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Reflections in abstract Coxeter groups

W. N. Franzsen, R. B. Howlett and B. Mühlherr

Abstract. Let W be a Coxeter group and r e VF a reflection. If the group of order 2 generated by
r is the intersection of all the maximal finite subgroups of W that contain it, then any isomorphism
from VF to a Coxeter group W' must take r to a reflection in W'. The aim of this paper is to show
how to determine, by inspection of the Coxeter graph, the intersection of the maximal finite
subgroups containing r. In particular we show that the condition above is satisfied whenever W
is infinite and irreducible, and has the property that all rank two parabolic subgroups are finite.
So in this case all isomorphisms map reflections to reflections.

Mathematics Subject Classification (2000). 20F55; 51F15.

Keywords. Coxeter group, isomorphism problem, automorphism, reflection.

1. Introduction

The dihedral group of order 12 can be considered as Coxeter group of type /2(6) or
as Coxeter group of type A\ x hO). This example shows that, in general, the set of
reflections in a Coxeter system is not determined by the abstract group W alone, but
does indeed depend on the choice of the Coxeter generating set R. However there are

a lot of examples of Coxeter systems W, R) where the abstract group does determine
the set of reflections or even the set R up to VF-conjugacy. The main motivation for
the present paper is to show that the latter holds for infinite Coxeter groups having
a finite, irreducible and 2-spherical Coxeter generating set, which is our Theorem 1

below.

In view of the main result of [5] it suffices to show that these Coxeter groups
determine the set of reflections. In order to achieve this goal we provide a handy
criterion for an involution in an abstract Coxeter group VF to be a reflection with
respect to any Coxeter generating set of W. Our principal observation is the following.
Let (W, R) be a Coxeter system and let w g W be an involution. If w ^ Rw, then
the centralizer of w in W contains a finite normal subgroup properly containing (w).
This is an immediate consequence of Richardson's result in [16]. Thus, if w g W is

an involution having the property that (w) is a maximal finite normal subgroup of its



666 W. N. Franzsen, R. B. Howlett and B. Mühlherr CMH

centralizer in W, then w is a reflection with respect to any Coxeter generating set of
W.

It turns out that it is more convenient to work with the finite continuation of an
involution rather than to consider finite normal subgroups of its centralizer. The
finite continuation of a finite order element w in a Coxeter group is defined to be the

intersection of all maximal finite subgroups containing it; we write FC(w) for the

finite continuation of w. In this paper we restrict our attention to finitely generated
Coxeter groups. For these it is a consequence of a result of Tits that every element
of finite order is contained in some maximal finite subgroup; so FC(w) is a finite
subgroup of W (see Corollary 14 below). The main result of the present paper is

a complete description of the finite continuation of a simple reflection in a Coxeter

system of finite rank. Its proof constitutes the bulk of this paper.

Main Result. Let (W, R) be a Coxeter system of finite rank. Then the following
holds.

a) For each r e R the finite continuation ofr can be described.

b) Given an involution w g W such thatFC(w) (w), then w e Rw.

Part a) of our main result is Theorem 7. Its precise statement requires some

preparation. Part b) is Corollary 24.

The main result of this paper is in fact the first of two steps to reduce the isomorphism

problem for Coxeter groups to its 'reflection-preserving' version. The second

step is given in [12]. We refer to [15] for further information about the applications
to the general isomorphism problem.

A special instance of the isomorphism problem for Coxeter groups is the question
about their rigidity (see [3] for further information). In combination with the main
result of [5] a consequence of our main result is the following rigidity result.

Theorem 1. Let (W, R) be an irreducible, non-spherical Coxeter system such that
R is finite and such that rr' has finite order for all r, r' g R. Then the following
assertions hold.

a) For each r e Rwe have FC(r) (r).

b) If S ç W is such that (W, S) is a Coxeter system, then there exists w g W such

that Sw R.

c) All automorphisms of W are inner-by-graph.

In the language of [3], Part b) of the previous theorem means that an infinite,
irreducible, 2-spherical Coxeter system is strongly rigid. Part c), which is an immediate

consequence of Part b), improves the result of [13].
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To conclude this introduction we remark that characterization results for reflections

in even Coxeter groups have been obtained in [1]. Some of the results there can
be deduced as corollaries of our main result as well.

Acknowledgements. The authors thank Frédéric Haglund for helpful discussions on
the subject, and the Australian Research Council for support. The third author thanks
the University of Sydney for hospitality when this research was undertaken.

2. Precise statement of the main result

Recall that a Coxeter group is a group with a presentation of the form

W gp< {ra | a G FI} | (rarb)mab 1 for all a, b G II > (2.1)

where Fl is some indexing set, whose cardinality is called the rank of W (relative to
this presentation), and the mab satisfy the following conditions: mab mba, each

mab lies in the set {m g Z | m > 1} U {oo}, and mab 1 if and only if a b. When
m ab co the relation (rarb)mab 1 is interpreted as vacuous. We shall restrict
attention to Coxeter groups of finite rank.

A reduced expression for an element w g W is a minimal length word expressing
w as a product of elements of the distinguished generating set {ra \ a g n}. We
define i(w) to be the length of a reduced expression for w.

As is well known (and as we shall describe in Section 3 below), every Coxeter

group W can be realized geometrically as a group generated by reflections. In this
realization of W the reflections in W are the conjugates of the generators ra.

The Coxeter graph associated with the presentation above is the graph with vertex
set n and edge set consisting of those pairs of vertices {a, b] for which mab > 3.

The edge {a, b) is given the label mab. The components of Fl are the connected

components of the graph, and we say that W is irreducible if the graph is connected.

For each / ç FI we define Wj to be the subgroup of W generated by the set

{ra | a g /}; we call these subgroups the visible subgroups of W. A parabolic
subgroup of W is any conjugate of a visible subgroup. We say that / ç n is

spherical if Wr is finite, and we say that FI (or W) is k-spherical if all ^-element
subsets of FI are spherical.

The definitions given so far are fairly standard. In order to facilitate the precise
statement of the main result, we introduce some nonstandard notation and terminology
(in Definitions 2, 3, 4, 5 and 6 below).

Definition 2. If w g W has finite order, define the finite continuation of w, written
FC(w), to be the intersection of all maximal finite subgroups of W containing w.
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Definition 3. The odd graph of W is the graph Q(Yl) obtained from the Coxeter graph
by deleting the edges whose labels are infinite or even. For each a € owe define
Odd (a) to be the connected component of Q(Yl) containing a. For each connected

component M of Œ(FI) we define E(M) to be the union of M with the set of all b G II
such that nicb is even for some c g M. We also abbreviate E(Odd(a)) to EOdd(a).

In the discussions below, when we refer to the components of E(M) we regard
E(M) as the full subgraph of the Coxeter graph spanned by the vertices in E(M). In
other words, the edges with even and infinite labels, deleted when forming the odd

graph, are restored in E(M).
Note that if a g L ç n and Wl is finite then mab < oo for all b e L. Whether

is odd or even it follows that b G EOdd(a). Thus L ç EOdd(a).

Definition 4. Let M ç n be a connected component of £2(11). We call b G FI \ M
a C^-neighbour of M if mjc g {2, 4} for all c g E(M), the case mjc 4 occurring
for at least one c, and for each c g E{M) with mjc 4 there is an a g M such that
the following conditions are satisfied:

(1) niba 2 and mca 3, and mcd oo for all d g M \ {a, c}\

(2) for all e G FI \ (M U {è}), either mce cxd or mae mce mt,e 2.

Definition 5. Let M ç n be a connected component of £2(11), and let a G M and
b g FI \ M. We call the pair (a, b) a focus of M in FI if the following conditions all
hold.

(1) All the edge labels of M are 3, and M is a tree.

(2) For each c g M, the set C[b..c] ç n consisting of b and those elements of M
that form the path from a to c in M constitutes a system of type Q (for some k

dependent on c).

(3) If c, d g M U {b} with c £ C[b..d] and d £ C[è..c] then mcd oo.

(4) If mcg t^ cxd for some c g M and e G FI \ (M U {b}), then mcg 2 rn.de for
alld G C[è..c].

(5) The vertices of M U {b} do not form a spherical component of E(M).

Definition 6. Let M ç FI be a connected component of ß(FI), and let a, b e M. We
call the two-element set {a, b) a halffocus of M in FI if maj, 2 and the following
conditions all hold.

(1) We have mac mjc g {2, 3} for all c g M \ {a, b], and mac mjc g {2, oo}
for all c g n \ M.

(2) All the edge labels of M \ {b} are 3, and M \ {b} is a tree.
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(3) For each c g M \ {a, b), the set D[a, b..c] ç n consisting of b and those

elements of M \ {b} that form the path from a to c constitutes a system of
type Dk (for some k dependent on c).

(4) If c, d G M \ {a, b} with c £ D[a, b..d] andd £ D[a, b..c] thenmcd oo.

(5) If mce t^ cxd for some c e M \{a,b} and e g FI \ M, then mcg 2 m^e for
alld G D[a,b..c].

(6) The vertices of M do not form a spherical component of E(M).

We are now able to give a precise statement of Part a) of our main result.

Theorem 7. For each connected component MofQ(Yl) there is at least one a g M
such that¥C(ra) is a visible subgroup ofW. We have the following possibilities.

Case A: Suppose that the component ofE(M) containing M is spherical, and let
a £ M be arbitrary. Then FC(ra) Wj, where J is the union of the spherical
components ofE(M).
Case B: Suppose that the component ofE(M) containing M is not spherical, and M
does not have any focus or half-focus in Yl, and let J' be the union of the spherical
components ofE(M) and the set of C^-neighbours ofM. If a g M is not adjacent in
FI to any Cj-neighbour of M then FC(ra) Wjnj{a], and ifa g M is adjacent in FI

to a C^-neighbour of M then EC(ra) is not visible.

Case C: Suppose that (a, b) is a focus ofM. Then EC(ra) Wj where J is the union

of {a, b] and the spherical components ofE(M), and FC(rc) is not visible for any
c G M \ {a}.

Case D: Suppose that {a, b) is a half-focus of M. Then EC(ra) FC(rj) Wj,
where J is the union of {a, b] and the spherical components ofE(M), and FC(rc) is

not visible for any c g M \{a,b}.

3. Reflections and root systems

Let R be the real field, and V the vector space over R with basis FI. Let B the bilinear
form on V such that for all a, b g FI,

B{a,b) —cos(n/mab)-

To make our notation more compact we define u ¦ v B(u, v) for all u, v g V. Note
that a ¦ a 1 for all a g FI, since maa 1.

For each a g V such that a ¦ a 1, the reflection along a is the transformation
of V given by v \-> v — 2(a ¦ v)a. It is well known (see, for example, Corollary 5.4

of [14]) that W has a faithful representation on V such that, for all a g FI, the
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element ra acts as the reflection along a. We shall identify elements of W with their

images in this representation. We also use the notation ra for the reflection along a
whenever a g V satisfies a-a 1. It is straightforward to show that each reflection ra

preserves the form B ; hence all elements of W preserve B. Furthermore, the equation
grag~l rga holds for alia e V such that a ¦ a 1 and all transformations g that

preserve B.
We write Ref (W) for the set of all reflections in W. It is immediate from the

above comments that if <£> {wa \ w G W, a g 11} then {n \ b g <£>} ç Ref (W).
The set 4> is called the root system of W, and elements of 4> are called roots.

Elements of the basis n are called simple roots, and the reflections ra for a g n are
called simple reflections. A root is said to be positive if it has the form J2aen ^a
with ka > 0 for all a g FI, and negative otherwise. We write <i>+ for the set of all

positive roots and 4>~ for the set of all negative roots.

Lemma 8. With the notation as above, the following statements hold.

(1) Every negative root has the form J2aen ^a with Xa < 0 for all a e FI. Fur¬

thermore, $~ {—b | Z? g <i>+}.

(2) Ifw &Wanda&Yl then

0,
[*(«>) +1 ifwae<î>+,

l(wra) {\i()l if®-
(3) Ift g Ref (WO then t n for some b e <J>.

(4) The group W is finite if and only if the bilinear form B is positive definite.

(5) The root system <i> is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [14, Section 5.4], Theorem 4.1 in [7]
includes both (4) and (5), and (3) is [13, Lemma 2.2].

The following result is well known.

Lemma 9. Let a&U. Then Odd(a) FI n Wa.

For each w G W we define N(w) {b g $+ | wb g $"}. By Part (2) of
Lemma 8, if w ^ 1 then N(w) n FI ^ 0. An easy induction shows that JV(w) has

exactly t{w) elements. In particular, N{w) is a finite set. It is also easily shown that

if 4> is finite then there is a unique w G W such that N(w) 4>+. This element,
which we denote by wu, is also the unique element of maximal length in W (which
is a finite group). Furthermore, wnFI — FI.
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For each F ç $ the subgroup Wr generated by the set {ra \ a g F} is called
a reflection subgroup of W. The set 4>r {a G $ | ra g Wr} is called the root
subsystem generated by F. Let <£>+ <£>r n <£>+ and <£>p $rH$", and define

nr {a G $+ | tf(ra) n $r {a}}.

The main theorem of Deodhar [8] and Theorem (3.3) of Dyer [9] yield the following
result.

Theorem 10. For each F ç $ the group Wr w a Coxeter group on the generating
set {ra | a g Flr}. 77i<? *ef {a - b \ a, b g Flr and a ^ b) is a subset of c€

{— cos(n/m) | 2 < m g Z} U (—cxd, —1]. Moreover, if A is any subset of <î>+ such

that {a -b \ a, b g À and a 7^ b} ç "^ fftg« Wa is a Coxeter group on the generating
set {ra \a G A}.

Note that the notation Wr introduced above is an extension of the notation for
visible subgroups introduced in Section 2. However, if F ^ FI then Wr need not be

visible.
It is clear that if / ç FI then W/ preserves the subspace Vj of V spanned by /,

and acts on this subspace as a Coxeter group with / as its set of simple roots. In this

case $/ $nV; and FI/ /.
The following simple facts are well known.

Lemma 11. In the above situation, $/ <£> n V/. Furthermore, w g W normalizes

Wj ifand only ifw$ i <£>/. In particular, for all a g 4>, the reflection ra normalizes

W/ if and only ifa g $/ or a ¦ b Ofor all bel.
Suppose that / ç FI and a g FI \ /, and let L be the component of (the Coxeter

graph of) / U {a} to which a belongs. If Wl is finite we define v[a, I]
It is easily seen that v[a, I]I ç / u {a}, and that v[a, I]b b for all b g / \ L. In
particular, v[a, I]I g J^ {/ ç FI | / wl for some u; G W }. It was proved
in [11] (for finite Coxeter groups) and in [7] (in the general case) that every element

w g W satisfying wl ç FI can be expressed as a product of elements of the form
v[a, I'], with /' g .f and a g FI \ /'. That is,

w v[a\, I\\v[a,2,h~\...v[an, /„] (3.1)

for some /,-, a,- such that (for each i) the component of /, U {a,} containing a,

corresponds to a finite visible subgroup, v[at, It]It 7,-_i for 1 < i < n, and In I.
Furthermore, the following result holds.

Proposition 12. Let I, J ç FI. Then {vu g W | wW/w"1 W/} AT(/, 7)W/,
where N(J, I) {w e W \ wl J}. Furthermore, for each w g N(J, I) and
each a g FI n N(w) there is an expression for w of the form (3.1) above, with
(an, /„) (a, I) andi(w) ^"=1 ^(«t«?. 7?D-
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The following lemma, which appears in [2, Exercise 2d, p. 130], is fundamental
to all of our arguments.

Lemma 13 (Tits). If W is a Coxeter group and H < W isfinite, then H is contained
in a finite parabolic subgroup ofW.

One immediate consequence of Lemma 13 is that every maximal finite subgroup
of a Coxeter group is parabolic. Another consequence of the previous lemma is

that each finite subgroup of W is contained in a maximal finite parabolic subgroup.

(Remember that we always assume that W is finitely generated.) Thus the set of
maximal finite subgroups of W containing a given finite order element of W is not
empty, and hence we have the following fact.

Corollary 14. Ifw e Whas finite order, then¥C(w) is awell-definedfinite subgroup

ofW.

Lemma 15 (Kilmoyer). Let I, J ç n. Then every (W/, Wj) double coset in W

contains a unique element of minimal length; moreover, if d is the minimal length
element of WjdWj then Wj n dWjd~l WK, where K I n dJ.

Proof. See [6, Theorem 2.7.4].

Corollary 16. The intersection of a finite number ofparabolic subgroups is a parabolic

subgroup.

The following consequence of Lemmas 13 and 15 is proved in [10, Lemma 11].

Lemma 17. If J is a maximal spherical subset of Fl then Wj is a maximal finite
subgroup of W. Furthermore, Wj is not conjugate to any other visible subgroup

ofW.

Another important tool in our analysis of automorphisms is the classification of
involutions in Coxeter groups, due to Richardson [16].

Proposition 18. Suppose that w g W is an involution. Then there is a t e W and

a spherical /çn such that w t~xwit with t{w) t{wi) + 2t{t), and wi is

central in Wj.

Proof. See [10, Proposition5].

Definition 19. We say that / ç n is of (-l)-type if Wi is finite and wi is central
in Wl
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The reason for the terminology is that / is of (—l)-type if and only if there is an
element of Wj that acts on Vj as multiplication by —1.

We need the following lemma.

Lemma 20. Suppose that I, J c FI with I of (—\)-type, and suppose that t g W

has the property that twit~x g Wj. ThentWit~x ç Wj.

Proof. Let a g /. Then w/ (a) —a,andso(twit~1)(ta) —fa, whence itfollows
that either ta or -ta is in the set N{twjt~l). But N{twjt~l) ç $j\sota G <£>/,

and therefore trat~l rta g Wj. Since Wr is generated by {ra \ a g /}, the result
follows.

In particular, it follows from Lemma 20 that if /, /are both of (-l)-type and

twit~l wj thenfW/f"1 Wj. Conversely, suppose that fW/f"1 Wj, so that
in fact dWjd~1 Wj for all d in WjtWj (which equals tWj). Taking d to be the

shortest element in tW\, Lemma 15 yields that dl J, and hence x \-> dxd~l
is a length-preserving isomorphism Wj --* Wj\ consequently dwjd~1 wj. If
wi, wj are central in Wr, Wj we deduce that fw/f"1 wj. So we have proved the

following result.

Lemma 21. Suppose that I, J are subsets of FI that are both of (-L)-type. Then

{t g W | twit~l wj} {t g W | tWit~l Wj}.

Proposition 22. LetlcU be of(-l)-type. Then W/ ç FC(w/).

Proof. Let F be a maximal finite subgroup of W such that wj G F. By Lemma 13

there exist t g W and / ç n such that tFt~l Wj. By Lemma 20 and the fact that

ii);ef itfollows that (W/r1 ç W/. Hence W/ ç f"1 W/f F.

Proposition 23. Lef W, W be Coxeter groups offinite rank and a : W --* W an
isomorphism. Let U be the set of simple roots corresponding to the distinguished
generating set of W, and let a g IL Ifr" is not a reflection in W then the intersection

ofall maximal finite subgroups ofW containing ra is a parabolic subgroup of order

greater than 2.

Proof. Write FI' for the set of simple roots of W. Observe that Lemma 13 and

Corollary 16 trivially imply that FC(ra) is a parabolic subgroup of W.

Since r" is not a reflection it follows from Proposition 18 that r" twit~l for
some t G W and / ç FF of (-l)-type and of rank at least 2. Clearly FC(rfl)"
t¥C(wi)t~l, and by Proposition 22 we know that Wi ç FC(w/). Therefore

(tWjt~1)a ç FC(ra), so that FC(ra) has order greater than 2, as required.

Corollary 24. Let vu g W be an involution such that FC(w) (w) and let S ç W
be such that W, S) is a Coxeter system. Then w g Sw.
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4. The finite continuation of a reflection

Let r be a reflection in W. Replacing r by wrw~l replaces FC(r) by w FC(r)w~1,
and so choosing w suitably enables us to assume that FC(r) Wj, a visible parabolic
subgroup. Furthermore, replacing r by tr t ~l for suitable t G Wj enables us to assume
that r ra for some a g /. (Note that these observations yield the first assertion of
Theorem 7.)

Proposition 25. Let a e / ç n, and suppose that Wj is the intersection of all
maximal finite subgroups of W containing ra. Then {w g W \ wraw~l g Wj}
is a subset of the normalizer of Wj in W. Thus each W-conjugate of ra in Wj is

Nw(Wj)-conjugate to ra, and Cw{ra) ç Nw{Wj). Moreover, ifbeYl\J is such

that Wj\j{b} is infinite then mbc oo for all c e J such that rc is conjugate to ra

inW.

Proof. Let y be the set of all maximal finite subgroups of W containing ra, so that

Wj FC(ra) f]Fey F. Suppose that w G W satisfies wraw~1 g Wj, and

let F g y. Then wraw~l g Wj ç F, and so ra g w~lFw. Thus w~lFw is a

maximal finite subgroup of W containing ra, whence w~1Fw g y. So

fcfl w~xFw

Fey Fey

and so Wj ç w~1 Wjw. Since Wj is finite it follows that w G N
Suppose that c g / with rc wra«;"1 for some w e W. Clearly F \-> wFw~l

is a bijection from the set of maximal finite subgroups of W containing ra to the set

of maximal finite subgroups of W containing rc, and so FC (rc w FC (ra w ~1. But
wVC{ra)w l wWjw l Wj by the first part of the proof, and so FC (rc) Wj.
Now suppose that b g Fl \ / with mcb < oo. Then W{c^} is finite, and so contained
in a maximal finite subgroup F. Since rc g F we must have FC(rc) ç F. It follows
that the finite group F contains both Wj and rj, and therefore Wj\j{b} is finite.

Assume, as in Proposition 25, that a g / ç n and Wj FC(ra), and suppose
now that J ^ {a}. Suppose that L ç n is such that / ç L and Wl is finite. Then Wl
is a finite Coxeter group possessing a visible parabolic subgroup Wj of rank greater
than 1 that is normalized by the centralizer of some simple reflection ra g Wj.
Indeed, Wj is normalized by all w g Wl such that wraw~l g Wj. Equivalently, by
Lemma8(3), {w g Wl I u>a g 4>/} ç Nw(Wj). This is a very restrictive condition,
which we now proceed to examine with a case-by-case investigation of the different

types of finite Coxeter groups. For the course of this investigation, we can (and shall)
assume that L Yl.

So we assume for now that W is a finite Coxeter group of rank n, and our aim is to
find all examples of the following phenomenon: there exist {a} ^ / ç n such that
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the set Q {w g W \ wa g <£>/} is a subset of Nw(Wj). We assume that / ^ FI,

since the condition is trivially satisfied otherwise.

If K ç n is a component of the Coxeter graph such that / n K 0 then WK is

a direct factor of Nw(Wj); moreover, Q (Q n Wu\k) Wg. So removing K from
the graph will have no bearing on whether or not the condition Q ç Nw(Wj) holds.
So we assume that there are no such components of n. Exactly the same comments
apply for a component K of Fl such that K ç /. So we also assume that there are

none of these.

Assume that {a} g / C n and Q ç Nw(Wj). Suppose that K ç n is a

component of the Coxeter graph such that a £ K. Then r^a a for all b G K; so

rj g Q ç JVW( W/), and it follows that rjc g <£>/ whenever c g /. If b ¦ c ^ 0 then
£> is in the support of r^c, and so r^c g $/ implies b e J. Since Ä" is connected it
follows that if K contains any element of / then K ç /. So either K n / 0 or
Ä" ç /. But we have assumed that there are no such components. So the component
of FI that contains a is the only component; that is, Fl is irreducible.

Observe that the group Stab(a) {w g W \ wa a] is a subset of Q and

hence of Nw(Wj). Note also that Nw(W/) {w e W \ w$j <£>/}, which is

also the stabilizer of the subspace Vj (since Vj is the subspace spanned by <£>/ and

$/ Vj n $). Now Stab(a) is a parabolic subgroup of W whose root system is

^riö1, and the following table gives the type of this root system in all cases.

w
An
Cn

Cn

Dn
Fa

E6

Stab(a)

An-2
Cn-2 + Al

Cn-l
Dn-2 + Al

c3
A5

w

eI

H4

I2(2k)
h(2k + l)

Stab(a)
D6

Ai
0

(For Cn there are two W orbits of roots, giving two possibilities for Stab(a). For
Fi, and h{2k) there are also two V7-orbits of roots, but Stab(a) has the same type
of root system whichever orbit a belongs to.) Since each irreducible constituent of
its root system spans an irreducible Stab(a)-submodule of V, the table shows that

as a S tab (a)-module, V has composition length two or three or (in one case only)
four: a itself spans a trivial Stab(a)-submodule of dimension 1, and a1 is either
irreducible of dimension n — 1 (for types F4, Eß, Ei, E%, H4, hÇZk) and one of
the Cn possibilities), or the direct sum of irreducibles of dimensions 1 and n — 2

(for types An, Cn, Dn when n > 4, H3 and h(2k + 1)), or the direct sum of three
irreducibles of dimension 1 (for type D4). Furthermore, the summands of a1- are

pairwise nonisomorphic as Stab(a)-modules, since even if they are of the same type
their centralizers in Stab(a) are different.
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Sinceja} g / C YlandVj isStab(a)-invariant, weseethata1 J
with both summands nonzero Stab(a)-modules. So n is of type An, Cn, Dn or 7/3.

Furthermore, except in type D4, the two direct summands of a1 are irreducible and

not isomorphic, and are therefore the only proper Stab(a)-submodules of aL. We
conclude that Vj is spanned by a and one of the summands of a1, while Vj- is the

other summand. In type D4 we similarly deduce that Vj is spanned by a and one

or two of the three 1-dimensional summands of a1, and, correspondingly, Vj- is of
either of type A\ + A\ or of type A\.

If FI is of type An then one of the summands of aL is of type A„_2 while the

other is a trivial 1-dimensional Stab(a)-module. If Vj- is of type A„_2 then Vj must
be of type A\, since the orthogonal complement of a subsystem of type A„_2 in An
contains only a rank 1 root system. This contradicts the assumption that {a} ^ /. So

/ is of type A\ + A„_2. Since Wj is visible, we deduce that a is an end node of the

An diagram, and the node adjacent to a is the unique simple root not in /. However,
if n > 3 then the maximal length element of W is in Q but not in the normalizer
of Wj. So n 3 and J {a, c), where c is the other end node. It is readily checked
that Q has 8 elements and coincides with Nw{Wj) (which is generated by Wj and

an element that interchanges a and c).

If FI is of type Cn then one summand of aL is of type C„_2 and the other of
type A\. The roots in the A\ summand are in the same V7-orbit as a. If Vj- is the

A\ component of a1 then Vj (V/)1 is of type C„_2 + Ai. This determines /
uniquely, since Wj is visible. If n > 4 and w is the longest element of the visible
parabolic subgroup of type A„_i, then -wa eYl\{b] J, but w <£ Nw{Wj). This
contradicts the fact that Q ç Nw(Wj). Son 3, and the elements of / are the

end nodes a, c of the C3 diagram, the middle node b being in the same V7-orbit as a.
Since <£>/ {±a, ±c} and c is not in the same V7-orbit as a and b we deduce that

Q {w g W I wa ±a}. Furthermore, of the 6 roots in the V7-orbit of c, only c

and —c are orthogonal to a. So if wa ±a then we ±c. Thus if w g Q then

10$/ <£>/, as required.

Continuing the discussion of Cn, suppose now that Vj- is the Cn_2 component
of aL. Then Vj (Vj-)1- is of type C2. Writing / {a, è}, the fact that Stab(a)
is of type A\ + C„_2 means that it is è rather than a that is the end node of the Cn

diagram. If we put c r^a then {±c} is the component of <£> n a1 of type Ai. It
follows that {±a} {±rjc} is the Ai-component of <i> n (rja)-1 4> n c-1. We see

that Stab(a) (rc> x W and Stab(c) {ra) x W, where W is a parabolic (not
visible) subgroup of V7 of type C„_2. Indeed, the root system of W is <£> n V/. The
roots in 4>/ that are in the same V7-orbit as a are ±a and ±c, and so

Q {1, rfl, rfe) r6rfl}Stab(a) {1, rfl, rfe)

Hence our requirement that ß stabilizes 4>/ {±a, ±è} is indeed satisfied.
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If El is of type Dn with n > 4 then one summand of aL is of type D„_2 and

the other of type A\. The roots orthogonal to a Dn-2 subsystem form a system of
type A i +A \. There are in fact two W -orbits ofparabolic A\+A\ subsystems, and the

orthogonal complement of a Dn-2 is perhaps better thought of as type D2, since the

visible parabolic in this orbit corresponds to the two nodes of the diagram that form
the fork. So if Vj- is the D„_2 summand of aL then / {a, b) consists of the two
nodes of valency 1 that are adjacent to c, the node of valency 3. A similar statement

applies for D4 in the case that Vj- is of type A\ + A\. In both cases the element

w rcrarbrc € W satisfies wa b and wb a, and since <£>/ {±a, ±b) we see

that Q {1, ra, w, wrfl}Stab(a). ButStab(a) (rb) x WandStab(fc) (ra) x W,
where W is the parabolic subgroup corresponding to the subspace Vj-, and it follows
readily that Q stabilizes <£>/ {±a, ±b], as required.

Continuing the discussion of Dn, where n > 4, suppose now that Vj- is an A1

component of a1. Then Vj Vj-)1 is of type A\ + Dn-i- But the maximal length
element of a visible An-\ subsystem containing a takes a to an element of <£>/ but
does not normalize Wj. So our requirement that Q ç Nw(Wj) is not met.

Finally, suppose that n is of type H3, so that Stab(a) is of type A\ + A\. Then Vj-
is of type A\, and hence / is of type A\ + A\. Let J {a, c), and note that c wa
for some w g W. Since A^vk(^/) is generated by Wj and the central involution
of W, we see that c is not in the Nw(Wj)-orbit of a. Hence the element u; above is

in g but not in Nw{Wj), and so our requirements are not met.

We have thus established the following result.

Proposition 26. Let Fl be the set of simple roots for the finite irreducible Coxeter

group W, and suppose that a e / ç n. Then {w g W \ wa e 4>/} is a subset of
Nw(Wj) if and only if one of the following situations occurs:

(1) / {a};

(2) / n;
(3) FI {a, b, c) is of type C3, with mac 3 and mcb 4, and J {a, b) of type

A1+A1;
(4) n is of type Cn and J {a,b} is of type C2, with b an end node ofU;
(5) n is of type Dn or A3, and J {a, b}, where a and b are end nodes that are

both adjacent to some cell.

We return now to investigation of an arbitrary finite rank Coxeter group W. The
next proposition is an immediate consequence of Proposition 26 and the discussion

preceding it.

Proposition 27. Let a e / ç L ç n, and suppose that the group Wl is finite and
that Wj FC(ra). Let /q be the component of J containing a and Lq the component
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of L containing Jo- Then every component of J that is not contained in Lq is a

component of L. Furthermore, if {a} ^ J n Lo 7^ Lo then J n Lo {a, b) for
some b, and one of the following alternatives occurs:

(1) Lo {a, c, b) is of type C3, with mac 3 and mcb 4;

(2) Lo w of type Cn for some n > 3, wff/i £> an end node and Jo {a, b) of type C2;

(3) Lo w o/fype A3 or type Dnfor some n > 4, f/ie node* a and è having valency 1

and sharing a common neighbour.

One of the ingredients of alternative (2) of Proposition 27 is that the component
of FC(ra) containing a is of type C2. We shall see that when this situation arises,
Odd (a) has a focus in n.

Proposition 28. Suppose that a e / ç n with Wj FC(ra), and let Jo be the

component of J containing a. Suppose that Jo {a, b) is of type C2. Then either
Odd(a) U {b} is a spherical component of EOdd(a), or else (a, b) is a focus of
Odd(a) in U.

Proof. We use induction on k to prove that for all k > 2,if£> c\, a C2, 03, cu

are simple roots satisfying

(1) 2 < mc;c;+1 < 00 for all i &{l,2,...,k- 1}, and

(2) c\, C2, ck are distinct from each other,

then {c\,C2, cu] forms a system of type Q. The case k 2 is immediately true.

Suppose that k > 2. The inductive hypothesis tells us that {c\, C2, c^-i]
is of type Ck-\. The element w v[ck-\, {ck-2}] ¦ ¦ ¦ v[c4, {c3}]u[c3, {02}] has the

property that wa wc2 ck-\, and so if we write d wb then

rd wrt,w~1 G wFC(ra)w~1 FC(ck-i),

since it is given that b G FC(ra). But W{CkUCk] is finite, and so it follows that

lrd, rck-X, rCk] generates a finite group. Now d ¦ Ck-\ b ¦ a -cos(7r/4) and

ck-\ ¦ ck — cos(jt/m) for some m > 2. If m > 4 then

k-l
J ¦ ck-i) < -1,

whence the reflection subgroup W{rd,rCk] is infinite (by Theorem 10), a contradiction.
So m 3. If mCiCk > 2 for any i g {1, 2, k - 2} then

\ | -i
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again giving a contradiction. SomCkCi 2 for all i G {1,2, ,k —2} and mCkCkl
3, and since {ci, C2, ¦ ¦ ¦, q_i} is a system of typeQ-i it follows that {c\, C2, ¦ ¦ ¦, cu)
is a system of type Ck, as claimed.

If there were c, d g Odd(a) with 3 < mcd < co then b together with a minimal
length odd-labelled path from a to {c, d) would yield c\, c2, ¦ ¦ ¦, ck g n satisfying

1 and (2) above and not forming a system of type Ck, contradicting the result proved
above. The same argument yields a contradiction if c g Odd(a) and d e Yl\ Odd(a)
with 3 < mc4 < oo, unless {c, d) {a, b). So all edge labels in Odd(a) are 3, if
c, d g Odd(a) are not adjacent in Odd(a) then mcd G {2, cxd}, and if c g Odd(a)
and d e Yl\ Odd(a) then mcd G {2, ex)} unless {c, d] {a, b). Furthermore, any
circuit in Odd (a) would similarly yield a contradiction (by combining the circuit with
a minimal finite-labelled path connecting it to b). So Odd(a) is tree.

For each c g Odd (a let C[b..c] ç n consist of b and the unique path from a to ein
Odd(a). The discussion above shows that C[b..c] is always of type C. Now suppose
thatc g Odd(a)ande G n \C[b..c] with mce 2. Write C[b..c] {c\,c2, ...,ck],
with c\ b and ck c, and let d b + -J2 J]f=2 c\. An argument similar to one
used above shows that r^ g FC(c), and hence W{dtC,e} is finite. So d ¦ e > -1.
If ci ¦ e t^ 0 then c\ ¦ e < —1/2; so it follows that there is at most one i with
ci ¦ e ^ 0. Suppose, for a contradiction, that there is exactly one such i. If i > 1 then
d ¦ e ~j2{ci ¦ e), and so c, ¦ e > — 1/V2. Hence mCie 3, and<i ¦ e — 1/V2. But
this means that the edges {c,d} and {d, e) of the Coxeter graph of {d, c, e) are both
labelled 4, contradicting the fact that W{^jCg} is finite. So we must have I 1, and

finiteness of W{Cj^jg} forces b ¦ e d ¦ e —1/2. But now if we put L {e}U J
then, in the notation of Proposition 27, we have that Lq {e, b, a] is of type C3

with / n Lo {b, a} of type C2, and Proposition 27 shows that this is not possible.
We conclude that if e g FI has the property that mce 2 for some c g Odd(a) then

nide 2forall<i G C[b..c]. In particular, if e g FI\(Odd(a)U{£>}) andmcg 7^ cxd for
some c g Odd(a) then mce 2, as shown above, and so m^g 2 for all d g C[b..c].

All that remains to prove now is that if c, d g Odd(a) with c £ C[b..d] and
d 4- C[b..c], then mcd 00. Since c and 0? are not adjacent in Odd(a) the only
alternative is that mcd 2; so suppose, for a contradiction, that this holds. Choose
the vertex e g Odd(a) on the (unique) path from c to d such that the distance from
e to a is minimal. Let c', d' be the neighbours of e in the path from c to d, with c'

between e and c and d' between e and d. Then c' g C[b..c], and since mC(i 2

it follows that mc ^ 2. Now since <i' G C[b..d] and mc ^ 2 it follows that

mc ^ =2. Thus the set L ç FI consisting of c' and <i' and the vertices on the path
from a to e form a system of type D (or A3 if e a). So L is spherical, and since
b G FC(ra) it follows that L U {b} is spherical also. But this is impossible since

L U {b} is connected, has an edge labelled 4 (namely, {b, a}), and has a vertex of
valency 3 (namely e).
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The situation of alternative (3) of Proposition 27 is very similar to that of alternative

(2), and in this case it turns out that Odd(a) has a half-focus in Fl.

Proposition 29. Suppose that a g / ç n with Wj FC(ra) and {a} a component
of J, and suppose that J n Odd(a) ^ {a}. Then either Odd(a) is a spherical
component of EOdd(a), or else there exists an element b g Odd(a) such that {a, b]
is a halffocus o/Odd(a) in Fl.

Proof Letb g (/nOdd(a))\{a},andletu; g Wwithwa b. Thenw g Nw(Wj),
by Proposition 25, and so

FC(rj) VC{wraw~l) œFC^)«;"1 wW,jw~l Wj.

Moreover, »$/ <£>/, and since a ¦ c 0 for all c g <î>/ \ {a}, it follows that

wa ¦ d 0 for all d G <î>j \ {wa}. So {b} is a component of /. Note that mab 2,

since a and b are in different components of /.
Let c g n \ {a, b], and suppose first of all that 2 < mjc < oo. Since {b, c] is

spherical and Wj FC(rj) it follows that / U {c} is spherical. Let L / U {c} and

let Lo be the component of L containing a. By Proposition 27, every component of

/ that is not contained in Lq is a component of L. But b is adjacent to c in L; so

{b} is not a component of L, and it follows that b g Lo. Now {a} ^ J n Lo, since
b g /nLo,and/nLo 7^ Lo, since c g Loandc ^ / (since {b} is a component of /).
Furthermore, the conditions of alternative (2) of Proposition 27 are not satisfied, since

a and b are not adjacent in /. So either alternative (1) or alternative (3) must hold,
and since c is the only element of L not in / it follows that Lo {a, c, b}, with
mac 3. But a symmetrical argument, with the roles of a and b reversed, shows that

every d g Fl with 2 < mad < 00 has the property that mm 3. So mac m^c 3,
and {a, c, b) is of type A3.

Now suppose that mjc 2. Again since {b, c] is spherical it follows that / U {c}
is spherical, and so mac < 00. If mac > 2 then, as we have just observed, it follows
that nibc 3, contrary to our assumption that mjc 2. So mac mjc 2, and

we have now shown that whenever mjc < 00 we have mac mt,c G {2, 3}. Since a

symmetrical argument gives the same conclusion whenever mac < 00, we conclude
also that mac 00 if and only if mjc 00.

We now use induction on k to prove that for all k > 3, if b c\, a

C2, C3, ck are simple roots satisfying

(1) 2 < mc.c.+1 < 00 for all i &{2,3,...,k- 1}, and

(2) c\, C2, c^ are distinct from each other,

then {ci, C2,..., cfe} forms a system of type Dt or A3. The case k 3 follows from
what we have proved above.



Vol. 81 (2006) Reflections in abstract Coxeter groups 681

Suppose fhatfc > 3. The inductive hypothesis tells us that {c\, C2, ¦ ¦ ¦, Cjt-i} is of
typeAt-i (orÄ3 if £ 4). Theelementw v[cu-\, {ck-2}] ¦ ¦ • u[c4, {c3}]u[c3, {02}]
has the property that wa wc2 cu~\, and so if we write d wb then

rd wrciw G wFC(ra)w~ FC(cjt_i),

since it is given that b G FC(ra). But W{CkuCk} is finite, and so it follows that

{rd, rCk_x, rCk] generates a finite group. Now d ¦ Ck-\ b ¦ a 0 and Ck-\ ¦ ck
— cos(n/m) for some m > 2. If ck ¦ c\ 7^ 0 for some I G {1, 2, k — 2} then

k-2
Ck ¦ d eu ¦ \c\ + C2 + Ck-i + 22J

i=3

whence the reflection subgroup W{rdJc } is infinite (by Theorem 10), a contradiction.
So ck ¦ d ck-\ ¦ ck — cos^-. Since the reflection subgroup generated by
{rd, rCk_x, rCk] is finite it follows that m 3. So we have shown that mCkCkl 3

andmCkCi 2 for i < k — 1, and since {c\, C2, ¦ ¦ ¦, ck-\) is a system of type Dk-\ it
follows that {c\,c2,..., ck] is a system of type Dk, as claimed.

Note that Odd(a) \ {b} and Odd(b) \ {a} are both connected, since each element
c g Odd(a) that is adjacent to a is also adjacent to b, and vice versa. If there were

c, d g Odd(a) \ {b} with 3 < mcd < 00 then b together with a minimal length
odd-labelled path from a to {c, d) would yield c\, C2, ¦ ¦ ¦, ck G Fl satisfying (1)
and (2) above and not forming a system of type Dk, contradicting the result proved
above. The same argument yields a contradiction whenever c g Odd(a) \ {a, b]
and d g Fl \ Odd(a) with 3 < mcd < 00. So all edge labels in Odd(a) are 3, if
c, d g Odd(a) are not adjacent in Odd(a) then mcd G {2, 00}, and if c g Odd(a)
and d G Fl \ Odd(a) then mcd G {2, 00}. Furthermore, any circuit in Odd(a) \ {b}
would similarly yield a contradiction (by combining the circuit with a minimal finite-
labelled path connecting it to b). So Odd(a) \ {b} is tree. Of course, Odd(£>) \ {a} is

also a tree, by the same argument.
For each c g Odd(a) \ {a, b] let D[a, b.x] ç Fl consist of b and the unique

path from a to c in Odd(a) \ {b}. The discussion above shows that D[a, b.x] is

of type D. Now suppose that c g Odd(a) \ {a, b] and e G Fl \ D[a, b.x] with
mce 2. Write D[a, b.x] {c\, C2, ¦ ¦ ¦, ck), with c\ b, C2 a and Ck c, and

let d c\ + C2 + ck + 2 YlkiZl ci ¦ J^n argument similar to one used above shows

that rd G FC(c), and hence W{d,c,e} is finite. So d ¦ e > —1. If c,- - e ^ 0 then

c, ¦ e < -1/2; so it follows that {i \ c; - e ^ 0} is a subset of {1, 2, £} with at most

one element. But ck ¦ e 0 since mcg 2, and c\ ¦ e C2 ¦ e since maf m-bf for
all / G Fl. So ex ¦ e 0 for all f G {1, 2,..., k}. In particular, if e g n \ Odd(a)
and mcg 7^ cxd for some c g Odd(a) then mcg 2, as shown above, and so nide 2

for all d G D\a, b.x].
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All that remains to prove now is that if c, de Odd(a) \{a,b} with c £ D[a,b..d]
and d £ D[a, b..c], then mcd oo. Since c and d are not adjacent in Odd(a) the

only alternative is that mcd 2; so suppose, for a contradiction, that this holds.
Choose the vertex e e Odd(a) \ {b} on the (unique) path from c to d such that the

distance from e to a is minimal. Let c', d! be the neighbours of e in the path from
c to d, with c' between e and c and d' between e and d. Then c' e C[b..c], and

since rrid 2 it follows that mc ^ 2. Now since d! e C[è..d] and mc ^ 2 it
follows that m ja' 2. Thus the set L ç n consisting of c' and d' and the vertices

on the path from a to e form a system of type Du, or A3 if e a. So L is spherical,
and since b e FC(ra) it follows that L U {b} is spherical also. If L A3 then

mac ma4 3, and since mjc mac and mj,^ ma^ we see that L U {b} is of
type A3, contradicting the fact that L U {b} is spherical. Similarly if L is of type D^
then L U {£>} is of type D^, again giving a contradiction.

We also need to obtain further information about the situation of alternative (1)
of Proposition 27. So for the next three lemmas we assume that a e / ç L ç n
with L spherical and Wj FC(ra), and there exist b e J and c g L\ J such that

Lq {a, c, b] is a component of L of type C3, with mac 3 and mcb 4.

Lemma 30. For all e e Fl \ {a, c, £>}, eff/ier mcg mae rn.be 2 or mcg cxd.

Moreover, J n Odd(a) {a}.

If / n Odd(a) 7^ {a} then, since {a} is a component of /, Proposition 29

applies, and it follows in particular that no vertex in Odd(a) lies on an edge with
finite label different from 3. This contradicts m jc =4. So / n Odd(a) {a}.

Suppose that e G Fl \ {a, c, b) with mce < cxd. The group rcra W{Cie}rarc is finite
and contains rcra W{c]rarc W{a] ; so there exists a maximal finite subgroup G of W

containing ra and the reflection along (rcra)e. Sincere g FC(ra) ç G it follows that

w{b,(rcra)e} is finite, and hence so is W{{rarc)b,e] rarcW{b^rcra)e]rcra. Hence

(b + V2c + V2a)-e (rarc)b-e>-l. (4.1)

Assume, for a contradiction, that mce 7^ 2. Then c ¦ e < —1/2 < —1/2^2, and so

(£> + V2a) ¦ e > -1/2, giving a contradiction if either mjg 7^ 2 or mae 7^ 2. So

è - e a ¦ e 0, and the inequality 4.1 above gives c ¦ e > — 1/V2. So mcg 3.

But now W{ajCjg} is of type A3, hence finite, and hence contained in a maximal finite
subgroup that also contains FC(ra) Wj. Since b G / it follows that {a, c, e, b) is

spherical, which is false since it is of type #3. So mcg 2, and it remains to show

that mae nibe 2.

Since c ¦ e 0 we deduce from 4.1 that (b + ~Jïa) ¦ e > — 1, and in particular it
follows that mae is 2 or 3. In either case {e, a, c) is spherical (of type A3 or A\ + A2),
and so {e, a, c, £>} is also spherical (since rb e FC(rfl)). Ifeithermag ^2ormbe 7^2
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then applying Proposition 27 with L" J U {e, c) in place of L yields a contradiction,
since if Lq is the component of L" containing a then {a, b} ç Lq n / 7^ Lq (since
c ^ /), butLg is not oftypeC3orD„ since it contains {a, c, b, e}. Somae rribe 2,

as required.

Lemma 31. Let J' J \ {a} and let d g Odd(a). Then mcd 7^ 2. Ifmdy 7^ 2

for some b' g /' then mdy 4, and there is a unique a' adjacent to d in Odd(a);
moreover, {a', d, b'} is of type C3, and FC(ra/) Wjnj{ai]. On the other hand, if
mdV 2 for all b' g /' then FC(rd) Wj>u{d].

Proof. We use induction on the distance from d to a in Odd(a). Observe that if
d a then mdy 2 for all b' g /', since {a} is a component of /, and we have

FC(r^) Wj Wji\j{d} and mcd 3 7^ 2, as required.
Suppose now that d ^ a, and let a d\, d2, ¦ ¦ ¦, <4 d be a minimal length

path from a to d in Odd (a). If 2 < i ^ k — I then <i," does not have valency 1 in
Odd(a), and so m^v 2 for all b' e /', by the inductive hypothesis. The same is

true for i 1, since {a} is a component of /.
We prove first that mcd 7^ 2. Assuming, for a contradiction, that mcd 2, then

clearly d £ {a, c, b}, and Lemma 30 tells us that mad 2 and iribd 2. It follows
that nib/ 2 for all / in the set M {d\, ö?2, • • •, <4h since {d\} is a component of
/' U {dj} when 1 < i < k — 1. So wè è for all w; e V7^. Furthermore, since
<i and a lie in the same connected component of £2(11), we can choose w G Wm
such that wd a. Now since we ¦ a c ¦ d 0 we see that the reflection rwc
centralizes ra, and hence normalizes FC(ra) W/. By Lemma 11 it follows that
either we e <i> j or we ¦ e 0 for all e G /. But we -b c • w~lb c ¦ b 7^ 0; so

we must have we g 4>/, and hence c g w~l 4>/ ç 4>/um- So c g M, contradicting
2 for all / G M. So mC(i 7^ 2.

Write a' <4_i and J J' U {a'}. Note that {a'} is a component of /, and

FC(av) Wy (by the inductive hypothesis). Now since {d, a'} is spherical, L

/ U {d} is spherical also. Let Lq be the component of L containing a'.
Consider first the case that mdy 2 for all b' G /'. Since also maiy 2 for all

b' g /', it follows that rd and rai both fix all elements of /'. Since v v[d, {a'}] g

W{a',d] satisfies va' d, we conclude that

¥C(rd) vYC(ral)v~l uf/'ujaf"1 W„/'u{™'} WjfU{d],

as required.
Now sugpose that mdy 7^ 2 for some 2/ G /'. Then b' G / n Lo, and so {a'} 7^

/ n Lo 7^ Lo. Applying Proposition 27, we see that the situation of alternative (1)
must hold: alternative (2) is ruled out since a' is a component of /, and alternative (3)
is ruled out since /' n Odd(a) 0. Hence Lo {a', d, b'} is of type C3, with
mdy 4 and mda/ 3. Furthermore, Lemma 30 tells us that mde g {2, ex)} for
all e G FI \ {a', <i, è'}; so a' is the unique neighbour of d in Odd(a), as required.
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Lemma 32. Let e g EOdd(a) \ Odd(a) with e ^ b. Then mt,e 2.

Proof. If e G / then it is clear that mj,g 2, since b is a component of /. So we

may assume that e <£ J.
As above, write J' J \ {a}. Since e G EOdd(a) there exists a d g Odd(a)

with nide even. If d is adjacent to some b' g /' then, by Lemma 31, there is

a unique a' g Odd(a) adjacent to d; furthermore, {a', d, b'} is of type C3, and

FC(av) Wj'\j{a'}. By Lemma 30, since m^g 7^ 00 it follows that maie m^e 2.

On the other hand, if d is not adjacent to any element of /' then Lemma 31 tells us

that FC(r^) Wjhj^}- So in either case there is an a' g Odd(a) with maie even and

FC(ra/) WJIUW].
Choose such an a'. Since maie is even, v[e, {a'}]a' a'; moreover v[e, {a'}] is

the reflection along some root / ke + [ia'. Note that / -a' 0, and hence J.^0.
Since e i J it follows that / ^ <£>/. But r/ centralizes ra/, and hence normalizes

FC(av) Wjl{JW]. By Lemma 11 it follows that / ¦ b 0. But also a' -b =0,
since {a'} and {£>} are distinct components of /' U {a'}; so it follows that e - b 0.

Thus mj,g 2, as required.

Lemmas 30, 31 and 32 combine to yield the following result.

Proposition 33. Suppose that a é/çLç n, with L spherical and¥C(ra) Wj,
and let Lq be the component of L containing a. Suppose that Lq {a, c, b] is of
type C3, with mac 3 andnibc 4, and J n Lq {a, b). Then b is a Cj-neighbour
of Odd(a). Furthermore, J n Odd(a) {a}, and if a' g Odd(a) is not adjacent to

any Cj-neighbour of Odd(a) then FC(ra/) Wjnj{a/}, where J' J \ {a}.

Proof. If mbd 7^ 2 for some d g Odd(a), then nidb 4, by Lemma 31. There is

at least one d g Odd(a) such that m^ 4, namely d c. Lemma 31 tells us that

for each d g Odd(a) with m^ 4 there is an a' g Odd(a) such that {a', d, b) is a

system of type C3. Moreover, by Lemma 30, if e G FI \ (Odd(a) U {b}) then either

nide cxd or mae m^e m^e 2, while if e G Odd(a) \ {a, c) then m^g cxd,

since m^g 7^ 2 by Lemma 31. And if e G EOdd(a) \ (Odd(a) U {è}) then mjg 2,

by Lemma 32. So b satisfies all the requirements of a C3-neighbour of M Odd(a),
as specified in Definition 4.

It now follows from Lemma 31 that if a' g Odd(a) is adjacent to some b' g /'
then b' is a C3-neighbour of Odd(a), and if a' is not adjacent to any such b' then

FC(rfl/) WJIUW]. Finally, / n Odd(a) {a}, by Lemma 30.

Let a, a' g FI, and suppose that w g W has the property that wa a'. By
Proposition 12 there exist a\ G Odd (a) and c, g FI such that

(i) a\ a and a^+l of',

(ii) mCiai ^ 00 and u[q, {af}]a; a-l+\, for all f G {1, 2, £},

(iii) u; v[ck, {ak}].. .v[c2, {a2}Mci, {ai}]-
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Now let b be a C3-neighbour of Odd(a). For each c g Odd(a) that is adjacent to b,
define X(c) b + ~Jlc + V2à, where a is the unique neighbour of c in Odd(a),
and for each c g Odd(a) that is not adjacent to b, define X{c) b. We show that

v[ci,{ai}]X(ai) X(ai+i) for alii G {1,2, ...k}.
Suppose first that neither c, nor a\ is adjacent to b. Then X(aj) b, and since

ai+i G {ai, c,} we have that X(a-l+\) b also. Since rai and rCï both fix b, and

"te;, {ai}] G W{a.)C.}, it follows that

v[ct,{at}]X(ai) v[a, {at}]b =b X(ai+l),

as required.
Next, suppose that c, is adjacent to b, but a-, is not adjacent to b. Since mc;ai ^ oo

and a g Odd (a) it follows that c, g EOdd(a). Since è is a C3 -neighbour of Odd(a), it
is not adjacent to any element of EOdd(a) \ Odd(a); so c, g Odd(a), and, moreover,
mCie cxd for all e G Odd(a) \ {c,} apart from the unique neighbour of c, in Odd(a).
So a\ is this unique neighbour, mCiai 3, and a-l+\ v[c;, {at}]at c\. Moreover,

mcib 4 and maib 2. So

v[ct,{ai}]X(at) rairCib =b + Vïa + Vïat X(ct) X(ai+1)

as required.
Now suppose that a; is adjacent to b, and let a be the unique neighbour of a\

in Odd (a). Since maig 00 for all e G Odd(a) \ {a,, à}, if c, g Odd(a) then c\ à.

In this case we see that

v[cj, {ai}]X(ai) ra;rc;(b + Vïc, + V2a;) =b X(cj) X(ai+l),

since a-l+\ v[cj, {a;}]^ c\. If c,- b then u[c,-, {a,}] r^r^rt,, which fixes

both a,- and X(ai) b + V2a,- + V2à. So v[c;, {ai}]X(ai) X(ai+\) in this case

too. Finally, suppose that c, ^ Odd(a) U {b}. Since mCïflï 7^ 00 we must have

mc;à mCiai mCib 2, (by the definition of a C3-neighbour). So

v[c{, {ai}]X(ai) rCi(b + V2c; + -J2~a) =b + V2c; + -J2a X(ai+1)

since a,-+i rCia\ a;.
We have now covered all cases, and shown that v[c;, {a;}]X(a;) X{ai+\) for

all i €{1,2,... k}. By a trivial induction it follows that X(ak+\) wX{a\).
Thus we have established the following result.

Lemma 34. Let a g FI and vu g W such that wa g FI. Suppose that b is a

Ci-neighbour o/Odd(a) that is not adjacent to a. Then

\b if wa is not adjacent to b,
wb \ _ r-

yb + V2w;a + -J2a if wa is adjacent to b,

where a is adjacent to wa in Odd(a).
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We are now able to give a detailed description of the components of / whenever

Wj is the finite continuation of a simple reflection.

Proposition 35. Suppose that a g / ç n with Wj FC(ra), and suppose that K
is a component of J. Then one of the following alternatives holds.

(a) K {a} J n Odd(a).

(b) K {a, b} is of type C2, and J n Odd(a) {a}.

(c) K {a}orK {b}, where {a, b} J n Odd(a) is of type A\ + Ah

(d) K {b} <£ Odd(a), and bis a C3-neighbourofOdd(a).

(e) Odd(a) ç K, and K is a component of EOdd(a).

(f) K n Odd(a) 0, and K is a component of EOdd(a).

Proof. We consider first the case that K n Odd(a) ^ 0, and start by supposing that
there exists a spherical L ç n with / ç L and K not a component of L.

Choose such an L, and let Lq be the component of L containing a. By Proposition

27, since K is not a component of L we must have K ç Lq. So either K {a},
in which case (a) above holds, or else {a} ^ {a} U K ç / n Lq. Furthermore,

/ n Lo t^ Lq, since K ^ Lq. So if (a) does not hold then {a} ^ i fl Lo / Lq, and

so one of the alternatives (1), (2) or (3) of Proposition 27 must hold.
Suppose that alternative (2) holds, so that K {a, b] J n Lq for some b,

and {a, b) is of type C2. By Proposition 28 we see that each c g Odd(a) \ {a} lies
in a type C spherical subset L' of n containing {a, b}. Since / n V {a, b] (by
Proposition 27) it follows that c ^ /. So/nOdd(a) {a}, and (b) above is satisfied.

Suppose that alternative (3) of Proposition 27 holds, so that / n Lq {a, b) is of
type A\ + A\, and £> G Odd (a). Proposition 29 immediately yields that /n Odd (a)
{a, £>}, and so (c) above is satisfied.

Suppose that alternative (1) of Proposition 27 holds, so that Lq {a, c, b] with
mac 3andmcj =4, and/nLo {a,b}. By Lemma 30 we know that b £ Odd(a),
and since we have assumed that K n Odd(a) ^ 0, it follows that K {a}
/nOdd(a). So (a) holds.

We have now dealt with all cases that arise if there is a spherical L ç n with

/ ç L and K not a component of L. So assume that K is a component of every
spherical L containing /. We show that in this case Odd(a) ç K, and K is a

component of EOdd(a) ; that is, (e) above holds.
To show that Odd(a) ç K it is clearly sufficient to show that if a' g K n Odd(a)

and èis adjacent to a' in Odd(a) then b e K. Note that since a' e Odd (a) there exists

w G W with a' wa, and since Proposition 25 yields that w G Nw(Wj) it follows
that FC(av) Wj. Now the assumption that b and a' are adjacent in Odd(a) implies
that {a', b) is spherical, and therefore / U {b} is spherical. But K is a component of
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every spherical subset of n containing /; so it is a component of / U {£>}. But a' g K
and b is adjacent to a'; so b G K, as required.

Since K ç / c EOdd(a) and K is connected, saying that K is a component of
EOdd(a) is equivalent to saying that m jc 2 whenever £> g K andc g EOdd(a)\^T.
So suppose that c g EOdd(a) \ K. Then there exists an a' g Odd(a) such that maic
is even. Thus {a', c] is spherical, and as above it follows that / U {c} is spherical. So

K must be a component of / U {c}, and since c £ K it follows that mjc 2 for all
b G K, as required.

It remains to consider the case that K n Odd (a) 0; we must show that either (f)
or (d) holds. We start by supposing that there exists a spherical L ç FI and a w g W

with ffi/çi and wK not a component of L.
Choose such L and w, and let Lo be the component of L containing uia. By

Proposition 27, since œl is not a component of L we must have wK ç Lo. Now
wJ n Lo t^ Lo since œl 7^ Lo, and {ma} 7^ w/ n Lo since wa £ wK. So one
of the alternatives (1), (2) or (3) of Proposition 27 must hold. Alternative (3) can
be ruled out, since in that case wJ n Lq Ç Odd(wa), which is impossible since

K n Odd(a) 0. If alternative (2) holds then wK wJ n Lo contains wa and is of
type C2, whence K contains a and is of type C2, and (b) is satisfied. If alternative (1)
holds then since wK ^ {wa} it follows from Proposition 32 that wK {b}, with b

a C3-neighbour of Odd(a). Since wa is not adjacent to b, it follows from Lemma 34

that w~lb b, unless a is adjacent to b, in which case w~lb b + ~Jla + -Jla
for some à in Odd(a). But this latter case cannot occur, since w~lb g K ç n. So

K wK {b}, with b a C3-neighbour of Odd(a), and (d) holds.

Finally, suppose that wK is a component of every spherical L ç n such that
wJ ç L for some w e W. For each c e EOdd(a) \ Ä" there is then a sequence
a clq, a\, au c in FI such that ma;_m finite for all i G {1,2,..., k} and

odd for all i G {1, 2, k — 1}. We shall show that, for every such sequence,

nibai 2 for all b g K and i G {0, 1, ...,£}; in particular, this will show that

mjc 2 whenever b e K and c g EOdd(a) \ Ä", enabling us to conclude that K is a

component of EOdd(a).
The case k 0 is clear, since a g J\K and Ä" is a component of /. Proceeding by

induction, we may assume that k > 0andmjaï 2forallf G {1, 2,..., £-l}andall
b G K. We see that the element u v[au-\, {ak-2}]v[ak-2, W-3}] • • • v[a\, {ao}]
centralizes WK andhasthepropertythatwa a^-i, since the labels in the path from a

to ak-\ are all odd. The group u~1W{akuak}u is finite and contains u 1rakl u ra,
and so there is a maximal finite subgroup G of W containing this group and also

containing Wj.
Note that Wj U {u~lrcu} ç G w~1Wlw, for some w g W and spherical

L ç FI, the element u being in the centralizer of Wk- We may choose w to be the

minimal length element of Wl w Wl w Wj and it then follows from Lemma 15 that

ic/çL, Hence wK is a component of L. Furthermore, since wu~1rciiw~1 g Wz,
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we see that the root wu 1c is in <î>£ and not in $wk wu~1$k (since c £ $k)-
So wu 1c ¦ wu~1b 0 for all b G K. So c ¦ b 0, or (equivalently) mjc 2 for all
b g K, as required.

To complement the results we have obtained so far, our next task is to find conditions

that ensure that a visible subgroup Wk is contained in FC(ra).

Lemma 36. Let a g n and K a component of EOdd(a) such that Wk is finite. Then

WK ç FC(rfl).

Proof. Let F be a maximal finite subgroup of W with ra g F, and choose w G Wsuch
that wFw~l Wl for some L ç n. We may replace w by the minimal length
element in the double coset Wl w W{a}, since this does not affect the condition w F w ~1

Wl- So we have that w 1L ç <î>+,and, moreover, ra g w 1LwnW{a} Ww-iLn^
by Lemma 15. So wa g L ç n, and by Lemma 12 we see that w is a product of factors

of the form v[d, {c}],withe, d G EOdd(a). Since K is a component of EOdd (a)
itfollows that each v[d, {c}] normalizes Wk, and therefore w normalizes Wk- Moreover,

since wa g L and L is spherical, it follows that L ç EOdd(w;a) EOdd(a).
So Wl normalizes WK. But WK is finite, by hypothesis, and WL is a maximal finite
subgroup of W. So Wk Ç Wl, and Wk w~l Wkw ç w-1Wlw F. Thus Wk
is contained in all maximal finite subgroups of W containing ra, as required.

Lemma 37. Let a g Fl and let b be a C^-neighbour ofOdd(a). If a and b are not
adjacent in U then rj g FC(ra).

Proof. Let F be a maximal finite subgroup of W with ra g .F. As in the proof of
Lemma 36 there exist a w g V7 and a maximal spherical L ç n with wa a' g L
and .F w;"1 W^w. Since L is spherical, L ç EOdd(a).

Suppose first that a' is not adjacent to b. Then mca/ oo for every c g Odd(a)
that is adjacent to b, and since a' g L it follows that no such c is in L. Thus mj,g 2

for all e G L n Odd(a). But since also mhe 2 for all e G EOdd(a) \ (Odd(a) U {b}),
it follows that mjg 2 for all e G L \ {è}. Thus {£>} is a component of L U {b}, and

since L is spherical it follows that L U {b} is spherical. Maximality of L tells us that
b G L. Moreover, Lemma 34 gives wè b, and so rj w~lrbw g w;"1 W^w; F.

On the other hand, suppose that a' is adjacent to b. In this case Lemma 34

gives wè b + V2a' + V2à, where a. is the unique neighbour of a' in Odd(a).
Furthermore, sincemaie g {2, oo}foralle G n\{â, a', b}, weseethatma/g 2forall
e G L\{à,a',b] (since L is spherical). But the definition of a C3-vertex also requires
that m-ae nibe 2 whenever maie 2; so it follows that {à, a', b] is a component
of L U {à, a', b}, which is therefore spherical since L and {à, a', b) are both spherical.
Maximality of L tells us that {à, a', b} ç L; so wè b + V2V + V2à g $l, and

rj w~1rwbW G w~1Wlw F.
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So rj, g F in all cases, and so rj, is contained in all maximal finite subgroups of
W containing ra, as required.

We now prove the converse to Proposition 28.

Proposition 38. Let a g n and b g FI \ Odd(a), and suppose that {a, b) is a focus
o/Odd(a) in FI. Then FC(ra) Wj, where J is the union of {a, b) and the spherical
components of EOdd(a). Moreover, FC(av) is not visible for any a' g Odd(a) \ {a}.

Proof. Foreachc e Odd(a)letX(c) b+-JÏJJ=\ ci andF(c) b+-JÏJJ=\ c*>

where c\ a, C2, ¦ ¦ ¦, cm c is the unique path from a to c in Odd (a), noting that

X(c) and Y(c) are roots in $c[b..c]- We remark, for later use, that X(c) and Y(c) are
fixed by the reflections n, rCl, rCm_2.

Let F w ~l Wl vo be a maximal finite subgroup of W containing ra, with L ç n
and u; of minimal length in Wiw;V7a. Then roa a' e L, by Lemma 15. Put
Lo L n Odd(a).

Choose c g Lo with C[è..c] of maximal cardinality. If d G Lq then mc^ 7^ cxd

(since Lq is spherical), whence d G C[è..c] by condition (3) of Definition 5. So

Lo ç C[è..c]. Now if e G L \ Lo is arbitrary then e ^ Odd(a) (since e ^ LnOdd(a))
and mcg < cxd (since c, e g L and L is spherical). By condition (4) of Definition 5

it follows that m^ 2 for all <i G C[è..c]. Since this holds for all e G L \ Lo, and

C[b..c] and L \ Lo are both spherical, it follows that C[b..c] U (L \ Lo) is spherical.
But this set contains L (since Lo Ç C[b..c]) and since L is a maximal spherical subset

of n we conclude that L C[b..c] U (L \ Lo).
By Proposition 12 and Lemma 9 there exist simple roots e\, e%, e^ and

d\ a, û?2» • • • » ^fe+i a' G Odd(a) with«; u[e^, {<i^}]... v[e2, {d2}]v[e\, {d\}]
and v\e\, {d;}]di di+\ for all i G {1, 2,..., £}. Moreover, mg^ < 00 for all f. Let
wo 1 and w\ v\e\, {di}]w;-i ; we will show that

{wfb, —Wfb, w\{b + w2a), —Wi(b + V2a)}

i), Y(dt+i), -
for all i G {0, 1, k}. The case f 0 is trivial.

Proceeding inductively, suppose that i > 1 and

{±wt-ib, ±wt-i(b + Vïa)} {±X(dl), ±Y(dl)}.

It will be sufficient to show that v[ej, {dj}]X(dj) and v\e\, {d\\\Y{d\) both lie in the

set{±X(di+l),±Y(di+l)}.
Suppose first that d\ a. Then X(dj) b + -Jla and Y(dj) b. If e\ i

Odd (a) then me.^ is even, and 4+1 4 a. Furthermore, by condition (4) of
Definition 5 we have either {e\, d\\ {b, a} or me;b meia 2. In the former case
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v[ei, {df}] v[b, {a}] rbrarb, giving v[et, {dt}]b -b - <Jïa -X(a) and

v[e;, {d;}](b + */2a) =-b - Y (a); in the latter case v[e;, {d;}] u[e,{a}] =rEi,
giving v[ej, {dj }]b b Y (a) andu[ef, {dj}](b + V2a) =b + ^a X(a). Ife; G

Odd(a)thena g C[£>..e,], and by condition (2) of Definition 5 we havem^j, 2and
eithermg.a =2ormeia 3. \imeia 2then<i,_(-i d\ a, while if meia 3 then

di+i e\. Furthermore, informer case we find that v[ej, {dj}]b reib b Y (a)
and v[e;, {df}](b + ~Jla) b + ~Jïa X(a), while in the latter case we find that

v[e;,{di}]b rareib =b + *j2a Y(e;) andu[ef, {d;}](b + *j2a + -Jïex) =X{el).
Now suppose that d\ ^ a. If e\ <£ Odd(a) U {b} then me.^. 2 and d-l+\ d\.

Moreover, meid 2 for all d G C[b..df], and so v[e;, {d;}] rei fixes all the roots in
$>c[b..d;],includingX(d;) X(di+i) and7(4) Y(di+i). Ife; g Odd(a)U{è}and
{e-,, d\} is not an edge of Odd(a) then we again have 4+1 d\ and v [e-,, {dj}] rei.
By condition (3) of Definition 5 we either have d\ G C[b..e;] or e, g C[b..d;]. In
the former case we have meid 2 for all d G C[b..dj], and as above we see that re.
fixes X{di) and F(4)- hi the latter case the remark made at the start of the proof
implies that it is still true that rei fixes X{di) and Y(d;). So we have shown that
when nie-di 2 it is true that v[e;, {di}]X(di) and v[e;, {di}]Y(di) both lie in the set

{±X(d;+i), ±Y(d;+i)}, and it remains only to consider the case that e\ and d\ are

adjacent in Odd(a). Note that in this case 4+1 e?-

Let C[b..df] {b, c\, cm) with c\ a and cm d\, and suppose that

e\ cm-\ is the vertex adjacent to d\ in C[b..d;]. Then

{dt}]X(dt) rCmrCm_x (b

;=i
m-\

and similarly

m-l
cj)cj

m—2 m—2

The alternative possibility is that <i, is adjacent to e\ in C\b..e\\. Exactly the same
calculations show that v[e;, {d;}]X(d;) X{e\) and v[e;, {d;}]Y(d;) Y{e\) in this

case also.
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The induction is now complete, and it follows in particular that wb w^b is one

of±X(a') or ±Y(a'). Hence

wb g <$c[b..a>] Ç= ^c[b..c] Ç $l-

Thus wrbw~1 g Wl, and so rb g w;"1 W^w; F. Since .F was an arbitrary maximal
finite subgroup of W containing ra, this shows that n g FC(ra).

Let M be the component of EOdd(a) containing Odd(a), and suppose, for a

contradiction, that M is spherical. Clearly b g M, as mja 4, but M Odd(a) U {b}
is not permitted, in view of condition (5) of Definition 5. So M \ (Odd(a) U {b}) ^ 0.

But for e G M \ (Odd(a) U {£>}) and c g Odd(a) we have mce ^ oo, since M is

spherical, and by condition (4) of Definition 5 it follows that mjg mce 2 for all
c g Odd(a). This contradicts the fact that M is connected.

Now suppose that a' g Odd(a) is such that FC(av) Wj for some / ç n,
and let Jo be the component of / containing a'. Since Jo ^ M it follows from
Proposition 35 that Jo has rank at most 2. Now since there exists w G Wc[b..a>]

such that wa —a' and wb X(a'), and since n g FC(ra), it follows that

rwb wrbw~l G FC(wrflw;-1) FC(rfl/). Thus X(a') G $/, and so C[b..a'] ç /.
Since /o has rank at most 2, this means that a' a and Jo {a, b).

It remains to prove that / is the union of Jq and the spherical components
of EOdd(a). By Lemma 36 we know that all these components are contained in /.
But if K is any other component of / such that K n Odd(a) 0, then by Proposition

35 we see that K {b'}, with b' a C3-neighbour of Odd(a). Since b is the

only element of n such that mjc g {2, 4} for all c g Odd (a), we must have b' b,

contradicting the fact that the component of / containing b is Jo {a, b}.

Next, we have the converse to Proposition 29.

Proposition 39. Let a g FI and suppose that there exists a b g Odd(a) such that
{a, b) is a half-focus o/Odd(a) in IL Suppose also that the vertices Odd(a) do not
comprise a spherical subset ofYl. Then FC(ra) Wj, where J is the union of {a, b}
and the spherical components of EOdd(a). Moreover, FC(ra/) is not visible for any
a' G Odd(a) \ {a, b}.

Proof. For each c g Odd(a) \ {a, b}, define

m-\
X(c) =b + a + c + 2

i=2

where c\ a, 02, ¦ ¦ ¦, cm c is the unique path from a to c in Odd(a) \ {b}. Then

X{c) is a root in <&D[a,b..c] and is fixed by the reflections n, rCl, rCm_2 and rCm.

Define also X(a) b and X(b) a.
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Let F w~1 Wl w be a maximal finite subgroup of W containing ra, with L ç n
and w of minimal length in WlwWü. Then wa a' g L, by Lemma 15. Put
Lo L n Odd(a).

Choose c g Lo with D[a, b..c] of maximal cardinality. If <i g Lo then mc^ 7^ 00

(since Lo is spherical), whence d G D[a,£>..c] by condition (4) of Definition 6.

So Lo Ç D[a,£>..c]. Now if e G L \ Lo is arbitrary then e £ Odd(a) (since
e <£ Ln Odd(a)) and mce < 00 (since c, e g L and L is spherical). By condition (5)
of Definition 6 it follows that m^e 2 for all 0? G D[a, £>..c]. Since this holds

for all e G L \ Lo, and D[a, £>..c] and L \ Lo are both spherical, it follows that

D[a,b..c]U(L\Lo) is spherical. But this set contains L (since Lo Ç D[a, £>..c])and
since L is a maximal spherical subset of Fl we conclude that L D [a, b. .c] U (L \Lo).

By Proposition 12 and Lemma 9 there exist simple roots e\, 62, e^anddi
a, û?2» • • • » 4fc+l a' £ Odd(a) with u; u[e^, {<i^}]... v[e2, {d2}]v[e\, {d\}] and

v[e\, {di}]di 4+i for all i G {1,2,..., k}. Furthermore, we have mg^ < 00 for
all i. Let wo 1, and w-, v[e-,, {4}]wj-i for f > 1. We will show that

{w;b, -Wib] {X(di+l), -X(di+l)}

for all i G {0,1,..., k}.
The case i Ois trivial. Proceeding inductively, suppose that i > landw,_iè

±X(dj). It will be sufficient to show that v\_e\, {d;}]X(di) ±X(d-l+\).
Suppose first that d\ a, so that X (dt b. If e,- 7^ b thenmeib meia G {2, 3},

since meia meidl 7^ cxd. We also have meia 2 if e\ b. In the case meia 3 we
have v\e\, {d\\\ rare;, and 4+1 rare.a e\. Furthermore,

v[e;, {di}]X(di) rareib a + b + et X(et) X(di+1),

as required. In the case meia 2 we have v[e;, {di}] rei, giving d-l+\ reia a,
and

v[et, {di}]X(di) reib =±b=
since either e\ b or meib 2.

The case d; b is the same as the case d; a with a and b interchanged; so

suppose that d\ £ {a,b}. If e\ <£ Odd (a) then m ^.4 =2 and 4+1 d\. Moreover,

meid 2 for all d G D[a, b..dj], and so v[ej, {d;}] rßi fixes all the roots in
<&D[a,b..d;], including X{di) X{di+\). If e\ G Odd(a) and {ej, d;} is not an edge
of Odd(a) then we again have 4+1 4 and v[e-,, {4}] rei. By condition (4) of
Definition 6 we either have 4 £ D[a,b..e;] or e, g D[a, b..d;]. In the former case

we have mg^ 2 for all <i G C[è..4], and as above we see that rEi fixes X{d\). In
the latter case it is still true that rei fixes X (di since the only simple reflection of
D[a, b..d\\ that does not fix X{d\) is the one corresponding to the vertex adjacent
to 4. So we have shown that when mg^; 2 it is true that v\e\, {d\\\X(d\) and
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v[eu {dj}]Y(dj) both lie in the set {±X(4+i), ±7(4+i)}, and it remains to consider
the case that e; and d\ are adjacent in Odd(a). Note that in this case d-l+\ e\.

Let D[a, b..d;] {b, c\, cm) with c\ a and cm d\. Suppose first that

m > 2, and suppose that e; cm-\ is the vertex adjacent to d\ in D[a, b..df]. Then

m-1

3=2

m-2
rcm(b + a + cm + cm_i + 2^2 cj)

/=!
m-2

Ha + cffl_i+2^C/ =X(ef).
1=1

lim =2 and e; b then

uta, (4-}]X(4-) rbrdi(a + b + dt) a X(b) X(et),

and if e; a then similarly

v[eu {di}]X(dj) rard;(a + b + dj) b X(a) X{e\).

The alternative possibility is that d\ cm-\ is the vertex adjacent to e\ cm in
D[a,b..e;] {b, c\, cm). We calculate that

m-2

uta, {diW(di) rCm_xrCm (b + a + cm_i + 2 J2 cl)
1=2

m-1

rcm-i [b + a + cm + cm_i + 2 y t Cj)
1=1

m-1
b + a + cm+2 22 cj ^(ei)>

/=!

as required.
The induction is now complete, and it follows that wb wub ±X(a'). Hence

U>b G $>D[a,b..a'] £ $>D[a,b..c] £ $>L-

Thus wrbvo~l g Wl, and so rj g w~l Wlxv F. Since F was an arbitrary maximal
finite subgroup of W containing ra, this shows that n G FC(ra).

Note that since V7 has a graph automorphism that swaps ra and n and fixes all
the other simple reflections, it must also be true that ra g FC(rj).
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Let M be the component of EOdd(a) containing Odd(a), and suppose, for a

contradiction, that M is spherical. Note that M ^ Odd(a), in view of condition (5)
of Definition5. SoM\Odd(a) £ 0. But for aile e M\Odd(a) andc e Odd(a) we
have mce ^ oo, since M is spherical, and by conditions (1) and (5) of Definition 5

it follows that mce 2 for all c e Odd(a). This contradicts the fact that M is

connected.

Suppose that a' e Odd(a) is such that FC(ra/) Wj for some / ç n, and let Jo

be the component of / containing a'. Since Jq ^ M it follows from Proposition 35

that/nOdd(a) has rank at most 2. Now suppose, for a contradiction, that a' £ {a,b}.
Since there exists an element w e W£,[a^..a'] such that wa a' and wb X(a'),
it follows that rwb wnw~x G ¥c\wravo~l) FC(rfl/). Thus X(a') e $/,
and so D[a, b..a'] ç /, contradicting the fact that the rank of / n Odd(a) is at

most 2. So we deduce that a' b or a' a. Moreover, in either case we know
that {a, b) ç / n Odd(a), and since / n Odd(a) has rank at most 2 it follows that

/ n Odd(a) {a, b}.

By Lemma 36 we know that all spherical components of EOdd(a) are components
of /, and by Proposition 35 all other components of / that intersect Odd (a) trivially
correspond to C3-neighbours of Odd(a). But clearly the conditions of Definition 6

imply that Odd(a) has no C3-neighbours. So we conclude that / is the union of {a, b)
and the spherical components of EOdd(a), as required.

Proof of Theorem 7. Let M be a connected component of £2(11), and write M for
the component of E(M) containing M.

Suppose first that M is spherical, so that the conditions of Case A of Theorem 7

are satisfied, and let a g M be arbitrary. Observe that all C3-neighbours of M are

contained in M. Choose a' g M such that FC(ra/) is visible, and let FC(ra/)
Wj. By Lemma 36 we know that M is contained in /, and hence a e /. So by
Proposition 25 it follows that FC {ra) Wj also. By Proposition 35 the only possible

components of / apart from Jq are the other spherical components of E(M), and by
Lemma 36 all of these are indeed components of /. So / consists of the spherical

components of E(M), as required.
Now suppose that M is not spherical. If there exists a b g FI \ M such that (a, b)

is a focus of M then it follows from Proposition 38 that FC(ra) Wj, where / is

composed of {a, b] and the spherical components of E(M), and FC(ra/) is not visible
for any a' e Odd(a) \ {a}. Similarly, if there exists a b G M such that {a, b) is a

half-focus of M, then it follows from Proposition 39 that FC(rfl) FC(rb) Wj,
where / is composed of {a, b] and the spherical components of E(M), and FC(av)
is not visible for any a' e Odd(a) \ {a, b).

Finally, suppose that M is not spherical and M does not have a focus or a half
focus. Suppose that a g M is such that FC(ra) Wj for some / ç n, and let K be

the component of / containing a.
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Suppose first that alternative (b) of Proposition 35 holds, so that K {a, b) is of
type C2, and / n M {a}. Since M does not have any focus in Fl, it follows from
Proposition 28 that M U {b} is a spherical component of E(M). But the component
of E(M) containing M is M, which, by our assumptions, is not spherical. So this

case does not arise.

Alternative (c) of Proposition 35 is similarly impossible, by Proposition 29, and

alternative (e) is also incompatible with the assumption that M is not spherical. So we
conclude that alternative (a) holds: K {a} J n Odd(a). Note that all spherical

components of E(M) are components of /, and by Proposition 35 the only other
possible components are the sets {b} such that b is a C3-neighbour of M.

Suppose that b is a C3-neighbour of M that is adjacent to a. Let a be the unique
neighbour of a in M. By Lemma 37 we know that rj g FC (rä and so it follows that

FC(ra) r-ara ¥C(r~a)rar~a contains the reflection along the root r-arab b + ~Jïa +
-Jla. Since FC(ra) Wj, it follows that both b and à are in /. But this contradicts
the fact that the component of / containing a is just {a}.

This reasoning has shown that if a g M is adjacent in Fl to a C3-neighbour of M
then FC {ra is not visible. On the other hand, we know that there is at least one a g M
such that FC(ra) is visible. So we may choose an a g M such that FC(ra) Wj
for some / ç Fl. Since a is not adjacent to any C3-neighbour of M it follows by
Lemma 37 that all C3-neighbours of M are in /. So we conclude that J J' U {a},
where /' is the union of the spherical components of E(M) and the C3-neighbours
of M.

It remains to prove that if a' is any other element of M that is not adjacent to

any C3-neighbour of M then FC(av) Wj'U{a']. Given such an a', since a' lies in
M Odd(a), we may choose w G W such that wa a'. By Proposition 12 we
see that w e W^, and so w fixes all other components of E(M). And w fixes all

C3-neighbours of M, by Lemma 34. So w fixes /', and it follows that

FC(av) w¥C(ra)w~1 wWjnj{a}W~l WwJ>u{wa} W/'U{a'}>

as required. This completes the proof of Theorem 7.

Proof of Theorem 1. Let a g FI and M Odd(a). As Fl is 2-spherical it follows
that Fl E{M), and, as Fl is non-spherical, it follows that Case A of Theorem 7

does not hold for M. As there are no oo-labels in the Coxeter graph of Fl, Cases C

and D do not hold either. Hence we are in Case B. Since there are no (»-labels in the

Coxeter graph of Fl, there are no C3 neighbors of M. As E(M) Fl is irreducible,
there are no spherical components of E(M). It follows now from Theorem 7 that
there is an a' g Odd(a) such that FC(av) (ra/). As ra and rai are W-conjugate we
have FC(ra) {ra} as well, and this completes the proof of Part a) of Theorem 1.

Let S ç W be such that W, S) is a Coxeter system. It follows from Part a) and

Corollary 24 that ra g Sw for each a g Fl, and hence {ra \ a g Fl} ç Sw. As Fl
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is assumed to be non-spherical, irreducible and 2-spherical, it follows now from the

main result of [5] that there is an element w e W such that {ra \ a e PI} Sw. This
completes the proof of Part b) of Theorem 1. As Part c) is an immediate consequence
of Part b) we are done.
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