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Geodesic laminations with closed ends on surfaces and Morse
index; Kupka-Smale metrics

Tobias H. Colding* and Nancy Hingston

1. Introduction

Let M? be a closed orientable surface with curvature K andy C M a closed geodesic.
The Morse index of y is the index of the critical point y for the length functional
on the space of closed curves, i.e., the number of negative eigenvalues (counted with
multiplicity) of the second derivative of length. Since the second derivative of length
at y in the direction of a normal variation un is — fy uL,u where L,u = u" 4 Ku,
the Morse index is the number of negative eigenvalues of L,. (By convention, an
eigenfunction ¢ with eigenvalue A of L, is a solution of L, ¢ + A¢ = 0.) Note that
if A = 0, then ¢ (or ¢ n) is a (normal) Jacobi field. y is stable if the index is zero.
The index of a noncompact geodesic is the dimension of a maximal vector space of
compactly supported variations for which the second derivative of length is negative
definite. We also say that such a geodesic is stable if the index is O.

We give in this paper bounds for the Morse indices of a large class of simple
geodesics on a surface with a generic metric. To our knowledge these bounds are the
first that use only the generic hypothesis on the metric.

Theorem 1.1. For a generic metric on a closed surface, M?, any geodesic lamination
with closed ends has finitely many leaves and each leaf has finite Morse index.

Our second result is:

Theorem 1.2. For a generic metric on a closed surface, M?, there is a bound for
the Morse index of any collection of simple closed geodesics for which each limit is
a geodesic lamination with closed ends.

A lamination on a surface M? is a collection £ of smooth disjoint curves (called
leaves) such that | J,. £ is closed. Moreover, for each x € M there exists an
open neighborhood U of x and a C® coordinate chart, (U, &), with &(U) ¢ R? so
that in these coordinates the leaves in £ pass through ®(U) in slices of the form

*The first author was partially supported by NSF Grants DMS 9803253 and DMS 0104453.
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(R x {t}) N ®U). A foliation is a lamination for which the union of the leaves is
all of M and a geodesic lamination is a lamination whose leaves are geodesics. The
closure of the union of a collection of disjoint, simple, complete geodesics is always
a geodesic lamination.

If ¢ € £ is noncompact, then we set

0, = ﬂe(s, 00). (1.1)

s>0

Since £ is the intersection of nonempty nested closed sets it is closed and nonempty
since M is compact. Since |, £ is closed, £4 C [J,c ¢. Likewise we define £_.
A leaf ¢ € £ is said to be isolated if for some x € £ (hence all x € £) there exists
e =e(x) > Osuchthat B,(x)N¢ =@ forall ¢ € £ \ {¢}. Note that £_, £ consist of
nonisolated leaves. We say that a geodesic lamination £ has closed ends if for each
noncompact leaf £ € £ both £, and £_ are closed geodesics.

We will equip the space of metrics on a given manifold with the C*-topology. A
subset of the set of metrics on a given manifold is said to be residual if it is a countable
intersection of open dense subsets. A statement is said to hold for a generic metric
if it holds for all metrics in a residual set. The conclusions of Theorems 1.1 and 1.2
are true for a residual set of metrics that we call Kupka—Smale (KS-metrics). This
hypothesis on the metric has a natural interpretation in both the dynamical systems
and the variational contexts. Here are two versions of our hypothesis.

KS-metric (dynamical version):

(1) Every simple closed orbit of the geodesic flow whose Poincaré map has real
eigenvalues is hyperbolic.

(2) Every intersection of stable and unstable manifolds at a simple geodesic is
transverse.

KS-metric (variational version): Let y be a simple geodesic.
(1) If y is periodic, there is no periodic Jacobi field without zeroes.

(2) If y is noncompact and has closed ends, there is no bounded Jacobi field without
Zeroes.

The above two conditions are equivalent under the additional condition that the
metric is bumpy. A metric on a surface is bumpy if each closed geodesic is a non-
degenerate critical point, i.e., L,u = 0 implies # = 0. Bumpy metrics are generic,
[Ab], [An]. For convenience we will prove the conclusions of Theorems 1.1 and 1.2
for these “bumpy KS-metrics”. For further discussion of these metrics, see Section 4
where we show that the set of bumpy KS metrics contain a residual set.

Here is the idea of the proof of Theorem 1.1: Unstable closed leaves in a fixed
lamination are always isolated; thus we need to show that noncompact leaves are
isolated and have finite index. In Theorem 1.1 part 1 of the KS-condition is applied
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to get a nice structure on the ends of noncompact leaves, and to ensure that these
ends are isolated and countable. If an end leaf is closed and hyperbolic, this structure
is striking: On each side of the end (limit) leaf there are two smooth circles of
geodesics, each spiraling toward the limit leaf, one in each direction on each side; see
Figure 1 and Corollary 3.4. Each circle foliates a tubular neighborhood of the given

.

4
X1 X2 *2

Figure 1. One of the four circles worth of noncompact geodesics spiraling into a simple closed
strictly stable geodesic.

side of the end. These circles of noncompact geodesics are the stable and unstable
manifolds of the end leaf, when viewed as a closed orbit of the geodesic flow on
the unit tangent bundle of the surface. The second part of the KS condition ensures
that, in a given lamination, leaves limiting on a given pair of ends are isolated, as the
corresponding circles intersect transversely in a local (two-dimensional) section of
the flow; see Figure 2. These noncompact leaves have finite index since index “stops
accumulating” once they get close to the stable, hyperbolic, ends.

To prove Theorem 1.2 we first extract a converging subsequence of the given
sequence of simple closed geodesics. The limit is easily seen to be a geodesic lam-
ination with multiplicities; see the discussion preceding Proposition 3.10. On long
stretches the geodesics in the subsequence will mimic the behavior of the limit lam-
ination. By assumption this limit lamination has closed ends. The transversality of
the intersection of the stable and unstable manifolds will then allow us to conclude
finiteness of the indices for the converging subsequence of geodesics.

Itis easy to see that the first part of Theorem 1.1 is false without the word “generic”.
One can construct a surface of revolution that has a geodesic lamination with infinitely
many leaves. In this example all the leaves are stable and have closed ends. However
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— A\
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Figure 2. Transverse intersection of two circles worth of noncompact geodesics spiraling into
two different simple closed strictly stable geodesics.

in [CH1] we showed that on any M?, there exists a metric with a geodesic lamination
with closed ends and infinitely many unstable leaves. Moreover, there exists such a
metric which has no bound for the index of all simple closed geodesics.

General geodesic laminations on surfaces need not have closed ends; consider
for instance a flat square torus with the foliation consisting of lines with a common
irrational slope. In fact, on any surface there are (bumpy) metrics and geodesic
laminations without closed ends:

Theorem 1.3. On any surface M?, there exists an open (nonempty) set of metrics
having geodesic laminations without closed ends. These laminations are limits of
sequences of simple closed geodesics.

Our interest in whether the Morse index is bounded for simple closed geodesics
on surfaces comes in part from its connection with the spherical space form problem;
see [PiRu], [CM2] where Pitts and Rubinstein ask for such a bound for embedded
minimal tori for a sufficiently large class of metrics on S*. Clearly obstructions to
Morse index bounds for simple closed geodesics on surfaces give obstructions to
Morse index bounds for embedded minimal tori on 3-manifolds (the most immediate
generalization of simple closed geodesics on surfaces to 3-manifolds is embedded
minimal tori with uniform curvature bounds). In addition new obstructions occur;
[HaNoRu], [CD]. We believe that many of the ideas of this paper can be used to give
bounds for the Morse indices of geodesics on surfaces and on embedded minimal
tori (or more generally fixed genus) with uniform curvature bounds on 3-manifolds
with generic metrics. In fact, the arguments given here should be useful even for
surfaces without curvature bounds; for instance on closed 3-manifolds with positive
scalar curvature any complete stable minimal surface is necessarily compact and in
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fact either topologically S* or RP2. Thus “ends” of embedded minimal annuli (even
without curvature bounds) in such manifolds are closed; see [CD] for more discussion
on this.

Throughout this paper M? is a closed orientable surface with a Riemannian metric,
& 1s a geodesic lamination, and whenx € M,ry > 0,and D C M, then we let B, (x)
denote the ball of radius ro centered at x and T;,,(D) the ro-tubular neighborhood
of D. Moreover, if x, y € M, then yy y: [0, disty(x, y)] — M will denote a
minimal geodesic from x to y. Whenever we look at a single geodesic it will always
be assumed to be parameterized by arclength.

We are grateful to Camillo De Lellis for making the illustrations.

2. Geodesic laminations on surfaces

We will often implicitly use the following simple fact: If y < M? is a simple closed
geodesic, then there exists § = &(y) > 0 such that the nearest point projection
IT,: Ts(y) — y is well defined. Moreover, if 7 : [0, 1] — T5(y) is a geodesic, then

1Ty || — 1] < ¥(3) 2.1)

where lims_.0 ¥(5) = 0. Note that this just says that the geodesics y and y are
nearly parallel. If y is oriented, then we say that y: [0, 1] — T5(y) has the same
orientation as y if |dI1, 7" — ¥'| < ¥ (8). We will most often assume that this is the
case.

We will assume in what follows some knowledge of Jacobi fields and indices of
geodesics; see e.g. [K1] or [Sp]. Three facts will be particularly important:

1) A Jacobi field J is uniquely determined by the values (J (¢), J'(¢)) for any ¢.

2) A complete geodesic (closed or noncompact) is stable if and only if it has no
Jacobi field with more than one zero. (In the closed case we of course mean
Jacobi field with the same periodicity as the geodesic.)

3) A noncompact geodesic has finite index if and only if there is a bound for the
number of zeros of any nontrivial Jacobi field along it.

To show that certain geodesics are stable (or have bounded Morse index) it is
sometimes useful to apply the following standard fact: A Schrodinger operator Lu =
u” + Ku is nonpositive (—L > 0) if it has a positive supersolution ¢ (that is ¢ > 0
and L¢ < 0). This follows since —(log#)” > K + |(log #)'|* and hence if f is
a compactly supported function, then integration by parts and the Cauchy—Schwarz
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inequality yields
/ 2K + / Fldogd)|* < — / fHlog)”

(2.2)
— 3 / ff'(logp) < / F*(log ) |* + / [P

Thus, — [ fLf =— [ f(f"+Kf)=0.

Lemma 2.1. Let y be a strictly stable (—L,, > 0) simple closed geodesic on M2,
There exists & = 8(y) > 0, such that any geodesic segment contained in Ts(y) with
length > 1 is stable.

Proof. Since y 1is strictly stable, then —L,, > 0 so if we let A; be the first eigen-
value and ¢ a corresponding eigenfunction, then A; > 0 and ¢ > 0. In particular
—Ly|p| = A1lep] > 0. Let y C T5(y) be a geodesic segment with length > 1 and
set ¢ = ¢ o I, then |$| > 0 and (by (2.1)) —L; || > 0. The lemma now follows
from the remarks preceding it. o

Let y be a closed geodesic with universal cover . Then
1) y is stable if and only if ¥ has no Jacobi field J : R — R with 2 zeroes.
2) y is strictly stable if and only if y is stable and ¢ has no periodic Jacobi field.

The “only if” part of each statement follows by contradiction from the simple
argument of Lemma 2.1 when applied to a first eigenfunction ¢, with f the restriction
of J for 1) to an interval between two zeroes, and for 2) to one period of J. The “if”
part of 2) is clear; to see the “if” part of 1) we argue using (2.2): Let x, be the cutoff
function (we may assume that Length(y) = 1),

1 for |7] < n?,
xn(t) =11 —(t| =n®)/n forn® < |t| < n?®+n, (2.3)
0 otherwise.

If f is a function on y, f its lift to v, set f, = f Xn, and ¢, = J, (where J, is a
Jacobi field with J,(—n? — n) = 0 and J,|(—n? — n, 00) > 0. Then by (2.2) for f;

o’ / Kf2 < / K Py2 < / [(Fxn) P
V4
- 1 . - -
< / (Y PAE+ o [ (Y2 + ()] + / FRGD? @4
N Jn2<|t|<n+n
< 2n(n+2) / () +3 / (2.
Y 14
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Dividing (2.4) through by 212 and letting n — oo gives — fy fLf =— fy ff" +
Kf)=0.

We will also use the following two well-known facts; see e.g. [K1] or [Sp]. One
can also see 4) below by arguing as in 1) and 2) above:

3) A Jacobi field J is uniquely determined by the values (J(¢), J'(¢)) for any z.

4) A noncompact geodesic is stable if and only if it has no Jacobi field with more
than one zero and it has finite index if and only if there is a bound for the number
of zeros of any nontrivial Jacobi field along it.

Note that 1) and 4) together imply that y is stable if and only if y is.
Lemma 2.2. Any nonisolated leaf € of L is stable.

Proof. If ¢ had a Jacobi field with 2 zeroes, then so would every sufficiently nearby
(in the unit tangent bundle) geodesic. But between ¢ and any nearby geodesic ¢;
which does not intersect £, we can find (using £ and ¢; as barriers) a stable geodesic
n which has no Jacobi field with 2 zeroes. O

From the definition of a lamination and Lemma 2.2 one easily shows:

Lemma 2.3. Each ¢ is connected (as a subset of M). Moreover, given x € £, then
x € ly C Ly for some Ly € L; Ly is said to be a limit leaf and is stable.

We will need the following result.

Lemma 2.4. If ¢ € £ is noncompact and {4 contains a closed geodesic o, then
Ly = o and € spirals monotonically toward £ .

Proof. Since ¢ is simple and complete and does not intersect o, once £ gets into
a small tubular neighborhood of o, then one of the two “directions” of ¢ must be
completely contained in a small tubular neighborhood of o. Now using thato C £
it follows from this that the “forward direction” of £ is actually contained in a small
tubular neighborhood of ¢ and hence (again since o C £4) must spiral toward o
monotonically. ]

We say that a geodesic y»: [0, ky] — M? can be written as a normal graph over
a geodesic y; : [0, k1] — M by a function u (on [0, k1 ]) if there is a diffeomorphism
a: [0, k1] — [0, k2] such that for all r € [0, k1],

ya(a(t)) = expy, o (u(t) 1y, (1)) 2.5

The next corollary follows from Lemma 2.4.
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Corollary 2.5. Suppose that £ has closed ends. If ¢;, ¢ € £ and £ is noncompact
with £;(0) — £(0), then, for i sufficiently large, £;. = £+ and ¢; is a normal graph
over L.

Recall that we equip the space of C™ metrics on a closed surface M? with the
C*>-topology and we write g; — g if |g — gi|cx — O for all k. Most of the next
lemma will be needed only in Section 4.

Lemma 2.6 (Lemma B.1 of [CHL]). Suppose that the metric g on M is bumpy.
For each L > 0, there exists at most finitely many closed geodesics of length < L.
Moreover, if L is not equal to the length of any closed geodesic in g, then in a
neighborhood of g each metric has precisely as many (simple) closed stable geodesics
of length < L as g. Finally, if g; — g and {y; 1}, {vk} are the (simple) closed stable
geodesicsin g;, g, respectively, of length < L, then y;  — yi fori — oo and each k.

In the remainder of this section the metric on M? is bumpy and £ has closed ends.
For a bumpy metric (or for a metric with either version of the condition KS (1)), each
element in a collection of disjoint simple closed geodesics isisolated. Thus £ contains
finitely many closed leaves 71, . . ., 1,;; these are the only limit leaves. Choose & > 0
so that:

dist(n;, i) > 2&  for j #k: (2.6)

T.(n;) N¢is graphical over nj for 1 < j <mand¢ € £;and IT: To(Un;) — Un;
is smooth. Using the local product structure, there exist C > 0 and S with 9.5 smooth
so that

U Teyc(nj) C S C U T:(n;) 2.7

and 0S intersects £ transversely. S; denotes the component of S containing 7;.

Corollary 2.7. Suppose that the metric on M is bumpy and L has closed ends. Let n;
and S be as above. There exists p < o0 so that, for each £ € £, each component «
of £\ S has Length(«) < p.

Proof. This follows by compactness. o

Using the local product structure, Corollary 2.7 implies that there are collec-
tions T3, 1 < j < m, of components & of U ¢\ S so that each @ € T; spirals
between 71 ; and 77 T Hence,

min dist( U «a, U oc) =g > 0. (2.8)

h#R wel,  wcl)
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3. Morse index bounds for bumpy Kupka—Smale metrics

Let M? be a closed surface with a bumpy metric. In this section we discuss the
stability of the leaves of a geodesic lamination. The first goal is to prove Corollary 3.7,
which says that a nonisolated leaf in a geodesic lamination with closed ends implies
a non-transverse intersection of two circles which will be described below. From this
corollary we will then be able to give a condition (KS-metrics) on a metric on M
which will imply that all geodesic laminations with closed ends have finitely many
leaves, and that there is a bound for the Morse index of simple closed geodesics; see
Propositions 3.9 and 3.10. In Section 4 we will see that this condition is generically
satisfied.

Ify:[n,n] > M Zisa geodesic, then we let Py, ;, denote the (relative) linear
Poincaré map which describes to first order how nearby geodesics advance along y.
That is, if (a, b) € R?, then Py (a,b) = (J (1), J'(2)) where J is the Jacobi field
on y with J([l) =qa and J/(ll) = b. Note that Pl‘z,tl = Ptg,tPt,t1~ Set

0 1
Ry = (—K(y(r» 0) ‘

By the Jacobi equation %Pm = R, (1) P,y since Tr(R,) = O and Py, is the
identity it follows that P; ;;, € SL(2,R). Observe thatif y: [0, s, ] — M is closed,
then P, = Py, o is the usual linear Poincaré map.

The existence of a Jacobi field along y with zeroes at 71 and 1, is equivalent to the
fact that Py, ;, (as a linear map from R? 1o itself) takes the y-axis to itself; thus we
will want to keep an eye on the y-axis as Py ;, acts on R?. Note that the 1 in the upper
right comer of R, means that if we watch the motion of a vector (a, b) under P,
then at a time 72 when the vector hits the y-axis (i.e. when P, 1, (a, b) = (0, y)), the
vector is moving clockwise, i.e. %P,,,l (a,b) = (v,0). (This agrees with common
sense: If J(1z) = 0and J'(12) = y, then J(¢) has the same sign as y for r > 12.)

If the metric on M is bumpy, and y is a closed limit leaf of a geodesic lamination,
then y

1) is simple,
2) has no Jacobi field J: R — R with 2 zeroes,
3) has no periodic Jacobi field.

If y is closed, it is clear by the above discussion and continuity that if P, = P, o
does not have a positive real eigenvalue (i.e. if P, does not fix the direction of some
vector in ]Rz), then the path P; 9,0 <t < s, rotates each vector in R? clockwise
by a positive amount. However, since Prs,+1,0 = Pf:OP:;,o’ in that case eventually
the y-axis will be mapped to itself, causing a Jacobi field with 2 zeroes. Thus if y
is simple closed and strictly stable, the eigenvalues of P, are of the form A and 1/A
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where 0 < A < 1; it follows that P, has a basis (not necessarily orthogonal) of
eigenvectors. (Note that 1 cannot be an eigenvalue by 3).)

A local section % of the geodesic flow along y is obtained as follows; [Bi], [MS].
Pick #o, and construct a geodesic T on M transverse to y’(fp) at ¥ (fo). Let IT be
the projection from the unit tangent bundle 771 M onto M. The surface ¥ C T1 M is
the intersection of a neighborhood of y’(1y) with the set I1-!(¢). Each point in X
corresponds (by giving an initial tangent vector) to a geodesic near y. If y is closed,
by following the geodesics around we obtain the (C') Poincaré map #: ¥ — X
with fixed point y’(0). (Strictly speaking we will need to make the domain of &
smaller in order to get the range inside X.) The derivative of & at y’(0) is the linear
Poincaré map P = P,,.

We will use without proof the following lemma, which says that an appropriate
limit of geodesics is a Jacobi field. We decline to put a topology on the set of
geodesics on M. However, very loosely speaking, if we think of the space of Jacobi
ficlds along y as the tangent space to the set of geodesics at y, then the lemma says
that a neighborhood of y in the set of geodesics is diffeomorphic to a neighborhood
of y'(t) in X. The “diffeomorphism” takes a geodesic o to its tangent vector /()
at the time ¢ when it crosses t, and a Jacobi field along the geodesic to the values
(J (1), J'(r)) at that time.

Lemma 3.1. Let y be a geodesic, and fori > 1 let u;(t) be the normal graph over y
of a geodesic y;. Assume that 1im; . ||(u;(0), u}(0))|| = 0, and that the limit

Jim (u; (0), w;(0)) /1l (u; (0), u; (0)) (3.1

exists. Fixty. Thenlim; o0 u; /||(u;(t0), u(to)|| exists and represents a Jacobi field J
with
(J(1), J'(1) = il_i)rgo(ui(t% i (0)/ 1 (ui(to), ui (t0)) | (3.2)

forallt. Conversely, any Jacobi field is the limit of a 1-parameter family of geodesics
(though it may be that none of these geodesics is the normal graph of a function u(t)
defined for all t).

Suppose now that y is simple closed and strictly stable. The lemma that follows
says that the Poincaré map # has the same behavior as its derivative P: It has one
contracting direction (eigenspace for A) and one expanding direction (eigenspace
for 1/1).

Lemma 3.2 (See [HiPul). Lety besimple closed and strictly stable. If ¥ is sufficiently
small, then there is a C' curve Y through the origin in T with the property that, for
all x € %,

lim P'x =0 < xe€¥Y < P'xe€X foraln>0. 3.3)

n—o0
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Thus a geodesic t near y has v = y if and only if the point x in ¥ corresponding
to v lieson Y. Y is called the stable manifold of .

Corollary 3.3. Let y be simple closed and strictly stable. If € is a noncompact
simple geodesic with 4 = y (or £ = y), then € has a unique Jacobi field Jy with
the normalization X4+ (0) € {(cos®,sinb) | —7/2 < 6 < 7w /2}, where X, (1) =
(J(1), er(t)), and with ||J(t)|| bounded for t > 0. For this vector field there
exists C and o > O such that for t > 0

X4+ ()] < Cexp(—at). 34

Proof. Let x be a point in X representing £; this means x = ¢'(1p). A vector in the
tangent space to X at x represents (by giving the initial values J(tg) and J'(1)) a
Jacobi field along ¢. By Lemma 3.1, the derivative d, 5 describes how the Jacobi
field J advances along one loop of £. Using (3.2) it is clear that a tangent vector to
the stable manifold X at x represents a Jacobi field with the desired property. O

Corollary 3.4 (See Figure 1). Let y be simple closed and strictly stable. Then there
are four “circles” of noncompact geodesics limiting on y. That is, on each side of y
in M, and for each orientation of y there is a C' map S' — T1M which gives a
bijection between the circle S' and the set of geodesics £ with 4 = y which limit
on y from the given side of M with the given orientation.

Proof. Implicit in the statement of the corollary is the map from 71 M to the set
(untopologized) of geodesics on M. One way to parameterize the circle, in the set of
geodesics, is to use the segment of the stable manifold ¥ between two consecutive
points x representing a single geodesic £ with £, = y. In order to lift the circle to
aC' map S! — T1 M, it is clear how to reparameterize along the segment in order
to get the ends to match up. Once this is done, the image of S! in 71 M will be a
circle close to the curve of tangents of y, whose image in M lies on the given side
of y. O

If a geodesic £ lies in one of these four circles of geodesics given by Corollary 3.4,
then the vector field J, along ¢ can be thought of as a tangent vector to the circle.

Corollary 3.5. Let vy be simple closed and strictly stable. There exists a neighbor-
hood T of vy such that for all x € T \ {y} there is a unique (maximal) geodesic
£y (a,00) — T with the same orientation as y and x € {y. Moreover, a > —0oQ,
oty € oT, £y C T\ {y}, by is simple, ()t =y, and F = {lxlrear U {y)isa
geodesic foliation of T

Proof. Let T have as its boundary the image in M of the circle in 71 M given in the
previous corollary. (This will need to be done once on each side of y.) To get the
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foliation structure, and the simplicity of £, we use the fact that the derivative of the
composite
Yy — X - M (3.5)

at the point y’(fo) is nontrivial. The latter fact can be seen as follows: A tangent
vector to Y at y/(to) gives the initial values (J (to), J'(t0)) of a Jacobi field which
returns after one loop around y as a multiple 1/x of itself. Since y is stable and
thus has no Jacobi field with two zeroes, J(75) # 0 and thus the image under IT is
Nnonzero. =

There is a direct way (using the appendix of [CH1]) of getting Corollaries 3.4,
3.5 without appealing to Lemma 3.2. Namely, by appendix A of [CH1] there exists
a strictly convex function F defined in a neighborhood {F < ¢} (where ¢ > 0 is
sufficiently small) of y. (In Figure 1 the curve circling y is meant to represent
a level set of F.) Note that each side of y in this neighborhood is convex and
homeomorphic to a cylinder. A straightforward convergence argument shows that
for each x € {F = ¢} there exists a simple stable geodesic £, C {F < e} with
x € fyx and (£x); = y as in Corollary 3.5. That £, ¢, do not cross (and that
U, &x = {F < e} \ {y}) follows easily from Lemma 3.1 using the linear Poincaré
map. Note that in this case each orientation of each component of {F = ¢} gives a
parameterization of one of the four circles.

Corollary 3.6. Let y be simple closed and strictly stable. There exists & > 0 such
that if X_ is the vector field defined on T.(y) \ {y} by X_(x) = 7'(0) where y is a
noncompact geodesic with y_ =y and y(0) = x, then X_ is Cl. X_andits (first)
derivatives are also continuous functions of the metric on M. Moreover, there exists
a C? curve ¢ orthogonal to X _ and such that dc € 8T:(y) U y.

The statement that X_ is continuous in the metric makes sense in light of
Lemma 2.6. The vector field X_ is also locally defined and C! with respect to
the metric in a neighborhood of a point ¢(#) if £_ = y, v is simple closed and
strictly stable, and if the vector field J_ along ¢ has J_(#y) # 0.

Proof of Corollary 3.6. The continuous dependence of the derivatives of X_ upon
the metric follows from (in order) the continuity of the geodesic flow in the metric;
the fact that the Poincaré map & is C, with derivatives depending continuously
upon the metric; the fact that the stable manifold Y is C', with derivatives depending
continuously upon the metric. It can also be seen more directly using only the
continuity of the geodesic flow and general dynamic properties of the flowneary. O

The next corollary is central to what follows. A noncompact leaf ¢ in a geodesic
lamination with £, ¢_ simple closed and strictly stable geodesics lies in the intersec-
tion of two circles of geodesics, corresponding to its limit leaves £ and £_. If £ isnot
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an isolated leaf, say ¢; € £ with £;(0) — £(0), then as in Corollary 2.5 the leaves ¢;
have the same limit leaves and thus also lie in the intersection of the same two circles
of geodesics. Corollary 3.7 can be thought of as saying that under these assumptions,
the two circles of geodesics have a common tangent vector at the point £; thus the
two circles are intersecting non-transversely. The vector field J4 (respectively J_)
defined in Corollary 3.3 should be thought of as the tangent vector to the circle of
geodesics ending at £ (respectively £_) at the point £.

Corollary 3.7. Let L be a geodesic lamination on M. If £, ¢; € L are (distinct)
noncompact, £y, £_ are strictly stable simple closed geodesics, and £;(0) — £(0),
then € is stable and there exists a bounded (nontrivial) Jacobi field on €. Thus
Jy=J_.

Proof. As in Corollary 2.5 we can assume that £;, = £y, and that ¢; is the normal
graph of a function u; (¢) over £. Let X be a local section near the point ¢/, (0). By
Lemma 3.2, ¢ and ¢; all correspond to points in X lying on the stable manifold Y.
By Lemma 3.1, lim; _, o u; /|| (1; (0)), u;(O)) || exists and is equal to J.. By the same
reasoning, lim; . u; /|| (u; (0), u} (0)|| = J_. O

Corollary 3.8. For a closed surface with a bumpy metric, the dynamical and vari-
ational versions of the Kupka—Smale hypothesis are equivalent. A bumpy metric is
KS (by either definition) if and only if for each simple stable (noncompact) geodesic
with closed ends, J4 # J_.

Proposition 3.9. Let M? be a closed surface with a bumpy metric and let £ be a
geodesic lamination with closed ends. Then each leaf has finite index and L has at
most finitely many closed leaves each of which is either isolated or strictly stable.
Moreover, if L has infinitely many leaves, then there exists a stable noncompact leaf
with a (nontrivial) bounded Jacobi field.

Proof. This follows by combining Lemmas 2.2, 2.1, and 2.4 with Corollary 3.7. The
index of each noncompact leaf is finite since by Lemma 2.1 and Lemma 2.4 index
only accumulates on a finite interval away from the two ends. o

There are two different ways of proving our bounds on the Morse indices. One is
to use exclusively the Poincaré map and Jacobi fields (this is the way we will prove
Proposition 3.10 below). The other is to construct positive supersolutions of the
Jacobi equation. A particularly simple example of the second is given in Lemma 2.1.
Each approach uses the eigenvalue gap, that is that there are no bounded (nontrivial)
Jacobi fields on simple noncompact geodesics with closed ends.

Before proving our next result we will need a brief discussion on convergence of
a sequence of simple closed geodesics {y;} in a closed orientable surface M2. Let
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ro > 0 be sufficiently small depending only on maxs |K| and the injectivity radius
of M. Fix x € M, then B,,(x) N y; is the union of disjoint geodesics segments of
length at most 2rg for each i. Note that any two such that come close to each other
are “almost parallel”. In fact it follows easily from the equation for geodesics that for
each i there is a coordinate chart B,,(x) — B,,(0) C R? such that each component
of By, (x) N y; is mapped to a line segment of the form B,,(0) N (R x {t}) C RZ,
In this way one can think of each y; as a geodesic lamination where the size of
the coordinate chart (and the regularity of the maps) given in the definition of a
lamination is independent of i. Since by the Arzela—Ascoli theorem such a sequence
of coordinate charts is precompact it follows that a subsequence of the y;’s converges
(as a sequence of laminations) to a geodesic lamination £. Implicit in this is that a
sequence of laminations is said to converge if the corresponding coordinate charts
converge and the local transversals converge as closed subsets of R in the Hausdorff
topology.

It follows from this discussion that if M? is closed with a bumpy metric and {y;}
is a sequence of simple closed geodesics, then after passing to a subsequence we may
assume that y; — £, where £ is a geodesic lamination. Suppose that /£ has closed
ends and let {r;} be the finitely many closed leaves of /£ and let & > O be sufficiently
small so that (2.6) holds. Let S be given by the remarks surrounding Corollary 2.7.
Note that in this case, where y; — £, the support of € is connected and each r; is a
nonisolated leaf, hence strictly stable. If in addition M? does not have a noncompact
simple geodesic with a (nontrivial) bounded Jacobi field, then by Proposition 3.9 we
can let {£;}r=1,. m+n be the finitely many noncompact leaves of £ ordered so that
the first m are the stable leaves. It follows that for i sufficiently large each y; can be
decomposed into pieces that spiral very tightly around one of the n;’s and pieces that
are very close and almost parallel to one of the (¢ \ S)’s. Note that although there
is no a priori bound for how many pieces that circle one of the n;’s or are almost
parallel to one of the (¢x \ S)’s for kK < m and a given i, only one piece can be very
close to an unstable leaf £;. Had this last claim not been the case then we would get
a contradiction by writing one of the two (disjoint) pieces as a graph over the other
and arguing as in Corollary 3.7 to get a positive Jacobi field.

Proposition 3.10. Let M? be a closed surface with a bumpy Kupka—Smale metric.
If y; is a collection of simple closed geodesics and every limit of {y;} is a lamination
with closed ends, then there is a uniform bound for the Morse indices of {v;}.

We say that a bumpy metric on M? is a bumpy Kupka—Smale metric (or bumpy
KS-metric) if for each simple stable (noncompact) geodesic with closed ends in M,
any bounded (normal) Jacobi field vanishes identically. Note that if M? is a closed
surface with a bumpy metric, then by the results above the metric is KS if and only
if for each simple stable (noncompact) geodesic with closed ends, J_ # J,.
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The proof of Proposition 3.10 will be by contradiction. We will assume that y; is a
sequence of simple closed geodesics in a fixed metric and show that the Morse index
of these is uniformly bounded. A limit of such a sequence is a geodesic lamination.
The relative Poincaré map of one of the y;’s (which will tell us how many zeroes a
Jacobi field can have) near the limit lamination will be pieced together from pieces
taken from the leaves of the foliation. Thus we will consider first the relative Poincaré
map along such a leaf y. The next three lemmas examine the three cases: closed
leaves n;, noncompact but stable leaves £; (k < m) and noncompact unstable leaves
£y (k > m). We need to watch the image of a fixed vector under the relative Poincaré
map to see how many times it can cross the y-axis. Recall that such crossings are
always transverse and clockwise. In order to prevent the corresponding Jacobi field
from having more than one zero we will try to trap it in the right half plane after it
crosses the positive y-axis.

First let  be simple closed and strictly stable. Then using the fact that no Jacobi
field has 2 zeroes, it is not difficult to see that the Jacobi fields J4+ have no zeroes; thus
the vectors X 1 (1) = (Jo(2), JL(1)) € RZ never lie along the y-axis. If (according to
our convention above) J1(¢) > 0 for all ¢, then X_ and X4 both lie to the right of
the y-axis, and X _ lies between the positive y-axis and X . P; (X+(s) = X+ (¢) and
Py s preserves the four quadrants defined by £X . Pt+s,,,t has eigenvectors X _ (1),
X4 (¢r) with eigenvalues 1/A, A (0 < & < 1) (the eigenvalues are independent of t)
thus the directions of the vectors X 4 (7) are periodic inz. Py, ; fixes these directions
and pushes vectors in the four “quadrants” away from the X -direction and toward
the X_-direction. Thus the region between the positive y-axis and the vector Xy is
a “trap” from which the future orbit of a vector under P cannot escape. Let Xo(7) be
a (unit) vector in R? halfway between X+ (¢).

Lemma 3.11. Let n be a strictly stable simple closed geodesic. Then there exist
e, H > 0, so that any geodesic, which is the normal graph over n| (g pywithb—a > H,
of a function with norm < &, has the following property: If J is the Jacobi field with
(J(a), J'(a)) = Xo(a), then J has no zero in [a, b], and (J(b), J'(b)) lies above
Xo(b) (in the right half-plane). (Here both the geodesic and its Jacobi field have
been reparameterized as graphs.)

Proof. This follows from the fact that by (2.1) the curvature K (as a function of
arclength), and thus the relative Poincaré map Pt+sn’t for the nearby geodesic will be
close to that of n, and the fact that the latter has eigenvalues A, 1/A. This hyperbolicity
means that we do not need a bound for H. O

Lemma 3.11 also follows from Lemma 2.1.

If .£ is a geodesic lamination with closed ends on M? with a bumpy metric, then
we can find an ¢ and an H which will work for each closed leaf. We will assume this
in the next two lemmas.
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Now let £ be noncompact and stable, with no (nontrivial) bounded Jacobi field.
Assume £_ and £ arestrictly stable. The vectors X (1) = (J+ (1), J4.(¢)) never cross
the y-axis, and, as above, X_ lies between the positive y-axis and X . P s preserves
+X .+ and the four quadrants. Let P (¢) be the (nonrelative; ordinary) Poincaré map
for £, with eigenvectors Vi(t)A For T large there is a map ¢: [T, o0) — R so
that £ (¢ () 1s a (correctly parameterized) normal graph over £(¢) on [T, co). For
fixed s,

B ([ Prys(8) = Pyt (£4) = 0, (3.6)

Thus in particular when s = s¢, the period of £, Py (¢) will have eigenvectors
close to Vi and eigenvalues close to those of Py (¢(¢)). Givene > 0, u > 0, for ¢
sufficiently large the image under P; (£) of any vector not within an angle u of
+X,(s) (in R? “at the time s”) will lie at an angle < ¢ of V_(¢ (¢ + s)). From this
it follows (though different arguments are needed for the two cases) that

tim | Xe()  Vi@®)
t=oo | Xe () [[Va(p )l

(As t gets large, V_ will “soak up” all vectors except V., including X _. X does not
get soaked up, and must therefore equal V,..) Thus as £ spirals toward £, the basis
(X_, X4) approaches the basis (V_, V), so that the two relative Poincaré maps can
be glued together. Similarly, as 1 — —oo, the basis (X_(f), X4 (¢)) approaches a
basis (U_ (¢ (1)), Uy (¢ (1)) of eigenvectors of P_(i(¢)) for an appropriate repa-
rameterization .

| =0. (3.7

Lemma 3.12. For each such ( parameterized) geodesic £, there is an interval [a, b]
and a 8§ > 0 so that, for each geodesic y which is the normal graph over £|[a.p] 0f a
Jfunction with norm < §, the following hold:

1) vla—#.a1 and y|p,p+H) are normal graphs of functions with norm < & over
closed leaves as in Lemma 3.11.

2) If J is the Jacobi fieldwith (J (a), J'(a)) = (Up(¥(a)) (aunitvector midway be-
tween Uy (Y (a)) and U_(¥(a))), then J has no zeroin [a, b, and (J (b), J'(b))
lies above Vo (¢ (D)) (in the right half-plane). (Here both vy and its Jacobi field
have been reparameterized as graphs.)

Proof. This is similar to the previous lemma. o

Lemma 3.13. Let ¢ be a noncompact, unstable leaf. Assume that €4 are strictly stable
simple closed geodesics. There is an interval [a,b], a é > 0, and N € Z so that, for
each geodesic y which is the normal graph over £|[q.p] of a function with norm < 4,

1) vla—#.a1 and y|p.p+H) are normal graphs of functions with norm < & over
closed leaves as in Lemma 3.11.
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2) If J is a Jacobi field along ¥ ||a,1), then J has at most N zeroes.

We can find a, b and § which work simultaneously for all the noncompact leaves.

Proof of Proposition 3.10. Suppose now that there were no bound for the Morse index
of all simple closed geodesics on M it follows easily that there exists a sequence
{vi} of simple closed geodesics with index — oo and so that y; — £, where £ is
a geodesic lamination. Let {n;}, {€x}r=1,..,m+n be the leaves of £ as above. Let
H, e, 8, a, b be as above. If i is sufficiently large, y; will consist of a union of
pieces, each of which lies within ¢ of a closed leaf n; for a time > H, or which (after
reparameterization) is a normal graph with norm < § over some Z|[a, b]. We can
assume that only one piece is a normal graph over ¢y if k > m (by convention f; is
unstable for k > m). Let J be a Jacobi field along ¥ = y;. We claim that J can have
at most n(N + 1) zeroes. By Lemmas 3.11, 3.12, if y;|[c,4] 1 a union of pieces as
above, but only using the closed leaves n; and stable noncompact leaves, then J ¢ 4]
can have at most one zero. Once the vector (J (1), J'(t)) crosses the (say) positive
y-axis, it will be trapped in the right half-plane, preventing J from having another
zero. The claim follows using Lemma 3.13, and thus the proposition. O

4. Genericity of bumpy Kupka—Smale metrics

We begin with some general comments on the Kupka—Smale hypothesis.

A vector field on manifold is Kupka—Smale (see [PW]) if (1) all closed orbits are
hyperbolic, that is, their Poincaré maps do not have any eigenvalue of modulus 1,
and (2) stable and unstable manifolds of closed orbits intersect transversely. Note
that without hyperbolicity, in general there are no stable and unstable manifolds,
s0 (2) does not make sense without (1). The Kupka—Smale Theorem states that
Kupka—Smale vector fields are generic among C”-vector fields, for r > 1. Our first
(dynamical version) definition of KS metric has in mind the Kupka—Smale condition
on the vector field generating the geodesic flow on the unit tangent bundle of M.
There are two differences: First, we are interested only in simple geodesics. Second,
we only insist upon hyperbolicity for closed geodesics whose Poincaré maps have real
eigenvalues. Note that this includes all stable closed geodesics and all closed ends
of simple geodesics, so the manifolds in (2) are indeed manifolds. Since a Poincaré
map coming from the geodesic flow on a surface always has determinant 1, if the
eigenvalues are not real there is no hope of pushing them off the unit circle by a small
change in metric. Thus in the sense of dynamics of simple geodesics our KS-metric
condition is the most one could ask of a generic metric. A careful reader can check
that this condition alone is enough to prove Theorems 1.1 and 1.2.

The variational version of the KS-metric condition is also interesting. Condi-
tion (1) is a weak version of the bumpy metric condition. It says that, to first order, y
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does not lie locally in a foliation of M by simple closed geodesics. Condition (2)
is an analog of the bumpy condition for noncompact geodesics, and appears to be
independent of the bumpy metric condition.

In this section we will show that on M? bumpy KS-metrics are generic. Here is
the idea: A simple noncompact geodesic y is an intersection point of two circles of
geodesics spiraling toward y_ and . The intersection will be transverse if the two
circles have different tangent vectors at y, i.e., if J_ # J;. We will show how to
deform the metric so as to make the two circles intersect transversely.

Fix a metric g on M and suppose that y1, y» C M are strictly stable simple
closed geodesics (where y1 = y» is allowed). Let I'_ be the noncompact (unit
speed) geodesics y with y_ = y1, and I'y those with y4 = y». If y € I'_, then
we let F_: (—e&,&) x R — M be a (nontrivial) geodesic variation of y so that
F_(s,) € T_, F_(0,) = y, and (%=, 2=)|,_o = 0. Likewise if y € Iy,
then we let Fy be a (nontrivial) geodesic variation of y consisting of geodesics
asymptotic to y2. (Note that by Section 3 these variations are essentially unique; we
can also assume that a%Fi(O’ ) = Ji(y) and %Fi(o, ) = Ji(y)). We say that
I'_ and I' intersect transversally at y if the two curves representing I'_ and I' ;. in
a local section X at y are transverse, i.e., if given a curve v: (—&,¢) — M with
v(0) = y(19) for some g and v/(0) transverse to y’(0), the curves %h} (= X_|v)

% [v(= X4|v)in M- 1(v) ¢ T M are (well defined and) transverse at 0. (Note

that %(O, 0) = %(O, 0) = ¥’(tp).) Now a tangent vector to the curve %h}
ats = 0 s given by (vi(L)F_(0, 10), vy () 22=(0, 1)), which is proportional to
(J_(tp)n+ a%, J! (to) n), where « is the slope of the tangent vector to v in the (s, )
coordinates, and similarly for Iy, Jy. Thus transversality means that the vectors
(J— (1), J (1)) and (J4(10), J (t0)) are not parallel. Since the Jacobi fields are
determined uniquely by their and their derivatives values at ¢ = 1o, by Section 3
transversality of I'_ and Iy at y is equivalent to the fact that y has no bounded
nontrivial Jacobi field. To prove that the set of bumpy KS-metrics on M? is residual it
suffices therefore (by Lemma 2.6) to show that a residual set of metrics on M ? consists
of bumpy metrics with the property that, for each pair of strictly stable simple closed
geodesics y1 and y», I'_ and ' intersect transversally.

The rest of this section is devoted to the proof of:

and

Theorem 4.1. On a closed surface the set of bumpy KS-metrics contains a residual
set.

Proof of Theorems 1.1 and 1.2. Theorems 1.1, 1.2 follow by combining Theorem4.1
with Propositions 3.9, 3.10, respectively. O

In Lemmas 4.2, 4.4 below we let M? be a closed surface with metric g and
¢t [—e,ro+ €] = M be a simple C"t? curve parameterized by arclength. Let n.
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be the unit normal (so rn, € C™t1) and let ®: [—e, 50 + €] x [0,e] — M be
given by ®(s, 1) = exp s (I ne(s)) so that ®~1 are geodesic normal coordinates in
a neighborhood of ¢. In these the metric is of the form f2(s, t)ds? + dt* where
f € C™. (Note that in any metric of this form, the curves s = constant are minimal
and thus geodesic.)

We will give a simple direct argument to show that the set of strictly bumpy metrics
on M is dense. The following deformation lemma will be needed to show that on a
surface for a dense set of metrics certain geodesic variations intersect transversally.
The lemma allows us to alter the geodesic flow in a controlled way by altering the
metric.

Lemma 4.2. Let M2, ¢, ® be as above. Let cy: [—&,50 + €] — M be the
curve cy(s) = ®(s, e — ws). There exists a 1-parameter family of C™ metrics gy
(w € (=4, 8)) such that go = g, each gy, = g on M \ ®([—e¢, so — €] x [0, 3¢/4]),
Dy (s,8) = cy(s) fors € [0, so), and %wa(s, €) points perpendicular to the curve
cw(s). (Here CD;l are geodesic normal coordinates in a neighborhood of c in the met-
ric gw.) That is, in the g, metric, the geodesics which enter the box ® perpendicular
to the curve c(s) exit perpendicular to the curve cy(s).

Proof. Fix w > 0 sufficiently small. Let W ! be geodesic normal coordinates in a
neighborhood of ¢,, parameterized so that WV, (s, t): [—&,50 + €] x [0,e] — M,
and W, (s, -) are geodesics moving away from ¢ and ending up on ¢, orthogo-
nal to ¢y. In particular W, (s, &) = cy(s). In these coordinates the metric can
be written as f2(s, 1)ds> + dt*. Let n: [0,&) — [0, 1] be a smooth cutoff func-
tion with ([0, /2] = 1. Then (D;}U(S, 1) =mOd s, )+ 1 — n(t))\Illzl)(s, 1)
is a diffeomorphism and gives therefore local coordinates (s, t). In these define
a metric by g, (s, 1) = (@) f(s.1) + (1 — n(©)) fu(s, 1))?ds* + dt>. Finally,
let ¢ € CP(—e,50 + &) with 0 < ¢ < 1, ¢|[0,s0] = 1, and set gy, (s, 1) =
P (s)8uw(s, )+ (1 —p(s))g(s, 1). Itis easy to see that this gives a 1-parameter family
with the desired properties. o

We will use this deformation to make the family I'_ (locally) transverse to I'y.
The metric will be deformed in a rectangle ¢ to change the family I'_ as it moves
through the rectangle, (roughly speaking) before it meets the family I} at the top of
the rectangle. To see the effect of this deformation of the metric on the image of the
family of geodesics I'_ in the local section X given by the (fixed) curve ¢q at the top
of the rectangle, we will need to know the angle at which these geodesics cross the
curve c¢o. The image of the family in X is (in appropriate coordinates) the graph of
the crossing angle as a function of arclength along c¢o. Lemma 4.4 below begins by
showing that the deformation of the metric given in Lemma 4.2 moves this graph (and
thus the curve which is the image of the family I'_ in %) off itself. The following
version of Sard’s theorem says that if we can move a curve in the plane off itself,
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we can make it transverse to a second curve. (Here we say that the intersection of
the image of / and the graph of f is transverse if A'(r) = (fi—’t‘, %) is transverse to

(1, f/(x)) for every (x, y) and ¢ with h(z) = (x, y).)

Lemma 4.3. Let f,,(s) be C! functions, where s € [0,1] and w € (=8, 8). Let
h:R — R?be CL. If| %Iw:o is nonvanishing, then there exists a sequence w; — 0
such that the curves (s, fu,(s)) are transverse (o h.

Proof. ByaC L change of coordinates, we can assume the functions f,,(s) are con-
stant. In these coordinates transversality of / and f,, is equivalent to f,, being a
regular value of 75 o i, where 77 is projection onto the second factor in R, By Sard’s
theorem the claim easily follows. O

Lemma 4.4. Let M?, ¢, ® be as above withm = 0. If h: [0,1] — TiM|d(-, &)
is a C! curve, then there exists a sequence of metrics g; — g with gi = g on
M\ & ([—e, so+e] x [0, 3e/4]) and such that in any g;, 351;" intersects h transversally
along ®(-, &)|[0, sol. Here <I>l._1 are geodesic normal coordinates in a neighborhood
of ¢ in the metric g;.

Proof. Assume first that ¢ is actually C*. As above let &1 = (s, 1) be geodesic
normal coordinates in a neighborhood of ¢ so that we can in particular think of ¢
as a function on this neighborhood. Moreover, in this neighborhood the metric is
f2(s, 0)ds? +dt>. Let gy, .y be given by Lemma 4.2 and set by, = 24| ® (-, £). Tt
follows from Lemma 4.2 that | %lwzohw | is nonvanishing for s € [0, s¢]. Namely, it

is easy to see that /,, is C! so we need only check that the derivative is nonvanishing.
To see this let vy, : [6o, 6] — M be a (unit speed) geodesic (in the metric g) with
yw (@) € {P(s,e — ws)}, v, ©0) orthogonal to {D(s, & — ws)}, and yy,(0w) €
{®(s,8)}. Setu(@) = (10 yw)(0) = gy, (0), Vi), then u'(0) = Hess; (vy,, v,) =
(1 —u2(9))f7/. Hence, |(log[(1+u)/(1 —u)])’| < C, where C = C(g) is a constant.
In particular,

(I +u®w)) (I —u))
(1 —u®w)) (1 +u®))

Moreover, it is easy to see that for some o = «(g) and some 8 = B(g) > 0

< exp(C|0y — bol). “4.1)

|0y — 0ol <aw and |u(fy)| > Bw. “4.2)
Combining (4.1) with (4.2) we conclude that for some B’ = 8'(g) > 0
lu(6w)] = B'w. 4.3)

As gy = gon M \ ®([—¢,s0 + €] x [0, 3¢/4]) it follows easily from (4.3) that

% |w:0hw ] is nonvanishing for s € [0, so] and the lemma follows from Lemma 4.3.
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In the general case where ¢ is only C? let ¢j be a sequence of C™ curves in M
with |¢ — ¢j|c2 — 0. It follows easily from the continuity of the quantities involved
that for j sufficiently large (but fixed) if g, ; and P, ; are given by Lemma 4.2 with
respect to ¢; and hy, ; = %Kb(', e), then |%|w=0hw’i‘ is nonvanishing. The
lemma now easily follows from Lemma 4.3. o

Let again M? be a closed surface with a metric g and suppose that y|, y» are
strictly stable simple closed geodesics (where y; = y; is allowed). Let rk 4 be the
y € NIy with y \ Ts(y1 U y2) of length < k.

The next result will follow by applying Lemma 4.4 a finite number of times.

Lemma 4.5, Let M2, g, v1, and y2 be as above. Given k > 0, there exists gn — g
with g, = g in a neighborhood of y1 U y2 and such that for each g,, I'_(gn) and
Iy (gn) intersect transversally at rk +(gn)

Proof. Fix 8 small but positive. Letoq: S' — M beasimple closed curve in T 72(n1)
meeting each geodesic in I'_ exactly once (Corollary 3.4). Parameterize I'_ as a map
F_:S!' xR — T{M with F_(s,0) = o1 (s). Similarly let o5 : S — Tj/5(y2) meet
each geodesic in I'y exactly once, and let

Fi:S'xR— T1M  with Fy(s, 0) = oa(s). (4.4)

(Of course we want ' — yp ast — —ooand Fy — past — ©0.) Given ¢
sufficiently small, and x € T5,2(y1), we can find (Corollary 3.6) a unit speed curve
c: [—2¢,2¢e] — Ts(y1) with ¢(0) = x, and which is everywhere perpendicular to the
vector field X_. Let &: [—2¢, 2¢] x [—¢, 0] — M be geodesic normal coordinates,
with ®(s,0) = ¢(s) and $(s, -) € I'_ (when extended) for each s. Given k, and
y € I'_, there exist &, u > 0 (depending only upon k, not on y) and 7y € [—1, 0]
(depending upon k and y ) so that this box & for the point x = y (#p) has the following
properties:

a) Geodesics entering the bottom (1 = —e) of the box vertically (tangent to s =
constant) have never been in the box before.

b) Geodesics leaving the top (f = 0) of the box at an angle less than p of the
vertical travel at least a distance 5k before returning within e of the box.

Let ¢: [—2¢, 2e] — TI~!(c) be the lift of the vector field X_: ¢ = X_|.. Note that
by a) above, ¢ is the intersection of the local section & = IT~!(¢) c 71 M given by
the transversal ¢, with the image of F'_|(_,0]. Let D be the disk in X consisting of all
vectors in I1~!(¢) making an angle less than . with X _. Consider the image in 71 M
of Fi|[—k,00)- This “tube” will intersect D transversely if u < /2. The tube will
thus intersect D in a union Cy of C! curves whose total length is finite. An arbitrarily
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small alteration g,, of the metric in the box will not change the intersection Cy of D
with Fy|[—k,c0) by b) above, but will, by Lemma 4.4, make ¢|[— ¢] transverse to Cy.

Given k we can find a finite number of such boxes ® with each geodesic in I'_
intersecting some c|[—¢ -]. Thus we will be done if we can make each ¢|_; . transverse
to Cr. Now when we alter the metric in the second box it may change the image in
the section D at the top of the first box, of the forward tube Fy|[_ ). However a
sufficiently small change of metric in the second box will not destroy transversality
for the first box due to the fact that, as a consequence of Corollary 3.4, transversality
is an open property. O

Since transversality of the sets I'_(g) and ' (g) along F’i’ +(g) for any fixed
k > 0 1is an open property in g (this follows easily from Corollary 3.6) we get:

Corollary 4.6. Let M 2 g v, and y2 be as above. IfT_(g) and I'(g) intersect
transversally at T* +(8), then there exists an open neighborhood U of g such that

Joreach g € U, I'_(g) and ' {(g) intersect transversally at F’i’+(§).

Proof. Suppose not; it follows easily that there exists g; — &, v1,i = Y1, Y2.i — V2.

; OF_; 3*F_; OF,; 8%F,;
and y; € TX | (g) with (5522, 552) = (S5, Sat) aty. Clearly y; — v €

% 2
I’ (g) and by Corollary 3.6 it follows easily that (%5, 22-) = (2Lx 900 5,
d

which is the desired contradiction.

Proof of Theorem 4.1. Fix integers L, k > 0 and let § 1, be the set of metrics g on
M? with the following two properties:

a) All closed geodesics with length < L are nondegenerate critical points.

b) If y1, v, are simple closed strictly stable geodesics with length < L, thenI"_(g)
and I' ; (g) intersect transversally along rk +(8).

Combining the fact that the set of bumpy metrics is dense (see [Ab], [An]) with
Lemmas 2.6, 4.5, and Corollary 4.6 we get that § x is open and dense, hence

(7.k>0 L.k 18 residual. a

5. Geodesic laminations without closed ends; Theorem 1.3

A train-track is a one-complex T embedded in a surface satisfying conditions of (1)
smoothness, (2) nondegeneracy, and (3) geometry. The definition is quite involved,
and probably familiar to many readers. Rather than attempt an abridged, incorrect
version, we refer the reader to [HaPe] (see p. 4 there) for this and other definitions.

Let F be adisk with four holes removed, see Figure 3a, and let N be the topological
double of F so N is a closed orientable surface of genus 4. Equip N with a metric
with negative curvature so that the boundary of F C N consists of geodesics.
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Figure 3a. The disk-minus-4-holes F, the disk-minus-3-holes Fy, and generators A, B, C for
the fundamental group of Fy.

On F pick three of the holes; there is a unique closed geodesic @ on F enclosing
these three holes but not the fourth. Let Fo C F be the disk bounded by w, with the
three holes removed. The fundamental group of Iy is a free group on three generators
A, B, C, one for each hole. Figure 3b shows a transversely recurrent train-track 7

Figure 3b. The traintrack 7 and the closed curves o; on the double N of F.

on N. (That T satisfies the “geometry” condition for a train-track is clear from the
characterization on the top of p. 6 in [HaPe]: The complement of T in N is connected,
and clearly has no component that is an embedded nullgon, monogon, bigon, annulus,
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or punctured annulus. Transverse recurrence can be seen by looking at the closed
curves on N that are the doubles o; of the curves in Figure 3b. The reader will easily
see how to find curves as the o;’s so that each branch of 7 meets at least one of
the o;, and for each i, the complement in N of T U o; is either connected, or has
two components, one of which is an embedded trigon. Since neither component is
an embedded bigon, each o; hits T efficiently ([HaPe], p. 19).)

In Figure 3¢ we see a simple curve p on F that for ¢+ > 0 is carried on this train-
track. The bounded homotopy class (that is, we only consider homotopies that move
points a bounded distance in the universal cover) of the forward end of the curve p

Figure 3c. The curve p.

determines a (semi-)infinite word BA"'B~1CBAB~'A ... in the generators A, B
and C. Theorem 1.3 will follow from two lemmas:

Lemma 5.1. An uncountable number of different words in A, B, C come from different
completions of the forward end of p as a simple curve carried on the train-track T.

Lemma 5.2. Each such completion of p is bounded-homotopic in F to a simple
geodesic.

Proof of Lemma 5.1. In Figure 3¢ each of the holes a, b, ¢ lies in a snake-like cavity
bounded by a segment of p. Two of these cavities open out where p meets w; the
third ends at the forward end of p. The retraction of p onto T retracts the head of the
snake to the boundary of a monogon (the monogon actually lies in the disk, before
the holes have been removed to form F') whose interior contains no other branches
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of T', and identifies the two sides of each snake’s body, so a simple curve carried by '
that enters one of these cavities has exactly two ways to continue up to homotopy:
Clockwise or counterclockwise. These properties will persist as we complete the
curve p.

At present the forward end of p lies at the top of the picture. It will proceed around
to the bottom, and enter the cavity containing hole a. The reader can easily verify that
when one snake eats another as in Figure 4a the possibilities are as follows: Suppose

Figure 4a. One snake about to eat another.

the left snake has the word R in the letters A, B, C, and the right snake the word S.
(R is conjugate to A, and S to B.)

(1) The word (RS)¥XRSR=Y(RS)~*, k > 0.
(2) The word (RS)*R(RS)™*, k > 1.
(3) The infinite word RSRSRSRSR.....

In the first two cases, the forward end emerges as in Figure 4b. It will then proceed
to enter the third cavity, and the above possibilities repeat.

Figure 4b. The tail of the second snake emerges.

The important things for us are: There are no “wrong turns”, that is the curve can
always be completed as a simple curve carried by T'; and the curve never runs out of
possibilities, that is there is always another choice of words in the future. It follows
that an uncountable number of different words results. O

Proof of Lemma 5.2. Let N be the universal cover of N and IS’ (00) the sphere (circle)
at infinity of N; see for instance [Eb]. Let p be aliftof p to N, with p the point lying
over the intersection of p with w. Let @ be the lift of @ through p, and F be the lift
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of F through p. By proposition 1.5.1 of [HaPe] (that proposition is stated in case of
constant negative curvature but the argument extends) ,5~has two (unique, and distinct)
limit points ¢, » on N(o0). Let £ be the geodesic on N with these two limit points.
If 7 is a geodesic on N with neither ¢ nor r as a limit point, then the topological
intersection numbers #(5, ) and #(7, 7) are well defined and equal. Because N has
negative curvature, the number of points of intersection of two geodesics in Nis0
or 1. It follows that ¢ lies on F, and on Fy after crossing . Moreover, if & is a
geodesic segment, with boundary on OF, then #(p,5) = #(¢,5). The reader can
easily verify that for each branch of T there is a curve t on Fy, with boundary on
a Iy, that intersects T exactly once. By making p stick close to 7', we can assume
that 7 and p intersect once each time (and only when) p follows the given branch
of T (i.e., when the retraction of p onto 7' includes the branch). Each lift of = to F{
that meets 3, say at a point p;, is homotopic to a geodesic &; with boundary on 3 Fo,
and &; will intersect 7 exactly once, say at ¢;. We can now define a homotopy from /
to 7 that starts by taking each point p; to ¢;; then “pull tight” to straighten out the
curve in between the points ¢;. Thus p is homotopic to Zinside ', and p is homotopic
to ¢ inside F', by a homotopy that does not move any point very far.

It remains only to see that £ is simple. Since p is simple, p does not intersect any
other lift of p. The same intersection number argument as before shows that 7 does
not intersect any other lift of ¢, which implies that £ is simple. O

Proof of Theorem 1.3. First we will produce an open set of metrics on M having
geodesic laminations without closed ends. Fix a metric on N with constant curva-
ture —1 (F is one-half of N)and let U C N be an open neighborhood of F. On the
given surface M we can complete the metric on U to a metric on M. Any nearby
metric on M will contain a (unique) metric surface F' C U of negative curvature and
geodesic boundary that also has a completion to a metric of negative curvature on N.

The statement now follows from the lemmas as follows: If ¢ is the geodesic
in I isotopic to p, and £ has closed ends, by Lemma 2.4 the word determined by p
will eventually repeat. But uncountable many of the words determined by simple
completions p will be nonrepeating. For such p the closure of ¢ will be a lamination
of I with nonclosed ends.

Next we find a (smaller) open set of metrics, each having a geodesic lamination
without closed ends that is the limit of a sequence of simple closed geodesics.

Let I1 be a topological disk-minus-6-holes. As before we assume a metric of
negative curvature on ] with geodesic boundary, that extends to a metric of negative
curvature on the topological double Ny of F. Let w be a geodesic enclosing holes a,
b, cbutnotholes d, e, f. Put the train-track 7 inside w as before, and a similar train-
track S around the holes ¢, f, g. As before we can find a simple curve p on Fp that
crosses @ once, and whose bounded homotopy class determines a (doubly) infinite
word starting in d, e, f and ending in a, b, ¢, and not repeating at either end. We will
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next describe a sequence of simple closed curves p on Fp, which “approximate” p.
The curve pi starts at a point on o, and follows the path of p in and out of k — 1
cavities. In the k’th cavity, the curve px will turn around counterclockwise, and then
stick close to the (just laid out) strand of py on its left, until it retraces its steps back
to the intersection with w. The other half of the path of p; does the same thing
on the other side, then closes up. There will be a simple closed geodesic y; in the
free homotopy class of py. Take lifts g through a fixed point p lying above w, and
corresponding lifts y¢. The curve p will cross (in order) a sequence &; of lifts of (a
finite number of) geodesic segments o; on F1, with boundary on d 'y, that keep track
of which choice was made at each branch. The same will be true of the geodesics yx,
as long as px follows p. Now fix J. By the Arzela—Ascoli theorem, for each J any
limit lamination of the sequence y; will contain a geodesic £; with a lift that has
the same intersection with the o;, ||j|| < J, as p. Finally, the closure of the set of
geodesics £ 7 in the unit tangent bundle contains a geodesic £ with a lift that intersects
all of (and only) the segments ¢; intersecting p, in order. This geodesic does not
have closed ends, since its “word” is the same as that of p (note that their lifts are
bounded-homotopic), and hence nonrepeating. By construction any limit lamination
of the sequence y; must contain the geodesic £.

Fix the metric of constant curvature —1 on N1, and let U be an open neighborhood
of F1 in Nj. For a given surface M, any metric extending the metric surface U will
possess aneighborhood consisting of metrics, each of which has a geodesic lamination
without closed ends that is the limit of a sequence of simple closed geodesics. O
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