that a prime p divides &(n) if and only if the p-Sylow subgroup of the
group (Z/nZ)* is not cyclic. Thus, P(&(n)) and w (& (n)) can be viewed as measures
of “non-cyclicity” of this group. In particular, (£(n)) is the number of non-cyclic
Sylow subgroups of (Z/nZ)*.

We also remark that any prime p | £(n) has that property that p? | o(n). Thus,
while studying the prime factors of & (n), one is naturally lead to an associated question
concerning the difference Q2 (¢ (n)) —w (@(n)), aquestion that we address here as well.

Asusual, for a large number x, 77 (x) denotes the number of primes p < x, and for
positive integers a, k with gcd(a, k) = 1, 7(x; k, a) denotes the number of primes
p < x with p =a (mod k).

We use the Vinogradov symbols >>, <, x as well as the Landau symbols O and
o with their usual meanings. The implied constants in the symbols O, >, < and =<
are always absolute unless indicated otherwise.

Finally, we say that a certain property holds for “almost all” » if it holds for all
n < x with at most o(x) exceptions, as x — 00.
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2. Distribution of P (&(n)), ®(§(n)) and R (§(n))

In what follows, let us call a real-valued function &(x) admissible if
e &(x) is a decreasing function, with limit 0 as x — o0;
e &(x)log, x is an increasing function, tending to0 00 as x — 0.

We begin with the following statement, which may be of independent interest.

Lemma 1. For any admissible function £(x) and any prime g < &(x)log, x, every
positive integer n < x has at least (log, n)/2q distinct prime factors p = 1 (mod g),
with at most o(x) exceptions.

Proof. Letw(n, q) denote the number of distinct prime factors p of nsuch that p = 1
(mod ¢g). For any real number y > 1 and integer a > 1, put

Syay= Y. - )
p<y p
pr=1l (mod a)
It is known (see Theorem 1 in [18] or Lemma 6.3 in [17]) that
log, ¥
S(v.a) = =222 4 o). 3)
p(a)
In particular, the estimate
log, n
S(n.q) = qg_zl +0(1) > e(x)™!

holds for all ¢ in the stated range and all n > x!/2, once x is sufficiently large. By

the classical result of Turdn [20], we also have that the estimate
o(n,q) =S, q)+ O (S(n, )*°)
holds for all » in the interval x1/2 < n < x, with at most
O (xS(n, q)™"%) = 0 (x e(x)"/%) = o(x)

possible exceptions, and the result now follows. O



4 W. D. Banks, F. Luca and I. E. Shparlinski CMH

Lemma 2. For real numbers x >y > 1 let

Bx,y) =#{n<x:PEmn) >y}
Then,
x(log, x)?

Bx,y) <
ylogy

Proof. If a prime ¢ divides &(n), then clearly g% | ¢(n). The upper bound

1 2.
#n<x:gm =0 (mod g9} < x(oqgifx)
is a special partial case of Lemma 2 of [5] (see also the proof of Theorem 7.1 in [4]).
In particular,
x(log, x)?
#n < x: PEM) =q) < % @

It now follows that
x(log, x)?
Y oY i<y
<g=x n<x y<qg=x 4
P(&(n)=q

Using Abel summation, we estimate

Ex,y) =
y

1 * (e 1 A |
> —22”(;)—i2y)+2/ i3)dt<< +/ ——dl € ,
Vata X y y 1 xlog x y t=logt ylogy
and the lemma follows. (]

Theorem 1. If e(x) is any admissible function, then the inequalities

(log, n)?

e(n)logyn < P(§(n)) < W

hold for almost all positive integers n.

Proof. By the Prime Number Theorem, for all sufficiently large real numbers x there
exists a prime ¢ in the interval:

e(x)log, x < g <2e(x)log, x.

If n is an integer with two prime factors p; = pp = 1 (mod ¢q), then g | §(n). By
Lemma 1, we derive that

Z 1> Z 1> Z 1 =x+o(x).

x1/2<n§x x1/2<n§x x1/2<n§x
PEm)ze(n)logy n PEm) =g w(n,q)=2
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This proves the lower bound. The upper bound is a direct application of Lemma 2.
O

We remark that the upper bound of Theorem 1 improves the corollary to Theorem 2
in [9].

Theorem 2. As x — 00, we have

(1+o(1)xlogsx < Y log P(E(n)) < (2+ o(1)) x logs x.

n<x

Proof. The above lower bound follows from the lower bound from Theorem 1. For
the upper bound above, we write

D logPEm) =) logg Y L
g=x

n<x n<x

PE(m)=q

For g < y, we trivially have

Ylogg Y. l<logyY. > t<logy) l<uxlogy,
q=y g=<y

n=<x n<x n<x

P(E(n)=q T PEMm)=¢q
while for ¢ > y, we have, by (4):
lo
3 logg Y l<xlogyn)?® Y 2L« vy llogy x ),
y<g=x n<x y<g=x
P(E(n)=g
where we have used Abel summation to estimate

logg log x logy * 1 2logt
3 22 a2 — a5 —/ 7 (t) <—3— = )dz
q y S t t

y<q=x

X
X
< x7! +/ 2 der eyl
y

Setting y = (log, x)?, we obtain the desired upper bound. O

Theorem 3. As x — 00, we have

> PEm) = x(logy x)°.

n<x
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Proof. Lety = (log, x)*, z = exp((logx)"/?) and w = exp((logx)*/3). We also
put v = z%. In what follows, x is taken to be arbitrarily large.

Taking A = 5/2, & = 1/2, and 6 = 1/15 in the statement of Theorem 2.1
of [1], we see that there exists an absolute constant D > 0 and a set D of cardinality
#D < D, with min{m : m € D} > logv = 6(log x)'/2, such that the inequality

7 (t)
2¢(d)

holds for all positive reals ¢ provided that 1 < d < min{tv_z/ 3 z2} and that 4 is not
divisible by any element of £. Note that if x is sufficiently large and ¢ > w, then
w23 > w23 > 2,

Letting @ denote the set of primes g € [y, z]\D, we therefore see that the lower
bound (5) holds for all # € [w, x] and all integers d € [1, z2] whose prime factors all
lie in @. Together with the Brun—Titchmarsh theorem (see for example Theorem 3.7
in Chapter 3 of [12]), we conclude that

n(t;d, 1) = %)

4 1) FO
w(t;d, 1) < )

holds uniformly for all r € [w, x] and all integers d of the form d = g or d = q142
composed of one or two (not necessarily distinct) primes from Q. Moreover, for any
sufficiently large constant y > 1, we also have

w(t:d, 1) —n(t)y:d 1>vm (6)
H AR )

under the same conditions.

We now let ' i
k=] 2% and K =|-22Y |_1.
log y 2logy

For any prime ¢ € @, we have, by (6):

K : : K
1 a(yltd, 1) —n(y/:d, 1 1 1 log,x
P N P L
w<p=<x!/? j=k =k
p=l (mod gq)

On the other hand, the upper bound (3.1) in [7] (see also Lemma 1 of [5]) provides
an upper bound of the same size as the above lower bound. Consequently,

1 log, x
Yy o<t )

w<p§xl/2 ¥ 4
p=1l (mod gq)
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We now fix a prime number ¢ in @. We denote by N (x, ¢) the number of integers
n < x for which there exists a unique representation of the form n = pjpom for
some integer m and two primes w < p; < p2 < x'/2 with p1 = p» =1 (mod ¢)
and such that g is the only prime in @ dividing ged(p1 — 1, po — 1). We then have

N(x,q) = To(x,q) — Ti(x,q) — I2(x, q) — T3(x, q),

where

o To(x, g)is the total number of ordered triples (p1, p2, m) withprimes w < p1 <
p2 < xV%2, py = pp =1 (mod ¢), and an integer m < x/pjps. Therefore,
using (7), we obtain that

1
To(vq)»x Yy ——
2 P1P2
W<p1<pr=x
p1=p2=1 (mod g)

DI I M

w<p<x1/? w<p<x!/? #
pr=1l (mod g) p=1 (mod gq)

2
x logzx) X 1
> = -= > =
2< q 2q w P

w<p=<x
p=1 (mod g)

x(log, x)? xlog, x x(log, x)?
— 0 .
27 + = > P

e T1(x,q) is the number of triples (pi, p2, m) as above for which there exists
another prime ¢ € @, £ # g, such that p; = pp = 1 (mod ¢). Then, by (7),
we have that

T1(x,q)<<xz Z ! SxZ( Z l>2

 P1P2

ted  wepi<pr<x teq w<p<x
t#q pi=p2=1 (mod ¢&) p=1 (mod ¢g¢)
(logy x)*  x(logy x)* 1
<x ) T R ) 72
te@ >y
x(log, x)? x(log, x)?
< — =0 5 .
g-ylogy q

e Tr(x,q) is the number of triples (p1, p2, m) as above for which there exists

another prime p3, w < p3 < x!/2, which divides m, and for some prime ¢ € @
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(possibly £ = g) one has p3 = 1 (mod ¢), and either p; = 1 (mod ), or
p2 =1 (mod ¢). Therefore, by (7), we see that

1
Tr(x, q) <<XZ Z
2 P1P2P3

e wep,py<x

W<p3=x
pi=p2=1 (mod g)
p35p251 (mod [)

1 1 1
<x) ) o1 > . > P
e wep=x1/? w<py=<xl/? w<p3<x1/?
p1=1l  (mod g) pa=1 (mod gt) p3=l (mod £)
1 x(log, x)3 x(log, x)?
< x(logy x)° < —o (0820
y;Z q*? " g?ylogy q*

o T3(x,q) is the number of triples (p1, p2, m) as above for which there exists
another triple (r1, r2, k) with primes w < r; < r, < x'/? suchthatr; = r, = 1
(mod ¢) for some ¢ € @, and p1pam = rirak. Applying (7) once again, we

obtain that
1 1
T3 (X, 61) < x Z Z ﬁ Z ﬁ
Le@ w<pi<py=<x'/? 172 w<ri<ry<x'/? 172
pi=p2=1 (mod q) ri=ry=1 (mod £)

1 x(logy x)* x(log, x)?
1 4 —=o| =22 ).
<o 0 ), 22 S Pygy T

y=t=z

Consequently, we have

x(log, x)?
N @) = Totx, @) — Ti(x, @) — Tolw, @) — Ta(x, @) > %

We note that P(£(n)) > g forall n € N(x, g) and that the sets N(x, g) are disjoint
for different choices of ¢ € @. Thus,

1

D PEM) > Y q#N(x,q) > x(logyx)* Y —

n=x gel qgel 4
1 D

2 o220 3 7 o)

y=<q=z

> x(logy x)*(log, z — logy y + o(1)) > x(log, x)*.
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To prove the upper bound, we simply use (4) to derive that

SPEm) <Y g Y 1< xlog 0Py é < x(logy ).
g<x

n=<x n<x g=x

P(E(n))=q
This completes the proof. O
Concerning the minimal order of P (& (n)), little need be said; clearly P(£(n)) > 1

for all » > 1, and equality holds if and only if n = 2,4, p” or 2p¥ for some odd
prime p and v > 1. As for the maximal order, we have the following:

Theorem 4. The inequality

Gn+ 12 -2
PEmn) <——
6

holds for all n > 276, and the inequality

holds for infinitely many n.

Proof. For n in the range 276 < n < 579, the upper bound can be verified case by
case; hence, we assume that n > 580 in what follows. Without loss of generality, we
may further assume that ¢ = P(&(n)) > 3, since

3 holds for all n > 133.

172 _
_ (3n+16) 2

If P(£(n)) = g, then either n has a prime divisor p = 1 (mod ¢) and ¢2p | n, or
n has two distinct prime divisors p1 = pp = 1 (mod ¢). In the first case, we see that

Gn+ D22
6 b
the last inequality being valid for all » > 580. Inthe second case, suppose p; = ag+1

and p2» = bg + 1, where a < b are distinct even integers. Now if 2¢ + 1 is prime,
then 4g + 1 is divisible by 3; thus, we must have a > 2, b > 6. Then

g < @ p/2)"? <) <

(2g +1)(6g + 1) < (aqg + 1)(bg +1) = p1p2 <n,

and we obtain the stated upper bound.

To establish the lower bound, we recall the result of Fouvry [10], which asserts
that for all large x, the set @ of primes p in the interval x'/? < p < x and satisfying
P(p —1) >3 p¥97 is of cardinality #Q > x/logx. We also recall that, by Brun’s
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method (see Theorem 2.2 in [12]), for any integer m, the number of primes of the
form p = mq + 1 < x for some other prime ¢ is

(o) i)
¢ (m)(log(x/m))* ¢ (m)(log x)*

provided that m < x'/2. Summing up the above inequalities over all positive integers
m < log, x, we see that

x 1 xlog, x
# <x:P -1 > lo & — K =o(@).
(p=x:P(p—1) 2 x/logyx} < {7 > oo < oty =@

m<logx

Thus, most of the primes p in @ in the interval have ¢ = P(p — 1) < x/log, x, and
therefore there exist two primes pi, p2 € @ with the same value of P(p1 — 1) =

P(py—1) = q. Withn = py py, weseethat P(£(n)) = g >> max {p{%%7, p9667} >
03335
n . O

As is clear from the proof, the upper bound of Theorem 4 is tight under the prime
k-tuplet conjecture of Hardy and Littlewood (see, for example, [3]). We also remark
that the trivial upper bound P (&(n)) < n'/? holds for all n > 1.

Unfortunately, our method of proof for the lower bound of Theorem 4 can not be
combined with the more recent results of [2], since the set of primes considered there
is too thin.

Theorem 5. The inequalities

log, n

Q&) =(1+o0(1))logynlogyn and (10g3n)2

L w(Em) <logyn

hold for almost all positive integers n.

Proof. We start with ©2(£(n)) and first turn our attention to the upper bound. Let x
be a large positive real number, and let 4; be the set of all positive integers » in the
interval [x/logx, x]. Clearly, A1 contains all but o(x) positive integers n < x. Let
A2 be the set of those integers n € 41 for which P(&(n)) < (log, x)z; by Theorem 1,
7 contains all but o(x) positive integers n < x. Let y = (log, x)?. For any positive
integer m, we write

wy(m)=>"1 and Qy(m)= Y v.

p<y p<y
prlm pYllm

Thus, the inequality 2 (£(n)) < Q,(@(n)) holds for all n € A,. The argument on
page 349 in [8] shows that

2
D |2y(p(n) — log; xlogy y|” < x log, x(log, v)*. ®)

n<x
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Now let £1(x) = (log, x)~13 and let B be the set of those n < x such that

Qy(p(n)) > (1 +e1(x)) logy xlogy y.

Using (8), it follows that

#B K = o(x).

61002 log, x

The set A3 = A2\B contains all but o(x) positive integers » < x, and for each
n € 43 we have

QEMm) < Qy(pn) < (1+e1(x))logy xlogy y = (1 4 0(1)) log, x logy x. (9)
Since n > x/log x for all n € A3, this shows that
Q(&(n)) < (1 +o(1))logy nlogyn

for almost all positive integers #.

Next we turn to the lower bound for 2(&(n)). As before, let x be a large real
number, and put £(x) = (logy x)~/3 and Q = (log, x)'/2. For natural numbers
n and g, we again write »(n, g) for the number of prime factors p of n that are
congruent to 1 modulo ¢. For a prime ¢ < Q we define the sets

Cy = {n <x:w,q) <1 _82(7‘))1;%2))6] ’

and

B = | |

q=0Q

We claim that #C = o(x) as x — oo. Indeed, for a fixed prime ¢ < (, by a result
of Turan [20] (see also (1.2) of [17]), we have

xq x(logs ek
#C, <
1 8%()6) log, x log, x
Therefore,
x(logs x)*3 X _
He S D MO« gy 2 S g~ W

g=(log, x)1/?

Now let O be the set of those positive integers n < x not lying in C. Then for each
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n € O, one has

QEM) =Y (@hg) -1 =) wln.q) —n(Q)

q=Q q=Q
1
> (1 —sz(x))logzxqgw) —7(Q)
1
2 (- e logyx ) — = (Q)
q=Q

> (14 o0(1))log, xlogy x > (1 4 0(1))log, nlogy n.

This completes the proof of the normal order of 2 (£ (n)).

We now turn our attention to @ (£(n)) and start with the lower bound. Again, let x
be a large positive real number, and let 3 (x) be any admissible function. Let g be a
prime number and let v, (m) denote the largest power of g dividing a natural number
m. It suffices to show that there exists a constant ¢ such that for all but o(x) positive
integers n < x, the estimate

v (§(n)) = e3(x)log; x, (10)

holds simultaneously for all primes g < ¢1 log, x/logs x.
Let us define

1
Wq:{nsxiw<”"I)< 205(25}

By the result of Turdn mentioned above, we have #W, <« xq/log, x; summing up
these estimates for all g < (log, )12, we see that

x xlogs x
> Wy < o Y. a<————=o.

g=(og; 1)!/2 2 o 0821084
We also note that for ¢ < (logs x) 172 we have
log, x log, x

20(q) ~ (logzx)1/

which establishes (10) for ¢ in this small range if e3(x) < (logy x)~'/2, which we
now assume.

Next we consider the case in which ¢ > (log; x)!/2.

Let us denote by wy(n) the number of prime factors p of n with p < y. Let &
be the set of integers x'/2 < n < x for which

wy(n) =logy y + O((logy »)*?)
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holds simultaneously for y = exp((log x)1/2) and for y = x. By [20], we have that
#N = x 4+ o(x).

Let &, be the setof n € N such that p*|nforsome p =1 (mod ¢) and let € be
the union of all &, for ¢ > (log; x)'/2. Clearly,

#e, < Y %S%Z%«%,

p=1 (mod q)p q t>1 4
and therefore
1 X
#E =< Z #Eg < x Z — — @ (lo x)1/2 = o(x)
g>(logz x)1/2 g>(logz x)1/? 1 &
For a fixed positive integer k and primes p; = --- = py = 1 (mod g), let

Ni,g(P1, ..., pr) be the set of integers n € N\& such that n = p; ... prm holds
with some integer m with w(m, g) = 0.
We first show that if £ < 0.5log, x, then M 4 (p1, ..., pr) is empty unless
X

- 2% (11)
P1...Pk

where z = exp((logx)!/?). Indeed, in the opposite case, we see that for n €
Neg (P15 -+ DL,

w(n) < k+aw(m) <k+a;(n) < 0.5logyx + O ((log, x)/?),

which is impossible because w(n) ~ logy n ~ log, x forn € N.
We now have

#MNeg(p1, o)< Y L (12)

m=x/(p1..-Pk)
q fp(m)

It has been shown in the proof of Theorem 4.1 of [7] that there exists an absolute
constant ¢ > 0 such that the upper bound

> 1<texp(—caSt, q))
m=<t
q fe(m)
holds uniformly when log ¢ > ¢, where S(z, g) is given by (2). By Theorem 3.4 of
[7], we know that the lower bound

log, ¢
S(t,q) > %
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holds provided that ¢ < log¢. Thus, assuming (11), and remarking that logz =
(logx)/? > ¢, we derive from (12) that the estimate

X log, x
HNeg(P1, ..., PE) K ————exp <—C3 £2 >
P1...Pk q

holds with some absolute constant ¢z > 0.
Therefore, the set N, consisting of all integers » in N \& that belong to at least

one of the sets N 4(p1, ..., pr), for fixed k and ¢, has cardinality at most
1
Mg =72 D Y M p)

pP1<x Pk<Xx
p1=l (mod g) pr=1l (mod g)

1 x log, x)
N e —— X —C e
k! Z Z P1...Pk p< ’ q

p1<X Pr<X
p1=1 (mod g) pr=1l  (mod ¢q)

1
Siexp —C3 082t S(x, ¢)k.
k! q

IA

Put K, = e3(x)(log, x)/q. Recalling the bound (3) and using the Stirling for-
mula, we obtain

k
21
Z #Ni,g < X exp <_C310g2x> Z (Zf—i'x)

q

k<K, k<K,
log, x 6log, x \ ¥
< x exp (—03 £2 ) Z (%) .

¢ JGZ\ 4

Furthermore, we derive

6log, x \ ¥ (6ei+1log2x>k
Z( qk ) < Z Z qK,

k<K, O<i<log K4 K e~i—1<k<K e~

. 3 <683_1(x)ei+1>k

O=i=<logKy K e i-1<k<K e
, qu’i
< Y (65 we )
0<i<log K,

< exp (C4Kq log (e5"! (x)))
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for some constant c4. Therefore, for an appropriate constant cq,

2 2 #Mig

g=cilogy x/log; x k<K,

lo
<« x Z exp (—63 g;x + 4K, log (sgl(x))>

g<cylog, x/logs x

1
<L x Z exp (—O.SC3 0gq2x> = o(x)

g<cylog, x/logs x

provided that x is large enough. Clearly, the inequality (10) implies the desired lower
bound on w(&(n)).
We now prove the upper bound on w (&(n)). By (1), we know that the inequality

log(§(n)) < logy nlogsn (13)

holds on a set of positive integers 1 of asymptotic density 1. The upper bound on
(& (n)) claimed by our Theorem 5 follows now from inequality (13) above combined
with the classical estimate

logé&(n)
w(§(n)) K m,

which concludes the proof. O

It is easy to see that Theorem 5 implies that for some constant ¢s5 > 0, the bound

log, n
p@(Em) 2
T(€mn) = > exp | ¢s oz n)?

holds for almost all positive integers n, where, as usual, 7 (k) denotes the number of
divisors of an integer k > 1.
It is also clear that for any positive integer n

log ¢(n) logn
log, ¢(n) log, n

(&) < wlph) <

and
Q&) K€ Qpn) K<loge(n) K logn.

Theorem 6. The inequalities

logn

Q) > logn and (&(n)) >>@

hold for infinitely many positive integers n.
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Proof. Let k be a sufficiently large integer, and then let p; and p, be the first two
primes in the arithmetic progression 1 (mod 2¥). By Linnik’s Theorem, in the form
given by Heath-Brown [13], we know that max{p1, p2} < 21%/2 With n = p1ps,
we have that 2¥ | £(n); therefore Q(£(n)) > k > logn. Finally, let y be large and
let M = ]_[p<y p. By the Prime Number Theorem, we have log M = (1 4 o(1))y.
Let pp and p» be the first two primes in the arithmetic progression 1 (mod M). We
again have that max{p1, p»} < M'"/2 and with n = p;p> we have that M | £(n).
Thus,

log M logn

wEm) > o(M) =70) > T > o

which finishes the proof. o

3. Average g-adic norm and order of ¢(n)

Let g be a prime, and let |m|, be the g-adic norm of m, thatis, |m|, = g "2 where,
as before, v, (m) is the largest power of ¢ dividing m. In this section, we address the
average value of |¢(n)|, and v, (¢(n)).

Recall that an arithmetic function f(n) is said to be multiplicative if f(nm) =
f(n) f(m) for any integers n and m with gcd(n, m) = 1. Accordingly, if f(nm) =
f(n) 4+ f(m) for any integers n and m with ged(n, m) = 1 then f(n) is called
addirive.

In particular, v, (¢(n)) is an additive function. Thus, |¢(n)], is a bounded mul-
tiplicative function, and therefore it is natural that our principal tool is the following
theorem of Wirsing [21].

Lemma 3. Assume that a real-valued multiplicative function f(n) satisfies the fol-
lowing conditions:

o fM)=0,n=1,2,...;

o f(PY) <ab’,v=23,..., for some constants a, b > QO with b < 2;

« there exists a constant T > 0 such that

X
> fp)=(t+o(1) Togx

p=x

Then, for any x > 0,

(! x — f(p")
2= (ewwr) “(1)) ogw L] <§0 Iz >

n<x p=x
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where vy is the Euler constant, and

[0.9]
I'(s) :/ et ar
0

is the I'-function.

Lemma 4. For any fixed prime q,

—1
1_[ (1 o %) = (Uq + 0(1)) (log, x)%,

p<x p
where oy, = (g2 —q—1)/(g*—1), and ng is a constant depending only on q.
Proof. We have

—1 —1 —1
I%Q+m u):m M+OCPZM>
p—1 p P

therefore the series

b=y

P

-1 -1
log (1 + |p |q> . |p |q

p—1 P

converges absolutely. Hence, it is enough to show that

Z@ = g logy x + By + o(1) (14)

p=x

holds with some constant ;.

We have:
I 3 (D DR =D SR
p=x P =0 p=x P p<x P
p=1 (mod ¢*) p=1 (mod gF1) (15)
x0
=S, 1) —(g =1 q7"Sx, 4",

k=1

where, as before, S(x, ¢¥) is given by (2).

We write K for the largest positive integer such that ¢¥ < log, x; thus, K =<
log; x. Using the classical Page bound (see Chapter 20 of [6]) and partial summation
(see a remark in Chapter 22 of [6]), we have

ok . t t
ng’q’])__(q—-qu‘lk%f_+()(qk00g02> oy
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for all positive integers k < K and real t > ¢X.

Therefore, using the same partial summation arguments as in the proof of Theo-
rem 1 of [18] (see also Lemma 6.3 of [17]), and using (16) in the appropriate place
(starting with the value of ¢ > eX), we derive that for every k < K,

log, x 1
k 2
Ste14) = (e + Ana + 0 (g ) 4

for some constants Ay , depending only on k and g. Moreover, by Theorem 1 of [18]
or Lemma 6.3 of [17], Ax , = O(1) uniformly forg and k =0, 1, ... (see (3)).
For k > K, we use the fact that

log, x
S(x,q") « — 57 (18)
(g — Dgk-!
(see the bound (3.1) in [7] and also Lemma 1 of [5]). Define
Ay,
By :Ak,o—<q—1>zq—k’f.
k>1
Using (17) and (18) in (15), and taking into account that
1 q2 —qg—1
I=(g-1) 5B P = %
=1 @~ Da q-—1
we get (14) and thus finish the proof. O

Theorem 7. For any prime q,

> ey = (v +o(1) x(logx) ~#/ @1,

n<x

where y, is a constant depending only on q.

Proof. For p # q, we have

Sl g s lp =t lp =1,
v=0 pY =1 pY p—l
and certainly
>0 >0
lp(q”)l 1 Z+g-—1
Z q:H‘Z prs il zq =1 2q '
= —aq” q-—1 g-—1

Combining Lemma 3 and Lemma 4, we obtain the desired result. a
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We now show that the classical Turdn—Kubilius inequality can be used to study
the normal order of v, (¢(n)).

Theorem 8. For any prime g, the estimate

ve(p(n)) = (ﬁ + 0(1)) log, 1

holds for almost all positive integers n.

Proof. Because v, (¢(n)) is an additive function, by the Turdn—Kubilius inequality
(see [14], [19]), we have

1
=2 alp(n) = A4 (0)]* < Dy ()
where
pr

v, (p(p"))
Agx)y =Y L——= and Dy(x)= Y ,
Pr=x p pr=x
and in both sums the summation is extended over all prime powers p” < x. Thus, it

is enough to show that

Ag(x) = ((q _q o +0(l)> logyx and D(x) = o((logyx)%).  (19)

Because v, (¢(p)) < log p, using the Prime Number Theorem, we derive that

(p(p)) log k _
quwp < ZZ(OSklng)r ZZkr <<Zz <<1

oy =2 k=2
r>2
Thus @) (9(p))
v,
):ZMJrO(l):ZﬂJFO(l).
p<x p p=x P
p#q

Furthermore, as in the proof of Lemma 4, we derive that

pIRCIZE Sl (D SIS S
p=x P k=1 p=x P p=x P
p#q p=1 (mod g% p=1 (mod g*t1)

= Z S(x, q%) = <( 17 5 0(1)> log, x.
k=1

Similar arguments show that D, (x) = O(log, x) (in fact, our arguments give an
asymptotic formula for D, (x)). Therefore, we obtain (19), which finishes the proof.
Od
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4. Distribution of (¢ (n)) — (¢ (n))

It has been shown in [8] that for almost all positive integers n, both Q(¢(n)) and
@ (p(n)) are close to 0.5(log, n)?. Here, we study the behavior of the difference
Q(p(n)) —wlpn)).

Theorem 9. The estimate

Q(p(n)) —wlpn)) =1 +o(l))logynlogyn

holds for almost all positive integers n.
Proof. By Theorem 5, we know that

(5(n)) = (14 0(1))logy nlogy n

holds for almost all positive integers n. Since

Qp(n) —wlpn) = Q) —oin) = Qlpn) — Q) = Q(En)),

we see that
Qpn)) —w(pn)) = (14 0(1))log, nlog, n

holds for almost all positive integers ».

To obtain the upper bound, let x be a large positive real number, and let y =
(log, x)?. The argument on page 404 of [16] shows that the set of all positive integers
n < x such that ¢(n) is not divisible by the square of any prime ¢ > y has cardinality
x 4+ o(x) (see the bound on #&; in Theorem 9 of [16]). Thus, for all but o(x) positive
integers n < x, we have that

Q) —wlp(n) = Qy(pn) —oy(ph)) < Qylpn)).

Now using (9) (which is established with the same value of y), we finish the proof.
O
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