Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 81 (2006)

Artikel: Uniqueness of constant mean curvature surfaces properly immersed in
a slab

Autor: Alas, Luis J. / Dajczer, Marcos

DOl: https://doi.org/10.5169/seals-1176

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-1176
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helv. 81 (2006), 653-663 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Uniqueness of constant mean curvature surfaces properly
immersed in a slab

Luis J. Alfas*and Marcos Dajczer’

Abstract. We study complete properly immersed surfaces contained in a slab of a warped
product R x, P2, where P? is complete with nonnegative Gaussian curvature. Under certain
restrictions on the mean curvature of the surface we show that such an immersion does not exists
or must be a leaf of the trivial totally umbilical foliation 7 € R > {r} x P2,

Mathematics Subject Classification (2000). Primary 53C42; Secondary 53A10.

Keywords. Mean curvature, hyperbolic space, warped spaces, proper immersion.

To prove that a compact hypersurface of constant mean curvature embedded in Eu-
clidean space must be a round sphere Alexandrov [1] introduced what nowadays is
known as Alexandrov’s reflexion method. He observed that the method also works
in standard hyperbolic space and that it gives a similar result:

Any compact hypersurface embedded with constant mean curvature in hy-
perbolic space H" 1 is a round sphere.

To see this result in the context of this paper it is convenient to observe that it is
completely equivalent to assume compactness or completeness plus proper without
any point at the asymptotic boundary of H"+1,

Since the hyperbolic space carries other totally umbilical hypersurfaces, namely,
horospheres and hyperspheres, one may want to characterize these too. This was done
by do Carmo and Lawson [4] making use of Alexandrov’s method. In particular, they
showed:

Any complete hypersurface properly embedded with constant mean cur-
vature in hyperbolic space H"! with a single point at the asymptotic
boundary is a horosphere.

*Partially supported by MEC/FEDER Grant MTM2004-04934-C04-02 and Fundacién Séneca Grant
00625/P1/04, Spain.
1'Partial]y supported by MEC Grant SAB2003-0275, Spain, and CNPq Grant 200299/2004-2, Brazil.
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Moreover, they also observed that the statement is no longer true if we replace em-
bedded by immersed since around that time J. Gomes [6] pointed out the existence
of counterexamples. In fact, in unit hyperbolic space he proved that any element
of the one-parameter family of complete parabolic rotation hypersurfaces with con-
stant mean curvature (and parameter) I > 1 (defined by do Carmo and Dajczer
in [2]) has a single point at the asymptotic boundary, and auto-intersect along a single
(n — 1)—dimensional horosphere if H = 1 and infinite such horospheres if H > 1.

Since Lawson [8] established what is now known as the cousin correspondence
between minimal surfaces in Euclidean space R? and surfaces with constant mean
curvature H (= ||H]|) = 1 in the unit hyperbolic space H?3, the latter have been ex-
tensively studied. The one parameter family of catenoids cousins (see [11]) contains
the immersed parabolic rotation surface discussed above. For what on the subject
directly concerns this paper we also recall the half-space theorem obtained by Ro-
driguez and Rosenberg [10]. They proved that a properly embedded complete surface
with H = 1 that lies on one side of an horosphere must be an horosphere itself when-
ever (1) it is inside the horgball bounded by the horosphere, or (ii) lies outside and
its mean curvature vector 1 points toward the horoball. In relation to the latter case,
there exist catenoids cousins with two points in the asymptotic boundary (see [12] or
[13]) that provide counterexamples if we allow H to point in the opposite direction.

By an immersed surface being contained in a slab of H* we mean that the sub-
manifold lies between two horospheres that share the same point in the asymptotic
boundary of H3. It turns out that each parabolic rotation surface with constant mean
curvature H > 1 lies inside a slab (see [6]) but this is not the case for the cousin
catenoid (H = 1) in the family. This surface lies on one side of an horosphere but
not in a slab (because the generating curve is asymptotic to the asymptotic boundary;
see [11]) and thus shows that the assumption on the mean curvature in Theorem 1 is
sharp.

Theorem 1. If f: ﬁEZ — H3 is a properly immersed complete surface with constant
mean curvature ||H || <1 contained in a slab then f(X) is a horosphere.

In fact, the preceding result is a consequence of general theorems on surfaces
properly immersed in a large class of ambient spaces, discussed next, that carry a
foliation of parallel umbilical surfaces; thus making natural the concept of slab there.
On the other hand, there is a nice geometric technique to prove Theorem 1 but that
will not work in general cases; see Remark 6.

Let P? be a complete Riemannian surface and let M> = R x, P? denote the
product manifold R x P? endowed with the complete Riemannian warped metric

(, ap =d* + 020, Ip2

where o: R — (0, +00) is smooth. The family of surfaces P; = {¢} x P? form a
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foliation of M> by complete totally umbilical leaves of constant mean curvature

H(t) = (log o) (1) = (¢'/0)(1).

Lets: R — J be given by s(¢) = s(0) — fé o~ Y(u)du, where J = s(R). Then
R x, P? is isometric to the product manifold J x P? endowed with the conformal
metric
() =22 (ds® + (, Jp2) - with A(s) = 0(¢(s)),

by means of the isometry 7 (¢, x) = (s(¢), x) that is orientation reversing since it
reverses the orientation in the 3/t direction. We have that HI? = R x, R? since t
is an isometry from R x R? to H? in the half-space model. It is worthwhile to
observe that, in general, if f0+°° 0~ < 400 and fi)oo o0~! = 400, then taking
s(0) = f0+°° o~ we get J = (0, +00), and thus P? acts as a boundary at infinite of
R x, PP? as does R? in H®. Hence, the leaves P; can be thought as horospheres in a
fixed direction of H 3.

In the context of surfaces in R x,, IP? by being contained in a slab with boundary
P;, U P, we mean between two leaves Py, , Py, with 11 < £ of the foliation P;.

Throughout the paper we assume that P? is complete, its Gaussian curvature Kp is
nonnegative and the geodesic curvature of the geodesic circles (from a fixed point pg)
of radius 7 > ro > O satisfies k, > —c/7 for some positive constant c. One of the
aforementioned general results is the following.

Theorem 2. In a slab of R x, P2 with boundary Py, U Py, there is no complete
properly immersed surface with mean curvature satisfying
sup | H|| < min J(1). (1)
p3:

[t1,12]

There are two cases to consider (after normalization) for which #(f) = # is
constant. Either o = 1 (thus #p = 0) and the ambient space is just a Riemannian
product M3 = R x P? or ¢ = ¢’ (thus #y = 1) and M> = R x, P?. In the latter
case, M belongs to a class of manifolds called in [14] a pseudo-hyperbolic space.
In particular, we have the following consequence of Theorem 2.

Corollary 3. There is no properly immersed complete surface %2 with mean curva-
ture satisfying sups. |[H|| < 1 contained in a slab of a pseudo-hyperbolic manifold
R x, P2

Our second general result specifically deals with pseudo-hyperbolic manifolds as
ambient spaces and has our Theorem 1 as a corollary.

Theorem 4. If f: £% — M> = R x.1 P* is a properly immersed complete surface
with constant mean curvature ||H|| < 1 contained in a slab then f(X) is a leaf P;.
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In the preceding result we are assuming that in (1) equality may hold. The other
case in which this may happen, i.e., minimal surfaces in products spaces R x P2, was
considered by Rosenberg [12] who proved the following half-space theorem.

If Kp > 0 and the geodesic curvature of all geodesic circles inP? of radius
at least one from some fixed point is bounded by some constant then any
properly immersed minimal surface in a half space [0, 00) x P2 is a slice.

We would like to heartily thank Harold Rosenberg and Wayne Rossman for several
comments.

The proofs

Throughout the paper M> = R Xo IP? denotes the product manifold endowed with
the complete Riemannian warped metric

(, ) =mg(d?) + *r)mp(( . Ip) )]

where 0: R — (0, +00) is the warping function, 7 and rp are the projections from
R x P2 onto each factor, and ( , )p the Riemannian metric on P2, Recall from the
introduction that P? is complete of nonnegative Gaussian curvature and the geodesic
curvature of the geodesic circles from a fixed point pg of radius 7 > ro > 0 satisfies
kg > —c/r for a positive constant c.

The height function h € €™ () along anisometricimmersion f: £? — R x, P?
of a Riemannian surface X2 is defined as

h=mnpo f

Hence, that a submanifold lies inside a slab means that its height function is bounded
on both sides.

Let T € TR denote a smooth unit vector field fixing an orientation for R and,
simultaneously, its lift to a vector field in 7M. Thus T = /3¢ coordinate wise.
Hence, the gradient of 7p € C®(M)is Vap = T, and the gradient of 1 € C®(X) is

Vh = (Vap)" =T — (T, N)N, 3)

where ( , ) also stands for the Riemannian metric on X%, ( )T denotes taking the
tangential component of a vector field along the immersion and N is a (Iocal) smooth
unit normal vector field.

We use next that for (2) we have that V77 = 0 and

Vi
VT =VrZ=Tlogo)Z =27 = 37 @)
0
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if Z € TM is the lift of a vector field Z € TP, where V stands for the Levi-Civita
connection in M3 and, as before, # = (log 0)’ = ©’/o. For simplicity, we are using
the same notation for a vector field in P? and its lift to M3, as well as for functions
on R (i.e., ¢ and ¢’) and their lift to M3 (i.e., o o 7p and o’ o 7p). Later on we also
use that

VW =V, W — H(Z, W)T, (5)

where now Z, W € T M are both lifts of fields in 7P, and V denotes the Levi-Civita
connection in P2,

Notice that (4) is tensorial in Z, and thus holds for any Z € TM satisfying
(Z,T) = 0. For every vector field V € TM, we thus have

VyT =Vy_w.nrT = HV —(V,T)T). (6)

In particular, observe that ¥ = oT € T'M determines a non-vanishing closed con-
formal vector field on R x, P? (see Remarks 7 below) since

VyY =T()V =0V foranyV e TM.
We have from (3) and (6) that
VxT = #Hh)(X — (X, Vh)T) forany X e TX.
It follows easily that

Vx(Vh) = (Vx(T — (T, N)N))T
= #(h) (X — (X, Vh)Vh) + (N, T)AX forany X € TS,

where V is the Levi-Civita connection in £ and A = Ay denotes the second fun-
damental form of f. We conclude that the Laplacian of % is

Ah = Jh)Q2 — |[VR||?) +2(H, T) (7

where H is the mean curvature vector field of f. B
Next observe that any function ¢» € C*°(IP) defines a function ¢» € C*°(M) by

P, x) = P (x).
In turn, we associate to ¢ € C®(P) a function ¥ € C®(X) defined by = o f.
Lemma 5. Along f: £? — R x, P? we have that
Ay = Ay —2((H, N) + 3 ()N, T))(N*, Vi )p + V(N N*),  (8)

where N is a (local) smooth unit normal field and N* = np,(N) = N — (N, T)T.
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Proof. Since Vi = Vi + (V)L where ( ) denotes taking the normal component
of a vector field along f, then the Hessians of ¢ and v relate as

VA (X, X) = VA (X, X) — (Agyy X, X)
where X € TX. Therefore, along the immersion
Ay = Ay — 2(H, V) + V2U(N, N). ©)
Observe that Viy = 0~2V . Moreover, from (5) we get that
VNV = Vs Vi — J(h)(N*, V)T
and from (4) that ﬁT@ﬁ = Jf@gﬁ. We obtain

VNV = (N, T)T (0 )V + 072 VyV
= 072V Vi — 02 H(N, T)Vif — 0 2H(N*, Vi) T
0 X (VN Vi — (N, TYV) — J(N*, Vir)pT

iz
Vi —

where ¢ = o(h) and # = F(h), and therefore

VEG(N, N) = V2{(N*, N*) — 23(N, TY(N*, Vi )p. (10)
On the other hand,

(H,V§) = (H,N)o > (N*, Vi) = (H, N)(N*, Vi))p, (1)
and (8) follows from (9) using (10) and (11). m

Proof of Theorem 2. We claim that X2 is parabolic in the sense that it does not admit
a non-constant subharmonic function bounded from above. This is clear if X2 is
compact. To prove the claim when X2 is noncompact, by a result of Khas misnkii [7]
(see also [5, Corollary 5.4]) it suffices to show that there exists a function g € G (%)
that is superharmonic outside a compact set and such that g(¢) — +00 as g — o0.
Here ¢ — oo means that ¢ is leaving any compact subset of X2,

Take ¢ = log 7 where#(g) = dp(po, q). By the Laplacian comparison theorem v
is superharmonic since

Ag =Y AF —77h <.
From Ay = 0~ 2A4 we have that v is also superharmonic, and (8) yields

Ay < 2((H, NY + J(R)(N, T))(N*, Vi )p — V2 (N*, N*). (12)
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Observe that
IN*lp = o (W) IN*|| = o™ (W) |V,

where |VA|2 =1— (T, N)? < 1. By assumption

—oo<h::ir§fh§h§l_z::suph<—|—oo,
b3
so thatinfy, o(h) = mintem’,;] o(t) > 0and

% VA 1
IN*lp < - < - X
infy o(h) ~ infy o(h)

(13)

Ifv,w e T,Pand 7 > ro > 0, then

VA, w) = (Vy(F71VF), w)p
=PIV, w) — VA v)p (VA w)p.

When v = w = V7, we get
V2 (v, v) = —F 2.

When v = 7 L V7 of unit length, we have V24 (V#, t) = 0 and

Thus, for any v € T, P we obtain

A ~ a2 P
—# 72w, VA)p + F kg (g) (v, T)3

P A2 S
—r 2(v,Vr)]p—cr 2(1},7:)12[,>

A2 12
—Cr*vlip

@zgﬁ(v, v)

v

v

where C = max{l, c}. In particular, from (13) we conclude that

—C||Vhl? - —C

-
VNN 2 ity o) ity o)

(14)

when r = 7 o f is larger than rg. On the other hand, from (1) we see that

((H, N) + # () (N, T)(N*, V{i)p < (1H| + W) IN*[pI Vi |[p
_ supy [ + F(h)
rinfy o(h)
_ infy J(h) + supy, ()
- rinfy, o(h)

; (15)
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where infy, #(h) = mjnte[ﬁ’,;] F(t) > 0 and supy, H(h) = max, . jij H(t) < +4o00.
Summing up, we conclude from (12) jointly with (14) and (15) that

11
Ay §a<——|——2) (16)
r r

for certain positive constant « when r is larger than r.
Let g € C*°(X) be given by
g=1y —o(h)=logr —o(h),

where r = 7 o f and o (¢) satisfies o’(r) = o(r). We have that the subsets K; =
£k, h] x B(po, j)) are compact because f is proper. Therefore, since ¥ is
noncompact, then r satisfies r(¢g) — +00asg — o0, and hence the second condition
needed to conclude that g is parabolic is satisfied.

On the other hand, from (7) we have

Ao (h) = 20(h) (3¢(h) + (H,T)). (17)
From (1) we get
Jh)+ (HT)> inf 7 (h) — sup |H]| > 0.
z

Hence,
Ao (h) > 2i121f o(h) (igf Je(h) —sup ||H|) > 0.
b3

Therefore, we obtain from (16) that
1 ) . . s
Ag<al| -+ =) —2info(h) (inf F(h) —sup [|H]|) <0
r r b3 p3) b3)

if » > ry for certain 7| > ro. As a consequence, %2 is parabolic.

Once we know that X2 is parabolic, it suffices to observe that Ao (k) > 0 and that
o (h) < supy. o(h) = o (h). This implies that o () must be constant and Ao (h) = 0,
which is not possible and concludes the proof of Theorem 2. O

Proof of Theorem 4. In view of Theorem 2 it suffices to argue for the case || )71 | =1.
As in the preceding proof we first show that X2 is parabolic. This is clear if X2 is
compact. Assume then that 2 is noncompact. In the present case #(t) = 1, and
(12) reduces to

AP < 2(1+ (N, T){N*, Vi )p — VEJ(N* N*) (18)
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where N = H isa global unit normal vector field along the immersion. In this case
we also have 1 + (N, T) > 0, and by (13) that

v oh VA
I+ (N, T){N ,Vw>ps(l+<N,T>>M’
Using this in (18) and (14) we conclude that
Ay <201+ (N. T VA C||Vh|?
- " Urinfyo(h) - ri(infy o(h))?
B 2||va| CA—-(N,T))
- (rinfz o(h) " ri(infy Q(h))z) 4

<a(l+ (N, T)) (} + }2)

for certain positive constant « when r is larger than ry. On the other hand, in this case
o (h) = e" and (17) becomes

A =2(1+ (N, T))e" > 2(1 4+ (N, T)et > 0. (20)

Therefore, we obtain from (19) that
Ag < (14—<N,T))(—a+—a2 —2eﬁ) <0
r r

if r > rq for certain r; > ro. Thus, reasoning as in the proof of Theorem 2 we see
that %2 is parabolic.

To conclude the proof, we have from (20) that Ael > (). Since el < e we obtain
from the parabolicity of X2 that ¢” and hence # must be constant. o

Remark 6. The following geometric proof of Theorem 1 was given by Harold Rosen-
berg (private communication) and observed by the referee. Assume first that H < 1.
In the half-space model of H?, consider a family of equidistant spheres coming up
from infinity, with their mean curvature vector pointing up, until it touches the sur-
face for the first time. At that point the mean curvature of the surface must point in
the same direction; and that is a contradiction to the maximum principle. If H =1
assume that the surface is not an horosphere. A similar argument as before works but
now one has to start with the embedded half of a catenoid cousin whose boundary is
a small circle contained in a plane fully inside the slab, cf. [11]. The catenoid goes
down, so it can be taken disjoint from the surface, and its mean curvature points up.
If we shrink the circle to a point the compact piece of the catenoid inside the slab
converges to the plane that contains the circle. As before, we will have a first point
of contact that gives a contradiction.
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Remark 7. (i) The presence of a closed conformal vector field gives rise of a warped
structure as the ones considered in this paper. See [9] for a precise statement of this
correspondence and interesting additional information related to this article.

(ii) Strong results on the structure of the asymptotic boundary of properly em-
bedded hypersurfaces in H"+! with constant mean curvature H € [0, 1) have been
given in [3].

(iii) Since any properly immersed submanifold in a complete Riemannian mani-
fold is itself complete, the assumption of completeness in the paper is a consequence
of the submanifold being properly immersed.
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