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Complete proper minimal surfaces in convex bodies of R3, II.
The behavior of the limit set

Francisco Martin* and Santiago Morales*

Abstract. Let D be a regular, strictly convex bounded domain of R3, and consider a Jordan

curve F C dD. Then, for each e > 0, we obtain the existence of a complete proper minimal
immersion \fre : D -> D satisfying that the Hausdorff distance SH (t/rg(9D), F) < e, where
xjre (9D) represents the limit set of the minimal disk xjre (D).

This result has some interesting consequences. Among other things, we can prove that any
bounded regular domain R in R3 admits a complete proper minimal immersion xjr: D -> R

Mathematics Subject Classification (2000). Primary 53A10; Secondary 49Q05, 49Q10,
53C42.

Keywords. Complete bounded minimal surfaces, proper minimal immersions.

1. Introduction and background

Last few years have seen an important progress on many long-standing problems
in global theory of complete minimal surfaces in IR3. One of these has been the

Calabi-Yau problem, which dates back to the 1960s. Calabi asked whether or not
it is possible for a complete minimal surface in IR3 to be contained in the ball B
{x g IR3 | ||x|| < 1}. Much work has been done on it over the past four decades. The

most important result in this line was obtained by N. Nadirashvili in [13] where he

constructed a complete minimal surface in B. After Nadirashvili's negative solution
to Calabi's question, the conjecture was revisited by S.-T. Yau in [15], where he stated

new questions related to the embeddedness and properness of surfaces of this type.

Regarding the existence ofcomplete embedded minimal surfaces in a ball, T. Cold-
ing and W. Minicozzi [1 ] have proved that a complete embedded minimal surface with
finite topology in IR3 must be properly embedded in IR3. In particular it cannot be

contained in a ball. Very recently, Colding-Minicozzi result has been generalized in
two different directions. On one hand W. H. Meeks III, J. Perez and A. Ros [9] have

*Research partially supported by MEC-FEDER Grant no. MTM2004 - 00160.
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proved that if M is a complete embedded minimal surface in IR3 with finite genus
and a countable number of ends, then M is properly embedded in IR3. On the other
hand, Meeks and Rosenberg [12] have obtained that if a complete embedded minimal
surface M has injectivity radius Im > 0, then M is proper in space.

Concerning properness, it is important to note that Nadirashvili's technique did
not guarantee the immersion was proper. In [5], F. Martin and S. Morales introduced
an additional ingredient into Nadirashvili's machinery in order to produce a complete
minimal disk which is properly immersed in a ball of IR3. Recently [6], they improved
on their original techniques and were able to show that every convex domain (not
necessarily bounded or smooth) admits a complete properly immersed minimal disk.

The present paper can be considered as a continuation of the above mentioned
work developed by the authors about the construction of complete proper minimal
surfaces in (open) convex bodies of Euclidean space. After the discovering of those

examples a natural question arose: What is the asymptotic behavior of such a surface?

If we consider a proper minimal immersion ijr : ID —>¦ C, where C is an open convex

body, then we define the limit set as ijr(dIS>) ijr(IS>) — ijr(IS>). It is obvious that ijr
is proper if, and only if, i/r(3B) c dC. Furthermore, one can easily check that tp (ID)

is closed and connected. In this paper we show:

Theorem A. Let Cbea regular strictly convex1 bounded domain of IR3, and consider
a regular Jordan curve V c dC. Then, for each e > 0, we obtain the existence of
a complete proper minimal immersion ^(i» : ID ^ C satisfying that the Hausdorff
distance 8H(\ls(r>s)(dW), V) < e, where ^(i»(<®) represents the limit set of the

minimal disk V^i

The main obstacle in the study of the asymptotic behavior of a complete proper
minimal surface in a convex domain is that all the methods of construction up until
today are implicit. So, it was almost impossible to obtain any control about the

behavior of the known examples near their ends. From this point of view, the new
methods of construction introduced in this paper are significant. The main of these

tools is Theorem 1 whose proof is based on a Meeks' idea that appeared first in [6]
but that has been entirely developed and exploited in this article.

Theorem 1 represents by itself an interesting density result. It asserts that any
minimal disk with boundary D can be approximated (in terms of uniform convergence)

by a complete minimal disk D. Moreover, it is possible to find a thin tube
around dD such that the part of D which lies in the exterior of this tube is compact.
In other words, the part of D where the intrinsic metric exploits is contained in the

interior of this thin tube (see Figure 1).

Strictly convex means that the principal curvatures of dC associated to the inward pointing unit normal are

positive everywhere.
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Figure 1. The minimal disk X(P) and the tube 7\r, /x).

The other important ingredient in the proof of the main theorem is Lemma 2.

This approximation lemma is crucial to obtain the properness in Theorem A and it
was proved in [6]. It essentially asserts that a minimal disk with boundary can be

perturbed outside a compact set in such a way that the boundary of the resulting
surface achieves the boundary of a prescribed convex domain. The hypothesis of C

being strictly convex is crucial at this point, otherwise we could not obtain an upper
bound for the distances between the boundary of a minimal disk and the boundary of
the deformed one.

It is natural to ask what is the limit of the complete proper minimal surfaces given
by Theorem A as e tends to 0. We would like to point out that the limit as e goes
to zero of iA(r» exists, but it is not complete. Actually, this limit coincides with the

minimal disk (with boundary) spanned by the curve F.

Theorem A has some interesting consequences. We would like to point out two
of them.

Theorem B. Let C be a regular strictly convex bounded domain, and consider a
connected compact set K c dC. Then, for each e > 0, there exists a complete

proper minimal immersion <P(k,s) :!$>—* C satisfying that the Hausdorff distance
H

The above theorem follows from the fact that Jordan curves are dense in the space
of compact sets of dC with the Hausdorff metric. Among other things, Theorem B

tells us that the limit set of a complete proper minimal surface can be very small.
This means that we can work with small pieces of the boundary of a given domain in
order to prove the following result.

Theorem C. Every bounded domain with regular boundary admits a complete properly

immersed minimal disk.
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In contrast to these existence results for complete properly immersed minimal
disks in bounded domains, Meeks, Nadirashvili and the first author [4] have
constructed domains of IR3 which do not contain any complete proper minimal surface

with finite topology. It is our belief that these open domains are in fact universal
according to the following definition: A connected region of space which is open
or the closure of an open set is universal for minimal surfaces, if every complete
properly immersed minimal surface in the region is recurrent for Brownian motions.
In particular, a bounded domain is universal if and only if it contains no complete
properly immersed minimal surfaces.

R

:x
- >

Figure 2. Theorem C states that every bounded domain with regular boundary admits a complete
properly immersed minimal surface. Besides, the boundary limit set is close to a small simple
closed curve F on the positively curved part of the boundary of the domain.

As we mentioned before, Colding and Minicozzi proved that any complete
embedded minimal surface in IR3 with finite topology is properly embedded in IR3. By
results of Meeks and Rosenberg, [10], [11], any properly embedded minimal surface

of finite topology in IR3 is recurrent for Brownian motion. Hence, every domain in
IR3 is universal for embedded minimal surfaces of finite topology. Finally, we remark
that Collin, Kusner, Meeks and Rosenberg [2] proved that any properly immersed
minimal surface with boundary in a closed convex domain in IR3 has full harmonic
measure on its boundary.

The paper is displayed as follows. Section 2 is dedicated to state and demonstrate
the preliminary results that we need to obtain the main theorems. These main theorems

are proved in Section 3 where we also establish some results which show that
Theorem A is sharp. Thus, at the end of Section 3 we show that Theorem A is false

if the boundary of the domain contains an open set where the mean curvature is non
positive.

1.1. Minimal surface background. Given X (X\, I2,13) : M ^ I3 a con-
formal minimal immersion we denote by g : M --* C CU{oo}itsstereographicaHy
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projected Gauss map that is a meromorphic function and by 03 the holomorphic
differential defined as 03 dXj, + * i dXj,, where * denotes the Hodge operator on M.
The pair (g, <p3) is usually referred to as the Weierstrass data of the minimal surface,
and the minimal immersion X can be expressed, up to translations, solely in terms of
these data as

X ReJZ(4>!,4>2, 03) Rep Q ß - g) \ Q + g) l) 03, (1)

where Re stands for real part and z is a conformai parameter on M. The pair (g, 03)
satisfies certain compatibility conditions:

02 + 022 + 4>l 0, (2)

H0ll|2+ll02l|2+ll03llVO, (3)

and all periods of the 4>j are purely imaginary; j 1,2,3.
Conversely, if M is a Riemann surface, g : M --* C is a meromorphic function

and 03 is a holomorphic one-form on M fulfilling the conditions (2) and (3) then the

map X : M --* M? given by (1) is a conformai minimal immersion with Weierstrass

data (g, 03).
The conditions about the periods stated above deals with the independence of (1)

on the integration path, and it is usually called the period problem. In this article, all
the minimal immersions are defined on simply connected domains of C. Then, the

Weierstrass 1-forms have no periods, and so the only requirements are (2) and (3). In

this case, the differential r\ 03/g can be written as r\ f(z) dz. The metric of X
can be expressed as

^2 ill0H2 G(l + |g|2)l/ll^l)2. (4)

Throughout the paper, we will use several orthonormal bases of R3. Given S an

orthonormal basis and v e IR3, let t>(jt,s) denote the £-th coordinate of v in S. The
first two coordinates of v in this basis will be represented by v^ts) (u(i,s) > v(2,s))-

Given a curve a in M, by £ (a, X) we mean the length of a with respect to the

metric Sx- Given a subset W c M, we define:

• dist(w,x)(p, q) M{l(a, Sx) I a : [0, 1] -> W, a(0) p, a{\) q}, for
any p, q G W;

• dist(v^,x)(7i» T2) in£{dist(wjx)(p,q) I P & T\, q G T^\, for any T\, T2CIW.

The Euclidean metric on C will be denoted as (-,->. Note that Sx2 ^x {¦, ¦), where
the conformai coefficient kx is given by (4).

Given a domain D c C, we will say that a function, or a 1 -form, is harmonic,
holomorphic, meromophic,.. .on D, if it is harmonic, holomorphic, meromorphic,.. .on a

domain containing D.



704 F. Martin and S. Morales CMH

Let P be a simple closed polygonal curve in C. We let Int P denote the bounded
connected component of C — P. We will assume that the origin is in the interior

region of all the polygons that appears in the paper. Given § > 0, small enough, we
define P^ to be the parallel polygonal curve in Int P, satisfying the property that the

distance between parallel sides is equal to §. Whenever we write P^ in the paper we
are assuming that § is small enough to define the polygon properly.

1.2. Background on convex bodies and Hausdorff distance. Given E a bounded

regular convex domain of IR3 and p G dE, we will let K2(p) > k:i(p) > 0 denote
the principal curvatures of dE at p (associated to the inward pointing unit normal).
Moreover, we write

K\(dE) min{Ki(p) \ p g dE}, K2(dE) max{/C2(/?) | p G dE}.

Remark 1. By regular we mean that dE is C00. Nevertheless, one can see that the

results we have proved only need that E has a C2" boundary.

If we consider JS : dE --* S2 the outward pointing unit normal or Gauss map
of dE, then there exists a constant a > 0 (depending on E) such that dEt {p +
t-<M{p) | p G 9 E} is a regular (convex) surface for all t g [-a, +oo[. Let£V denote
the convex domain bounded by dEt. The normal projection to E is represented as

J j7 '. 1K1 \ E a —y d E,

p + t ¦ rM(p) \-> p.

For a curve T in IR3 and a real r > 0, we define the tube of radius r along T in
the following way:

T{T,r) =T+B(0, r),

whereB(0,r) ={pel3 \\p\\ < r}.
The set Gn of convex bodies of R" can be made into a metric space in several

geometrically reasonable ways. The Hausdorff metric is particularly convenient and

applicable. The natural domain for this metric is the set Xn of the nonempty compact
subsets of R".

For C, D g Xn the Hausdorff distance is defined by:

8H(C, D) max { sup inf ||x — y\\, sup inf ||x — y\\)

or, equivalently, by

SH(C,D) =min{A>0| Cc D + XMn, D cC + XMn},

where B" {p g W1 \ \\p\\ < 1}. Then 8H is a metric on JCn, the Hausdorff metric.
For more details we refer to [14].
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2. Preliminary lemmas

As we indicated in the introduction, the proofs of the main theorems of the paper
require the technical results of this section. To be more precise, the two principal
tools are Theorem 1 and Lemma 2. Lemma 3 is a suitable combination of the two
previous results that allows us to prove Theorem 2. Regarding Lemma 1, it is a

necessary instrument in the demonstration of Theorem 1.

Lemma 1 (Completeness Lemma). Consider F a closed analytic curve. Let P be a

polygon, X : Int P -> R3 a conformai minimal immersion, and r, e positive constants

satisfying:

1. X{lniP -lniPE) c T(Y,r)\
2. X(PE) contains a cycle which is homologically equivalent to V in T(T, r).

Then, for all s > 0 there exist a polygon P and a conformai minimal immersion

X : Int P -> R3 verifying:

(a.l) Int P8 c Int P c Int P c Int P;

(a.2) \\X(z)-X(z)\\ <eforallz elntP8;
(a.3) dist(Sr?~)(z, PE) > s for all z e P;

(a.4) X(lnt P - Int P8 c T(r, /?) w/iere /? y/(2s)2 + r2 + e;

(a.5) X(PE) and X(PE) are homologically equivalent in T(r, R);

(a.6) X(P) contains a cycle with the same homology than F in the tube T(T, R).

As we mentioned before, Lemma 1 is merely a tool in theproof of the next theorem,
that we have called Meeks' trick because it is based on an idea that W. H. Meeks III
suggested to us in 2004. Roughly speaking this theorem asserts that complete minimal
disks are "dense" in the space of minimal disks with boundary.

Theorem 1 (Meeks' trick). Let U c C be a bounded domain, and P c U a polygon.
Consider X: U —* M? a conformai minimal immersion, with X(0) 0. Then, for
every yu. > 0 there exists a simply connected domain ScC and a complete minimal
immersion X : S -? R3, with X(0) 0 such that:

(b.l) IntP C S C S C U;

(b.2) \\X(z)-X(z)\\ < ß for all z e IntP;

(b.3) XÇL - Int P) c T{X{P), M);

(b.4) X{P) is homologous to X{P) in the open neighborhood T{X{P),
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The next lemma was obtained in [6] (see Lemma 1 and Remark 3). We have stated

it here just to make this paper self-contained. We would like to point out that the

assumption of C being strictly convex is essential in this lemma, otherwise Item (c.5)
has no sense.

Lemma 2 (Properness Lemma, [6]). Let E and E' be two regular bounded strictly
convex domains in R3, with 0 e E c E c E'. Let X: O -> R3 be a conformai
minimal immersion defined on a simply connected domain 0,0 e O, with X (0) 0.

Consider a polygon P with P c O, satisfying

X(O\lntP) C E'-E. (5)

Then, for any b\,b2 > 0, such that E'_b and E-2b2 exist, there exist a polygon Q

and a conformai minimal immersion Y : hit Q -> R3, with 7(0) 0, such that:

(cl) P C Intß C Intß C O;

(c.2) \\Y(z)-X(z)\\ < h for all z& Int P;

(c.3) Y(Q) c E'- E'_b2;

(c.4) y (Int Q \ Int P)cl3\ E_2b2;

(c.5) for any z Glntß\IntP, one has \\X(z) - Y(z)\\ < M(bi,b2, E, E'), where

2

M(bi,b2,E,E')

-(2b2 + —-— + (2b2)
{dE)J

(c.6) X(P) and Y(P) are homologous cycles in T(X(P), M(bi,b2, E, E')).

The last lemma of this section is a combination of Theorem 1 and Lemma 2. The

proof of our main result (Theorem 2) consists of constructing a sequence of minimal
disks with boundary whose limit is the immersion which proves the theorem. The

sequence is defined in a recursive way and the tool to obtain an element of that

sequence from the previous one in Lemma 3 below.

Lemma 3. Let Y be a smooth Jordan curve of R3 and let p > 0 be a sufficiently
small constant so that the tube T(T, p) is homeomorphic to a solid torus. Let E and
E' be two regular bounded strictly convex domains in R3, with 0 e E c E c E'.
Consider P a polygon, X : Int P ->¦ R3 be a conformai minimal immersion, with
X (0) 0, and e, a, b and c positive constants, such that:
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(1) X(Int P \ Int PE) c E \ E_a;

(2) SH(F, X(IntP -IntP8) < c;

(3) X(P) is homologous to T in T(T, c);

(4) c + M (a, b, s, E, E') < p, where

M(a,b,e,E,E') 2{2a + b) 6H(E,E')

- \2{a + b) + (2b)2

Then, there exist a polygon Q and a conformai minimal immersion Y : Int Q
with 7(0) 0, and verifying:

(d.l) Int PE C Int g C Int g c Int P;

(d.2) I < dïst(WQjY)(z, PE)forallz& g;

(d.3) Y(Q)cE'-E'_b;
(d.4) F (Int g - Int P£) d3- £-2(«+&);

(d.5) ||y(z) - X(z)|| <e/or a// z e ïnTT^;

(d.6) the Hausdorff distance 8H{T, 7(Int g - IntP£)) < c + M(a, è, e, £, £');
(d.7) the cycle Y (Q) is homologous to Fin the open tube T(F, c+M{a, b,e,E, E')).

2.1. Proof of Lemma 1. Consider P, the polygon given in the statement of the

lemma. As usual in constructions of this kind, our first step will consist of describing
a labyrinth on Int P, which depends on P and a positive integer N.

Let £ be the number of sides of P. From now on, ,/V will be a positive multiple
oil.

Remark 2. Throughout the proof of the lemma a set of real positive constants

depending on X, P, r, e and s will appear. These constants will be represented by
the symbol const. Notice that the choice of these constants does not depend on the

integer N.

Let fo > 0 small enough so that P^ is well defined and Int(Pe) c
From now on, we will only consider WeN such that 2/N < fo- Let v\, V2n
be a set of points in the polygon P (containing the vertices of P) that divide each

side of P into W- equal parts. We can transfer this partition to the polygon P2/N;

¦J2N We define the following sets:
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• Lf the segment that joins v-, and vi, i 1, 2N;

3>x P'/N\ i =0,...,2N2;
.1 and 8 I l"?

• # iXi ^ and ë iXö1 z-M+i;

• L £D8,L £n8, and H $IULUL;
• Hw {z g Int(^Po) - hit(^2»2) I dist^0,c(z, H) > ^}, where ds0 is the

Euclidean metric on C.

We define co-, as the union of the segment L, and those connected components of
En that have nonempty intersection with L, for f 1, 2./V. Finally, we label

mi {z g C I distrfi.Ojc(z» <wf) < &(N)}, where S(N) > 0 is chosen in such a way
that the sets m\ (i 1, 2N) are pairwise disjoint.

The shape of the labyrinth formed by the sets co-, guarantee the following claims

if N is large enough:

Claim 2.1. The Euclidean diameter of mi is less than const
N '

Claim 2.2. IfX{-, ¦> is a conformai metric on Int P and verifies

Ic in Int P,

cN4 in En,

for c g M+, and ffa w a curve in Int P connecting Pe and P, then

c ¦ const ¦ JV

l(a, X {-, ¦>) >

Claim 2.2 is a consequence of the fact that a curve a, that does not go through the

connected components of En, must have a large Euclidean length.
Provided that ./V is large enough, we can assume that X(m;) has a sufficiently

small diameter in IR3 so that

XiWi) cM(Pi,r), where pi &T,i 1,...2N. (6)

For each point p G B(/?,-, r) — {/?,-} we define

p - Pi

Wp-piW'

We pursue the construction of a finite sequence of minimal immersions (with
boundary); Fq X, F\, F2N, satisfying:
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«1

II

41

x

Figure 3. The set bt, and its image in R

for all z e Int P - un ;(A.1,-) \W (z) - 01"-1 (z) || <

(A.2,-) 110'" (z) || > iV7/2 for all z e «; ;

(A.3,-) ||^(z)|| >^f for all z€^;
(A.4() dist(S2^o)(G((z), G(_i(z)) < ^2 forallz e IntP - mn

(A.5,) there exists an orthonormal basis of R3, St {e\, el2, e\), so that:

(A.5.1;) Ifz g unwi\\X{z)-Pi\\ > -j=, then|

(A.5.2;) (^(z))(3,^-) (^-i(z))(3,^) for all z

- Pi){*<St)
const

(A.6; II F; (z) - Fi _i (z) || < ^ for ail z g Int P - un ;

(A.7;) Fi(Pe) and Y are homologous in T(r, R).

Here 0' (z) <iz is the Weierstrass representation of F, and G,- represents its spherical
Gauss map.

In order to obtain the sequence Fq, F2» we follow an inductive method.
Assume we have constructed Fo,..., F,_i verifying Properties (A.l^), (A.7^)
for ^ 1,..., i — 1. We define F, as follows.

First, observe that (for a large enough A/") one has:
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(B.I) There are positive constants so that consti < \\(f>1 1(z)\\ < const2, for all

z G Int P — Ufe=i mk', To obtain this property, it suffices to apply (A2/) for

(B.2) The diameter in R3 of F;_i(m;) is less than -4=. This is a consequence of

(B.I), Claim 2.1, and (4).

(B.3) The diameter in S2 of G,_i(nr,) is less than -4=. Inparticular, thesetG,_i(nT,)

can be included in a cone Cone(g, -4=), for a suitable g g G,-_i (nr,).
From Claim 2.1, the diameter of Gq{uti) is bounded. Then (B.3) holds after
successive applications of (A.5/), j I, ,i — I.

(B.4) There exists an orthogonal frame 51, {ei, e2, e3} in K3, where:

(B.4.1) If z G mi and ||X(z) - p,-1| > -J=, then Z (e3, X(z) - pr) ^f
(B.4.2) Z(±e3, Gr_i(z)) > ^ for all z G mj.

The proof of (B.4) is slightly more complicated. LetC Cone(g, -4=) where

g is given by Property (B.3). To obtain (B.4.2) it suffices to take e3 in S2 — H,
where H C U (—C). On the other hand, in order to verify (B .4.1 the vector
e3 must be chosen as follows:

• If (S2 \ H) n Mi(X(mi) - {pi})) £ 0, then we take e3 G (S2 \ H) n

• If (S2 \ //) n jV; (X (nr; - {pi}) 0, then we take e3 G S2 - H satisfying
I(e3,q') < -^ for some q' G J/i(X(mi) - {pi}).

It is straightforward to check that this choice of e3 guarantees (B.4).

At this point we are able to construct the f-th element of our sequence Fj. Let
(§' *> 4>\ be the Weierstrass data of ,F,_i in the orthonormal basis S\. Applying
Runge's theorem, we can construct a family of holomorphic functions, ha : C —>¦ C*
verifying the following:

(a) \ha(z) - 1| < \ for all z G Int P - nr?,

(b) |/?«(z) - a| < ^ for all z G «,-,

where a G R+. It is important to note that the family {ha\j^p_m. \ a g R+] is

continuous in the parameter a.
Using Aœ as a Lopez-Ros function, we define this new Weierstrass data
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and the associated conformai minimal immersion

F<wfe> \Ref (^ -*<¦"., (^ + *«") .2

Now, we have to check that there exists a real ao > 0 such that Ft F(i)Ct0) satisfies

Properties (A.I,), (A.7,).
Since ha —>¦ 1, uniformly on Int P — m\, and ha —>¦ 00, uniformly on «,-,

as a --* 00, then (A.I,), (A.2,), (A.4,) and (A.6,) trivially hold for any a > ao,
provided ao is large enough in terms of N.

As we mentioned before, the family {ha \j^p_m., a g R+} depends continuously

on a, and ha --* 1 as a --* +cxd, uniformly on Int P — zuj. As PE is contained in
Int P — mi, then we can see F(i)a)(P8), a e [ao, +00], as a continuous deformation

between i7(,>0)(Pe) and Fi_\(PE). Furthermore, if ./V is large enough, Prop-
erty (A.6,) implies that i7(jj„)(Pe) lies in the interior of T{T, i?),foralla G [ao,+oo].
So, Property (A.7,) is a consequence of these facts and Property (A.7,_i).

In order to check (A.3,) we have to use (B.4.2). This property gives us

sm

1+Cos(^ï) i_Cos(^)V v ff / V V ff /
and so, taking (B.I) into account one has (if JV is large enough):

1II ¦

'

> const-sin {™p\>™p -mm.
I _|_ Igi—1|2 — \ VW / ~~ VW

Using (B.4.1), we get (A.5.1,). Finally, to obtain (A.5.2,), we use that cfif1 4>\

in the frame 51,.

Hence, we have constructed the immersions Fq, F\, F2n verifying claims

(A.1, ,(A.7, for I 1,..., 2N. The following proposition states all the properties

of F2N we will need.

Proposition l.IfN is sufficiently large, then we have:

(I) disto^-p.

(II) \\F2n(z) - X(z) || < const/N for all z e Int P - Ijffi
(III) There exists a polygon P in C such that:

(III. a) Int P8 c Int P c Int P c Int P,

(III. b) s < dist(ïnTpjf2Ar)(z, P£) < 2s for all z e P,

(III. c) F2jv(lnt P - Int P8 c T(F, R).
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(IV) F2N{P8) and T are homologous in T(r, R).

Proof. Item (I) is an standard consequence of Claim 2.2, making use of (A. 1, (A.2,
and (A.3,), i 1,..., 2JV. Similarly, a successive application of (A.6,) implies
Item (II).

The demonstration of Item (III) is a bit more delicate. First we need to construct
the polygon P in (III). To do this, we consider the set A {z G Int P — Int P8 \

s < disLjj^Tp F Jz, PE) < 2s}. Note that A is nonempty and that P and PE are

in different connected components of C — A. Then, the existence of the polygon P

satisfying Items (III.a) and (Ill.b) is obvious.
As a next step, we are going to check that F2n verifies Item (III.c). We consider

r) G Int P — Int PE. We will assume that F2n(ii) & I\ otherwise we have nothing to

prove. Hence, we distinguish two cases.

Case 1. The point r] belongs to Int P — U?*i mi ¦

In this case we know that \\F2N (rj)-X(rj) \\ < ^^. Since X(rj) lies in the interior
of T(r, r), then we can choose ./V large enough so that F2n(tj) g T(T,r) c T(T, R).

Case 2. There exists i G {1, 2N} such that r\ G rn\.
Consider now a curve ß : [0, 1] -> Int P so that ^(0) G Ps, ß(l) rj and

£(ß> F2n) < 2s. Note that the existence of such a curve is guaranteed by (Ill.b). Let
us define 1 Supremumjf g [0, 1] | ß{t) G dm;} and fj ß(t). It is important to
note that 1 exists because nr, c Int P — Int PE.

For our purposes, we need to prove first the following inequality:

const
\\Fi(fj)-Fi(rj)\\<— + 2s. (7)

Indeed, by using Properties (A.6jt), for k 1, 2N, we obtain

HFKrj) - Fi(ri)\\ < \\Ft(fj) - F2N(fj)\\ + WFinW - F2N(ri)\\ + \\F2N(ri) - Fi(t,)\\
const const const+£(^) ++£(^2w) +

Let pi be the point given by condition (6). Then we have

\\F2N(ri) - Pi\\ <\\Fi(ri)-Pi\\ + ^^. (8)

We again distinguish two cases.

Case 2.1. If \\X(ri) - pi\\ < \/<jN, then one has

\\F(ri) - Pi\\ < \\F(ri) - Ft(fj)\\ + \\F(fj) - Ft-i(fj)\\ + \\Ft-i(fj) - Ft-i(r,)\\
+ \\Fi_1(r))-X(r))\\ + \\X(rj)-pi\\

const const const const 1

+ 2 + + + + R
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where the last inequality occurs if JV is sufficiently large.

Case 2.2. Ii\\X(rj) - p;\\ > X/-/N, then we use (A.5.2,-) to get a bound for the third
coordinate of Ff (rj) — p\ in the orthonormal basis S\. We proceed as follows:

\(Fj(r}) - pi)(3,s;)\ \(F;-i(rj) - Pi)(3,s;)I

< \iFi_iiri) - X(ri))i3,Sl)\ + \(X(ri) -
const

On the other hand, we can apply Property (A.5.1 ,•) to find an upper bound for the first
two coordinates of Ft {rj) — p\,

\\(Ft(ri) -pt){*,st)\\ < \\(F(ri) - Ft(rj)){*tSt)\\ + \\(Ft(fj) - Fr_i(^))(+)Sri

+ \\(Fi_1(fj)-Fi(r,))^Si)\\
+ \\(Fi_1(r))-X(rj)){,A)\\

\\

const const 1 const const
2 < 2s +

By Pythagoras' theorem and taking into account (9) and (10), we easily infer that

const \ / const

Using this upper bound, inequality (8) becomes

const \ / const \ const

So, for a large enough N, it is clear that i72w('?) e T(T, R) where R jr2 + (2s)2+e,

for all r] G Int P — Int P8. This completes the proof of Item (III.c).
Finally, Item (IV) in the proposition is a direct consequence of property (A.72w).

D

Obviously, the immersion F2n '¦ Int P —>¦ M3 is the immersion X we are looking
for. Proposition 1 tells us that X so defined verifies Items (a.l), (a.6) in the

lemma.

2.2. Proof of Theorem 1. Let cq > 0, r\ > 0 and p\ > 0 to be specified later, and

define

/ 2
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and pn p\ + YTi=2 co/i, n >2. The constants r\ and cq are chosen in such a way
that

00

lim rn < — and V*'—, <:-. (11)
n^oo 4 -^ n2 4

n=l

Consider alsoaregular curve F inIR3, so that SH(X(P), F) < r\ and both curves are

homologous in T(T, r\). Our strategy consists of using Lemma 3 to define a sequence

Xn (Xn:lntPn^W,Pn, en,Çn),

where Xn is a conformai minimal immersion, Pn is a polygon, {en}, {§„} are decreasing

sequences of non vanishing terms satisfying en,%n < cq/h2, and:

(A„) Int /•„_/ C Int Penn_x C Int Penn_x C Int P|" C Int P„?" c Int Pn C Int Pn C

(D„) A.x„ > cf«^x„_i in Int ^"„Ij1, where {at }iem is a sequence of real numbers such

that 0 < a\ < 1 and {]~[f=i ai}„ converges to 1/2,

(En) Xn{Pnn_i) and F are homologous in T(T, rn),

(Fn) ^(int^-IntP^j) C 7 (F, r„).
The choice of the first element of the sequence is not difficult. First, we take

X\ X. Let P\ be a polygon parallel to P and satisfying p\l P. The constant

and the polygon must be chosen in such a way that 8H(X\(Pi — P^1), F) < r\.
Finally, we choose p\ and e\ satisfying

p\ < dist(Xl)ï^p^)(O, Pi) and e\ < min{co, n}.

Suppose that we have defined xi, ¦ ¦ ¦, Xn- Then, we will construct the (n + l)-th
term in the following way.

Take a sequence {?„} \ 0, with'êm < c°2 for all m. For each m, we consider

Pm and Ym : Int Pm —* M? given by Lemma 1, for the data

X Xn, P Pn, f — Tn, s ¦ v sm.
n + l

If m is large enough, Items (a.l) and (a.2) in Lemma 1 tell us that Int P„ c Int Pm

and the sequence {Ym} converges to Xn uniformly in Int P„ In particular, {Xym}
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converges uniformly to kxn in Int P„ Therefore there is an mo £ N such that

Int Pt c Int Pnm° C Int Pm, (12)

pn < dist r (0, P|"), (13)

l-Ymo > un+il.xn inIntP|". (14)

WedefineX„+i 7mo,P„+i Pmo,ande„+i =~tm. From(12),(13)andltem(a.3)
in Lemma 1, it is not hard to see that pn+\ < dist/X j^p—-,(0, Pn+\)- Finally,
take §„+i small enough such that (A„+i) and (B„+i) hold. The remaining properties
directly follow from (12), (14) and the aforementioned lemma. This concludes the

construction of the sequence {xn}neN-

Now, we define

S (J Int(P|-)( U Int(JP„£"+1))

n=l n=\

S is a simply connected domain in U. Properties (Cn) and the fact that en < co/ra2

give us that the sequence of minimal immersions {Xn} is a Cauchy sequence,
uniformly on compact sets of S, and so {Xn} converges.

Let X : S —>¦ M3 be the limit of {Xn}. X has the following properties:

• X is an immersion. Indeed, for any z £ S there exists « e N such that

z e Int P|". From Properties (F, f n + 1, k we get

for all £ > n. Taking limit as k --* oo, we deduce

and so X is an immersion.

X is minimal and conformai.

S is complete with the metric induced by X. Indeed, if n is large enough, and

taking (15) and (A„) into account, one has

dist ^ j- (0, P|") > - dist j- (0, P|") > -pn.(XMPt) 2 (X«,Int Pt) 2

The completeness is due to the fact that {pn}neN diverges.
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• X(S-IntP) C r(X(P),/x).Pickapointz £ S-Int P. Then we know that z

belongs to Int Pn — Int Pe^_x, for some n g N, and so Property (F„) implies
distR3(X„(z), F) < rn. Therefore, one has

00

distR3(X(z), F) < ||f(z) - Xn{z)\\+rn < (J2 \\Xk+i(z) ~ Xk(z)\\)+rn;
k=n

at this point we use Properties (Ck), for k > n, and then one obtains

00

distR3(X(z),F)<
k=n

Thus we have that X(S - Int P) c T(T, /x/4). Moreover, our choice of F

implies that X(S - Int P) c T(X(P), ß/2 + n) C T(X(P), ß).

• X(P) is homologous to X(P) in T(X(P), /x). Indeed, pick a natural number

neN, then from Properties Ck,k 1, ...,n we have that Xn{P) c r(F,r„).
It is clear that Xn(P) is homologous to Xn{P^_^) in T(F, r„), so using Property

(E„) and taking into account our choice of F we conclude that Xn{P) and

X(P) are homologous jn T{T,rn) c T(X(P),(x). Since the curves Xn(P)
converge uniformly to X(P) and all these curves have the same homological
type as X(P), then it is clear that X(P) is also homologous to X(P) in the tube

T(X(P),ß).
This completes the proof of Theorem 1.

2.3. Proof of Lemma 3. All the arguments we need to prove this lemma are

essentially contained in Theorem 1 and Lemma 2. First, we apply Theorem 1 to the

immersion X : Int P —>¦ M.3, the polygon P£ and a constant \x > 0, to be determined
later. Hence, we obtain a complete minimal immersion X : S —>¦ M3 which satisfies

(a.i) Int PE c S c S c Int P,

(a.ii) ||X(z) - X(z)|| < m for all z e Int P£,

(a.iii) X(S -IntP£) c T(X(PE),(x),

(a.iv) X(P£) is homologous to X(PE) in T(X(PE), ß).

As the immersion X is complete, then we can find a new polygon P satisfying

Int P£ c Int P c Int P c Int P,

and so that the distance
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Taking into account the hypotheses of the lemma, Property (a.iii) guarantees (for a

small enough yu.) that X(S - Int PE)^C E - E-a and X(S - Int PE) c T(T, c).
The former inclusion yields that bH (XÇL — Int Ps), F) < c. Indeed, we proceed
by contradiction. Suppose this is not true, then there exists a point x g F so that

B(x, c) n X(lnt P - Int Pe) is empty. Among other things, this implies that X(Pe)
can not be homologous to F in T(T, c) which is contrary to Property (a.iv) (recall
that X(PS) is homologous to F.)

At this point, we are able to apply Lemma 2 to the following data:

X X, P P, O S, E E-a, E' E', bi<e/2, b2 b.

Thus, we obtain a new polygon Q such that Int P c Int P c Int Q c Int g c
and a new minimal immersion Y : Int Q --* M? with the following properties:

(b.i) || Y(z) - X(z) || < h for all z e Int P,

(b.ii) Y(Q)cE'-E'_b,
(b.iii) 7(Int ß \ Int P)cM3- £-26-«,
(b.iv) For any z g Int g \ Int P, one has

-y(z)||<M(a, b,bltE,E')

b) + —l— + 8H(E, E'))

1 X
+(2by

KxidE)

(b.v) X(P) and Y(P) are homologous in T(X(P), M(a, b, b\, E, E')).
To finish the proof, it suffices to check that Y is the immersion we are looking for.

First, observe that Item (d.l) trivially holds.

In order to check (d.2), notice that Y converges to X, uniformly on Int P as

b\ --* 0. So, Item (d.2) is an easy consequence of this fact and (16).
Item (d.3) directly follows from (b.ii). Moreover, Properties (a.ii), (b.i), and (b.iii)

imply Item (d.4) (provided [i and b\ are sufficiently small).
Similarly, if [i, b\ < e/2, then Item (d.5) is obtained from (a.ii) and (b.i).
Let us show that the immersion Y satisfies Item (d.6). We know that

SH(F, X(Q-IntP8)) < c.

Thus, Item (d.6) follows from (b.i) and (b.iv), provided that b\ is small enough.

Finally, Item (d.7) in the lemma can be easily deduced from (a.iv) and (b.v), taking
into account that T(X(P), M (a, b, b\, E, E')) andT(X(PE), /j.) are contained in the

tube T(T, c + M(a, b, b\, E, E')) and the fact that X(PS) is homologous to F in that
tube. This completes the proof of Lemma 3.
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3. Proof of the main theorems

At this point we are able to prove the principal results of our paper. From now on C
will represent a bounded, strictly convex regular domain of IR3. Recall that strictly
convex means that the mean and Gaussian curvatures are positive. If we call (,K,8H)
as the metric space of compact sets of dC with the Hausdorff distance, then we will
prove that the limit sets of properly immersed minimal disk are dense in X. At the

end of this section we will show that our results are sharp in the sense that neither

strictly convexity nor analyticity can be removed from our assumptions.

Theorem 2. Let C be a strictly convex bounded regular domain of space. For any
smooth Jordan curve Y c dC and for any e > 0 there exists a complete proper
minimal immersion ^(i» :!$>—* C so that 8H (i/(r,e)(dW), F) < e.

Proof. We know that there is to > 0 so that Q is well defined for any t e] - to, oo[.
Furthermore, the normal projection Pt : M? — Ct --* 3(Q) is a well defined smooth

map.
We fix r > 0 such that r < minjfo, «}• Now, define

Choose ci > 0 small enough such that J2n>2 M{n, c\) < r/4. In particular,

oo 2 °°~ :i) < r/4 < to.

Using this constant c\, we construct an expansive sequence {En}ne^ of bounded

convex regular domains in the following way: En C-tn, where tn Xlë=nci/^4»

n > 1. If we label Fi P-tx (F), it is obvious that Y\ c 9E1 is a Jordan curve.
We also take a decreasing sequence of positive reals {bn}nem, satisfying bn <

c\lnA for all neN.
Finally, we define a sequence of real numbers {iJ,n}neN in the following way:

\x\ r/4 and \xn \xn-\ + M(n, c\).
The next step consists of using Lemma 3 to construct (in a recursive way) a

sequence

/„ (Xn : InTT^ -? M3, Pn, en,Çn),

where Xn are conformai minimal immersions with Xn(0) 0, Pn are polygons,
and {e„}, {§„}, {an} are sequences of positive numbers converging to zero, verifying
efe < c\/k2. Furthermore, the sequence Xn : Int Pn -> K3 must verify the following
properties:
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(I„) Int Pln:{ c Int P^ c Int Pbnn_x c Int P„c" c Int P? C Int Pn C Int P„ C

IntP„_i;
(II„) ||X„(z) - X„_i(z)|| < sn for all z e Int P"nn_x;

(III„) A.x„(z) > «n^x„_i(z) for all z G Int P^x where {a,}ieN is a sequence of
real numbers such that 0 < a, < 1 and {]~["=i a' }„ converges to 1/2;

(IV„) -1- < dist / r x (Pf"V, Pt);

(V„) X„(z) € £" - (£")_&„ for all z e Pn;

(VI„) X„(z) € M3 \ {En-l)_2{bn_l+bn) for all z € Int Pn \ Int Penn_x;

(VIII«) SH (Xn(Int Pn - Int P^), r) < m«;

(IXn) Xn(Pn) and F are homologous in T(r,
To define /i, we consider Di a solution of Plateau's problem for the curve IY

Let X\ : 3 —* D\ be a conformai parametrization of the minimal disk D\. Then we
choose a polygon P\ c B sufficiently close to SB and a constant §i > 0 so that

• 8H(Xi(lntPi - IntPf Ti) < b\ (< \). In particular, Properties (Vi) and

(Vlli)hold.
• Xi(P\) is homologous to F in the tube T(T, ij.\).
Suppose that we have xi> •••> Xn- In order to construct Xn+i, we consider the

following data:

E En, E' En+1, a=bn, c=pn, X Xn, P Pn.

From Property (Vn) we know that X(P) c E \ E-a, and Property (VII„) implies
that 8H(X(P), F) < c. Furthermore, X(P) is homologous to F in T(T, c). Then

it is straightforward that we can find a small enough positive constant x, such that
Lemma 3 can be applied to the aforementioned data, and for any e e]0, x[.

Take a sequence {em} \ 0, with^ < min {(n?1)2 » *» bn+i} for all m. For each

m, weconsider Qm andFm : Int Qm --* M? given by Lemma 3, for the above data and

e b =^em. It is important to note that the constant M(a,b,^em, E, E') in Lemma 3

is less that M(n + 1, ci).
If m is large enough, Assertions (b.l) and (b.5) in Lemma 3 tell us that Int P„ c

Int ôm and the sequence {Ym} converges to Xn uniformly in Int Pn In particular,

&Ym} converges uniformly to XXn in Int p|" Therefore there is an mo G N such that

Int Pi" clnt Pnm° clnt Qm, (17)

^¦Ymo > ocn+i^xn inIntP|". (18)
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We define Xn+\ Ym, Pn+i Qm, and en+\ tm. From (17) and Statement

(d.2) in Lemma 3, we infer that ^-j- < dist/IntP Xn+i)(^n, Pn+\)- Finally,
take §„+i small enough such that (In+i) and (IVn+i) hold.

The remainder properties directly follow from (17), (18) and Lemma 3. This
concludes the construction of the sequence {xn}neN-

Now, we extract some information from the properties of {/„}. Actually, the

limit of the sequence of minimal immersions will be the complete proper minimal
immersion we are looking for.

At this point, we are able to define the immersion that proves the theorem. This
immersion will be the limit of the sequence {Xn}ne^. But before of this, we need

to construct the domain of definition of the limit immersion. Properties (In), n g N,

imply that the set
00 00

Q (J Int PEnn+l (J Int P%"

n=\ n=\

is an expansive union of simply connected domains, resulting in Q being simply
connected. Moreover, as Int P„ c B, then Ç2 c B. Using Riemann's mapping
Theorem, we deduce that Q, is conformally equivalent to the unit disk.

Properties (II„) tells that {Xn}nem is a Cauchy sequence, uniformly on compact
sets of Q, and so, by using Harnak's theorem, it converges. Let iA(r,e) : ^ —? I^3 be

the limit of {Xn}nem. Then ^(r.e) has the following properties:

Claim 3.1. Vor.e) is a conformai minimal immersion.

Proof. TheproofofthisclaimisadirectconsequenceofProperties(III„),n g N.

Claim 3.2. ^(i» '¦ ^ —^ C is proper.

Proof. Consider a compact subset K c C. Let «o be a natural number so that

K c (En 1)_2(bn_1+bn)_n>nEk for all n > n0.

From Properties (VI„), we have Xn(z) g M3 - (En-1)-2(bn-1+bn) foralU e IntP„-
Int Pfnn_v Moreover, taking into account (II^), for k > n, we obtain

Then, we have f(r ,(K) n (Int Pn - Int P^) 0 for n > no. This implies that

V^T-1 \(K) C Int P "°
i, and so it is compact in Ç2.

Claim 3.3. Q, is complete with the metric Sf,r s).
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Proof. This is a trivial consequence of Properties (IIn) and (IVn), n g N.

Claim 3.4. The limit set ir(r,E)(dQ) satisfies SH(ir(r,E)(dQ), F) < e.

Proof. First, we are going to prove that distR3 (/?, F) < r, for all p in the limit set

Given p e Vf(r,e)(9^)» we know that there exists a sequence of points in Q,

{zn}neN, with
{Vf(r,£)(Zn)}neN -> P-

Without loss of generality (up to re-index the sequence and take a subsequence) we
can assume

Zn € Int Pn - Int P'nn_x (19)

Z„€lntP„£"+1. (20)

From (19) and taking (VIIIn) into account we obtain

distR3(Xn(zn),r) <m« < \- (21)

On the other hand, using (20) and the fact that zn satisfies the conditions to apply
Properties (II„), for k > n + 1, then we have

00

ll^(I»(zn) " Xn(Zn)\\ < J2 WX^Zn) ~ Xfc_i(zn)|| < ^. (22)
jfc=«+l

Combining (21) and (22) we trivially deduce that distR3(^(r,£) (zn), T) < 3r/4.
Finally, we take limit as n --* oo and obtain distR3 (/?, F) < 3r/4 < e (recall that we
have chosen r < e).

Now, we have to prove that distR3 (x, V^i» (9^)) < r» for all x g F.
Pick a point x e F. Property (VIII„) once again tells us that

&H(Xn(lni Pn - Int P^), T)<ßn<X-.

Assume that B(x, r/2)nXn(P^1) is empty. Itimplies that Xn{P^n_x) andF cannot
be homologous in T{T, r/2). But Properties (IX„) and (VIII„) imply that Xn{PEnn_x)

is homologous to F in T(T, ßn) C T(F, r/2), which is absurd.

Hence, we deduce that there exists zn £ -f^!_i such that ||X„(z„) — x|| < r/2.
Moreover, reasoning as in (22), we have ||iA(r,e)(z«) - Xn{zn)\\ < */4. Then, we
conclude

IIf(r,e)(Zn) -x|| < 3r/4 forallneN. (23)

Notice that the sequence {^(i» (zn)}neN admits a convergent subsequence (recall
that C is compact). Let p denote the limit of such subsequence. Inequality (23) yields
that \\p — x|| < 3r/4. In particular, we have distR3 (x, Vf(r,e)(9^)) < £• D
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This completes the proof of Theorem 2.

As we mentioned in the introduction, the above theorem has the following direct
application:

Theorem 3. Every bounded domain with regular boundary admits a complete properly

immersed minimal disk.

Proof. If R is a bounded regular domain, then there exists an open connected region
A c dR so that the mean and Gauss curvatures are positive on A. Consider R' a

strictly convex regular domain R' c R and such that 0 ^ dR' n dR c A, like in
Figure 4. Hence, in order to get the minimal immersion we are looking for, it suffices

to apply Theorem 2 to a Jordan curve F in dR' n dR and an e > 0 small enough.

Figure 4. The domains R and R' and the curve F.

Theorem 3 implies that a bounded regular domain is not universal for minimal
surfaces. A connected region of space which is open or the closure of an open set is
universalfor minimal surfaces, if every complete properly immersed minimal surface

in the region is recurrent for Brownian motions. In particular, a bounded domain is

universal if and only if it contains no complete properly immersed minimal surfaces.

The other interesting consequence follows from a well-known result in convex
geometry. Next theorem essentially asserts that the Jordan curve F can be substituted

by an arbitrary compact set in the statement of Theorem 2.

Theorem 4. Let C be a regular strictly convex bounded domain, and consider a

connected compact set K c dC. Then, for each e > 0, there exists a complete

proper minimal immersion <P(K,e) : B ^ C satisfying that the Hausdorff distance

SH(<p{K,e)(3W),K)<e.

Theorem 4 is a trivial consequence of Theorem 2 and the lemma below.
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Lemma 4. Let K be a connected compact set in dC, then for every v > 0 there exists

an smooth Jordan curve F so that 8H(K, F) < v.

Proof. Classical results about Hausdorff metric imply that there is a finite set F c K
such that 8H(K,F) < v/3. Label K' (K +B(0, v/3))n dC, which is a connected

open set in dC. Then, it is clear that we can find a compact simple piecewise smooth

curve y ' in K' passing through all the points in F. If y ' is not closed, we can consider a

curve parallel to y ', that we call y", and sufficiently close to y ' so that the Jordan curve

y obtained joining the extremes of y' and y" satisfies 8H (y, K) < v/3. To finish, we
only need to approximate y by a smooth Jordan curve satisfying 8H(y, F) < v/3.

D

Finally, we would like to show that our results are sharp in the following sense. If
we remove from Theorem 2 the hypothesis of C being strictly convex, then the result
fails. The most simple counterexample is open halfspace. If we consider a complete
minimal disk properly immersed in an open halfspace then the limit set cannot be

bounded, if not we will arrive to a contradiction by the maximum principle. Actually
we can prove that:

Proposition 2. Let D a domain of M? satisfying that there exists an open region
U c 9D where the mean curvature associated to the inward pointing normal is non
positive. If U is a graph over a bounded convex domain of a plane, then there are
no complete proper minimal disks in D whose limit set lies on U. In particular,
Theorem 2 is not true for domains of this kind.

Proof. The proof of this proposition is an easy application of the maximum principle.
We proceed by contradiction. Assume there exists a complete proper minimal immersion

tf/ : 3 --* D so that the limit set tp (dW) is contained in U. From the hypotheses,

we know that U is a graph over a plane FI. First, we translate U, orthogonally to
FI, and toward the interior of D until it does not touch i/r(B) (see Figure 5). Now

continuously translate U toward ^(B) until the translated graph intersects f (B) for
the first time. This must occur because the immersion is proper. As the limit set is
contained in U, then tf/ (ID) is contained in the interior of the convex cylinder over the

projection of U in FI. In particular the boundary of the graph never touches xlr(H>),

then the translated graph Uq and \jr(ß) have an interior contact point, and so the

maximum principle leads to Uq ^(B) which is absurd. This contradiction proves
the proposition.

On the other hand, regularity is also necessary. Indeed, Martin, Meeks and Nadi-
rashvili [4] have recently proved this result.

Theorem 5 ([4]). Let £> be any bounded open domain in R3. Then there exists a

proper countable collection F ofpairwise disjoint horizontal simple closed curves
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in <© such that the complementary domain <© <© — F is universal for minimal
surfaces with at least one annular end. In particular, any complete immersed minimal
surface offinite genus in £> must have an uncountable number of ends.

Among other things, this means that Theorem 3 is sharp, too.

3D

Figure 5. We translate U in the direction of the interior of D until it does not touch xfr (D).
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