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The canonical subgroup: a “subgroup-free” approach

Eyal Z. Goren and Payman L. Kassaei

Abstract. Beyond the crucial role they play in the foundations of the theory of overconver-
gent modular forms, canonical subgroups have found new applications to analytic continuation
of overconvergent modular forms. For such applications, it is essential to understand various
“numerical” aspects of the canonical subgroup, and in particular, the precise extent of its over-
convergence. In this paper, we develop a theory of canonical subgroups for a general class
of curves (including the unitary and quaternionic Shimura curves), using formal and rigid ge-
ometry. In our approach, we use the common geometric features of these curves rather than
their (possible) specific moduli-theoretic description; it allows us to reproduce, for the classical
cases, the optimal radii of definition for the canonical subgroup, usually derived by employing
the theory of formal groups.

Mathematics Subject Classification (2000). Primary 11F85, 11F33; Secondary 11G18, 14G35,
14G22.
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1. Introduction

Canonical subgroups are essential to the theory of overconvergent modular forms.
An elliptic curve E with an ordinary reduction modulo a prime p has a distinguished
subgroup of rank p, which is the kernel of multiplication by p on its formal group. This
subgroup is a canonical lift of the kernel of Fr;, on £ modulo p. The overconvergence
of the canonical subgroup, i.e. the fact that it can also be defined for elliptic curves
with a “not too supersingular” reduction modulo p, allows one to define and study
the U, operator for overconvergent modular forms (See [Kat, §3.11].). Recently, in
[Buz2], [Kas3], this theory has found new applications to the problem of analytic
continuation of overconvergent modular forms. In these applications it is essential
to understand the precise extent of overconvergence of the canonical subgroup, and
to determine the “measure of supersingularity” of a quotient of an elliptic curve by
a subgroup of order p (including the canonical subgroup). These results appear in
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[Kat, Thms. 3.1, 3.10.7], where they are attributed to Lubin. A slightly more general
version can be found in [Buz2].

Classically, the canonical subgroup of an elliptic curve (when it exists) is con-
structed by a close study of the power series of multiplication by p in its formal group.
In [Kas1], [Kas2] this approach was used to develop a similar theory over certain PEL
Shimura curves. Generalizing this approach to higher dimensions seems to pose a
serious challenge, because it uses the one-dimensionality of the formal group in an
essential way, including the existence of Newton polygon for power series in one
variable.

The problem of constructing a canonical subgroup for each elliptic curve belong-
ing to a certain region of a modular curve X (I') can be rephrased as finding a partial
section to the forgetful morphism of rigid analytic curves 7 : X (I'o(p) NI') — X(I")
whose moduli-theoretic description is (E, y, H) — (E, y) where (E, y) is an ellip-
tic curve with level I'-structure and I C E[p] is a finite flat subgroup of order p.
Our approach ignores this moduli-theoretic description and just takes into account
the geometry of the morphism . This is what we call the “subgroup-free” approach.
It has been known for a while that one can prove, using a general principle of rigid
geometry due to Berthelot [Ber], that such a section defined over the ordinary locus
overconverges (to an a priori non-tractable extent) beyond the ordinary locus. This
approach, which is expected to work in other situations, was used in [KL] to prove
the overconvergence of canonical subgroups in the case of Hilbert modular varieties.
However, other aspects of the theory, which were discussed in the opening paragraph,
remain unsettled even in the case of Hilbert modular varieties. These aspects are also
not fully covered by other recent approaches [AM], [AG], [Con], [Nev].

The purpose of this article is to derive all aspects of the theory of canonical
subgroups via the“subgroup-free” approach. Our thesis is that the rigid geometric (or
formal schematic) picture that arises in the familiar setting of the relevant Shimura
varieties suffices by itself to guarantee the existence of the canonical subgroup and
many of its properties. In this manuscript we demonstrate that for Shimura varieties
of dimension one, even if they do not possess a natural modular interpretation. In
fact, this lack of a moduli interpretation can be taken as a further motivation for our
approach. Notice that our approach is such that inspires generalization to higher
dimensional settings. More specifically, one constructs a section over the ordinary
locus by lifting a section from characteristic p. One separately studies sections over
the non-ordinary locus by using the theory of local models for the special fibre of
the Shimura variety in question, and finally these two sections are glued together by
using the above-mentioned principle of rigid geometry along with a certain uniqueness
result. The authors hope to pursue this subject in a future publication.

Let p be a prime. Let @ = Ok be the ring of integers of a finite extension K
of Qp, w a uniformizer of O, x = O /() the residue field, and val = valg be
the valuation normalized so that val(zw) = 1. By a “curve” X over @ we mean a
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flat finite-type morphism f: X — O of relative dimension 1 of a reduced separated
scheme X, such that the geometric fibres of f are connected; f need not be proper.

Let X, Y be curves over @. We assume that X, Y are regular schemes, X —
Spec(@) is smooth and w : ¥ — X is a finite flat morphism of degree e + 1. More-
over, we assume that (i) there exists a section s: X ® k — Y @ « to 7 ® «, that
(i1) the special fibre ¥ ® « is a reduced normal crossing divisor with two components,
and (ii) the set theoretic preimage (7 ®«) Lr@K)(Q)is equal to Q for any singular
point O € Y ®«. Toremove any doubt, we assume that ¥ ®« is singular and by a nor-
mal crossing divisor we mean that each intersection is defined over « and its completed
local ring is isomorphic to « [s, ]/ (s7). We define (Y ®«)® = s(X ®«) \(Y ®@«)*ing,
and (Y @ €)° = (Y ® k) \ s(X @ k).

From the point of view of a general theory this is a very specific situation, nonethe-
less it (and its appropriate generalization) is the one that occurs for Shimura curves
(respectively, higher-dimensional PEL Shimura varieties); see §5. In fact, condition
(iii) is only put to have “cleaner statements”; it holds in the case of Shimura curves.
Under these conditions, we prove in §3 the following result.

Let X, 2) be the formal schemes obtained, respectively, by completing X, ¥
along their special fibres. The induced morphism ) — X is still denoted by .
Let miig: Drig — Xrig be the induced morphism of rigid K-spaces a la Raynaud;
cf. §2.1. In §2.3 we define a “measure of singularity” vx(P) € Q=0 (respec-
tively, v (Q) € Q=% of a point P of X (respectively, 9iig); the definition is
modelled over the notion of measure of supersingularity for modular curves. For
every interval / C R we have an admissible open set )i/, whose closed point
are {Q € Drig : vy(Q) € I}. The set Xijgl is defined similarly. The following
theorem is proven in §3.

Theorem A. Assume e > 1. The morphism mig: Diig — Xiig admits a section
Srig * %rig[07 e/(e+1)) > 2Drig-

This section is maximal, namely, it can not be extended to any connected admissible
open properly containing X.ig[0, ¢/ (e + 1)).

The reader acquainted with the theory of canonical subgroups will recognize that
this theorem implies the classical existence theorem for canonical subgroups over
modular curves, including the further statement (that to the best of our knowledge is
not recorded in the literature) that the region over which one defines the canonical
subgroup is the maximal possible, even from the point of view of maps of rigid spaces.
The following theorem, proven in § 4, will also be familiar to that reader as giving the
behavior of the measure of supersingularity upon passing to a quotient by a subgroup
of order p. We introduce the following terminology: Let Q € 2)iig. We say that Q
is (i) canonical if vy (Q) < e/(e +1); (ii) anti-canonical if vy (Q) > e/(e+1); and
(iii) roo singular if vy (Q) = e/(e +1).
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Theorem B. Let w be an automorphism of ) that permutes the two components
of ). We denote by w also the induced automorphism of i and its effect of points
by Q — Q.
(1) vx(migQ) =0 & ve(migQW) = 0. In this case Q is canonical if and only
if Q¥ is anti-canonical.

(2) If vx(migQ) < (e + )~ and Q canonical, then V(Mg O¥) = e - v (mig @)
and QY is anti-canonical.

(3) If vx(migQ) = (e + 1)~Y and Q is canonical then Q is too singular.

@ If (e+1D71 < vx(mig Q) < e(e+1)"Yand Q is canonical, then vy (Mg QY) =
1 — vx(mig Q) and QY is canonical.

(5) If ve(migQ) < ele + 1)_l and Q is anti-canonical, then vx(migQ"Y) =
e Yy (migQ), and Q¥ is canonical.

(6) If Q is too singular then vx(mig Q%) = (e + 1)~ and Q¥ is canonical.

Acknowledgments. The authors benefited from an example of R. Coleman (private
communication) that inspired the proof of Proposition 3.8. We also wish to thank the
referees for a very careful reading of the manuscript and useful suggestions.

The first-named author was partially supported by an NSERC grant no. 227040.
The second-named author would like to thank CICMA and the department of math-
ematics at McGill university for their support and hospitality.

2. Background material

2.1. Rigid analytic varieties and formal schemes. We recall here the connection
between rigid analytic varieties and formal schemes as developed by Raynaud and
Berthelot. Our exposition follows [BLI], [BLII], [Ber], [deJ2].

Let R be a valuation ring of Krull dimension 1, complete and separated with
respect to the J-adic topology, where J = (o) is contained in the maximal ideal
of R. Let K be the field of fractions of R. For free variables & = (&1,...,&,) we
let R(§) = {>_, cv&” € R[&] : limc, = 0} be the strictly convergent powerseries,
i.e. precisely those that converge on the polydisc {(a1, ..., a,) : |a;| <1 for all i}.

Recall that for a general commutative ring B and an ideal J of B one defines the
J-torsion of B astheideal {b € B : J"b =0 for some n € N}. If J = (g1, ..., &),
the J-torsion is the kernel of the canonical homomorphism R — []i_; R[g; oar
this ideal is {0} we say that B has no J-torsion.

An admissible R-algebra is an R-algebra with no J-torsion (equivalently, flat
over R) that is isomorphic to R{(£)/a, where & = (&1, ..., &,) for some integer n; it
implies that a is a finitely generated ideal. For us, the admissible R-algebras are the
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building blocks of two different categories - a category of rigid spaces and a category
of formal schemes.

An affine formal R-scheme X is called admissible if it is of the type X = Spf(A),
where A is an admissible R-algebra. We may then write X = All)n;o X,, where

X, = X®(R/(m™)), A € N, can be identified with the scheme Spec(A ® R/(z*)).
Being admissible is a local property and so one gets a natural definition of an admis-
sible formal R-scheme.

The notion of admissible blow-up is needed to define an equivalence of categories
between a category of formal schemes and a category of rigid spaces. The definition
of admissible formal blow-up is designed to be local on the base. We review, thus,
only the affine case. Let X = Spf(A) be an affine admissible R-formal scheme,
A = R(£)/a. Let </ be an open ideal, i.e., containing (") for some A > 0. The
admissible formal blow-up of ¥ at < is ¥ = Ali)rrolo Proj P (7" @ Ox/(w?))

with the canonical map ¢ : X’ — X. Then X’ is an admissible formal R-scheme over
which &7 Oy is invertible.

Let o/ = (fo,..., fm) and let @: gy - Spec(A) be the usual scheme the-
ory blow-up of A at the ideal <7 . Then, upon takmg (w) -completion of @: ¥ %
we get ¢: X — X. On the other hand, ¢ X — X admits a local description.
The scheme X’ has an affine cover by {Spec(A) 1 = 0,1,...,m}, where

Af = AL/(f; —torsion) and A = A[ S, ] =AlR, }/(f, — ).
To clarify, in the definition of A} (and similarly below), the notation (f; — torsion)

refers to the J-torsion ideal, where J is the principal ideal ( f;). Then the (= )-com-

pletions of A/, A are given by A; = A;’/(f,» —torsion) and Ag’ = A(% e, ’}—m) =

A(%, e )/(f, 4 — f;); they give rise to an affine covering {Spf(A}) : i =
0,1,...,m}of ¥.
For an admissible R-algebra A = R(§)/a,let Ayg := AQ@r K = K(§)/aK (),

this is an affinoid K -algebra. This construction extends to provide a functor
rig: {admissible formal R-schemes} — {rigid K-spaces}, X > Xijq.
One calls Xyg the generic fibre of the formal R-scheme X.

Theorem 2.1 (Raynaud). The functor rig is an equivalence of categories between
(1) the category of quasi-compact admissible formal R-schemes, localized by admis-
sible formal blow-ups, and (ii) the category of quasi-compact and quasi-separated
rigid K -spaces.

It is easy to see from the construction that a flat morphism of formal schemes
induces a flat morphism of rigid spaces. The converse is also true [BLII, Thm. 5.2]:
every flat morphism of rigid K -spaces comes from a flat morphism of suitable formal



622 E.Z. Goren and P. L. Kassaei CMH

schemes yielding the given rigid spaces. A flat morphism in the category of rigid
spaces has image which is a finite union of affinoids, in particular, it is open [BLII,
Cor. 5.11].

We will need to use the specialization map. In the affine case, the points of X, are
the maximal ideals of the algebra A ® g K'; these are in bijection with quotients of A
that are integral, finite and flatover R. If T is such a quotient (it is the valuation ring of
a finite extension of K), corresponding to a point r € Xy, we get a closed immersion
of formal R-schemes Spf(T) — Spf(A), whose image is supported on a closed point
of X that we denote by sp(¢). The definition can be extended to any formal R-scheme.
We get a morphism of ringed spaces sp: Xijg — X [SGA4, 1V 4.9]. For every affine
open U = Spf(B) X, we have sp~1 (U) = Upg.

Assume that R is a discrete valuation ring with residue field «. In [Ber] Berthelot
generalizes the above construction to associate a generic fibre to any locally noetherian
formal scheme X flat over R that satisfies a condition weaker than admissibility: that
the special fibre of X, denoted by Xy and defined by the ideal of definition .#, is
a scheme locally of finite type over «. This condition is independent of the choice
of .# and coincides with admissibility if @ @y is an ideal of definition for X. We will
describe the construction in the affine case. Let X = Spf(A) and [ = H O(x, 7)
with generators g1, ..., g-. Forn > 1 define

Ap = AT, ... T8} — T, ... g — o Ty).

The condition on X implies that A, /@ A, is finitely generated over «, and hence X" =
Spf (A,) is an admissible formal scheme over R. Applying Raynaud’s construction we
obtain a rigid analytic space %ﬁg. For m > n we have a homomorphism A,, — A,,
defined by sending 7; to g{"~"7;, inducing a morphism of rigid spaces Xj;, — X7,
It is easy to see that this morphism is an open immersion and identifies %ﬁg with the
subdomain of %Qg over which |g; (x)| < |=|'/". The generic fibre of X, denoted as
before by Xiig, is defined to be the union of %fig via the above inclusions. The rigid
spaces %;’ig form an admissible cover of X.ig. The construction yields a functor rig
whose target is the category of quasi-separated rigid K -spaces.

As an illustration, take X to be Spf(R[£1, ..., & 1) with the ideal of definition
I = (w,&1,...,§). Then Xy is simply the open unit polydisc of dimension r,

which is not quasi-compact, and %gg C Xiig is the affinoid subdomain over which

|&| < | |Y/", which is isomorphic to a closed unit polydisc, and hence is quasi-
compact. Similarly, for X = Spf(R[[x1, x2]l/(x1x2 —a)), where a € R, one sees that
Xiig 18 the open annulus over K with radii (|a|, 1).

As in the admissible case, one can define a specialization map sp: X, — X by

(]

taking the direct limit of the maps X}, B oxn 5 X The following is Proposi-

tion 0.2.7. of [Ber].
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Proposition 2.2. Let notation be as above. Let 3 C Xo be a closed subscheme.
Let X3 denote the formal completion of % along 3. Then sp~'(3) is an admissible
open subset of Xiig and the canonical morphism %Qg — Xig induces a functorial
isomorphism %Qg = sp~1(3).
2.2. Algebraic geometric input. As in the Introduction, let O be the ring of integers
of a finite extension K of Q,, @ a uniformizer of O and « = @ /(w) the residue
field. Let X, Y be relative curves over @. We assume that X, Y are regular schemes,
X — Spec(O) is smooth and 7 : ¥ — X is a finite flat morphism of degree ¢ + 1.
Moreover, we assume that (i) there exists a sections: X @k — Y @ k to 7w ® k., that
(i1) the special fibre ¥ ® « is a reduced normal crossing divisor with two components,
and that (iii) the set theoretic preimage (7 ® K)o @ K)(Q) is equal to Q for any
singular point Q € ¥ @ «.

The following lemma must be known to the experts; for lack of a reference we
provide a proof.

Lemma 2.3. Let (A, m) be a regular two-dimensional complete local ring contain-
ing O, such thatr O is integrally closed in A, mN O = (), and k € A/mis an
algebraic extension.

(1) If A ® « is regular then A = O[x].
2) If AQ® Kk Z ks, t]/(st) then A = O[x, y]l/(xy — @).

Proof. First note that A/m 2 « and so the local homomorphism W(A/m) — A
has image containing W («x) viewed as a subring of @. Since A/m is an algebraic
extension of «, W(A/m) is integral over W(«). Since @ is integrally closed in A it
follows that W(A/m) is contained in @. In particular, A/m = «.

If A ® « is regular it follows by Cohen’s Theorem that A ® k = «[[x]. This gives
a morphism @ [[x] — A which is surjective by Nakayama’s lemma; since both rings
are domains of the same dimension, we conclude that O[[x]] — A is an isomorphism
(the kernel is a prime ideal of height 0).

Assume then that A ® k = «[[s, t1/(st). Let x', ¥’ € A be elements reducing
to s, ¢, respectively. The homomorphism O[x, y] — A, taking x, y to x’, y
respectively, is surjective by Nakayama’s lemma. Let p be the kernel; it is a prime
ideal of height 1. In fact p is a principal ideal, because O[[x, y] is a factorial ring and
by a theorem of Krull every prime ideal of height 1 is principal. We may therefore
write p = (h(x,y)), where h(x,y) = xyv — wz for some v,z € Ofx,y]. It
follows that A ® ¥ = «[x, ylI/(xyv), where v is the reduction of v modulo = .
Since «[[x, yII/(xyv) = «[ls, t1/(st) by the map taking x > s and y + ¢, it follows
that v is a unit. This implies that v itself is a unit and so A = O[[x, y]/(xy — & z).

We next claim that the ring A is regular if and only if z is a unit. Indeed, if z
is a unit then A = O[x, vz /(x - yz~! — @), which is easily checked to be
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regular. Assume now that A is regular. Then (=, x, y)/I is a 2-dimensional x =
A /m vector space, where [ = (w, x, )2 + (xy — wz) and m, the maximal ideal
of A, is the image of (=, x, ¥). So, for some c1, ¢2, ¢3 € A, not all in m, we have
c1m + c2x + 3y € 1. Such a relation gives modulo @ the relation cpx 4 c3y €
(x, y)?. Since the cotangent space at the singular point is two dimensional with
basis {x, y}, it follows that modulo @ we have ¢, c3 € (x,y). Thus, we must
have ¢, c3 € m. Therefore, A is regular implies that o € I. Thus, @ (mod m?) €
I/m? = (wz)/m?2. It follows that z is a unit modulo m? and hence is a unit. O

Lemma 2.4. Let Q € Y be a singular point and P = 7w (Q). There is a choice of
local coordinates at Q and P giving OQQ Z0[x, yl/(xy — @) and OQP Z Ot
respectively, such that onthe level of completed local rings at Q and P the morphism
is given by

t—>x+(u) + f(y) + g, 2.1

where f(y) =0 (mod (y¢*1)) and u is a unit congruent to 1 modulo o .

Proof. 1t follows from Lemma 2.3 that the map ¥ — X can be written at a singu-
lar point @ € Y in the form of an @-algebra local homomorphism 7 *: O[¢] —
Olx, ylI/(xy — @ ). Now, upon reduction modulo &, we get a homomorphism of « -
algebras 7* @ « : k[[t] — «[[x, yll/(xy). By our assumptions on 7 ® «, the compo-
sitions «[[t] — «[[x, y1/(xy) m kllx] and «[[1]] = «[lx, ¥y1I/(xy) m «[[y] are

given, wl0.g., byt — x and t > y° + f1(y), where f1(y) =0 mod (y°*!) (the
existence of the section implies that every ramification index is equal to €). Thus, the
map 7* ® « is determined by the image of ¢ which has the form x 4+ y° 4+ f1(y) +
xyfa(x, y).

Our goal now is to change coordinates on A := O[[x, y]I/(xy — @) s0 as to sim-
plify this map and still have the same presentation, namely, find X,y € A such
that O[[x, ylIl/(xy — @w) = O[x, yll/(xy — @). First note that since A is w-
adically complete the map of units A* — (A ® «)* is surjective. Let u/ =
(1 4+ yfo(x,y) € (A® k) and 4 any lift of it to A*. Let £ = xai, 9 = ya~ L.
Then we have O[x, y(xy — @) = O[x, yI/(xy — @) and the map O[] —
Ol%, $1/(£9 — @) has the form 1 > £ + (34)° + f($) + @ &, where f is a lift
of f; satisfying f(y) =0 (mod (y¢+1)). O

2.3. A measure of singularity. Letz: Y — X be a morphism of curves as in §2.2.
We denote by X, ) the formal schemes obtained from X, Y by completion along
their special fibres. Let By, ..., B, be the singular points of Y. Let «; = 7(f;)
fori = 1,...,h. Recall that by assumption the ¢;’s and f;’s are defined over «.
Let Dy, (respectively Dg, ) denote the inverse image of «; (respectively ;) under the
specialization map sp: Xz — X (respectively sp: Dz — 2)).
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By Proposition 2.2 Dy, is the rigid space associated to Spf ((9)/}“") = Spf (O[],
using Lemma 2.3. Therefore Dy, is an open disc of radius 1 with parameter . This
parameter is unique up to r — ' = te¢ + wgz, where ¢ € O and z € O[«].
For a general closed point P € Dy, the value val(z(P)) depends on ¢, however,
if val(1(P)) < 1 then val(z(P)) = val(¢’(P)) for any ¢’ as above. We abuse notation
and define

vx(P) = val(z(P)),

bearing in mind that this is well defined only if val(z(P)) < 1.

Similarly, Dg, is the rigid space of Spf(O)A(ﬂi) = Spf(9[x, yl/(xy—w)). There-
fore, Dg, is an open annulus of radii (|z |, 1) with parameter x. For any closed point Q
in Dg,, define

vy (Q) = val(x(Q)).
This definition is independent of the choiceof the parameters if chosen asin Lemma?2.4.

The reason is that any other such parameter x’ is of the form x' = x¢ + wz,
where ¢ € O and z € O[x, ylI/(xy — @), and val(x(Q)) < 1.

Let 2 denote the complement in Xyig of sp_1 ({o1, ..., ap}). Foraclosed point P
in 2 we define vx(P) = 0. By Proposition 3.1 below, the complement in ;g
of sp_1 ({B1, .- -, Br}) has two connected components,

Z0=sp (Y @)’ —{B1,.... Bu}),
and

FP=sp (Y @©)® —{B1,.... B}) -

For points in 2°*° we define vg) to be 0, and on 2 0 we define vy to be 1. We
refer (o vy and vy as measures of singularity. For an interval I of real numbers, we
define X;ig 1 to be the set of points of X, where vy belongs to I. For U an admissible
open subset of Xy we set UI = U N Xy, /. We use a similar notation for 2);,.
We call &% the ordinary locus of Xiig and its complement sp‘l({al, Lo, ap) =
Xiig (0, 00) the singular locus of Xiig. We have nrig_l(%rig(o, 00)) = Duig(0, 1) =
sp‘1 ({B1, ..., Bn}) which we call the singular locus of Q.

3. Main theorem

In this section we prove Theorem A of the Introduction, using the same notation.
Our strategy is to construct sections separately on the ordinary locus and the singular
locus and glue them by means of a general principle of rigid geometry. We start by
constructing a section to g over the ordinary locus of Xyj.



626 E.Z. Goren and P. L. Kassaei CMH

Proposition 3.1. The map mig induces an isomorphism between 2> and % . There-
fore there is a unique section 5;1»’2 2 Z — Drig 10 iig Whose image is 2. Further-

more, both %> and %° are connected. If e > 1, then any section to mgg on %
coincides with sﬁfg.
Proof. We show the existence of the section on the level of the formal schemes. The
curves (Y @ k), (Y @ «)? are connected reduced affine curves. Let U be the open
subset of 2) equal to the underlying set of (¥ ® «)® U (¥ @ «)°. Then U is affine
in the formal schemes sense, namely, we have an open immersion Spf(B) — )
whose set theoretic image is U. Under the specialization map sp: iz — 2) we
have sp_l(U )y = 29U ™ and, moreover, 20 U F® = Usig (c£. the discussion
in § 2.1). We conclude the following: We have a morphism Spf(B) — Spf(A),
induced by a homomorphism of w -adically complete ©-algebras A — B, that yields
the morphism 2% U > — % and reduces to the morphism ¥ ® « \ {8 }l’?zl —
X®«\ {ai}le. It transpires that B @ « = (A @ «) & Bj. Using Hensel’s lemma
to lift idempotents, we conclude that we have B = AT @ B, with AT @ x =
ARk, B1+ ® « = Bj. Using that A — AT is a finite flat homomorphism reducing
to an isomorphism after ®«, we conclude that A = AT, This gives the existence
of the section s*: Spf(A) — Spf(B), the analytification of which is the desired
sectionsgo: 2 — 2 09U 2> withimage 2°*. Inparticular, Z°>°, being isomorphic
to &, which is a curve minus finitely many residue discs, is connected.

Furthermore, the morphism Spf (B1+ ) — Spf(A) is finite flat of degree e. To
show %0 is connected it is enough to show that Spf (Bfr ) is flat over Spf(0©),
and has a reduced and connected special fibre (see Remark 3.2). But this is clear
since Spec(B; ® k) = (Y @ k)°.

For the final assertion, note that the image of any section to 7, on 2 must be a
connected component of nrig_l (%) = 27> U %Y and hence it must be either 2>
or 2°. The latter cannot happen since myig: 2 — % is e-to-1 and e > 1. a

Remark 3.2. Let‘B = Spf(B) be an admissible formal scheme, with associated rigid
space Bje. It is possible that B4, is disconnected, yet the underlying topological
space of B is connected. An example is provided when O is a ramified extension
of Z, and welet B = O(x,y,T)/(xy — p, (x + y)T — =). The associated rigid
space is a disjoint union of two annuli. The special fibre is three lines meeting at a
single point. Note though that B @ « = k[x, y, T]/(xy, (x + y)T) in which xT is
nilpotent.

On the other hand, assume B is an admissible formal scheme over © such that 2B,
is affinoid (in particular B;; = Spm(B ®¢ K) where B = HO(B, 09)). B«
is reduced, then the connectedness of 2B implies the same for Byie. Indeed, if not,
then there is a non-trivial idempotent element e € B ®¢ K. We show that e € B.
Note that by flatness of B over @ we know that B— B® K. If e ¢ B, we can
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write e = f/@", where n > 0 is minimal, and f € B. Then we have f2 = o f.
Reducing modulo @, we get f # 0 and £ = 0 which contradicts our assumption
on B ® k. Therefore e € B. It then follows that the decomposition of the “generic
fibre” B @ K, namely of the rigid space, induces a decomposition of the formal
scheme Spf (B).

Let X be a K -rigid analytic space, and U C X be an admissible affinoid subdo-
main. An affinoid subdomain U C 'V C X is called a strict neighborhood of U in X
if the reduction of the inclusion ¢: U — V factors through an affine scheme which is
finite over Spec(x). See [CGJ, §3] for more details. Any strict neighborhood of 2
in X,jg contains a domain of the form Xyig[0, a] for some positive a € Q; c.f. [KL,
Prop. 2.3.2]. The following is Lemma 6 of [CGJ]. See also [Ber].

Lemma 3.3. Let f: Y — X be a finite flat morphism of rigid analytic curves. Let U
be an affinoid subdomain of X, and s : U — Y asectionto f. Then s canbe extended
to a strict neighborhood of U in X.

T

ri

Corollary 3.4. The section sg, extends to a section s
positive a € Q.

g over XiiglO, a] for some

Next we discuss sections to 7 over the singular locus, i.e. where vy > 0.

Proposition 3.5. The map mrig: Drig(0, 1) — X (0, 00) admits a section t on
Xiig(0, e/(e + 1)) whose image is Diig(0, e/(e + 1)). Such a section is unique. If
e > 1, then we have the following stronger uniqueness result: any section (o mg on
a connected admissible open subsel of %.ig(0, e/(e + 1)) which contains some circle
Dy, la, a] is obtained by the restriction of t.

Proof. We have 2);i,(0,1) = [[; Dg, and X,ie(0, 00) = [][; Dy;. Since by our
assumptions 7 () = {B:} as sets, we have nﬂg_l(Dai) = Dy, , and hence, for the
first assertion, it suffices to show that for each i the map my,: Dg, — Dy, admits a
section on Dy, (0, ¢/(e+1)) whose image is Dg, (0, ¢/(e+1)). The map mrig: Dg, —
Dy, is the analytification of the map  : Spf(9 Qﬂ ") — Spf(05™) by Proposition 2.2.
By Lemma 2.4, choosing local coordinates, this map is given by

Ollt]l — Ollx, yIl/(xy — @), t=>x+uy'+ f(y)+ wg,

where f(y) =0 (mod y°t1), u, g € O[x, y]/(xy — ), and u is a unit. Let @, &
denote arbitrary liftings of u, g to @[[x, y] and define go(x) = g(x, @ /x), uo(x) =
i(x, w/x), and fo(x) = f(w/x). Then the map mis: Dg — Dy, is the map
characterized by

t(mig @) = x(Q) + uo(x () (@ /x(Q)° + fo(x(Q)) + wgo(x(Q)).
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Lemma 3.6. Let O € 2y

(1) If vp(Q) < e/(e+1) then vy (mig @) = vy (Q).

) If vg(Q) > e/(e+1) then v (mig Q) = e(1 —vy(Q)) < e¢/(e+1).
3) If vg(Q) = e/(e+1) then vx(mig Q) = e/(e 4 1).

0 aefle+]l)1—aje 1 o0

Figure 3.1. The effect of 7;;; on measures of singularity.

Proof. The statement is clear for Q € Z>®° U %0 If Q Dy, satisfies vy (Q)
val(x(Q)) < e/(e + 1), then

val(x(Q)) < min {val((w /x(Q2))"), val(fo(x(Q))), val(@go(x(Q)))}

This implies that val(z (i, Q)) = val(x(Q)). The other cases are similar. O

From the lemma it follows that
Trig " Dy (0, e/ (e + 1)) = D, (0, ¢/(e + 1)) ]_[ Dp;(e/(e+1),1).

Indeed the lemma proves something stronger: for any a € Q satisfying 0 < a <
e/(e + 1) we have

Tig " (Dy;la, al) = Dg,[1 —aje, 1 —a/e]lU Dgla, al. (3.1)

This shows that the inverse image of Dy, (0, e/(e + 1)) under mj, has two connected
components each of which maps onto D, (0, ¢/(e + 1)) in a finite flat manner.

We show that the finite flat morphism myig : Dg; (0, e/(e+1)) — D, (0, e/(e+1))
is of degree one and hence is an isomorphism. The inverse of this map provides the
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desired section t. To calculate the degree we restrict the map to a circle Dy, [a, a] with
0 < a < e/(e+1). Itis therefore enough to show that mmyig: Dg,a, a]l — Dgy,la, al
has degree one. We show this by reduction modulo . Our argument is based on the
following general principle.

Let ¢: Spm(B) — Spm(A) be a finite flat morphism of K -affinoids. Let L
be a finite field extension of K and let ¢y : Spm(B @k L) — Spm(A ®k L) be
the induced morphism. Let 6 be a uniformizer of L and let n be a positive integer;
let (B @k L)° denote the @ -algebra of functions of supremum norm at most 1.
Define B = (B ®g L)°/(6™), and similarly for A. Let ¢, : Spec(B) — Spec(A)
be the induced map. Then, if ¢, is an isomorphism so is ¢. The argument reduces
to proving that ¢ : (A ®x L)° — (B ®g L)° is surjective, which, in turn, follows
from Nakayama’s lemma.

To prove that the reduction of 7 : Dg,la, a] — Dyla, a] is an isomorphism,
we first re-scale. We pass to a finite extension L of K with uniformizer 6 in which
there exists an element A of valuation a. Setting x = Axg and ¢ = Afy the map ;g
becomes a map between circles of radius one characterized by

10(7ig Q) = x0(Q) + uo(hxo(Q)) (@ /A xo(Q)~°
+ 27 fo(rxo(Q)) + 2 o go(Axo (Q)).

Using 0 < a < e(e+1)"land f(y) =0 (mod y¢*t!), one sees that this map reduces
modulo 8 to the identity map of O /(0)[T, 1/T].

For the second statement we argue as follows. Let U 2 Dy, [a, a] be a connected
admissible open of X;ig(0, ¢/(e 4 1)) over which there is a section ¥’ to 7rjg. Then
U, being connected, lies entirely within Dy, (0, ¢/(e 4-1)). By Lemma 3.6 the image
of U under t’ is either a subset of Dy, (0, /(e + 1)), or a subset of Dg, (e/(e +1), 1).
In the former case, by the construction of t, it is clear thatt' = t|;;. In the latter case,
t'(Dy,;la, al) is a connected component of Dg,[1 — a/e, 1 — a/e] by Equation (3.1).
However, since Dg;[1—a/e, 1 —a/e]is connected and myio : Dg,[1—a/e, 1—a/e] —
Dy, la, a]is e-to-1, we find that e = 1, which contradicts our assumption. O

Corollary 3.7. Assume e > 1. The morphism mig: Drig — Xiig admits a unique
section

Srig - xrig[ov e/le+1)) — 2Drig

which extends ﬁgog.
Proof. By Corollary 3.4, ﬁffg extends to a section Ejig on X;ig[0, a] for some positive
rational number ¢ < e/(e + 1). By the uniqueness assertion in Proposition 3.5 we
know that the restriction of 5Lg t0 Xig (0, a] is obtained as the restriction of t. This

implies that 532 and t glue together to form the desired unique section. O
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Proposition 3.8. Assume e > 1. The section siig constructed in Corollary 3.7 is
maximal in the following sense: Let U be a connected affinoid inside X.ig(0, 00)
such that it intersects both X.ig(0, /(e + 1)) and Xygle/(e + 1), 1) nontrivially .
Then there is no section to myig on U.

Proof. Assume there is a section s to 74, on such U. As U is connected it lies in-
side some Dy, , and intersects both Dy, (0, e/(e + 1)) and Dy, [e/(e + 1), e/(e + 1)]
nontrivially. By [BGR, §9.7.2, Thm. 2] any connected affinoid of Dy, is the com-
plement of a union of finitely many disjoint open discs in a closed disc. A simple
calculation using the non-archimedean property of the norm shows that a closed disc
which intersects both Dy, (0, ¢/(e + 1)) and Dy, [e/(e 4 1), /(e 4 1)] nontrivially,
must contain all of Dy, [e/(e+1), e/(e+1)]. Therefore, U contains the complement
of a union of finitely many disjoint open discs Vi, ..., V, (which we may assume to
have radius ¢/(e 4 1)) in the circle Dy, [e/(e + 1), e/(e + 1)].

We first re-scale as in the proof of Proposition 3.5: let A € L be such that val(X) =
e/(e+1). Setting x = Axp and t = Afy the map myjo: Dgle/(e+1),e/(e +1)] -
Dy, [e/(e 4 1), 00) becomes a map between a circle C of radius one and the closed
unit disc D characterized by

10(7ig Q) = x0(Q) + uo(hxo(Q)) (@ /A xo(Q)~°
+ 27 fo(rxo(Q)) + A go(Axo (Q)).

The section s is defined on W, the complement in D of finitely many residue discs
which are the open unit disc together with A7V, ..., A" 1V.. The reduction 5

of s: W — C, then, gives a map between A}QL /(0) minus a finite number of points

(with parameter Zy), and A}% /) (with parameter x) characterized by

10(Q) = %0(8(Q)) + (@ /Ao (s(Q)) ™.

Here %o(5(—)) is a rational function in 7y and ¢ /A¢*1 is nonzero by our choice of A.
Degree considerations show that this is impossible. o

We summarize the above results as a theorem (Theorem A of the Introduction).
Theorem 3.9. Assume e > 1. The morphism mig: Diig — Xiig admits a section
Srig : Xrigl0, e/(e + 1)) = Drig-

This section is maximal, namely, it can not be extended 1o any connected admissible
open set properly containing Xiigl0, e/(e + 1)).

The canonical subgroup of an elliptic curve can be thought of as a certain lifting
of the kernel of Frobenius from characteristic p [Kat, Thm. 3.1]. We prove a similar
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result in our setting. The section ﬁrojf’g = §ig| 2 was constructed on the level of formal
schemes, and by its construction it reduces to s mod .

Fix D, and let ¢ be a coordinate on it, obtained from an isomorphism (93}0“ =
O[] as in Lemma 2.4. Also fix an isomorphism 0;’51' = Olx, y1/(xy — @) as in
loc. cit.; x is a parameter on Dg, and xy = w'.

Let yp: Spm(L) — D,, correspond to a closed point P which is contained
in Dy, (0,e/(e 4+ 1)). Thus L is a finite extension of K. Let ¥s,,(p) = Srig ©
vp: Spm(L) — Dpg, correspond to the image of P under syi. Let yp: Spf(Or) — X
denote the extension of yp to the formal model, and similarly define fsrig( py. Let
Yp, 7%( py denote, respectively, the reductions of P, )75r'1g( p)y modulo the element
w /t(P) of Or. Let s’ denote the base change of s: X ® k — Y ® « from « (o
@1/ (w /t(P)). For simplicity we denote the «-algebra @ /(z /t(P)) by R.

Proposition 3.10. For closed points P € Dy, (0, e/(e+ 1)) witht(P) =r € Of the
section syig reduces modulo w [r tos’. More precisely, forany P € Dy, (0, ¢/(e+1))
we have Vs, (p) = s oY p.

Proof. Let us denote the image of an element @ € @ in R := 91 /(w /t(P)) by a.
Since P € D,,, the map yp: Spf(®r) — X factors through Spf (0;}‘”). Similarly
ABi

Vane(P) factors through Spf(Oy™). Therefore, it is enough to prove the statement
after replacing X with Spf(©4*) and Q) with Spf(9;*). Then

Vp: Spec(R) — Spec(93™ ® R) = Spec(R[[]))
is given by ¢ +— ¢(P). Similarly, the map

Vaug(P): SPEC(R) = Spec(07” ® R) = Spec(RIx, y1/(xy))

is given by x > x(819(P)), y = Y(81ig(P)). From the proof of Lemma 2.4, we see
that the section

s": Spec(R[t1) = Spec(04% @ k @ R) — Spec(03% © k @, R)
= Spec(R[[x, y1/(xy))

is given by x — ¢,y — 0. Hence, it is enough to show that y(si(P)) = 0
and x(sig(P)) = ¢(P). For the first equality notice that by Lemma 3.6 we have
val(t(P)) = val(x(siig(P))) and hence y(s1ig(P)) = @ /x(s1g(P)) is divisible by
w /t(P). Since val(t (P)) = val(x(snig(P))), to prove the second equality it is enough
to show that #(P) and x (s (P)) have the same reduction modulo y(s(P)) =
@ /x (51 (P)). But that is clear since from the proof of Proposition 3.5 we have

t(P) = x(8rig(P)) + o (x (Srig(P))) (¥ (Srig (P)))*
+ fo(x(s1ig(P))) + @ go(x(srig(P))),
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and fo(x(sg(P))) =0 (mod y(5rig(P))e+l)~ O

Definition 3.11. Let O € 2.

(1) We say that Q is canonical if Q is in the image of s;j,. By the construction
of syig, this is equivalent to having vy (Q) < e/(e + 1). If @ is canonical, then
by Lemma 3.6 we have vy (Q) = vx(mig Q).

(2) Wesay that Q is anti-canonical if vy (Q) > e/(e+1). Inthis case by Lemma 3.6
we have vg(Q) =1 — e_lvx(ﬁrng)~

(3) We say that Q is foo singular if vy(Q) = e/(e + 1). This is equivalent
to V%(Jfrng) >ef(e+1).

Remark 3.12. In the context of modular curves, the measure of singularity vg) was
first introduced by Buzzard in §4 of [Buz2]. In [Co] this measure, referred to as the
Buzzard invariant, was used to identify “circles” corresponding to the image in Xo(p)
of points on Xo(p?) whose reductions lie on the horizontal components of the special
fibre of Edixhoven’s stable model of Xo(p?). As it was pointed to us by one of the
referees, the setting in this work seems suitable for carrying out Coleman’s approach
(which is less explicit than this work, but contains observations in the same spirit),
and hence clarifying how his results can be extended to the case of non-trivial tame
level and to corresponding situations for other Shimura varieties.

4. Throwing in an “involution”
In this section we prove the following theorem (Theorem B of the Introduction).

Theorem 4.1. Let w be an automorphism of ) that permutes the components of ).

We denote by w also the induced automorphism of i and its effect of points by

Q +— QY. Then:

(D) ve(migQ) =0 & ve(migQ®¥) = 0. In this case Q is canonical if and only
if Q¥ is anti-canonical.

(2) If ve(mig Q) < (e + )~ and Q canonical, then Vx(mig Q) = e - vx (g Q)
and QY is anti-canonical.

(3) If vx(mig Q) = (e + 1)1, and Q is canonical, then Q% is too singular.

@ If (e+1)~1 < vx(mig Q) < e(e+1)"1, and Q is canonical, then vx(mig Q¥) =
1 — v (mig @) and Q¥ is canonical.

) If ve(mipQ) < ele + =L, and Q is anti-canonical, then vx(mig Q¥) =
ey (g Q), and Q¥ is canonical.

(6) If Q istoo singular, then vy (g Q¥) = (e + 1)~ and Q¥ is canonical.
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We begin by proving the following lemma.

Lemma 4.2. For any Q € Qiig we have
vy (Q) +vy(QY) = 1.

Proof. We first note that w(Z*®) = %, and hence for Q € Z* U Z the result
follows from the definition of vy. Assume Q € Dy for some 1 < i < h. The
automorphism w induces an isomorphism between Dg, and Dg, where 8; = B”.
Let x, y be coordinates on Dg, as in Lemma 2.4. Then n := w*x and § := w*y
are coordinates on Dpg; such that Dg, is the analytification of Spf(O[§, nll/(§n —
w)). Because w switches the two components of ¥ ® «, & 1s a local parameter on
the component containing (¥ ® «)> at the point 8;. Examination of the proof of

Lemma 2.4 shows that there is a local parameter T on Dy, and local parameters (é, n)

on Dg; such that & = &a, i = i~}

, where « is a unit in O[&, nll/(én — @), and
such that (z, § , n) are related as in the statement of Lemma 2.4.

By our definition, we can use § to calculate vy on Dg ;- Therefore

vy (QY) = val(§(Q™)) = val(£(Q™))
=val(y(Q)) =1 —val(x(Q)) = 1 —vp(Q). =

We now prove the theorem.

(1) is clear.

(2) As Q is canonical, Lemma 3.6 implies that vy (Q) = vx (g @) < (e+ 1)~
Therefore by Lemma 4.2 we have vy (Q%) > e(e + 1)~1, which means that Q% is
anti-canonical. Itnow follows from Lemma 3.6 that vy (mig Q%) = e(1—vy(Q"¥)) =
evy(Q) = evx(mig Q).

(3) As @ is canonical, Lemma 3.6 implies that vy (Q) = vx(mg Q) = (e + L
and therefore vy (Q") = e(e + 1)~!. This shows that Q" is too singular. It follows
from Lemma 3.6 that vx (g Q%) > e(e + 1)~

(4) Since @ is canonical, we have vy (Q) = v (i Q) > (e + 1)~1, and hence
vy (Q¥) < ele+ 1)~L. This shows that Q" is canonical. Therefore, vy (Mg Q¥) =
v (Q¥) =1 —vy(Q) =1 —vx(mig Q).

(5)Since Q is anti-canonical, Lemma 3.6 shows that vy (Q) = 1—e ™! vx (g Q) >
e(e+1)~1, Therefore, vy (Q%) = 1—vy(Q) < (e+1)~" and hence Q" is canonical.
We have vx (7rig Q") = vy (Q”) = 1 —vp(Q) = e vx(mig 0).

(6) Since vx (g Q) > e(e+ 1)1, by Lemma 3.6 we have vy (Q) = e(e+1)71,
and hence vy (Q") = (e + 1)~1, This shows that Q% is canonical. Therefore, we
have vx (g Q") = vy (Q¥) = (e + 17\
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5. Applications

In this section we review some of the structure theory for Shimura curves and show
that our results apply to these situations. Our main references are Drinfeld [Dril],
[Dri2] and Carayol [Car]. In particular, we reproduce the classical results on canonical
subgroups [Kat], as well as more recent developments [Kas1], [Kas2].

Let F be a totally real field of degree 4 with ring of integers O and let B/F be
a quaternion algebra split at exactly one infinite prime of . Let R be a maximal
order of B. Let p be a finite prime of F at which B splits, Fy, the completion of F
at the prime p, O p its ring of integers with a uniformizer =, and identify B ® g Fy
with M3 (Fy) so that R®o, OF,p = M2(OF,p). With B there is associated a projective
system of Shimura curves, initially over the complex numbers but, by Shimura’s
theory of canonical models, in fact over /. Let G = Resp/g(B*). Let X be
the G(R)-conjugacy class of the homomorphism C* — G(R) sending x + iy to
[(5,%).1.....1] € GLy(R) x (H*)?~!. Let K be an open compact subgroup of
G(A) of the form K}, x K?, where K, € GL2(OF ) and K is “away from p”. The
Shimura curve associated with K is Mg (G, X)(C) = GAQ\G(AT) x X/K.

5.1. Thecase F = Q. Inthis case the Shimura curves M (G, X)/Q afford anatural
modular description. Consider the functor associating to a scheme S the isomorphism
classes of triples (A, ¢, «)/S, where A/S is an abelian scheme of relative dimension 2,
t: R — Endg(A) is an injective ring homomorphism and «: R/NR — A[N]is an
isomorphism of R-group schemes; c.f. [Dri2, §4], [DT, §4], [Buzl]. (Such objects
are sometimes called “false elliptic curves” because of the similarity with the case
of B = M(Q) and the usual modular curves.) This corresponds to the case where K
is I'(N) — the elements of (R ®z Z)” (viewed as a subgroup of G(A')) that reduce
to the identity element under (R ®7 Z)* — (R ®z Z/NZ)*. For a general K, K
contains I'(N) for some N and we take « up to K -equivalence (étale locally). This
makes sense in all characteristics once the level structure is understood in Drinfeld’s
sense for which we refer to [Dril], [KM]. For K small enough, there is therefore a
scheme M over Spec(Z) representing this functor such that Mg ®7Q = Mg (G, X).

As a module over R ® Z,, = M»(Z,), the p-divisible group A[p™]of A/Sisa
direct sum A[p™]1 @& A[p™1> of two isomorphic p-divisible groups over S, where
the decomposition is determined by the orthogonal idempotents (} 3) and (§ {) in
M) (Z,); furthermore, these idempotents are conjugate under (§ 1), which induces
the isomorphism A[p™11 = A[p™]2. Let K be small enough and let K, be the
standard Iwahori subgroup of GL»(Z,). The open compact subgroup K = K, x K”
corresponds to a choice of level structure away from p (given by K7) and a choice
of a non-trivial ideal H C M2(Z/pZ). Such H corresponds, via the K,-equivalence
class of «, to an R-invariant subgroup of A[p] of degree p?. The level structure at p
can therefore also be expressed as an isogeny f: A; — Ay of false elliptic curves
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whose kernel is of degree p? and is killed by p. The conditions on f can also be
formulated by requiring f to have “false degree” p, i.e. that ' o f = [p] (see below
for the exact meaning of this formula); c.f. [DT, p. 453], [Kas1, §§10-11].

Let A/k be a false elliptic curve over an algebraically closed field k of char-
acteristic p. One can prove, by means of the idempotents we have chosen, that the
functor of infinitesimal deformations of A (resp., together with an Iwahori level struc-
ture K, C GL2(Zp)) is equivalent to the functor of deformation of a 1-dimensional
p-divisible group of height 2 over k (resp., with a I'g(p)-level structure). Thus, this
is exactly the situation arising for elliptic curves and is well understood; c.f. [Buz1].
One concludes for such choice of K that every geometric connected component of
the special fibre Mg ® IF), of Mg consists of two smooth curves crossing transversely
at the supersingular points and so is a normal crossing divisor. Moreover, the natural
morphism Mg ®F, — McL,z,) <k ? ®TF, is finite flat of degree p+1 and admits the
usual section taking a false elliptic curve A with K ?-structure to (A, Ker(Fry)) with
the same K ”-structure. The other component is isomorphic to Mgr,, (Zp)xKP ® F,
as well. Indeed, the morphism Mg ® IF), — MGLz(Zp)X x» @ F, induces on it a map
which is bijective on geometric points (the pre-image of a point A is (A, Ker(Vera)).
Hence the map is purely inseparable of degree p.

There is an automorphism w of M that is best described by its action on objects:
an Iwahori level structure f: Ay — A of false elliptic curves is sent by duality
to f': AL — A). We remark here that every false elliptic curve carries a principal
polarization compatible with the R-action [Dri2, §4], hence we get f7: A, — Ay,
whose isomorphism class is well defined (independent of the choice of polarization).
If the kernel of f is connected (resp. étale) then the kernel of f! is étale (resp. con-
nected). Itfollows that w permutes the two irreducible components of every geometric
connected component of Mg ® IF;,. Finally, there is a finite extension IF, 2 I, over
which all the connected components of Mg & Fp and MGLz(Zp) YKP Q Fp are defined
and each connected component is a normal crossing divisor. Using argument as in Re-
mark 3.2, and the fact that Mg @ W(IF,, ) is flat over W (IF;) and has reduced special fi-
bre, one find that the connected components of Mg ®F,, (resp. MaL,(z,)xk? ®F,)are
in bijection with the connected components of the generic fibre. We conclude that each
connected component ¥ of Mg @ W(IF, ) and its image X € Mqr,(z,)xxr @ W(lF,)
satisfy the hypotheses of this paper. Moreover, a descent argument, using the unique-
ness of the section on each connected component (see Proposition 3.5), allows one to
geta section over Mgr,(z,)» k» ® Q) defined over Q. The application of our results
gives a new proof for the existence and other properties of canonical subgroups of
false elliptic curves, recovering Theorem 11.1 and Lemma 12.5 of [Kasl1].
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5.2. Thecasel[F : Q] =d > 1. Incontrast to the previous case, when F' # Q there
is no natural modular description of the Shimura curves associated to B. Instead, by
making an auxiliary choice of a CM field L/F in which p splits, one can associate
to the algebra B ® ¢ L another algebraic group G’ with the same derived group as
that of G. The curves Mg/(G’, X’)/F associated to G’ are PEL Shimura curves.
These auxiliary curves play an important role in Carayol’s construction of an integral
model for Mg (G, X)/ I over O = Opp, since they are closely related to the Shimura
curves defined by G [Car, §4]. Carayol proves that such a model Mg exists, and
that there is a universal p-divisible @-module & of (©-) height 2 over the projective
limit M of Mg over K. This p-divisible group is constructed as a certain “piece”
of the p-divisible group of the universal abelian variety with additional structure
existing over (the projective limit of) the Shimura curves Mg/ (G’, X')/Of. Note
that the p-divisible group & does not carry an R ® @-structure. In a moral sense, this
structure was already used inreducing the height of the p-divisible @-module to 2 (this
corresponds to choosing a particular piece of the p-divisible group of the universal
abelian variety over Mg/ (G’, X’)/ O and is analogous to the process indicated above
for F = Q). For details see [Car], in particular §§3.3, 6.3. We discuss this further.

Assume first that K = GL,(09) x KP. Thus, no level structure is imposed at p.
Carayol constructs a p-divisible group & over M, which is a p-divisible @-module
of height 2. For any geometric point x of M, there is a way to define the fibre %
by lifting x to a geomeitric point of M. Over a geometric characteristic 0 point x
of Mg we have %, = (F, /0)?%. The prime-to-p level structure plays a somewhat
dormant role. For example, Carayol proves [Car, §6.6] a “Serre—Tate theorem” to the
effect that the formal completion of the henselization of Mg at a geometric point x
of its special fibre pro-represents the functor of infinitesimal deformations for the p-
divisible @-module %,. There are two cases:

(1) The ordinary case, where ¥, is isomorphic to F,/OQ @ (Fp/0)", where (—)
denotes the dual p-divisible group;

(2) The supersingular case where % is the “unique” formal @-module of dimen-
sion 1 and height 2 [Dril, Prop. 1.7].

The deformation theory was worked out by Drinfeld. One concludes that in either
case the completed local ring is isomorphic to @nrﬂtﬂ and hence that M is a regular
surface with a smooth special fibre; c.f. [Dril, Prop. 4.2, 4.5], [Car, App. §3].
Carayol also considers the case of level structure K,(n) x KP, where Ky(n)
is the subgroup consisting of matrices in GL;(@) congruent to 1 modulo p”,
and K" is small enough. There is a moduli interpretation of a sort to the ensu-
ing morphism 7 : MKM)X K — MKp(O)X kvr; the group scheme ¢[p"] descends
0 Mk, n)»k» and is equipped with a Drinfeld full p”"-level structure, namely, a

morphism of @-group schemes «: (p~" /(9)2 — Z[p"], such that the closed sub-
scheme ) " p e(p/0) a(P) isequal to Z[p"]. The scheme M Kp(n)x kP 18 @ torsor over
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Aut((p™"/ 0)2) X Mk, (0)» kv and the morphism 7 is the natural one (in particular its
fibres are principal homogenous spaces for Aut((p~"/ (9)2) ). Such level structures

were introduced and studied by Drinfeld in [Dril, p. 572], developed more in [Car,
§7, Appendix], and studied extensively in [KM]. Again Carayol proves a “Serre—Tate
theorem” as to the nature of the completed local rings [Car, §7]. He also proves that the
morphism 7 extends the natural morphism M Kp(n)xKP (G, X) > M Kp(0)xKP (G, X)
induced by the inclusion K, (n) x K? — K,(0) x KP.

As Carayol remarks [Car, §0.4], the construction and results extend to any choice
of level subgroup at p; in particular, for K = K, x KP?, where K, is the Iwahori
subgroup. The scheme MKpX kv then carries a finite flat group scheme 57 (étale
locally) with a Drinfeld level structure p~'/O — . such that 3" p -1/ @(P) is

equal to 57 as a closed subscheme. The following conclusion follows from Carayol’s
work: The completion of the henselization of M Kyxkpata geometric characteristic p
point x is the ring that pro-represents the functor of infinitesimal deformations of the
divisible @-module ¥, together with an @-subgroup scheme of order ¢ = |©/p|
killed by p. This moduli problem can also be phrased in a balanced manner. It can be
viewed as deforming a pair of divisible @-modules of height 2, say %, ¥/, together
with an @-isogeny ¥, — &/ of degree g whose kernel is p-torsion.

The situation is again very similar to elliptic curves with I'g(p)-level structure, and
in particular the following holds. The scheme M KpxKP is a regular two dimensional
scheme, flat over O p, the morphism s is finite flat of degree ¢ + 1 and the nature
of 7 at every point is completely understood. In particular, there are two pre-images
to every ordinary point of Mgy, ()xxr and Mg, . g is regular at each; there is a
unique pre-image y to any geomeltric supersingular point and the completed local ring
of y is isomorphic to @m[[s, t]/(st — = ). For completeness we sketch an argument
below. We remark that one can also argue using the results in [Car] obtained for
full p-level structure. However, Carayol uses an explicit description of the formal
O-module to obtain his results. Since we do not anticipate such description to be
available (or indeed useful) in higher-dimensional cases, using Carayol’s result will
be contrary to our thesis. We therefore provide an argument that should extend to the
more general situation we have in mind.

5.2.1. A sample case. Firstly, we quickly recall the technique of local models in
the particular situation of elliptic curves, which serves as a good sample case for our
problem.

The deformation theory of elliptic curves (or abelian varieties) can be studied as
follows. Given a characteristic p closed point x of a moduli space M of elliptic curves
with level prime to p and its universal object f : & — M, choose an open affine neigh-
borhood U > x and a trivialization of ]I-]IcllR(éa /U) = (9,2]. The variation of Hodge
structure R £, Q¢ — Hl (6/U) provides amorphism U — Grass, where Grass
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is the Grassmann scheme of locally free, locally direct summands of rank 1 of (9[2].
One then shows, using the crystalline theory developed by Grothendieck, that this
morphism is étale and so is an isomorphism on the level of completed local rings
of x and its image in Grass; c.f. [deJ1, DP]. If one wants to work instead with the
p-divisible groups, one may replace ]HI}]R by a similar object provided by the theory
of displays as developed by Zink, or by the theory of Cartier—Dieudonné modules, or
any other theory studying deformations of p-divisible groups. For example, [RZ, §3]
choose the Lie algebra of the universal vectorial extension of the p-divisible group.
By analyzing the Grassmann scheme, one therefore establishes that the completed
local ring is D = W (k(x))[[z].

Under this method, the formal scheme representing the infinitesimal deformation
problem of an elliptic curve with a subgroup of order p may be translated to a
(formal) incidence variety. We think of the moduli problem as the one for a cyclic
isogeny h: E1 — E; of degree p between elliptic curves and we are interested in the
completed local ring of the point on the moduli space that corresponds to such data
over a finite field k of characteristic p. One may choose the trivialization of the two
H(IIR(éﬂ /Spf(D;)), Di (= D) the completed local ring at E;, such that the isogeny is
given by ((1) 2) [DP, §5.3 ff.] or [deJ1]. We are then parameterizing a pair of locally
free, locally direct summands (L1, L) of rank 1 of D* such that (§9) Ly € Lo.
In the ordinary case we get an L whose reduction modulo p is not killed by (} 9)
and the deformation problem is represented by the completion of the local ring of a

k-point x of ]P’%V(Fp) and so is isomorphic to W (k)[[¢]l. In the supersingular case we

getan L1 whose reduction is killed by (§§). Let x be a k-rational point of Py,
and let P be the blow-up of ]P’%V () At x. Its special fibre has a unique singular point
that we shall still denote by x. The deformation problem is pro-represented by the
completion of the local ring of x on P and so is isomorphic to W (k) [[s, t1/(st — p).

5.2.2. The calculation of the completed local rings. Recall that the moduli problem
is phrased in a balanced manner. Let x’ be a closed point of M KpxKP with finite
residue field &, and let x be a k-point supported on x’, where k is an algebraic closure
of k. The situation we have is of two divisible @-modules ¥,, ¢, of dimension 1
and height 2 over k and an O-isogeny h: % — ¥/ of degree ¢ = |@/(w)|, whose
kernel is killed by p.

Let & be ¥, or &/. The Lie algebra of the universal vectorial extension of ¢,
which serves as a substitute for the first de Rham cohomology, is a free k-module of
dimension 2. As mentioned above, the functor of infinitesimal deformations of ¢ is
pro-representable by R* = @™ [[]], which carries a universal object %*. This can also
be proven by the same technique of local models applied to the relative Lie algebra
Lie(¢4") of 4" and the Lie algebra Lie(V¥") = (R"“)? of its universal vectorial
extension V%", which identifies the completed local ring of x with the completed
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local ring of the k-point, still called x, on the formal Grassmann scheme (]P’}?u VA,

The analogue of Lemma 5.5 of [DP]holds. Namely, one can choose isomorphisms
Lie(V¥!) = (R")? and Lie(V¥") = (R™)? such that % is given by the matrix A =
(& 2 (one should use that the p-divisible groups are in fact polarized, are “special
@-modules” in Drinfeld’s sense and that / is compatible with the polarizations).
Therefore, the completed local ring of x is isomorphic to the formal incidence variety
in (PL)" x (PL,)"* given by A, i.e., by the closed subscheme over which we have
A (Lie(4})) < Lie(4]").

In the ordinary case we find that the complete local ring is O[], and in the
supersingular case we find that it is O™ s, t1/(st — ). Finally, one may conclude
that the completed local ring of x” itself is @ @w ) W(k)[¢] if x is ordinary and is
O Qwuy Wk)lls, t1/(st — @) if x is supersingular, where [k : k] < 2.

Given these results, it is straightforward to verify that the connected components
of the generic fibre of a suitable unramified base-change of Mg . K, = Mg, (9)xKk*®
satisfy the assumptions of this paper, including the existence of an automorphism w.
In particular, one has a unique (partial) section on each pair of connected components
of the generic fibres; a descent argument allows one to conclude that the section can
already be defined before base-change.

Remark 5.1. One may, of course, carry the same analysis for the Shimura curves
Mg/(G’, X’). If anything, the analysis is easier, since it is the one underlying
Carayol’s results. Hence, the results of this paper apply to these cases as well.

Remark 5.2. Asis clear from our discussion, whenever we are in a situation of curves
Y — X such that Y (or the fibres) parameterizes group schemes, e.g. in the case of
usual modular curves where Y has a I'o(p)-level structure, or for pairs Mg, . x» —
Mk, ©)xk» (or the analogous situations for the groups G'), the construction of a
section as in this paper provides one with a group scheme over the region where the
section is defined. In particular our results reprove Theorems 3.1 and 3.10.7 of [Kat],
and Theorem 9.1 of [Kas2] on canonical subgroups of abelian schemes parameterized
by Mg/ (G’, X"), and in addition provide an analogue of Theorem 3.10.7 of [Kat] for
such canonical subgroups.
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