
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 81 (2006)

Artikel: On invariance and Ricci-flatness of Hermitian metrics on open
manifolds

Autor: Koehler, Bert / Kühnel, Marco

DOI: https://doi.org/10.5169/seals-1171

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-1171
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helv. 81 (2006), 543-567 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

On invariance and Ricci-flatness of Hermitian metrics on open
manifolds

Bert Koehler and Marco Kiihnel*

Abstract. We discuss a technique to construct Ricci-flat hermitian metrics on complements
of (some) anticanonical divisors of almost homogeneous complex manifolds and inquire into
when this metric is complete and Kahler. This construction has a strong interplay with invariance
groups of the same dimension as the manifold acting with an open orbit. Lie groups of this type
we call divisonal. As an application we describe compact manifolds admitting a divisorially
invariant Kahler metric on an open subset. Finally, we see a connection between the reducibility
of the anticanonical divisor and the non-triviality of the Kahler cone on the complement.

Mathematics Subject Classification (2000). 32M05; 32M12; 14M17.
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Introduction

The first problem addressed in this paper is the construction of Ricci-flat metrics

on open complex manifolds. As a model for this situation serves the complement
of a divisor on a compact manifold X. HD e | — Kx\, then the section of —Kx
vanishing exactly on D yields an isomorphism QnX\D &x\d- In analogy to the

Calabi conjecture on compact manifolds this raises the expectation that there exists a

complete Ricci-flat Kahler metric on X \ D. Moreover, methods to find such a metric

may also work, if D is not reduced, leading to the speculative existence of Ricci-flat
Kahler metrics on X \ D, whenever — (D + Kx) is effective. Part of this program
has already been established. Tian and Yau have proved in [TY90] and [TY91] the

existence of a complete Ricci-flat Kahler metric in case D g | - Kx\ is neat, almost

ample and smooth. Bando and Kobayashi have shown the claim, if rD e | — Kx\
for r > 1 and D is ample, smooth and admits on itself a Kähler-Einstein metric.
The metrics involved in the construction contain logarithmic terms. Of course, the

techniques introduced in [TY90], [TY91] and [BK90] cannot be easily generalized to

*The authors acknowledge gratefully support by the DFG priority program 'Global Methods in Complex
Geometry'.
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the reducible or non-reduced case. The method described in Section 1 does not care
about this and is compatible with an algebraic structure. In particular, the metrics
involved can be described in terms of polynomials, if X is algebraic. Of course, this
nice structure has a high prize: either X \ D has trivial geometry and D is expected
to be 'very' reducible, or we have to drop the Kahler condition. Nevertheless, this

approach shows some fundamental differences between the reducible and the smooth

case of the divisor D.
The other problem is determining highly symmetric metrics on X \ D. Both problems

get related by the idea that Ricci-flatness should be forced by a high order of
symmetry. For example, a naive calculation shows that all metrics on P2 \ {3 general lines}
invariant under the connected invariance group of the three lines are complete, Ricci -

flat and Kahler. In Chapter 2 we explain the connection between the construction in
Chapter 1 and the symmetries of D resp. symmetries of the metric. Here we discuss

continuous symmetries. A striking point is that the metric is Kahler if and only if
it is symmetric. Moreover, in this case the symmetry group is abelian. This allows
a description of the manifolds admitting a divisorially invariant Kahler metric on an

open subset; in particular, we recognize D to be reducible or non-reduced, if X is

homogeneous and projective. By divisorial invariance we mean that the action of G

has an open orbit and dim G dim X, if G denotes the symmetry group of D. Three

general lines in P2 satisfy this condition. Parts of the description are well known.
Winkelmann treated in [WiO4] the problem when Tx(-logD) is trivial. Of

course, the condition that there is a Ricci-flat metric on X \ D is much weaker than
the triviality of Tx{— log D). However, in the respective Kahler cases there are great
similarities. We will note this at the appropriate place.

As a last topic we inquire into a sort of Kahler classes of the constructed metrics.
Two metrics shall be regarded as equivalent if they differ only by a Kahler potential.
We call the cone of G-invariant metrics generated by this equivalence KG{X, D).
If we denote n := dim X, then we will prove that dim Kg(X, D) > ^n(n — 1) for
reduced D. So even if dim Alb(X) 0 the cone Kg(X, D) is highly non-trivial.
This effect for K(X, D) := K\ (X, D) is in close relation with the reducibility of D.
In the appendix we will show that K(X, D) 0, if D is smooth and ample and X
has simple enough topology,e.g. X P3.

The authors would like to thank the referee for pointing out a mistake in the

appendix.

1. Vocabulary

We consider compact complex manifolds X. Of great importance will be the

automorphism group Aut(X) and its action on X. If G c Aut(X) is a Lie group, we
write G° for the connected component of G containing the identity. By q we denote
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the Lie algebra of G. If D c X and g is a metric on X \ D, then we define

Aut(X, D) := {(p g Aut(X) | </>\D g Aut(fl)}

and

Aut(X, D, g) := {4> g Aut(X, D) \ 4>*g g).

If Y is some complex manifold and g a metric on Y, we also denote

Aut(7, g) := {4> G Aut(7) | 4>*g g}.

In most cases we will further assume that X is almost homogeneous. We will
often make use of the following equivalences.

Definition + Lemma 1.1. A compact complex manifold X is called almost

homogeneous, if there is a Lie group G c Aut(X) such that one (and then all) of the

following properties are satisfied:

(i) The action of G has an open orbit,

(ii) the action ofG° has an open orbit,

(iii) q := T\G generates Tx at the general point,

(iv) there is a vector space V c Q with dim V dim X, which generates Tx at the

general point.

If G c Aut°(X) is a Lie group which has an open orbit, then we say G acts almost

transitively on X.
In the Kahler case we will encounter a special form of abelian Lie groups, so

called semi-tori.

Definition 1.2. A complex Lie group G is a semi-torus, if there is a number n and a

discrete subgroup A c C" such that A ® C C" and G C"/A.

The other aspect of the paper is Kahler metrics on complements of divisors. If Y

is any complex manifold and G c Aut(F) is a Lie group, we denote by Mg(Y)
the set of all Kahler metrics on Y invariant under G. If X is a compact complex
manifold, D c X a divisor, Y X \ D and G c Aut(X, D), then we also write
MG{X, D) := MG{Y) to emphasize that we use only automorphisms of X for the

construction.
For analytical application a Kahler potential is more useful than a 9-exact (1,1)-

form. In the compact case there is no difference, but in the open case we have to
distinguish. This is the reason why we do not consider the Kahler cone as a subcone

of H1'1(X), but use a finer equivalence relation.
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Definition 1.3. For closed (1, 1)-forms co, co' on a complex manifold Y,

co ~ co' : -<=>• there exists <f> <= C°°(Y, R) such that co — co' il

is an equivalence relation. We denote the quotient by Ml'l(Y). If G c Aut(F), we
define

and call it the G-Kähler cone of X \ D. We also abbreviate K(Y) := K\(Y) and

call this cone the Kahler cone of Y. Note that this definition of the Kahler cone
coincides with the usual, if Y is compact. Like above, if X is a compact complex
manifold, D c X a divisor, Y X \ D and G c Aut(X, D), we also write
KG(X,D):=KG(Y).

Since parts of the paper are written in the language of differential geometry, we
use co- and contravariant indexing conventions as well as Einstein's sum convention.
In order to be able to do this, we distinguish indices arising from non-differential
context by setting them in brackets, if appropriate. The decision, whether such an

index is sub- or superscript, is made by considering the beauty of involved formulae.
For example, a set of vector fields is denoted by s^K The same vector fields in local
coordinates will be written slk-Â^. Here we omit the brackets, because we want to

put the components into a matrix. The only unlucky point of this convention is where

powers of coordinates appear. But we believe that also in these cases the meaning
will become clear.

2. Metrics generated by vector fields

2.1. Construction of the metrics. In this section we discuss a method to construct
complete, Ricci-flat hermitian metrics. These are neither necessarily invariant nor
necessarily Kahler. We will determine the cases when the metric is Kahler.

The construction of the divisor is widely used in many works about almost

homogeneous manifolds. However, in this place we concentrate on the metric which
comes with the construction. For this reason we give here a detailed description.

We use the notion of an abelian subspace of H°(Tx ® Mx)- We call V c
H°(TX ® Mx) abelian, if for all f, § e V holds [f, §] 0. In general, however, we
do not require V to be an algebra.

Construction 2.1. Let X be a projective manifold of dimension n, E an effective
divisor and S {sm,..., s^} c H°(Tx ® 0{E)) meromorphic vector fields
generating Tx in the general point and denote V {£} the vector space spanned
by S. This yields a divisor Dy £ \ — Kx + nE\ and a Ricci-flat hermitian metric gs
on X \ (Dy U E). The metric g£ is Kahler if and only if V is abelian.
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Implementation. Since s^\ /"' e H°(Tx ® 0{E)) generate Tx in a general
point, Af=i s^l) vanishes exactly on a divisor Dy. Obviously Dy € I — Kx + nE\.
Since onl\ (Dy U E) the ^(f)(x) form a basis of Tx,x, we may construct sq) g

T|x by prescribing s(j){sW) S;j onX\ (Dv U £). Further we can extend this

correspondence to a linear map

and define

gs(s®t) := sUt),

Use TX)X, t g Tx,x- In a local chart we denoted slk-^j. We denote by (s;j) o

the inverse matrix of (s'}'). Then

9 d

which yields

Ric(g^g) —991ogdetg^g —991ogdeta -\ 991ogdeta 0,
2n 2n 2n

since det a is holomorphic.
A short calculation shows that g® is Kahler if and only if

Sij,l Sljj

for all i, j, I. Converting this condition to the vector field components yields

s^sk) skjsUj

for all i, k, I. Of course, this is the condition

for all i, k. But this means that V is abelian.

Serre's Theorems A and B for projective manifolds imply that the conditions of
the construction can be satisfied for any projective X, if we choose E ample enough.
Hence there is a Ricci-flat hermitian metric on the complement of an appropriate
divisor for any projective X.

Note that by construction Tx\(dvue) is trivial. In [WiO4] the problem is addressed

when Tx(— log D) is trivial and answered in terms of the existence and action of a

semi-torus. In the next section we will be able to describe this property in terms of gs
and Dy-
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In the remainder of the article we will set E 0. This has two reasons. The

exponential map, applied to meromorphic vector fields does not yield automorphisms
of the whole manifold, hence there is no Lie group we can work with. The other reason
is that we cannot expect completeness of the metric in direction to E. After setting
E 0, we can drop the condition of projectiveness of X. On the other hand, the

construction then exhibits X as an almost homogeneous manifold.

2.2. Completeness of the metrics. Since we are dealing with open manifolds we
should address the problem of completeness of the constructed metric. For this

purpose we introduce some new notation. First, we define S := (s'k) a~x. Recall
that we chose E 0. We interpret Sl : 6>®" —>¦ Tx as a sheaf homomorphism and

define

X :=kerS*.

Of course, X is supported on Dv and we prove

Lemma 2.2. If Dy is smooth, then X is a line bundle on Dv.

Proof. X is line bundle if and only if rk S\Dy n — \ everywhere. So assume that
in x g Dv we have rk S(x) < n — 1. Then all (n — 1) x (n — l)-minors of S vanish
in x, in particular d det S(x) 0, hence x g Sing(Dy

Now assume that Dv is smooth and consider

n-\
œ{ï) := f\sU)\Dv g H°(/\TX\DV) H°(Q.x\Dv®NDv\X).

These are related via X by the equation

=o

for all i, j and x e Dv, A. e Xx. Again, smoothness of Dv implies that in a point
x g Dy not all «(,) can vanish. Hence the vector spaces Fx := ((co(i))i) are one-
dimensional and form a line bundle F c Qx\Dv ®Ndv\x- By looking at the natural
local trivializations of X and F it is easy to see that

Note that the inclusion i : Dv -> X yields via Poincaré Duality a homomorphism
i*: H*(DV,W) -> H*(X,W) of degree 2. With this notation in mind, the very
definition of F implies that
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The tensored dual tangent sequence

allows us to formulate the property F Odv ker n.

Lemma 2.3. If Dy is smooth, then gs is complete if and only if F ker n.

Proof. Let us choose x e Dy and local coordinates in a small open subset U c X
such that Dy {z1 0}. Furthermore, denote U' := U n Dy and pr: U -> U'
the projection induced by the local coordinates, choose 0 ^ X e £{U') and an order
of <S8 such that A.(i) 1. If we now define B by

1 if i j,
-A.(/)(pr(z)) iff 1, j # 1,

0 else

then S : B S is just S replaced by a first row vanishing onU'. Now we have a look at

à := (S) l. Since the first row is identically 0 on U', we conclude that s\i & 0{U)
for f > 1. Since

we see now that g is complete if and only if s\ \ ~ \ for all such choices ofcoordinates.

Indeed, sn s\\. Hence, if we denote Ai; the (f, j )-entry of the cofactor matrix of S,

then the condition is equivalent toAn(x) ^ 0. If we now choose other coordinates

z'1,..., z"1 such that Dv {zn 0} and denote / := (yr),- .,h:= ^- ^ 0, then

A'n det /(Ä"1 An + J] /f^Au) ^ 0

k>\

Since the coordinate transform was arbitrary, we conclude that

A\k(x) 0 for all k > 1.

This is equivalent to 0 ^ a>(\) € H°(ke.rn). This again means F kern.

Note that completeness as well as the Kahler property of g® depend only on V.

If D y is not smooth, but still reduced, then we consider Dv, the regular part of Dy
and the corresponding objects F0, £°, jt°, which are obtained by restriction to Dv.
We now show the preceding lemma for the singular case.



550 B.KoehlerandM. Kühnel CMH

Lemma 2.4. Assume that Dy is reduced. Then g£ is complete if and only if Jr°
kern0.

Proof. '=>¦': If g£ is complete, the same arguments as in Lemma 2.3 imply that
F° ker7T0.

'-<=': Let locally Dy {/ 0} in a small open neighbourhood U c X. Then

we can choose functions z2, ¦ ¦ -z11 which give local coordinates together with / on
the set Ü := U\ {df A dz2 A - - - A <iz" 0}. Like in the proof above we argue that gs
is complete if An (x) ^ 0 for choices like above and x e Dy. Since by assumption
this is true for x e Dy \Sing(Dy), extension of the holomorphic function A\\ tot/'
yields a non-zero function A\\ e &*(U'), if Dy was normal. If Dy is not normal,
we choose an embedded normalization

where i, j denote inclusions and v the normalization of Dy. Now we apply the same

arguments to the pseudometric /j,*g and obtain by looking at paths y such that [i\v
is a diffeomorphism that g is complete.

Now we can see a connection to the invariance group.

Lemma 2.5. Assume that Dy is reduced. Then g® is complete ifand only if exp( V c
Aut°(X, Dv).

Proof. If we denote by V the sheaf on D generated by Vx := ({^(f)(x)}> forx g D,
then F(V) 0, if we regard F c Hom(rxlr.y, A^Dy|x). Since F° kerjr0,
figuring out the dualized maps

0 —? Td°v -^ Tx\D°v -^ ^°V ® ^Do |x -^ 0

yields V° ker/?° TDo. This is equivalent to V\Do c H°(TDo This again

means that every <fi & exp(V) holds Dy invariant, so exp(V) c Aut°(X, Dy) is an

equivalent condition.

Taking into account the results of Section 3, which are obtained independently of
the considerations about completeness, we even find

Theorem 2.6. If V is a Lie subalgebra, then gg is complete. If gg is complete and

Dy is reduced, then V is a Lie subalgebra.
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Proof. (i)If V is a Lie subalgebra, Lemma3.1 implies the desired property exp( V c
Aut°(X, Dy). Here we are finished, if Dy is reduced. In any case, if we have

öy,red n U {z1 0}, this implies that

sn zV1

for some t'1 e 0{U) and all I. Now

1

AVl.

So, if m := max{£ | {zl)~kAVl e 0(U) for all i], we conclude (z1)"™"1 detS e

&{U). Hence

with k > 2. This procedure generalizes easily to the case of Dy,red being normal

crossings. But this we can achieve by Hironaka's embedded desingularization. Since

Sing(Dyjred) is also exp(V)-invariant and so is Sing(Sing(Dyjred)red) and so on, we
can pull back the vector fields to the normal crossings case and apply the arguments
above.

(ii) Since g£ is complete and Dy reduced, by Lemma 2.5 we obtain exp( V) c
Aut°(X, Dy). Hence Aut°(X, Dy) acts almost transitively. So Lemma 3.2 yields
dimexp(V) dimX dimAut°(X, Dy). This means

7i Aut°(X, Dv) Tx exp(y) V,

hence y is a Lie subalgebra.

Now it is clear from the previous arguments that Tx(— log Dy) is trivial, if g£ is

complete and Dy is a simple normal crossings divisor. In Chapter 4 we will show

furthermore that G := exp( V) is a semi-torus, if gs is complete and Kahler and Dy
is reduced.

The existence of a complete g£ for a smooth Dy restricts the geometry of X
significantly:

Corollary 2.7. If Dy is smooth and g® is complete, then C2(X) 0.

Proof. F ker n ODv, hence c2(X) £*ci(0Dv) 0.

Now we have seen that C2(X) ^ 0 implies that the divisor Dy is singular, if V
is a Lie subalgebra. We will see later that the Kahler condition allows an explicit
description of the singularities, at least on projective homogeneous manifolds.
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3. Symmetries of the divisor and the metric

In this section we want to relate the construction above (with E 0) to the appearance
of symmetries on D and the metric. As it may be not hard to guess, this connection is

made by Lie theory. Throughout this section we mean always a complex Lie group
when we speak of Lie groups.

If G is a Lie group we identify q T\G, and if G c Aut°(X), then we furthermore

identify fl with the subvector space of H°{Tx) given by the vector fields s{x) :=
¦§jg(t)x\t=o, where g(t) denotes a (holomorphic) path in G with g(0) 1 and

Jo £ £ T\G. Furthermore we have an action of G on T\G by h^ :=

Lemma 3.1. Let X be a compact complex manifold of dimension n, G c Aut°(X)
a connected complex Lie group acting almost transitively on X and q be the

corresponding Lie algebra. Then

(i) D g | - Kx\ is reduced and G c Aut°(X, D) =>• D Dv for allV c fl with
dim V n and generating Tx in the general point,

(ii) if dim G n, then G c Aut°(X, D0),

(iii) if dim G n, S c fl is a basis, then

G c Aut°(X, DQ, gB) t=^> G is abelian.

Proof, (i): Let V c fl be an n-dimensional vector space generating Tx in the general
point and S c V a basis. Since D is G-invariant, for any s G fl c H°(TX) the

restriction ^l^o gives an element of H°(TDo). Since dimD n — 1, this implies
/\se£ s\d 0, hence D c Dy. But D and Dy are both elements of | — Kx\, hence

D Dv.
(ii): If s G fl c H°(TX) is given by § G T\G, then for h G G the pullback

h*s is given by h~lÇ g T\G, hence h*s g fl. Furthermore h* maps a basis of fl
to a basis again, because h is an automorphism. This proves that /\s^ =0 ^=^
/\h*s(i) =0, if ^(1), ...,s{n) is a basis of fl. Hence h(D) D. This proves that D
is G-invariant.

(iii): Let co be the fundamental (1, l)-form of gg. Of course, gg is G-invanant
if and only if <£sw 0, if s G fl and X denotes the Lie derivative. If Cs denotes
the contraction by s, then Xs dCs + Csd (see e.g. [La, V,5]). Let us choose local
coordinates like in the construction. Then

0 Xs(i)(ü ^2 slm{siKm - smKiysjkdzl A dzJ.

i,j,k,m

Since S is invertible on X \ D, we obtain

sik,m smk,i — "
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for all i,k,m. This we identified at an earlier place with the condition

for all i, j. Hence g is abelian. It is well known that this is equivalent to G to be

abelian.

As a first application, we obtain kind of uniqueness of the vector space V in the

construction.

Lemma 3.2. Let X be a compact complex manifold and D e | — Kx \ reduced. If
Aut(X, D) acts almost transitively, then dim Aut(X, D) dimX.

Proof. Set G := Aut(X, D) and« := dimX. Of course, dim G > n, since otherwise
T\G could not generate Tx in any point. Now choose <S8 := {s^\ ^("+1)} c g

such that S \ {s{n+V)} generates Tx in the general point. Further denote r](j) :=
/\ ¦/j s(-i"-) and by V(,) the vector space generated by <S8 \ {s^}.

Since dimX n, we can find meromorphic functions /(?) G Mx(X) such that
s(n+i) _ Y^i=\ f(i)S^l\ By assumption we know ??(n+i) # 0.

If r](i) 0, then we see by /?(,-) f(i)r)(n+i) that /(,-) 0.

If r)(j) ^ 0, then V$) generates Tx in the general point and we may use Lemma 3.1

to obtain

=0 <^=^ rig) =0 <^=^ f(î)ï](n+l) =0.

Hence /(,) has no zeroes. By exchanging s{l) and _y("+1) we also see that /(,) has no
poles. Hence /(,) is constant.

Now we proved that every /, is constant, hence s^l\ s^n+l^ are linearly
dependent and dim G n.

Note that the connection between the invariance group and the anticanonical

system is essential. For example, the invariance group of a point in P1 is two-
dimensional and acts almost transitively.

Since every dim X-dimensional Lie group which acts almost transitively yields
an invariant D g | — Kx\, Lemma 3.2 suggests the following definition.

Definition 3.3. If X is a compact complex manifold and G c Aut(X) a connected

complex Lie group with dim G dim X acting almost transitively on X, we say G

is a divisorial group. If on the other hand D e | — Kx\ is reduced, we say D
has a divisorial invariance group, if Aut(X, D) acts almost transitively. Any object
invariant under a divisorial group we call divisorially invariant.

Lemma 3.2 now allows a stronger and more compact formulation of Lemma 3.1.
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Theorem 3.4. Let X be a compact complex manifold, G a divisorial group and q the

corresponding Lie algebra. Then for a reduced divisor D g | — Kx\ holds

G Aut°(X, D) ^=ï D Ds.

If S C fl is a basis, then

G Aut°(X, Da,gs) ^=> G is abelian.

Proof. If D D0, by Lemma 3.1 G c Aut°(X, D). Hence Aut°(X, D) acts almost

transitively and by Lemma 3.2 we obtain dim G dimX dimAut°(X, D), hence

G Aut°(X, D). D

In this context it is appropriate to introduce the notion of a homogeneous pair.

Definition 3.5. A homogeneous pair (X, D) consists of a compact complex manifold

X and an effective reduced divisor D such that Aut°(X, D) acts transitively on
X \ D. We call a homogeneous pair (X, D) anticanonical, if D g | — Kx\.

Theorem 3.4 provides a close relation between homogeneous pairs and divisorial

groups.

Remark 3.6.

• Note that the proof of Lemma 3.1 also shows that every analytical G-invariant
set S is contained in the G-invariant D g | - Kx\.

• Note that the vector field method is much more general than the invariance

approach: There is no need for the vector space V c H°{Tx) to be an algebra,
whereas invariant divisors correspond to Lie subalgebras of H°(Tx).

• However, if g arises by the general vector field method and is Kahler, we
have V proved to be abelian; in particular, y is a Lie subalgebra. Of course,

exp: H°(TX) -> Aut°(X) restricted to V maps to an n-dimensional Lie
subgroup G leaving D and g invariant.

Now we also see that divisorial invariance is exactly the property we had in mind
when we expected that Ricci-flatness should be implied by a high order of symmetry.

Corollary 3.7. Let X bean n-dimensional compact complex manifold, G c Aut°(X)
a divisorial (abelian) Lie group. Then there is a complete Ricci-flat {Kählerian
G-invariant) metric on X \ Ds.

In [WiO4] Winkelmann proved that Tx(— log D) is even holomorphically trivial,
if G is a complex semi-torus and acts with only semi-tori as isotropy groups. We will
see in the next paragraph that G being a semi-torus is implied by Dfl being reduced.
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4. The structure of the Kahler case

4.1. Description of the manifolds. We saw that the metric g on X \ D constructed

by an automorphism group G is complete and it is Kahler if and only if G is abelian.

In this case g is also G-invariant. Now we want so see that this construction yields all
G-invariant Kahler metrics. The first step is to show that complex invariance groups
of Kahler metrics are abelian. Similar connections between the Kahler property
and abelian groups are well known. However, most results in this direction use

compactness of the Kahler manifold by employing that all holomorphic one-forms
are closed. This formulation makes only use of the Kahler form and hence is also

valid in the non-compact case.

Lemma 4.1. Let Y be a complex manifold and g a Kahler metric on Y. Then any
connected complex Lie group G c Aut°(F, g) is abelian.

Proof. Let co denote the Kahler form of g and q c H°(Ty) the Lie algebra of G.

Since g is G-invariant, for all s G q we obtain

Xsco 0,

where X denotes the Lie derivative. If furthermore C denotes the contraction by the

subscript vector field, Xs dCs + Csd and hence we conclude dCsco 0 for all
s G q. Again using an elementary formula (see e.g. [La, V,5]) and dm Owe obtain
for s, t G q

C[s,t]to (XsCt — CtXs)o) XsCtco dCsCtco + CsdCtco.

Since m is a (1, l)-form and s, t are holomorphic, CsCtw 0. We already saw that

dCta> 0, hence both summands of the right hand side vanish, yielding C[s>t]co 0.

In local coordinates this means

Since the matrix gaß is invertible this implies [s,t] 0. Hence q is abelian and

therefore also G is abelian.

It is known (cf, [Onl, p. 12]) that an orbit of G is locally (in G) a submanifold. A
closer look at the argument in the second part of the proof of Theorem 3.4 reveals that

any orbit, whose local dimension is smaller than n must be contained in Ds. Hence
X \ Ds is the unique open orbit of G. Let xo G X \ Ds and a : G ->¦ X \ Ds be the

action map g i->- gxo. Again it is known (cf. [Onl]) that a has constant rank. Since a
is surjective, it has to be a covering map. If G is abelian, yz := a{a~l {y)a~l (z)) is

well-defined and turns X \ Ds itself into an abelian Lie group of dimension n and a
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into a group homomorphism. Since elements of ker a induce the same action on
X \ Ds, the property G c Aut°(X) implies that a is an isomorphism. Hence we will
identify G and X \ Ds from now on.

Note that for a Lie group G being abelian implies that G C"/A, where A is a

discrete subgroup. This is proved by looking at the exponential map

exp: g —> G,

which is easily seen to be a group homomorphism of (q, +) into G. Since exp maps
some neighbourhood of 0 diffeomorphically to a neighbourhood of 1, say U, and

Uîfcli Uk G' me maP exP is surjective. Hence G (q, +)/ker(exp) C"/A,
where A := ker (exp) must be discrete, since n dim G dim g.

In particular we see that X \DS C"/A, if G is abelian. We will use this in the

next proof.

Lemma 4.2. Let X be a compact complex manifold and G c Aut°(X) a divisorial
Lie group. If g is a Kahler metric on X \ Ds such that Aut°(X, Ds, g) G then g
is complete and there is a basis <S8 c fl such that g g&.

Proof. We already know by Lemma 4.1 that G is abelian and hence g® is Kahler and

G-invariant, if <S8 c fl is a basis. Since G I\Dfl =C"/Awe choose the images
of the canonical coordinates z\, ¦ ¦ ¦, zn of C" as local coordinates of X \ Ds. For
the sake of simplicity we call them also z\, ¦ ¦ ¦ ,zn- Of course, g gaädza ® dzP

is G-invariant, if and only if gaß is constant for all a, ß. Hence g is complete and

corresponds one to one to g(0) what we identify with the matrix g (gaß(0)). The

corresponding matrix g isg =crcr*. Note that a is constant since G is abelian

(cf. proof of Theorem 3.4). Recall S o~l and define H := Sg S*. Since H is

hermitian, we can find A e Gl(ra) such that// A* A. Nowg aHa* aAA*a*.
Set B := A~l. Then g is given by the vector fields f1-'-1 J]; bijs(j'\ which form
another basis of q (Indeed, this shows by Theorem 2.6 once more that g is complete.)

D

Corollary 4.3. Let X be a compact complex manifold and S c X analytic with
codim S > 1. IfX allows for a divisorially invariant Kahler metric onX\S, then X
is a torus and S is empty (if chosen minimal).

Proof. Assume that g is such a metric and G the divisorial abelian Lie group. By
Lemma 4.2 g|X\Dfl is constructed by a basis of q. If Ds is given by a e H°(—Kx),
then detg \a\~2, hence is singular on Ds. This implies Ds 0. In particular,
X G C"/A. Since X is compact, A is a complete lattice and X is a torus.

Note that this proof works also, if codim 5 1, but S ^ ög,red-
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It is generally known (earliest references refer to a lecture of Reinhold Remmert
in 1958/1959) that any abelian complex Lie group is a direct product of copies of T,
C and C*, where T is a group without non-constant holomorphic functions. For a

more detailed analysis we refer to [Mo66]. Since Winkelmann related the triviality
of a logarithmic tangent bundle to G being a semi-torus in [WiO4], we would like to

express this property in terms of the mentioned decomposition.

Lemma 4.4. G Tx (C*)fe x C' is a semi-torus <^=^ / 0.

Proof. If G is not a semi-torus, i.e. A ® C ^ C", then obviously / ^ 0. So let
G be a semi-torus. There is a lattice A' c C" ' coming from the decomposition
such that G C"/A'. The isomorphism </> : C"/A -> C"/A' is induced by a vector
space isomorphism 4>: C" —>¦ C" obeying <p(A) A'. Hence C" ' A' ® C

C) =C",so/ 0.

The toric varieties fit in the system as special cases where G (C*)". If X is

Fano, then X \ Ds is Stein and hence the factor T does not occur (cf. also [MM60,
Prop. 4] for this particular claim). If we relax this condition a little we can show

that T is a torus. The following lemma in particular covers the case of homogeneous
manifolds for which the result is well known.

Lemma 4.5. Let X be aprojective almost homogeneous manifold such that \—mKx\
is base point free for a certain m > 0. Let further G c Aut°(X) be an abelian
divisorial Lie group. X \ Ds is of the form T x C^ x (C*)', where T is a torus.

Furthermore, X T x Y for a rational manifold Y.

Proof. We first have to prove that T is a torus. The assumption that | - mKx\ is base

point free enables us to choose for every x e Ds a meromorphic function / with poles

exactly along Ds and x is not in the locus of indeterminacy of /. If T is not compact,

we fix z G C^ x (C*)' and x G T x {z}. Since f\x\Dg is holomorphic, in particular

/ := f\ tx{z} ls holomorphic. Hence / is constant and we obtain T x {z} c X \ Ds.
This implies that T is compact.

Hence T is a projective manifold. Since T Cfe/A, the lattice A is complete
and hence T is a torus.

Now we have to prove that the projection onto T is extendable. Since X is

bimeromorphic to P" x T, and the Albanese torus A{X) as well as the Albanese map

a: X --* A(X) are bimeromorphic invariants of projective manifolds, T A(X)
and pr a by the universal property of (A(X), a).

Now choose h := (1, t') G G H x T and denote Ft := a~l(t). Of course,
h : X -+ X satisfies h{Ft) Ft+t/ and the map f : FqkT -> X,{y,t) i-> (1, t)y is

an isomorphism. SinceF := i7oisacompactificationofC^x(C*)/,itisrational.
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Indeed, all factors of G can occur. If X factors X T x X, then X \ Ds

T xX\D, since KT 0. The factor C^ x (C*)' occurs even for X P", if G is

carefully chosen. For example, the group

G= \ s,t G C (C2

acts on P2, leaving only öfl,red {z2 0} invariant. Of course, the corresponding

vector fields s™ z2^, s(2) z2^- + z1 ^ yield Ds {(z2)3 0}. We leave it
as an exercise to the reader to construct the other cases. The philosophy is: C*-actions

degenerate to C-actions whenever two hypersurfaces coincide. Indeed, we are now
going to show that this is always the situation.

Lemma 4.6. If Ds is reduced, then G is a semi-torus.

Proof. We assume that G is not a semi-torus, hence by Lemma 4.4 we obtain a

decomposition G C x G'. We choose s e H°{-Kx) such that Ds {s 0}.
Since G' is abelian, G' Cn~1 /A and we may choose local coordinates z1,..., z""1
induced by canonical coordinates of C""1. In those coordinates of X \ Ds we write

dx
A

where x denotes the coordinate of the factor C. Ifx -> oo, we will approximate a point
in Ds. In order to approximate other points (and indeed by this procedure all other
points of a certain component of Ds we choose an arbitrary holomorphic X : C —>¦ G'
and look at the curve (x, z' + Hx)) for a fixed point z' := (z1,..., z""1) g G'. Let
jo limx^oo(x, z' + Hx)) G Dfl. By x h^ ^ =: y, z' h^ z' - À'(x) =: zl we get
local coordinates in a neighbourhood U{p) \ Ds. In these coordinates,

1

A

Let us denote h(y) := —f{\, z' + x(^))}'2. The group action of C now is

M -y

The invariance of Ds under G implies for /x g C that /z*,s c(p,)s, hence
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Since c(p. + k)s (p. + k)*s /j,*k*s c(p.)c(ic)s, we obtain c(p.) exp(p/x).
This implies

exp(p/i.)
h(p, ¦ y) — -^(1 + ßy)

Now fixing y 1 yields

M—Wxp(p(1

hence

h(y) cy2exp I —

Since we have the additional requirement that s \ Ds =0 and ^ a -^ a ¦ ¦ ¦ a ^t (p)
has a finite vanishing order, we conclude p 0. Now we see that h vanishes of order 2

in 0. We cannot guarantee that different choices of z! lead to different limit points
on Ds, i.e. maybe ^- A -A- A --- A f_t (p) 0. Hence we only conclude that
the vanishing order of s on the limit point p is at least 2. Since we could do this
construction for every point of a component containing p, we conclude that this

component is multiple.

Corollary 4.7. If X is an n-dimensional projective compact complex manifold such

that \—m Kx\ is base pointfree for some m > 0, further D g \—Kx\ a reduced divisor
and g a Kahler metric on X\D with divisorial invariance group Aut(X, D, g), then

X T x P, where P denotes a projective toric variety; in this case D J2 T x A,
where Di are the distinct toric divisors of P.

Proof. We know X P xT. Since D is reduced, X \ D (C*)' x T. Since P is

algebraic and has an algebraic (C*)'-action, it is a toric variety and D is like described

(cf. [Fu]).

This splitting behavior cannot be expected in general. However, X is always a

fibre bundle over Alb(X). This is generally known and easy to be seen by the universal

property of a.

4.2. Non-triviality of the G-Kähler cone. Recall the definition of the G-Kähler
cone: We call two G-invariant Kahler metrics g and g' equivalent, if there is a

function 4> £ C°°(X \ Ds) such that cog — a>gi iddcf). Since there is no 99-lemma
in the non-compact case, this cannot be viewed as the Kahler class of a>g, but the

philosophy is very similar.
We identify again X\DS C"/A. Every A.(i), A. (2) £ A generate a parallelogram,

whose image in X \ Ds is a compact real surface 7\(1),>.(2). If co i990, then Stokes'
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Theorem implies

0 /
THY) X(,2)

co

if co {cùij)ij. Note that the co;j are constant. This property only depends on

Ar := A ® R. It is easy to see that in appropriate complex coordinates every real

subspace of C" is of the form

{z1AR {z1 ¦ ¦ ¦ zl Wzl 0}.

In other words, Ar is generated by the real standard basis of C^ R2k and the

standard basis of R' Re(C') (for k n - k', I k' - V). By this choice the above

equations mean that in the standard basis of C" C^ 0 C' 0 Cn~k~l

where every entry stands for the block corresponding to the factors of C" C^ ©
C' © Cn~k~l and * means that there is no claim about this entry.

Now let us reverse the direction. For the sake of simplicity, let us denote k :=
{1, k}, I := {k + 1, k + /}, m := {k + / + 1,..., n}. If co is of the above

form, we define 4> by

iel

+ 4

ielJem

iem i<jem

then
/0 0 *

co-idd(f> =10 0 0

\* 0 0

If we now assume further that G is a semi-torus (e.g. Ds is reduced), then the

factor £n-k-1 does not occur and hence

CO I

This leads to the following result.



Vol. 81 (2006) Invariance and Ricci-flatness of metrics on open manifolds 561

Theorem 4.8. Let X be an n-dimensional compact complex manifold and G C"/A
a divisorial semi-torus. We write Ar C^ © Re(C') (with k + 1 n). Denote
i : M (I, C) -> M{n, C) the embedding which fills up an I x l-matrix with zeroes.
Then

KG(X,DB) cM(
is the cone generated by positive definite hermitian matrices. In particular,
dimKG(X, DB) n2 - \l{l + 1).

This contrasts to the case of a smooth divisor D. In the appendix we will show

that the Kahler cone is trivial, if X has simple topology and D is smooth.

Remark 4.9. The preceding calculations also show that Kg(X, Ds) 0 for an
abehan divisorial G, if and only if G C* x C""1 or G C". This is the case, for
instance, ifX P" and D consists of two hyperplanes, one of them with multiplicity«
or D is a hyperplane of multiplicity n + 1, respectively. So the G-Kähler cone can
be trivial for reducible non-reduced D, but only for very special cases. Note that the

appearance of at most one factor C* in G is reflected in the condition b2(X) 0 in
Theorem A. 1.

5. Example: X P2

If X P2, then the tangent bundle may be described by the vector fields homogeneous
of degree 1 divided by the vector fields parallel to the orbits of the group action z >->¦ cz,
i.e. &x ¦ (z°^o + z1 gfr- + z2^-)- Hence the global vector fields are

H (TX) {1 —0+l —l+l g^J/C^ —0+z —l+z —2),

where /' are homogeneous linear forms. Now let V := Ci/1-1 © Ci/2-1 c H°(Tx)
with v^ [ J2t V1 ji\ m order to compute

D :={z\ vm A v(2) 0},

we first localize to Uq and then homogenize the result again. This procedure yields

I/z°
z1 z2\

det lw ln 112)=O
V20 I21 I22)

Now let us assume that [u(1), u(2)] 0 and u(1) a u(2) ^ 0. Denote G :=
exp(V) Aut°(X, D). By assumption G is divisorial and abelian, hence the
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metric g£ is Kahler and G Aut(X, D, g@). If D is reduced, Theorem 4.7 tells us

that D is the union of three lines in general position. If D is not reduced we obtain
a triple line or the sum of a line and a double line. So the only position of three
lines not occurring in this list is that they are intersecting in one common point. We
will now see how this corresponds to a G which acts not almost transitively. After
a change of coordinates we may assume that the three lines intersect in [1 : 0 : 0].
Let u« := z1^, v® := z2^. Of course, [v(1\ v(V] 0 and u« A v^ 0,

hence G is abelian (indeed, G C2) and acts not almost transitively. G is given by
the matrices

0 1 0 | a,be

It is not hard to see that G leaves {/ =0} invariant for a homogeneous / e

C[z°, z1, z2] if and only if / /(z1, z2). This factors into linear terms. Hence G

leaves all lines through [1 : 0 : 0] invariant. So the not almost transitively case

corresponds to the existence of a family of invariant divisors, which are not necessarily

anticanonical. If D consists of three lines intersecting in [1 : 0 : 0], the full
automorphism group Aut(X, D) consists of matrices

fc a b\
0 1 O], a,b,ceC,

vo o \)
hence is not abelian and acts not almost transitively in accordance with Lemma 3.2;
also dim Aut(X, D) > dimX.

Back to the almost transitive G and reduced D. Let us choose coordinates such

that D {z°z1z2 0}. Of course, D is invariant under the group G given by
[z° : z1 : z2] h> [aoz° : au1 : a2z2], with a [a0 : a\ : a2] eP2\ {a0aia2 0}
C* x C*. The group G is abelian and divisorial. Theorem 3.4 and Lemma 3.1 tell
us that G Aut°(X, D). Lemma 4.2 states that every G-invanant Kahler metric on
X \ Dis given by a basis of ß. Carrying out the calculations in the chart Uq {zo 7^ 0}
yields that all G-invariant Kahler metrics on X \ D C* x C* are of the form

^ dxl dU
g gc 2_^ cij—®^'

?,/=l,2
X xJ

with c\j ~cjl and C (c;j) > 0.

According to Theorem 4.8

KG(X, D) c M(2, C)/M(2, R)
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is given by the classes of positive, hermitian matrices. Hence Kg(X, D) is one-
dimensional. Moreover

ç( \ — cosh(r) i sinh(r)\
\—i sinh(r) cosh(r) J

for r g R represent every class in Kg(X, D) uniquely.
If X P3, then for the corresponding construction dim Ä"g(P3, D) 3. In the

appendix it is proved that K(F3, D) 0, if D is chosen to be smooth.

A. Triviality of the Kahler cone when D is smooth

Theorem A.I. Let X be a Stein manifold with b2(X) 0. Then any two Kahler
metrics on X are (dd)-equivalent.

Proof. The injective resolution of C

yields short exact sequences

0 —

and

In cohomology we obtain

Since X is Stein we obtain H

H

4^

1W

fl(^)
The second short exact sequence yields

X

-^ H2(X,

H2(OË)

--H2{X,€)

U2~) —> h

C) -^ //2(

0, hence

0.

r1(M)=o,

hence for every holomorphic 2-form rj on X with drj 0 there is a holomorphic
1-form ç such that r\ d<p.

Now let « be a Kahler form. Since Q1- is coherent, Cartan's Theorem B implies

1-) 0. Using the Dolbeault interpretation we obtain x\ G glo(X) such that
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Since « cw we find
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co drj. Now look at ijr := drj. Since 0 dco —d\fr, we conclude that
i/r g H°(Q,2-). Of course, it satisfies df 0. Hence there is a <p e HQ(Q}~)

X X
suchthat f dcp. This implies d{r}-cp) 0, sorj -^induces a class in//0-1 (X)
Hl{6^) 0. Hence we obtain a function G: X -> C such that 3G rj — ~p,

equivalently
3G t} — <p.

For the Kahler form this means

In the remainder of the appendix we want to show that complements of smooth

ample divisors are examples for Theorem A. 1, if the topology of X is simple enough.

Corollary A.2. Let X be aprojective complex manifold with dimX > 3, b\(X)
b3(X) 0, b2(X) 1 and D c X a smooth ample divisor. Then K(X, D) 0.

The proof consists of the verification of b2(X \ D) =0. We have to prove
b\{X\D) 0 first in order to be able to prove b2{X \ D) 0, however. In the

following we abbreviate X := X \ D. Of course, since X is quasi-projective, X is

Kahler. So K(X,D) ^ 0.

Lemma A.3. If X is a projective complex manifold with dim X > 3, b\ (X) 0 and
D c X a smooth ample divisor, then b\ (X) 0.

Proof. First we construct a S1 -principal tubular neighbourhood of D. This is done

by choosing a Kahler metric co on X and defining the fibre of U(D) —>¦ D over z € D
as the image of

expz : BF —> X,

where BE := {v e (TZD)-Lcä \ co(v, v) < e2}. For small enough e this yields a C00

disk bundle embedded in X with a naturally given S1 action. E := dU(D) is now a

principal S1 -bundle n : E —>¦ D.
Since XnU(D) U(D) \ D has E -> D as a deformation retract and U(D) is

contractible to D, Mayer-Vietoris yields

H (A, (L) > H (A, (L) © H (D, (L) > H (h, (L).

Since by assumption H1 (X, C) 0, it is enough to show H1(E,C) =0 in order to

prove the claim of the lemma.
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So we consider a closed one-form q e A1 (E). We refer to [GHV, Prop. X, p. 304]
for the existence of a fibre-wise integration

: AP{E) —? Ap~l{D)
E?

commuting with the differential d. In particular,

c := / x]

Je?

is a constant.
Now we go down to local coordinates: Let D {J U(j) be a trivializing covering

with coordinates (zf,O- We may assume that U(j) are simply connected and U(ij) :=
[/(,-) n U(j) are connected. The arc coordinate on S1 x U(j) is denoted by 4>(j). The
one-form r] is now represented by

k

The fibre-wise Fourier series of t] looks like

r]kr{})
r,k

with ^/r(;) : U(j) -> C. We want to collect terms of the same degree r,

r\r ¦= rior(j) exp(«>0(;))u?0(;) + ^ r]kr{j) exp(ir(t>ij))dzk{jy

In order to prove independence of j we have to look closer at the transition maps.
The transition maps S1 x U^j) -+ S1 x U^j) are given by

with ßaj) : [/(,-;) -> S1 due to the construction of E. This transition law implies

rçOr(i) ßliJ^Orij),

hence Ar(/) := ??0r(/) exp(ir<p(j)) defines a global function hr: E -> <C. Moreover,

hence /?r is well defined for any r > 0. At the same time this shows that r\ — r]o is

exact, hence only qo remains to be considered. First note that

/ n / /?o
Jë7 Jë7
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independently of j. For the other terms we know 0 d(rjo — ^<i0(/)), hence there

are /(/) : U(j) --* R such that

c c
—d(p(l) + df(!) —In In

The universal coefficient lemma tells us that H1(D, S1) H\(D, Z) (not canoni-

cally), since by the Lefschetz theorem there is no free part of H\(D, Z). This is a

finite group, so there exists some m such that mg 0 for all g G H1 (D, S1).

If c 7^ 0, we interpret /(/) : U(j) -> R/cZ S1 as a circle valued function and

infer that there are cq) g S1 such that

represents a global function 4> : E --* S1. The level sets of 4> induce nowhere
vanishing C00 sections of N%™x, so N®™x 0D differentiably. This clearly contradicts
the assumption that D is ample.

So c 0 and hence rjo n*t; for some f gA^D). Since we know H1(D,W) Q

we infer that ??o is exact and hence /? is exact.

Lemma A.4. Under the assumptions of Corollary A.2 holds b2(X) 0.

Proof. We choose the same tubular neighbourhood like in the proof of Lemma A. 3 and

use Mayer-Vietoris for X Xl)U(D). Recall that we already proved//^E1, C) 0.

So we obtain

0 —> H2(X, C) —> H2(X, C) 0 H2(D, C) —> H2(E, C) —> H3(X, C).

In order to compute the cohomology of E we use the Leray spectral sequence.
For a circle bundle, according to [S, 9.5, Thm2] this simplifies in our case to

0 —> H°(D, C) —> H2(D, C) —> H2(E, C) —> Hl(D, C).

Like before we use the Lefschetz theorem to conclude h1 D, C) 0. Hence b2(E)
b2{D) — 1. If we now use the assumptions b^{X) 0 and b2{X) 1, then the

sequence implies b2(X) =0.
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