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On invariance and Ricci-flatness of Hermitian metrics on open
manifolds

Bert Koehler and Marco Kiihnel*

Abstract. We discuss a technique to construct Ricci-flat hermitian metrics on complements
of (some) anticanonical divisors of almost homogeneous complex manifolds and inquire into
when this metric is complete and Kéhler. This construction has a strong interplay with invariance
groups of the same dimension as the manifold acting with an open orbit. Lie groups of this type
we call divisorial. As an application we describe compact manifolds admitting a divisorially
invariant Kdhler metric on an open subset. Finally, we see a connection between the reducibility
of the anticanonical divisor and the non-triviality of the Kéhler cone on the complement.

Mathematics Subject Classification (2000). 32M05; 32M12; 14M17.

Keywords. Ricci-flat hermitian metrics, Kédhler cone, almost homogeneous manifolds.

Introduction

The first problem addressed in this paper is the construction of Ricci-flat metrics
on open complex manifolds. As a model for this situation serves the complement
of a divisor on a compact manifold X. If D € | — K|, then the section of —K x
vanishing exactly on D yields an isomorphism Q’)‘(\ p = Ox\p. In analogy to the
Calabi conjecture on compact manifolds this raises the expectation that there exists a
complete Ricci-flat Kdhler metric on X \ D. Moreover, methods to find such a metric
may also work, if D is not reduced, leading to the speculative existence of Ricci-flat
Kihler metrics on X \ D, whenever —(D + Ky) is effective. Part of this program
has already been established. Tian and Yau have proved in [TY90] and [TY91] the
existence of a complete Ricci-flat Kéhler metric in case D € | — K x| is neat, almost
ample and smooth. Bando and Kobayashi have shown the claim, if rD € | — K|
for r > 1 and D is ample, smooth and admits on itself a Kihler—Einstein metric.
The metrics involved in the construction contain logarithmic terms. Of course, the
techniques introduced in [TY90], [TY91] and [BK90] cannot be easily generalized to

*The authors acknowledge gratefully support by the DFG priority program ’Global Methods in Complex
Geometry’.
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the reducible or non-reduced case. The method described in Section 1 does not care
about this and is compatible with an algebraic structure. In particular, the metrics
involved can be described in terms of polynomials, if X is algebraic. Of course, this
nice structure has a high prize: either X \ D has trivial geometry and D is expected
to be ‘very’ reducible, or we have to drop the Kihler condition. Nevertheless, this
approach shows some fundamental differences between the reducible and the smooth
case of the divisor D.

The other problem is determining highly symmetric metrics on X \ D. Both prob-
lems getrelated by the idea that Ricci-flatness should be forced by a high order of sym-
metry. For example, a naive calculation shows that all metrics on P2\ {3 general lines}
invariant under the connected invariance group of the three lines are complete, Ricci-
flat and Kihler. In Chapter 2 we explain the connection between the construction in
Chapter 1 and the symmetries of D resp. symmetries of the metric. Here we discuss
continuous symmetries. A striking point is that the metric is Kéhler if and only if
it is symmetric. Moreover, in this case the symmetry group is abelian. This allows
a description of the manifolds admitting a divisorially invariant Kédhler metric on an
open subset; in particular, we recognize D to be reducible or non-reduced, if X is
homogeneous and projective. By divisorial invariance we mean that the action of G
has an open orbitand dim G = dim X, if G denotes the symmetry group of D. Three
general lines in P? satisfy this condition. Parts of the description are well known.

Winkelmann treated in [Wi04] the problem when Tx(—log D) is trivial. Of
course, the condition that there is a Ricci-flat metric on X \ D is much weaker than
the triviality of Tx (—log D). However, in the respective Kéhler cases there are great
similarities. We will note this at the appropriate place.

As alast topic we inquire into a sort of Kihler classes of the constructed metrics.
Two metrics shall be regarded as equivalent if they differ only by a Kiéhler potential.
We call the cone of G-invariant metrics generated by this equivalence K (X, D).
If we denote n := dim X, then we will prove that dim K¢ (X, D) > %n(n — 1) for
reduced D. So even if dim Alb(X) = 0 the cone K (X, D) is highly non-trivial.
This effect for K (X, D) := K{(X, D) 1s in close relation with the reducibility of D.
In the appendix we will show that K (X, D) = 0, if D is smooth and ample and X
has simple enough topology,e.g. X = P3.

The authors would like to thank the referee for pointing out a mistake in the
appendix.

1. Vocabulary

We consider compact complex manifolds X. Of great importance will be the auto-
morphism group Aut(X) and its action on X. If G C Aut(X) is a Lie group, we
write G? for the connected component of G containing the identity. By g we denote



Vol. 81 (2006) Invariance and Ricci-flatness of metrics on open manifolds 545
the Lie algebra of G. If D C X and g is a metric on X \ D, then we define
Aut(X, D) :={¢p € Aut(X) | ¢|p € Aut(D)}

and
Aut(X, D, g) :={¢ € Aut(X, D) | p*g = g}.

If Y is some complex manifold and g a metric on Y, we also denote
Aut(Y, g) := {¢p € Au(Y) | p*g = g}.

In most cases we will further assume that X is almost homogeneous. We will
often make use of the following equivalences.

Definition + Lemma 1.1. A compact complex manifold X is called almost homo-
geneous, If there is a Lie group G C Aut(X) such that one (and then all) of the
Jollowing properties are satisfied.:

(1) The action of G has an open orbit,
(ii) the action of G° has an open orbit,
(i) g := T1G generates Tx at the general point,

(iv) there is a vector space V C g with dim V = dim X, which generates Tx at the
general point.

If G ¢ Aut’(X) is a Lie group which has an open orbit, then we say G acts almost
transitively on X .

In the Kihler case we will encounter a special form of abelian Lie groups, so
called semi-tori.

Definition 1.2. A complex Lie group G is a semi-torus, if there is a number »n and a
discrete subgroup A C C" such that A @ C = C" and G = C*/A.

The other aspect of the paper is Kéhler metrics on complements of divisors. If Y
is any complex manifold and G C Aut(Y) is a Lie group, we denote by Mg(Y)
the set of all Kihler metrics on Y invariant under G. If X is a compact complex
manifold, D € X adivisor, Y = X \ D and G C Aut(X, D), then we also write
Mg (X, D) .= Mg(Y) to emphasize that we use only automorphisms of X for the
construction.

For analytical application a Kiihler potential is more useful than a d-exact (1, 1)-
form. In the compact case there is no difference, but in the open case we have to
distinguish. This is the reason why we do not consider the Kihler cone as a subcone
of HY1(X), but use a finer equivalence relation.
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Definition 1.3. For closed (1, 1)-forms @, »" on a complex manifold Y,
w ~ @ <= thereexists ¢ € C(Y, R) such that  — o’ = 193¢,

is an equivalence relation. We denote the quotient by HLLY). If G C Aut(Y), we
define
KG(Y) = Mg(Y)/~ C #"1(¥)

and call it the G-Kdhler cone of X \ D. We also abbreviate K(Y) := K{(Y) and
call this cone the Kdhler cone of Y. Note that this definition of the Kihler cone
coincides with the usual, if Y is compact. Like above, if X is a compact complex
manifold, D C X adivisor, Y = X \ D and G C Aut(X, D), we also write
Ke(X, D) :=Kg(Y).

Since parts of the paper are written in the language of differential geometry, we
use co- and contravariant indexing conventions as well as Einstein’s sum convention.
In order to be able to do this, we distinguish indices arising from non-differential
context by setting them in brackets, if appropriate. The decision, whether such an
index is sub- or superscript, is made by considering the beauty of involved formulae.
For example, a set of vector fields is denoted by s . The same vector fields in local
coordinates will be written sik;—k. Here we omit the brackets, because we want to
put the components into a matrix. The only unlucky point of this convention is where
powers of coordinates appear. But we believe that also in these cases the meaning
will become clear.

2. Metrics generated by vector fields

2.1. Construction of the metrics. In this section we discuss a method to construct
complete, Ricci-flat hermitian metrics. These are neither necessarily invariant nor
necessarily Kihler. We will determine the cases when the metric is Kéhler.

The construction of the divisor is widely used in many works about almost ho-
mogeneous manifolds. However, in this place we concentrate on the metric which
comes with the construction. For this reason we give here a detailed description.

We use the notion of an abelian subspace of H Ty ® Myx). Wecall V C
H®(Tx ® My) abelian, if forall ¢, & € V holds [¢, £] = 0. In general, however, we
do not require V to be an algebra.

Construction 2.1. Let X be a projective manifold of dimension n, E an effective
divisor and 8 = {sV, ..., sW} ¢ H(Tx ® O(E)) meromorphic vector fields
generating Tx in the general point and denote V. = (8B) the vector space spanned
by 8. This vields a divisor Dy € | — Kx +nE| and a Ricci-flat hermitian metric g g
on X \ (Dy U E). The metric gg is Kdhler if and only if V is abelian.
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Implementatiaﬂ. Since sV, ..., s e HY Ty ® O(E)) generate Ty in a general
point, /\?:1 s vanishes exactly on a divisor Dy. Obviously Dy € | — Kx +nE]|.
Since on X \ (Dy U E) the s®(x) form a basis of Ty, we may construct sy €
T)’é’x by prescribing s¢y(s(/)) = §;; on X \ (Dy U E). Further we can extend this
correspondence to a linear map

TZ TX —> T;
and define
ga(s®1) :=s"(1),

ifs € Tx.x,t € Tx.. Inalocal chart we denote s ) = sikaiz,c.Wedenoteby (sij) =0
the inverse matrix of (s*/). Then

0 & 0
e — —_— = SikS; »
88.,ij 88 a7 azj ikSjk

which yields
Ric(gg) = ééﬁlogdet o5 = éaﬁlogdeto + é&glog deto = 0,

since det o is holomorphic.
A short calculation shows that g g is Kéhler if and only if

Sijl = Siji
forall ¢, j, I. Converting this condition to the vector field components yields
sijst} = skjsfé»
forall i, k, [. Of course, this is the condition
[s(i), S(k)] =0
for all i, k. But this means that V is abelian. o

Serre’s Theorems A and B for projective manifolds imply that the conditions of
the construction can be satisfied for any projective X, if we choose E ample enough.
Hence there is a Ricci-flat hermitian metric on the complement of an appropriate
divisor for any projective X.

Note that by construction T'x\(py,uE) 15 trivial. In [Wi04] the problem is addressed
when Tx(—1log D) is trivial and answered in terms of the existence and action of a
semi-torus. In the next section we will be able to describe this property in terms of g
and Dy.
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In the remainder of the article we will set E = 0. This has two reasons. The
exponential map, applied to meromorphic vector fields does not yield automorphisms
of the whole manifold, hence there is no Lie group we can work with. The other reason
is that we cannot expect completeness of the metric in direction to E. After setting
E = 0, we can drop the condition of projectiveness of X. On the other hand, the
construction then exhibits X as an almost homogeneous manifold.

2.2. Completeness of the metrics. Since we are dealing with open manifolds we
should address the problem of completeness of the constructed metric. For this
purpose we introduce some new notation. First, we define S := (s'¥) = o ~1. Recall
that we chose £ = 0. We interpret SE; 0;‘?” — T'x as a sheaf homomorphism and
define

£ :=ker S'.

Of course, £ is supported on Dy and we prove
Lemma 2.2. If Dy is smooth, then L is a line bundle on Dy .

Proof. L is line bundle if and only if rk S|Dy = n — 1 everywhere. So assume that
inx € Dy wehaverk S(x) < n — 1. Then all (n — 1) x (n — 1)-minors of S vanish
in x, in particular d det S(x) = 0, hence x € Sing(Dy). O

Now assume that Dy is smooth and consider

n—1
o = N\sP1py € H'( N\ TxIDy) = HAQXIDy © Npy ).
J#l

These are related via £ by the equation
(=D agpon + (=D'pog =0

forall i, j and x € Dy, A € L,. Again, smoothness of Dy implies that in a point
x € Dy not all wg;y can vanish. Hence the vector spaces ¥, := ((w));) are one-
dimensional and form a line bundle £ C Q}( |Dy ® Npy|x. By looking at the natural
local trivializations of £ and ¥ it is easy to see that

F =LY

Note that the inclusion i : Dy — X yields via Poincaré Duality a homomorphism
iv: H*(Dy,R) — H*(X,R) of degree 2. With this notation in mind, the very
definition of ¥ implies that
ixc1(F) = c2(X).
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The tensored dual tangent sequence
0 —> Op, —> Qx|Dv ® Npyix —> @, ® Npyjx — 0,
allows us to formulate the property ¥ = Op, = kerm.
Lemma 2.3. If Dv is smooth, then gg is complete if and only if ¥ = ker z.
Proof. Letus choose x € Dy and local coordinates in a small open subset U C X
such that Dy = {z1 = 0}. Furthermore, denote U’ :== U N Dy and pr: U — U’

the projection induced by the local coordinates. choose 0 # A € £(U’) and an order
of B such that Ay = 1. If we now define B by

1 if i = j,
Bij(z) == { —Ap(pr(z)) ifi=1,7#1,,
0 else

then § := BSis just S replaced by a first row vanishing on U /. Now we have a look at
& := (8)~L. Since the first row is identically 0 on U’, we conclude that 51; € O(U)
fori: > 1. Since

g1 = Z |51 1% — 2Re(az A@y§1i) + 511 Z IYOL

i>1 i>1

we see now that g is complete if and only if 577 ~ zil for all such choices of coordinates.
Indeed, 511 = s11. Hence, if we denote A;; the (i, j)-entry of the cofactor matrix of S,
then the condition is equivalent to A11(x) # 0. If we now choose other coordinates

2!, 2" such that Dy = {z" =0} and denote J := (7). h := £ # 0, then

Ay =detJ(h A + Y Tt A #£0
k>1

Since the coordinate transform was arbitrary, we conclude that
Ap(x) =0 forallk > 1.
This is equivalent to 0 # w1y € HY(ker 7). This again means ¥ = ker 7. a

Note that completeness as well as the Kihler property of g depend only on V.

If Dy is not smooth, but still reduced, then we consider D(‘),, the regular part of Dy
and the corresponding objects £, £°, 7%, which are obtained by restriction to D?,.
We now show the preceding lemma for the singular case.
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Lemma 2.4. Assume that Dy is reduced. Then gg is complete if and only if 9 =
ker 7°.

Proof. ‘=": If gp is complete, the same arguments as in Lemma 2.3 imply that
FO = kernC.

‘<" Letlocally Dy = {f = 0} in a small open neighbourhood U C X. Then
we can choose functions z2, ... z" which give local coordinates together with f on
the set U := U\{df ndz? A---Adz" = 0}. Like in the proof above we argue that g3
is complete if A11(x) # O for choices like above and x € Dy. Since by assumption
this is true for x € Dy \ Sing(Dy), extension of the holomorphic function A1q to U’
yields a non-zero function Ay € @*(U’), if Dy was normal. If Dy is not normal,
we choose an embedded normalization

Dvﬁv’DV
f(—M>X,

where i, j denote inclusions and v the normalization of Dy. Now we apply the same
arguments to the pseudometric 1*g and obtain by looking at paths y such that p|,
is a diffeomorphism that g is complete. O

Now we can see a connection to the invariance group.

Lemma 2.5. Assume that Dy is reduced. Then g g is completeifand onlyif exp(V) C
Aut’(X, Dy).

Proof. If we denote by 'V the sheaf on D generated by Vy := UsD(x)}) forx € D,
then (V) = 0, if we regard § < Hom(Tx|py,, Np,|x). Since F° = ker ",
figuring out the dualized maps

0
P
0_)TD3 —>TX|D?,—>\'FOV®ND(‘)/|X—>O

yields V0 = ker p¥ = py - This is equivalent to Vo C HO(TD% ). This again
means that every ¢ € exp(V) holds Dy invariant, so exp(V) C Aut’(X, Dy) is an
equivalent condition. O

Taking into account the results of Section 3, which are obtained independently of
the considerations about completeness, we even find

Theorem 2.6. If V is a Lie subalgebra, then gg is complete. If gg is complete and
Dy is reduced, then V is a Lie subalgebra.
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Proof. (1)If V is a Lie subalgebra, Lemma 3.1 implies the desired property exp(V) C
Aut’(X, Dy). Here we are finished, if Dy is reduced. In any case, if we have
Dy rea NU = {z! = 0}, this implies that

sil — il

for some 1! € ©(U) and all i. Now
detS = ZS“Ali = zl ZtilAllx
i i

So, if m := max{k | (z1)"*A1; € @) for all i}, we conclude (z})™1detS €
O (U). Hence

g1 =Y st = (det )72 Ay 2 ~ |7

with k > 2. This procedure generalizes easily to the case of Dy req being normal
crossings. But this we can achieve by Hironaka’s embedded desingularization. Since
Sing(Dy red) 1s also exp(V)-invariant and so is Sing(Sing(Dv red)red) and so on, we
can pull back the vector fields to the normal crossings case and apply the arguments
above.

(ii) Since gg is complete and Dy reduced, by Lemma 2.5 we obtain exp(V) C
Aut®(X, Dy). Hence Aut®(X, Dy) acts almost transitively. So Lemma 3.2 yields
dimexp(V) = dim X = dim Aut’(X, Dy). This means

Ty Aut’(X, Dy) = Tyexp(V) =V,
hence V is a Lie subalgebra. O

Now it is clear from the previous arguments that Ty (—log Dy ) is trivial, if g g is
complete and Dy is a simple normal crossings divisor. In Chapter 4 we will show
furthermore that G := exp(V) is a semi-torus, if g is complete and Kihler and Dy
is reduced.

The existence of a complete gg for a smooth Dy restricts the geometry of X
significantly:

Corollary 2.7. If Dy is smooth and g g is complete, then c(X) = 0.
Proof. ¥ =kerm = Up,, hence c2(X) = i4c1(Op,) =0. O
Now we have seen that c2(X) # O implies that the divisor Dy is singular, if V

is a Lie subalgebra. We will see later that the Kihler condition allows an explicit
description of the singularities, at least on projective homogeneous manifolds.
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3. Symmetries of the divisor and the metric

In this section we want to relate the construction above (with £ = 0) to the appearance
of symmetries on D and the metric. As it may be not hard to guess, this connection is
made by Lie theory. Throughout this section we mean always a complex Lie group
when we speak of Lie groups.

If G is a Lie group we identify g = 771G, andif G ¢ Aut’(X), then we furthermore
identify g with the subvector space of H°(Ty) given by the vector fields s(x) :=
%g(t)xhzo, where g(¢) denotes a (holomorphic) path in G with g(0) = 1 and
%g(t)h:o = & € T1G. Furthermore we have an action of G on 771G by hE =
2 hg(t)h Vim0, if h € G.

Lemma 3.1. Let X be a compact complex manifold of dimension n, G C Aut’(X)
a connected complex Lie group acting almost transitively on X and g be the corre-
sponding Lie algebra. Then

(i) D e |— Kx|is reduced and G C Aut®(X, D) = D = Dy forall V C gwith
dim V = n and generating Ty in the general point,
(ii) if dim G = n, then G C Aut®(X, Dy),
(i) if dim G = n, B C g is a basis, then

G c Aut’(X, Dy, g3) <= G is abelian.

Proof. (1): Let V C g be an n-dimensional vector space generating Ty in the general
point and 8 C V a basis. Since D is G-invariant, for any s € g C H 0(Tx) the
restriction s|po gives an element of HY(Tpo). Since dim D = n — 1, this implies
Nsea SIp = 0,hence D C Dy. But D and Dy are both elements of | — K x|, hence
D = Dy.

(ii): If s € g ¢ HYTy) is given by & € 771G, then for 1 € G the pullback
h*s is given by h~'& € T1G, hence h*s € g. Furthermore #* maps a basis of g
to a basis again, because A is an automorphism. This proves that /\ s =0 =
Ah*s® =0,if sM, ..., 5™ is a basis of g. Hence h(D) = D. This proves that D
is G-invariant.

(ii1): Let w be the fundamental (1, 1)-form of gg. Of course, gg is G-invariant
if and only if Lsw = 0, if s € g and £ denotes the Lie derivative. If Cy denotes
the contraction by s, then £; = dCs + Csd (see e.g. [La, V,5]). Let us choose local
coordinates like in the construction. Then

0=Lopw = Z slm(sik’m — Smk,i)Sjkd7 A dZ.
i,j,k,m

Since S is invertible on X \ D, we obtain

Sik.m — Smk,i = 0
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for all ¢, k, m. This we identified at an earlier place with the condition
9, s@W1=0

for all i, j. Hence g is abelian. It is well known that this is equivalent to G to be
abelian. ]

As a first application, we obtain kind of uniqueness of the vector space V in the
construction.

Lemma 3.2. Let X be a compact complex manifold and D € | — Kx| reduced. If
Aut(X, D) acts almost transitively, then dim Aut(X, D) = dim X.

Proof. SetG := Aut(X, D) andn := dim X. Of course, dim G > n, since otherwise
TG could not generate Ty in any point. Now choose B := {s, ... st} c g
such that B8 \ {s"*D} generates T in the general point. Further denote NG ==
A\, s and by Vi) the vector space generated by 8 \ {s}.

Since dim X = n, we can find meromorphic functions f(;y € Mx(X) such that
skD =5 fiys®. By assumption we know 1,11y # 0.

If gy = 0, then we see by ng) = fi)ynw+1) that fi;) = 0.

If ngy # 0, then V; generates Ty in the general point and we may use Lemma 3.1
to obtain

Nnt) =0 < 0o =0 <= fiynmsn = 0.

Hence f{;) has no zeroes. By exchanging s® and s"+D we also see that S has no
poles. Hence f{;) is constant.

Now we proved that every f; is constant, hence sV, ..., s®+1 are linearly de-
pendent and dim G = n. O

Note that the connection between the invariance group and the anticanonical
system is essential. For example, the invariance group of a point in P! is two-
dimensional and acts almost transitively.

Since every dim X -dimensional Lie group which acts almost transitively yields
an invariant D € | — Kx|, Lemma 3.2 suggests the following definition.

Definition 3.3. If X is a compact complex manifold and G C Aut(X) a connected
complex Lie group with dim &G = dim X acting almost transitively on X, we say G
is a divisorial group. If on the other hand D € | — K| is reduced, we say D
has a divisorial invariance group, if Aut(X, D) acts almost transitively. Any object
invariant under a divisorial group we call divisorially invariant.

Lemma 3.2 now allows a stronger and more compact formulation of Lemma 3.1.
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Theorem 3.4. Let X be a compact complex manifold, G a divisorial group and g the
corresponding Lie algebra. Then for a reduced divisor D € | — K x| holds

G =Au’(X,D) < D=D,.
If 8 C gisabasis, then
G = Aut’(X, Dy, g3) <= G is abelian.

Proof. 1f D = Dy, by Lemma 3.1 G C Aut’(X, D). Hence Aut’(X, D) acts almost
transitively and by Lemma 3.2 we obtain dim G = dim X = dim Aut®(X, D), hence
G = Aut’(X, D). O

In this context it is appropriate to introduce the notion of a homogeneous pair.

Definition 3.5. A homogeneous pair (X, D) consists of a compact complex mani-
fold X and an effective reduced divisor D such that AutO(X , D) acts transitively on
X \ D. We call a homogeneous pair (X, D) anticanonical, if D € | — Kx|.

Theorem 3.4 provides a close relation between homogeneous pairs and divisorial
groups.

Remark 3.6.

+ Note that the proof of Lemma 3.1 also shows that every analytical G-invariant
set S is contained in the G-invariant D € | — Kx|.

» Note that the vector field method is much more general than the invariance
approach: There is no need for the vector space V. H°(Tx) to be an algebra,
whereas invariant divisors correspond to Lie subalgebras of HO(T).

+ However, if g arises by the general vector field method and is Kihler, we
have V proved to be abelian; in particular, V is a Lie subalgebra. Of course,
exp: HO(Tx) — Aut’(X) restricted to V maps to an n-dimensional Lie sub-
group G leaving D and g invariant.

Now we also see that divisorial invariance is exactly the property we had in mind
when we expected that Ricci-flatness should be implied by a high order of symmetry.

Corollary 3.7. Let X be an n-dimensional compact complex manifold, G  Aut®(X)
a divisorial (abelian) Lie group. Then there is a complete Ricci-flat (Kdhlerian
G-invariant) metric on X \ Dy.

In [Wi04] Winkelmann proved that Tx (— log D) is even holomorphically trivial,
if G is a complex semi-torus and acts with only semi-tori as isotropy groups. We will
see in the next paragraph that G being a semi-torus is implied by Dy being reduced.
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4. The structure of the Kihler case

4.1. Description of the manifolds. We saw that the metric g on X \ D constructed
by an automorphism group G is complete and it is Kihler if and only if G is abelian.
In this case g is also G-invariant. Now we want so see that this construction yields all
G-invariant Kihler metrics. The first step is to show that complex invariance groups
of Kihler metrics are abelian. Similar connections between the Kéhler property
and abelian groups are well known. However, most results in this direction use
compactness of the Kihler manifold by employing that all holomorphic one-forms
are closed. This formulation makes only use of the Kihler form and hence is also
valid in the non-compact case.

Lemma 4.1. Let Y be a complex manifold and g a Kéhler metric on Y. Then any
connected complex Lie group G C Aut®(Y, g) is abelian.

Proof. Let o denote the Kiéhler form of g and g € H O(Ty) the Lie algebra of G.
Since g is G-invariant, for all s € g we obtain

Lsw =0,

where £ denotes the Lie derivative. If furthermore C denotes the contraction by the
subscript vector field, £y = dC; + Cyd and hence we conclude dCsow = 0 for all
s € g. Again using an elementary formula (see e.g. [La, V,5]) and dw = 0 we obtain
fors,t eg

Cino = (LsCr — CrLs)w = L Croo = dCsCroo + C5d Cro.

Since w is a (1, 1)-form and s, ¢ are holomorphic, C;Cyw = 0. We already saw that
dCrw = 0, hence both summands of the right hand side vanish, yielding Cis s = 0.
In local coordinates this means

apls, 1 =0.

Since the matrix g, 5 is invertible this implies [s, 7] = 0. Hence g is abelian and
therefore also G is abelian. O

It is known (cf, [Onl, p. 12]) that an orbit of G is locally (in &) a submanifold. A
closer look at the argument in the second part of the proof of Theorem 3.4 reveals that
any orbit, whose local dimension is smaller than » must be contained in Dy. Hence
X \ Dy is the unique open orbit of G. Letxp € X \ Dgand o: G — X \ Dy be the
action map g — gxo. Again itis known (cf. [On1]) that « has constant rank. Since «
is surjective, it has to be a covering map. If G is abelian, yz := a(¢~ ! (y)a~1(z)) is
well-defined and turns X \ Dy itself into an abelian Lie group of dimension » and «
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into a group homomorphism. Since elements of ker « induce the same action on
X\ Dy, the property G C Aut®(X) implies that « is an isomorphism. Hence we will
identify G and X \ Dy from now on.

Note that for a Lie group G being abelian implies that G = C" /A, where A is a
discrete subgroup. This is proved by looking at the exponential map

exp: g — G,

which is easily seen to be a group homomorphism of (g, +) into G. Since exp maps
some neighbourhood of O diffeomorphically to a neighbourhood of 1, say U, and
Ure4 Uk = G, the map exp is surjective. Hence G = (g, +)/ ker(exp) = C"/A,
where A := ker(exp) must be discrete, since n = dim G = dim g.

In particular we see that X \ Dy = C"/A, if G is abelian. We will use this in the
next proof.

Lemma 4.2. Let X be a compact complex manifold and G C Aut’(X) a divisorial
Lie group. If g is a Kdhler metric on X \ Dy such that Aut’(X, Dy, g) = Gthen g
is complete and there is a basis 8 C g such that g = g 3.

Proof. We already know by Lemma 4.1 that G is abelian and hence g3 is Kihler and
G-invariant, if 8 C g is a basis. Since G = X \ Dy = C"/A we choose the images
of the canonical coordinates z1, ..., z, of C" as local coordinates of X \ Dy. For
the sake of simplicity we call them also z1, ..., z,. Of course, g = g, de”‘ ® dzf
is G-invariant, if and only if g,z is constant for all «, f. Hence g is complete and
corresponds one to one to g(0) what we identify with the matrix ¢ = (g,3(0)). The
corresponding matrix g = isg 5 = oo*. Note that o is constant since G is abelian
(cf. proof of Theorem 3.4). Recall S = o1 and define H := SgS*. Since H is
hermitian, we can find A € Gl(n) suchthat H = A*A. Nowg = o Ho* = 0 AA*o*.
Set B := A~!. Then g is given by the vector fields ¢} = 37, b;;s'/), which form
another basis of g. (Indeed, this shows by Theorem 2.6 once more that g is complete.)

O

Corollary 4.3. Let X be a compact complex manifold and S C X analytic with
codim S > 1. If X allows for a divisorially invariant Kihler metric on X \ S, then X
is a torus and S is empty (if chosen minimal).

Proof. Assume that g is such a metric and G the divisorial abelian Lie group. By
Lemma4.2 g| X \ Dy is constructed by a basis of g. If Dy is givenby o € H°(—KYx),
then det g = |o|~2, hence is singular on Dy. This implies Dy = 0. In particular,
X =G =C"/A. Since X is compact, A is a complete lattice and X is a torus. O

Note that this proof works also, if codim S = 1, but S # Dy ed.
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It is generally known (earliest references refer to a lecture of Reinhold Remmert
in 1958/1959) that any abelian complex Lie group is a direct product of copies of 7',
C and C*, where T is a group without non-constant holomorphic functions. For a
more detailed analysis we refer to [M066]. Since Winkelmann related the triviality
of a logarithmic tangent bundle to G being a semi-torus in [Wi04], we would like to
express this property in terms of the mentioned decomposition.

Lemma 4.4. G =T x (CH* x Cl is a semi-torus < [ = 0.

Proof. If G is not a semi-torus, i.e. A @ C # C", then obviously I # 0. So let
G be a semi-torus. There is a lattice A’ € C"~' coming from the decomposition
such that G = C"/A’. The isomorphism ¢: C"*/A — C" /A’ is induced by a vector
space isomorphism ¢: C" — C" obeying ¢(A) = A’. Hence C"' = A’ ®C =
P(ARC)=C",s0l =0. O

The toric varieties fit in the system as special cases where G = (C*)". If X is
Fano, then X \ Dy is Stein and hence the factor 7" does not occur (cf. also [MM60,
Prop. 4] for this particular claim). If we relax this condition a little we can show
that T is a torus. The following lemma in particular covers the case of homogeneous
manifolds for which the result is well known.

Lemma 4.5. Let X be aprojective almost homogeneous manifold such that | —mK x|
is base point free for a certain m > 0. Let further G C Aut’(X) be an abelian
divisorial Lie group. X \ Dy is of the form T x Ck x (CYY, where T is a torus.
Furthermore, X = T x Y for a rational manifold Y .

Proof. We first have to prove that 7" is a torus. The assumption that | — m K x| is base
point free enables us to choose for every x € Dy a meromorphic function £ with poles
exactly along Dy and x is not in the locus of indeterminacy of f. If T is not compact,
we fix z € Ck x (C* and x € T x {z}. Since f]| X\D, 18 holomorphic, in particular
f = f |7x{z} is holomorphic. Hence f is constant and we obtain 7' x {z} C X \ Dy.
This implies that T is compact.

Hence T is a projective manifold. Since 7 = C/A, the lattice A is complete
and hence T is a torus.

Now we have to prove that the projection onto 7 is extendable. Since X is
bimeromorphic to P* x T, and the Albanese torus A(X) as well as the Albanese map
a: X — A(X) are bimeromorphic invariants of projective manifolds, 7 = A(X)
and pr = « by the universal property of (A(X), «).

Now choose h := (1,7) € G = H x T and denote F; := «~(¢). Of course,
h: X — X satisfies h(F;) = Fyypandthemap r: FoxT — X, (v, t) — (1, 1)y s
anisomorphism. Since Y := Fyisacompactification of C¥ x (C*)!, itisrational. O
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Indeed, all factors of G can occur. If X factors X = T x X, then X \ Dy =
T x X \ D, since K7 = 0. The factor C¥ x (C*)! occurs even for X = P", if G is
carefully chosen. For example, the group

1 ¢ s—I—%
=4l 1 s,teC} =% +)
00 1

acts on P2, leaving only Dy o4 = {22 = O} invariant Of course, the corresponding
vector fields sV = 72 az s@ =72 81 —|—z yleld Dy = {(z5)3 = 0}. We leave it
as an exercise to the reader to construct the other cases. The philosophy is: C*-actions
degenerate to C-actions whenever (wo hypersurfaces coincide. Indeed, we are now
going to show that this is always the situation.

Lemma 4.6. If Dy is reduced, then G is a semi-torus.

Proof. We assume that G is not a semi-torus, hence by Lemma 4.4 we obtain a
decomposition G = C x G’. We choose s € H°(—Kx) such that Dy = {s = 0}.
Since G’ is abelian, G’ = C"~!/A and we may choose local coordinates 7!, . .., 7!

induced by canonical coordinates of C"~!. In those coordinates of X \ Dg we write

b " " a
321 azn—l’

s=fx, 2, ...,
ox

where x denotes the coordinate of the factor C. If x — oo, we will approximate a point
in Dy. In order to approximate other points (and indeed by this procedure all other
points of a certain component of D), we choose an arbitrary holomorphic A : C — G’
and look at the curve (x, Z’ 4+ A(x)) for a fixed point z’ := (z',...,2""1) € G'. Let
p=limyoo(x, 7 + A(x)) € Dg. Byx > L =1y, 21 > 2 —ai(x) = z' we get
local coordinates in a neighbourhood U(p) \ Dy. In these coordinates,

(i ()2,
N ’Z y ’ dy arr gL

Let us denote h(y) := —f(%, 7+ }»(%))yz. The group action of C now is

y
14+ py

pey=
The invariance of Dy under G implies for 1 € C that u*s = c(u)s, hence

B - y) (1 + puy)? = c(u)h(y).
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Since c(p 4+ «)s = (u +1)*s = p*c*s = c(u)c(i)s, we obtain c(u) = exp(pp).
This implies
exp(pu)

h(p-y) = mh(Y)-

Now fixing y = 1 yields

’

h( 1 )_ exp(p(1 + )
=
1+p (1+ p)?

hence

h(y) = cy2 exp (g) .

Since we have the additional requirement that s| Dy = 0 and % A 35’7 SRRV # (p)
has a finite vanishing order, we conclude p = 0. Now we see that /2 vanishes of order 2
in 0. We cannot guarantee that different choices of z’ lead to different limit points
on Dy, i.e. maybe % A a‘% A A aZ3—,1(p) = (. Hence we only conclude that
the vanishing order of s on the limit point p is at least 2. Since we could do this
construction for every point of a component containing p, we conclude that this
component is multiple. ]

Corollary 4.7. If X is an n-dimensional projective compact complex manifold such
that|—m K x| is base poini free for some m > O, further D € |—Kx|areduced divisor
and g a Kdhler metric on X \ D with divisorial invariance group Aut(X, D, g), then
X =T x P, where P denotes a projective toric variety; in this case D =Y T x D,
where D; are the distinct toric divisors of P.

Proof. Weknow X = P x T. Since D is reduced, X \ D = (C*)! x T. Since P is
algebraic and has an algebraic (C*)’-action, it is a toric variety and D is like described
(cf. [Ful). o

This splitting behavior cannot be expected in general. However, X is always a
fibre bundle over Alb(X). This is generally known and easy to be seen by the universal
property of «.

4.2. Non-triviality of the G-Kihler cone. Recall the definition of the G-Kihler
cone: We call two G-invariant Kihler metrics g and g’ equivalent, if there is a
function ¢ € C®(X \ Dy) such that @, — w, = idd¢. Since there is no 39-lemma
in the non-compact case, this cannot be viewed as the Kihler class of w,, but the
philosophy is very similar.

Weidentify again X\ Dy = C"/A. Every A1y, A2) € A generate a parallelogram,
whose image in X \ Dy is a compact real surface 7}, ;) 1, f @ = 93¢, then Stokes’
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Theorem implies

L T T olmid s

0= / = wjj ()”l(l)}‘(Z) — }»1(2))»(1)) = ZIm()\.(l)QA,(Z)),
Dy

if @ = (wj;)i,j. Note that the w;; are constant. This property only depends on

AR := A ®@ R. Itis easy to see that in appropriate complex coordinates every real
subspace of C" is of the form

Ap={z'l= =7 =Im* = ... = Imz¥ = 0.

In other words, A is generated by the real standard basis of C¥ = R?* and the
standard basis of R/ = Re(C/) (fork = n —k’,1 = k¥’ —I’). By this choice the above
equations mean that in the standard basis of C* = C* @ C! @ C"—*!

0 0 =
w=\|0 real x|,
* ok ok

where every entry stands for the block corresponding to the factors of C" = C* @
C' @ C"*~! and % means that there is no claim about this entry.

Now let us reverse the direction. For the sake of simplicity, let us denote k :=
{1,.. kLl ={k+1,...,k+i},m :={k+1+1,...,n}. If wis of the above
form, we define ¢ by

$(2) =2 wilm(z)*+4 Y wylm)im(z)

iel i<jel
+4 Z (wijIm(Zi);—a)jiIm(Zi)Zj)
iel,jem
+4Zwii|2i|2+2 Z Cl)ijzigy
icm i<jem
then
B 0 0 =%
w—1iddp=]0 0 O
* 0 0

If we now assume further that G is a semi-torus (e.g. Dy is reduced), then the
factor C"~*=! does not occur and hence

w=1i80¢.

This leads to the following result.
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Theorem 4.8. Let X be an n-dimensional compact complex manifold and G = C" /A
a divisorial semi-torus. We write Ar = C* @ Re(C!) (with k + | = n). Denote
i: M(,C) — M(n,C) the embedding which fills up an | x l-matrix with zeroes.
Then

KG(X, Dy) C M(n,C)/i(M(l,R))

is the cone genemted by positive definite hermitian matrices. In particular,
dim K (X, Dg) = n®> — ~l(l +1).

This contrasts to the case of a smooth divisor D. In the appendix we will show
that the Kihler cone is trivial, if X has simple topology and D is smooth.

Remark 4.9. The preceding calculations also show that Kg(X, Dg) = 0 for an
abelian divisorial G, if and only if G = C* x C*~! or G = C". This is the case, for
instance, if X = IP" and D consists of two hyperplanes, one of them with multiplicity n
or D is a hyperplane of multiplicity n + 1, respectively. So the G-Kihler cone can
be trivial for reducible non-reduced D, but only for very special cases. Note that the
appearance of at most one factor C* in G is reflected in the condition by(X) =0in
Theorem A.1.

5. Example: X = P?

If X = IP?, then the tangent bundle may be described by the vector fields homogeneous
of degree 1 divided by the Vector fields parallel to the orbits of the group action z — cz,
ie. Oy - ( aZO + 7! az + 22 ) Hence the global vector fields are

9 9 9 9
T 21— z 12 C- L L5,
(Tx) = ( G+ )/ e

where I are homogeneous linear forms. Now let V := Co¥ @ Cv® < HO(Tx)
with v =37, 171 2 527 In order to compute

D :={z| v A 0@ =0},

we first localize to Uy and then homogenize the result again. This procedure yields

2 22
D={det|1® M 2]=0
120 121 122

Now let us assume that [v(D, v@] = 0 and vV A @ # (0. Denote G :=
exp(V) = Aut®(X, D). By assumption G is divisorial and abelian, hence the
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metric gg is Kihler and G = Aut(X, D, gg). If D is reduced, Theorem 4.7 tells us
that D is the union of three lines in general position. If D is not reduced we obtain
a triple line or the sum of a line and a double line. So the only position of three
lines not occurring in this list is that they are intersecting in one common point. We
will now see how this corresponds to a G which acts not almost transitively. After
a change of coordinates we may assume that the three lines intersect in [1 : O : O].
Let vV .= zlaizo, v® = zza%. Of course, [vV, v@] = 0 and vD A v = 0,
hence G is abelian (indeed, G = €?) and acts not almost transitively. G is given by
the matrices

1 a b

01 0], abeC

0 01

It is not hard to see that G leaves {f = 0} invariant for a homogeneous f €
C[z°% 2!, Z% if and only if f = f(z', z%). This factors into linear terms. Hence G
leaves all lines through [1 : O : O] invariant. So the not almost transitively case
corresponds to the existence of a family of invariant divisors, which are not neces-
sarily anticanonical. If D consists of three lines intersecting in [1 : O : 0], the full
automorphism group Aut(X, D) consists of matrices

c a b
01 0), ab,ceC,
0 0 1

hence is not abelian and acts not almost transitively in accordance with Lemma 3.2;
also dim Aut(X, D) > dim X.

Back to the almost transitive G and reduced D. Let us choose coordinates such
that D = {%'z% = 0}. Of course, D is invariant under the group G given by
2%z 22 > [aoz’ : a1z : apz?], witha = [ag : a1 : az] € P?\ {aparay = 0} =
C* x C*. The group G is abelian and divisorial. Theorem 3.4 and Lemma 3.1 tell
us that G = Aut’(X, D). Lemma 4.2 states that every G-invariant Kihler metric on
X\ D is given by a basis of g. Carrying out the calculations in the chart Uy = {z¢9 # 0}
yields that all G-invariant Kéhler metrics on X \ D = C* x C* are of the form

dxt  dxJ

g=gc= E Cij— @ =,
A x s

i, j=1.2

with Cij = Eand C = (C,'j) > 0.
According to Theorem 4.8

Ke(X,Dyc M(2,C)/M(2,R)
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is given by the classes of positive, hermitian matrices. Hence K (X, D) is one-
dimensional. Moreover

__( cosh(r) isinh(r)
Glrl = (—i sinh(r) cosh(r))

for r € R represent every class in K¢ (X, D) uniquely.
If X = IP3, then for the corresponding construction dim K (P3, D) = 3. In the
appendix it is proved that K (IP3, D) = 0, if D is chosen to be smooth.

A. Triviality of the Kiihler cone when D is smooth

Theorem A.l. Let X be a Stein manifold with by(X) = 0. Then any two Kdihler
metrics on X are (85)-equivalent.

Proof. The injective resolution of C

0—><c—>(95(—3>gz§(i>52§2—3>...

yields short exact sequences
0—C— 05 2 ]6}12 — 0

and
1 1 2
O—>J€X—>QX—>J€)~(—>O.

In cohomology we obtain
H'(03) — H'(3}) — H*(X,C) — H*(03).
Since X is Stein we obtain H'(0 ) = H*(03) = 0, hence
Hl(Jf}() =H*X,C)=0.
The second short exact sequence yields
HO(QY) — HO(33) — H'(3t;) =0,
hence for every holomorphic 2-form n on X with 87 = 0 there is a holomorphic

1-form ¢ such that n = d¢.
Now let w be a Kiihler form. Since Q}( is coherent, Cartan’s Theorem B implies

H 1(52;() = 0. Using the Dolbeault interpretation we obtain € & LO(X) such that
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w = dn. Now look at ¢ := dn. Since 0 = dw = —0dy, we conclude that
Woe HO(Qé). Of course, it satisfies 3y» = 0. Hence there is a ¢ € HO(Qiz)
such that ¢» = d¢. This implies d(n —¢) = 0, so 7 — ¢ induces a class in HOY(X) =
Hl((95() = (). Hence we obtain a function G: X — C such that 3G = 7 — @,
equivalently

G =n — .

For the Kihler form this means
w=03n= 933G + ¢) = 83(—G).

Since w = @ we find B
w = 100Im(G). O

In the remainder of the appendix we want to show that complements of smooth
ample divisors are examples for Theorem A. 1, if the topology of X is simple enough.

Corollary A.2. Let X be a projective complex manifold with dim X > 3, b1(X) =
b3(X) =0, b2(X) = 1 and D C X a smooth ample divisor. Then K(X, D) = 0.

The proof consists of the verification of bo(X \ D) = 0. We have to prove
b1(X \ D) = 0 first in order to be able to prove bo(X \ D) = 0, however. In the
following we abbreviate X=X \ D. Of course, since X is quasi-projective, X is
Kihler. So K(X, D) # 4.

Lemma A.3. If X is a projective complex manifold with diim X > 3, b1 (X) = 0 and
D C X a smooth ample divisor, then b1(X) = 0.

Proof. First we construct a S!-principal tubular neighbourhood of D. This is done
by choosing a Kihler metric w on X and defining the fibre of U(D) — Doverz € D
as the image of

exp,: B — X,

where B, := {v ¢ (TZD)Lw | @(v,v) < &?}. For small enough ¢ this yields a C™
disk bundle embedded in X with a naturally given S' action. E := U (D) is now a
principal S'-bundle 7 : E — D.

Since X N U(D)=U(D)\ Dhas E — D as a deformation retract and U (D) is
contractible to D, Mayer—Vietoris yields

HY(X,C) — H'(X,C)® H'(D,C) — HY(E, ).

Since by assumption H!(X, C) = 0, it is enough to show H!(E,C) = 0 in order to
prove the claim of the lemma.
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So we consider a closed one-form € AL(E). We refer to [GHV, Prop. X, p. 304]
for the existence of a fibre-wise integration

/ : AP(E) — AP~N(D)
E,

commuting with the differential 4. In particular,

g / "
E;
is a constant.

Now we go down to local coordinates: Let D = | Uy} be a trivializing covering
with coordinates (z’(‘j)). We may assume that Uy ;) are simply connected and U; ;) :=

Uy N Uy are connected. The arc coordinate on S! x Uy is denoted by ¢ ;). The
one-form 7 is now represented by

k
no(j)dé ) + Z k(A2 j-
k

The fibre-wise Fourier series of n looks like
0
. 5 k
Dm0 explirep)deiy + > nir(jy explirdip)dzf;,
r=—oo r.k

with n,¢jy: Uy — C. We want to collect terms of the same degree r,

nr = nor(j) explird)dee) + Y () explird()dz(;,.
k

In order to prove independence of j we have to look closer at the transition maps.
The transition maps S x U, — S x Uy are given by

(explidi), 7)) = (B () explich), 2(;)
with By Ugjy — ST due to the construction of E. This transition law implies
nor) = Blijynor(j)s
hence h,(;y := nor(j) explirg;y) defines a global function 4, : E — C. Moreover,
dhy =irn,,

hence 5, is well defined for any » > 0. At the same time this shows that n — 7o is
exact, hence only o remains to be considered. First note that

CZ/ 772/ no = 27 100 )
E E,



566 B. Koehler and M. Kiihnel CMH

independently of ;. For the other terms we know 0 = d(n9 — ﬁd(ﬁ( /), hence there
are f(;): U¢jy — Rsuch that

C C
Ed(b(i) +dfo = Edqﬁu) +df ).

The universal coefficient lemma tells us that H (D, S') = Hy(D, Z) (not canoni-
cally), since by the Lefschetz theorem there is no free part of H1(D, Z). This is a
finite group, so there exists some m such that mg = 0 for all g € H' (D, S).

If ¢ # 0, we interpret f(;): Ujy — R/cZ = S! as a circle valued function and
infer that there are ¢(;; € S' such that

C
m (E(p(j) =+ f(j)(Z)) + C(j)

represents a global function ®: E — S'. The level sets of & induce nowhere van-
ishing C* sections of Ngl”}@, ) Ng’l’?( & Op differentiably. This clearly contradicts
the assumption that D is ample.

So ¢ =0 and hence g =7*¢ for some ¢ € A}(D). Since we know H'(D,R)=Q

we infer that 5o is exact and hence 7 is exact. O
Lemma A.4. Under the assumptions of Corollary A.2 holds by(X) = 0.

Proof. We choose the same tubular neighbourhood like in the proof of LemmaA.3 and
use Mayer—Vietoris for X = XUU (D). Recall that we already proved H LE,C)=0.
So we obtain

0— H*(X,C) — H*(X,C)® H*(D,C) — H*(E,C) — H*(X,C).

In order to compute the cohomology of E we use the Leray spectral sequence.
For a circle bundle, according to [S, 9.5, Thm?2] this simplifies in our case to

0— H%D,C) — H*(D,C) — H*(E,C) — HY(D,C).

Like before we use the Lefschetz theorem to conclude 21 (D, C) = 0. Hence b (E) =
by(D) — 1. If we now use the assumptions b3(X) = 0 and by(X) = 1, then the
sequence implies by (X) = 0. O
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