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Iterated integrals and higher order automorphic forms

Nikolaos Diamantis and Ramesh Sreekantan

Abstract. Higher order automorphic forms have recently been introduced to study important
questions in number theory and mathematical physics. We investigate the connection between
these functions and Chen's iterated integrals. Then using Chen's theory, we prove a structure
theorem for automorphic forms of all orders. This allows us to define an analogue of a mixed
Hodge structure on a space of higher order automorphic forms.

Mathematics Subject Classification (2000). 11F11, 14C30, 30F30, 32S35.
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1. Introduction

In [4] the notion of Eisenstein series with modular symbols was introduced in order to

study a new approach towards a conjecture of Szpiro. This series is not invariant under
the action of the relevant group, but instead it satisfies a 4-term functional equation.
Motivated by the applications of this Eisenstein series ([4], [5], [10], [11]), and the

form of its functional equation which generalizes that of the classical automorphic
forms, the first author and others began the general study of classes of functions

satisfying equations of this type ([2]). Similar objects were defined and studied from
a different viewpoint by Kleban and Zagier ([8]).

In this paper we complete the classification of a the space of automorphic forms
of all orders and weights for a Fuchsian group of the first kind F without elliptic
elements along the lines of the classification of the space of second-order modular
forms proved in [2]. It should be noted that the space classified here is larger than
that studied in [2]. This was motivated by the desire to study certain automorphic
forms that do not seem to belong to the smaller space.

For the classification we use Chen's theory of iterated integrals. Although it is

possible that there exists an alternative proof of the classification that does not use
iterated integrals, we wanted to highlight this connection with the important theory
of iterated integrals. In this approach, higher order modular forms can be loosely
viewed as antiderivatives of iterated integrals on the modular curve. (See [7], [9] for
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other applications of iterated integrals to modular forms which however do not deal

with higher orders).
Based on this classification, we impose a Mixed-Hodge-type structure on the

space of automorphic forms of all orders in the case of weight 0. Because of the

infinite dimensionality of the quotients of the "weight filtration", this structure is not
a standard Mixed Hodge Structure.

However the structure described here reflects in a very natural way the algebraic
structure of our space and it seems likely that certain subspaces of these automorphic
forms could have a usual Mixed Hodge Structure.

Acknowledgment. The authors thank the referee for a very careful reading of the

paper and for many useful suggestions.

2. Higher order automorphic forms

Let F c PSL2 (Z) be a Fuchsian group of the first kind with parabolic elements acting
in the standard manner on the upper half-plane $j. We use the set of generators of F

given by Fricke and Klein. Specifically, if F \üj has genus g, r elliptic fixed points and

m cusps, then there are 2g hyperbolic elements y\, y2g, m parabolic elements

Y2g+i ,¦¦¦, Y2g+m and r elliptic elements Y2g+m+i, ¦¦¦, Y2g+m+r generating F.
Furthermore, these generators satisfy the r + 1 relations:

[/I, Yg+l] ¦¦¦iYg, Y2g]Y2g+l ¦ ¦ ¦ Y2g+mY2g+m+l ¦ ¦ ¦ Y2g+m+r 1, Yj' 1

for 2g + m + 1 < j < 2g + m + r and integers e; > 2. Here [a, b] denotes the

commutator aba~lb~l of a and b.

We set Y(T) for the modular curve r\üj and we consider the natural projection
map n : ft -> F(F). For a function / on ft and an even integer k, set

for y (acbd) in F. This defines an action of F on the space of complex functions
on $j. We extend this action to C[F] by linearity.

A classical automorphic form of weight k for F is a smooth function / of "at most

polynomial growth at the cusps" such that

/U(y-i)=o.
Let / denote the augmentation ideal of the group ring which lies in the exact sequence

0 -? / -? Z[F] -^> Z -? 0.



Vol. 81 (2006) Iterated integrals and higher order automorphie forms 483

/ is generated by elements of the form (y — 1) with y in F, so we can define a

classical automorphic form as a function of "at most polynomial growth at the cusps"
which is annihilated by / via \u- We call holomorphic automorphic forms, modular.

With that in mind, we define an automorphic form f of order s to be a smooth
function on ft such that

O forallSe/'.
Let Ml (F) denote the automorphic forms of weight k and type s. From the definition,
for a fixed k, we have

M^(F) ç Mlk(T) ç mI(T) ç c M|(F).

Classical automorphic forms are elements in M\ (F) that satisfy certain growth
conditions at the cusps. Of course, there are several variations of the definition of higher
order modular forms. See [2], [3] for a related discussion.

The first step towards the classification of automorphic forms of order s is

Proposition 2.1. Let
(2g+m-iy

f:Msk+1^

be defined by

f(f) (f\k(Yh -!)•••(>
Then

(2g+m-iy

1=1

is an exact sequence.

Proof. To prove that ker(^) C Msk, we first observe that, if / G Msk+l, then for each

Si g Jm, S2 e Js~m~l, we have

f\kh(,Y\Y2 - i)h f\kh(n - i)h + /l^i(/2 - i)S2. (l)

This follows from the observation that

Y\Y2 - l (yi - l)(/2 - l) + (yi - l) + (/2 - l). (2)

Now let / be in ker(V^). Using (1) we observe that to prove / is in Msk (F), it suffices

to verify that

f\k(gi-l)...(gs -l)=0
for each s -tuple of generators g; of F.
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From the definition of if, f\k{g\ — 1) • • • (gs — 1) 0 for all the non-elliptic
generators g; G {yi, y2g+m-i} of F.

Further, let y G F be one of the elliptic generators with ye l.As<5i(y/-l)is
in jm+1, for every 8\ g Jm, we have

for Si G Jm, h G Js-m-\ I 0, e - 1. Therefore,

e-l
f\kh(Ye - l)h 0

1=0

so

f\kh(Y -l)52 0 for all 5i g Jm, S2 g Z*-™-1.

Finally, using the relation between the generators, we can write

Y2g+m ([yi,Yg+l] ¦ ¦ ¦ [Yg, Y2g]y2g+1 ¦ ¦ ¦ Y2g+m-\)~ (Y2g+m+l ¦ ¦ ¦ Y2g+m+r)~

and, by (2), Y2g+m+\ — 1 can be expressed in terms of the other generators. This

implies that /|jt(gi — 1)... {gs — 1) 0 for all g; 's in the set of generators of F and

the middle term of the sequence is exact.

The surjectivity of tp will be studied in Section 4. To this end, we will need to
define Chen's iterated integrals and to review their basic properties.

3. Iterated integrals

Let X be a smooth manifold. Let P(X) denote the space of paths on X, namely
piecewise smooth

j>:[0,l]-»X.
A function 4> '¦ P(X) --* C is said to be a homotopy functional if 4> depends only
on the homotopy class of y relative to its endpoints, that is, it defines a function on
F jt\ (X, xo), where xo is a fixed point of X. Equivalently, it induces an element

ofHom(Z[F],C).
Let w be a smooth 1-form on X. The map

y ^ w= f(t)dt,
Jy JO

where y*(w) f(t)dt, defines a function on P(X). This defines an element of
Hom(Z[F], C) if and only if w is closed. Hence this only detects elements of F
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visible in the homology of X - it vanishes on J2 (J denotes the augmentation ideal

ofZ[7Ti(X,x0)]here).
The iterated integrals studied by Chen (e.g. [1]) detect more elements of the group

ring. Specifically, suppose that w\, W2, ,wr £ El(X), where El(X) denotes the

space of smooth 1-forms on X. We will write

W\ Ws W\ ® ® Ws

and call it a "product" of the w, 's. We set w\... ws 1, when s 0.

If y is a path on X, we set

WlW2...Wr= f\{t\)f2{t2)...fr{tr)dt\dt2...dtr, (3)
Jy J J 0<t\<t2—<tr<\

where y*{w{) f; (t)dt. This defines a function on the space of paths of X which
will be denoted by / w\... wr and is called a iterated line integral of length r. A
linear combination of such functions is called an iterated integral and its length is

the length of the longest line integral. However, it is not necessarily a homotopy
functional.

Let BS(X) denote the space of iterated integrals of length < s. If I is in BS(X)
and a e P{X) we denote the evaluation map by (I,a). We extend it to all 1-chains

by linearity.
The next theorem states that in some cases an iterated integral can be modified to

be a homotopy functional.

Theorem 3.1 (Chen [1], Section 3). Let X be a connected, smooth manifold with
H2(X) 0 and let w\,... ws be closed 1-forms on X. Then there is an I e BS(X)
which is a homotopy functional and a X & Bs-\ {X) satisfying

{I ,a) J w\ ws + {X, a),
Ja

for each path a e P(X).

Proof. An example of an I satisfying these conditions can be constructed using an
extended defining system for a Massey product ofw\,...,ws: Fix smooth 1-forms

5, wi23,... such that

V0\ A VÜ2 + dw\2 0, l«s_i A VUS + dW(s_\)s 0,

V0\ A W23 + V0\2 A VU3 + dwya 0,

W\ A W2...S + W\2 A l«3...s + - -- + dw\mS 0.
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We then set

"/¦I
where

u := w\W2 ¦ ¦ ¦ ws + W12W3 ws + W1W23 • • • ws + ¦ ¦ ¦

+ W123W4 ...% + W\W214 ¦ ¦ ¦ U>s H h »1...J.

Note that / u — f w\W2 ¦ ¦ ¦ ws is of length < s. The proof of the independence of
path can be found in [1], page 366.

If w is a 1-form and a, ß are two loops based at xo, then it is easy to see

w, (a - l)(ß - 1)) 0.

We will need the following lemmas. The first lemma generalizes the above comment.

Lemma 3.2 ([6], Lemma 2.10, Proposition 2.13). Let w\, .wr be smooth 1-forms
on X and let a ]~[f=i (ai ~ 1). w^^r^ a\ are loops based at xo. Then

ifr<s,

The second lemma describes what happens under composition of paths.

Lemma 3.3 ([6], Proposition 2.9). Let w\, .ws be smooth 1-forms on X and let
a, ß be paths such thata(l) ß(0). Then

w\ ws, aß) I w\ ws, a) + I / w\...ws,ß\

s—l

/=!

An application of Lemma 3.3 and Theorem 3.1 is the following.

Lemma 3.4. Let X be a connected, smooth manifold with H2(X) 0 and let

w\,... ws be closed l-forms on X. If{wu, ¦ ¦ ¦, vu(s-i)s, • • • » wi...s} is an extended

defining system for a Massey product ofw\,... ws, we set

Uj V0\ Wj + W12W3 VUj + VU\ VU23 ¦ ¦ ¦ VUj + ¦ ¦ ¦ + U>1... j, j 1, .S

j ...Ws + W(j+i)(j+2)Wj+3 ...Ws

s j 1,...S -1.
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We also set u := us. Then for each pair ofpaths a and ß on X with a(l) ß(0), we
have

f U= f U+ f M + V f Uj f Uj. (4)
Jaß Ja Jß j \*a Jß

Proof From the construction of u, all combinations of 1, 2, s appear in u (in
this order) as indices of "products" of w's. Applying Lemma 3.3, we can decompose
the integral of each individual "product" as a sum of products of iterated integrals on
a and on ß. Thus,

7=U vj vj

where J2v (resp. J]^;) ranges over all "products" vj (resp. vJ') with index sequences

formed by the integers 1,..., j (resp. j + 1,... s). (Here we have set / vo

f vs+1 1.) For example J2V?, .L U3 j'a(w\W2W^ + w\w2ï + ^12^3 + W123).

From the defining equations of uj and uJ',

E /„•/ /„¦/
vJ

This proves the identity.

4. The classification of higher order automorphic forms

We now restrict ourselves to the case when X Y(F), where F c PSL2(Z) is a

Fuchsian group of the first kind with parabolic elements, as in Section 2. In addition,
we assume that F has no elliptic elements and hence it\ (X) F. In this section, we
complete the classification of the vector space of automorphic forms of order s and

weight k for such groups. We first work in the case of weight 0 proving what amounts

to a variation of the general statement we will eventually prove.
Let Mq+1 Mq+1(F) denote the space of / g Ms0+l Mq+1(F) such that

f\08 G C for every 8 in Js.

Proposition 4.1. The sequence

(2g+m-iy

0^Ms0^ Ms0+1 X 0 C -? 0

î=i
with tp defined as in Proposition 2.1 is exact.
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Proof The exactness of the middle term follows from Proposition 2.1 because

Mq+1 C Mq+1. From that, we observe that to prove surjectivity, it suffices to

construct (2g + m — l)s linearly independent elements of Ms0+l /Ms0.
Let {/i,..., fg, g\,..., gm-i} be a basis of the space of holomorphic modular

forms of weight 2 for F with /, cuspidal and g, non-cuspidal. Let {wj}?=1 be the

differentials on Y(T) corresponding to {/, {z)dz]gi=l, {w; },£g+1 the differentials

corresponding to {fi-g(z)dz}i^g+l (where the bar stands for complex conjugation) and

{w2g+î}f=\ the differentials corresponding to {gt{z)dz}f=i
Then, all w,,'s are closed, as are w, A wy (i, j 1, 2g+m-\). Furthermore,

since Y(T) is non-compact, from the Gysin exact sequence, we have

H2{Y{T),€) 0.

Hence we can apply Theorem 3.1 to any selection of s forms from {wj ; i 1,...,
2g + m — 1}. Let / {i\, 12, ¦ ¦ ¦, is) be any indexing vector with elements in
{1, 2g + m — 1} and let 1/, JC/ and w/ be induced by {wi; }j=1 as in the proof of
Theorem 3.1. Let xo be a point in the upper half-plane lying over a point, which we
will also denote by xo on the curve. If we let {xo, b] denote the image under n of the

line path from xo to b in $j, then the function

Fij(z) := f7(z) := <!/, {x0, z}>, z G f) (5)

is well defined and independent of the path from xo to z, since n maps homotopic
paths to homotopic paths.

We will now show the F/'s are in Mq+1(F) for each /. In Lemma 4.3 we
will further show that they are linearly independent modulo Mq(F). As there are

(2g + m — iy of them, these two facts will suffice to prove Proposition 4.1.
We first use Lemma 3.4 to compute Fj |o<5, (8 e Js) and show that it is a constant.

We use the notation {a, b] for the path {a, xo} followed by {xo, b}.

Lemma 4.2. Let I (i\, is) be an indexing vector with elements in {1,...,
2g + m — 1} and set Fr(z) (I/, {xo, z}>. Then, for any 8 Y[l=i(yk ~ 1) G Js>

k=1

In particular, since the w, correspond to classical modular forms of weight 2 and
their conjugates, this expression is independent of z and so Fr (z) e Ms0+l (F).

Proof. For every y g F,

Fi\o(y - l)(z) Hi, {xo, yz}) - {Ii, {xo, z}>.
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Combining this with Lemma 3.4 with a {xo, z} and ß {z, yz} gives

J. (6)

Observe that, if yi, ¦ ¦ ¦, Ys are in F, we have the following expressing generalizing
(2):

s

Yi^k ~ i) (yi •••/? — i) + ¦¦¦ + (—i)sl(yi -1)••• + (—i)sl(ys — i)-
k=\

Combining this with (6), we have

— l)(z)

Hi, {z, yi... ysz}) + ¦¦¦ + (-\y-l(h, {z, ysz}) (7)

Next we observe that, in ^, the path from y z to y <5z passing through xo is homotopic
to y (z, Sz), where (z, <5z) is the path from z to <5z passing through xo. Since the image
of y(z, Sz) under n is {z, <5z}, the loops {yz, y&z} and {z, &z} are homotopic in X
and hence {z, y<5z} is homotopic to {z, yz}{z, <5z}. On the other hand, by the proof
of Theorem 3.1, each f u,J is homotopy invariant. Therefore, by induction, for all

yi, ys € I\ we have

s-l
+ 2_.{ I uh {xo> z}) / uJ, ({z, yiz} — 1)... ({z, Ysz} — I)))-

Since the iterated integrals in the sum within the parenthesis are of length < s and

since 1/ Y\t=i I wh UP t0 an iterated integral of length < s, by Lemma (3.2) we
deduce

¦" Ys ~ Ju{z.yiz} J{z,ysz]

To complete the proof of Proposition 4.1 we show that the images of Fj under the

natural projection
Ms0+l

are linearly independent.
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Lemma 4.3. Suppose there exist complex numbers kj satisfying

where I runs through the (2g + m — l)s possible s-tuples of {I, 2g + m — 1}.

Then ki =0 for all I.

Proof. We proceed by induction. Suppose s 1 and that there are complex numbers

kr such that
2g+m-l

J2 krFr&Ml0(T).
r=\

Then, from Lemma 4.2, for any y g F we have

2g+m — l 2g+m — l

J2 krFr\o(y-l)(z)=
r=\

where wr are the (holomorphic or anti-holomorphic) differential forms corresponding
to the basis of the space of weight 2 modular forms for F we fixed at the beginning
of the proof of Proposition 4.1. From the injectivity of the classical Eichler-Shimura
isomorphism, we have kr 0 for all r.

Proceeding by induction, suppose there are complex numbers kj satisfying

2g+m l

J2 kr Wr=
r=\ J{z'yz]

where / runs through the (2g + m — \)s possible ^-tuples (i\, is) of the set

{1, ...,2g + m - 1}. Then

l)...(y, -l)=0
for any y\, ys in F.

Applying Lemma 4.2, this is equivalent to

> ki i w-n • • • / W'is 0
7^ ^{z>yiz} J{z,ysz}

or

2g+m-l 2g+m-l 2g+m-l

2g+m-l
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From the Eichler-Shimura isomorphism once again, we have that A-ls 0 for all is.

Fora fixed is, A, is

K^lr f f
"j?

S

J{z,yiz] J{z,ys-iz}

where /' runs through all possible (s — l)-tuples. By induction,

ki'u{is} 0.

As this is true for all is, kj 0 for all / and the Fj are linearly independent modulo

Ms0(r). o

This completes the proof of Proposition 4.1.

The following classification theorem is an application of Proposition 4.1.

Theorem 4.4. Let
(2g+m-iy

*:M>k+1-> © Ml
j=i

be defined by

(,f\k(Tn -!)••• (,Yis ~ l))l<ii,...,is<2g+m-l

Then,
(2g+m-l)s

1=1

is an exact sequence.

Proof. In view of Proposition 2.1, the only part that needs to be proved is the surjec-

tivity of \jr. Let
(2g+m-l)s

(//)/ € 0 M\

with / ranging through the (2g + m — \)s possible ^-tuples of {1, 2g + m — 1}.

We will show that there is a F e Msk+l such that i>{F) (//)/ or equivalently,

F\k(Yh "I) •••(/?, -1)=//
for all ^-tuples / {f,, is}.
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From the surjectivity part of Theorem 4.1, for each s-tuple of integers L
(h,... ls) with lj g {1,..., 2g + m - 1}, there is a AL g Mq+1 such that

AL\0(yh-l)...(yis-l)=8f
for any s-tuple /, where Sf is the Kronecker delta function of the s-tuple, namely

An easy computation then shows that

L

is in Msk+l and satisfies the desired equality.

We shall finally use the last two propositions to show that the direct sum of all Ms0

can be endowed with a structure which in some respects is very similar to a Mixed
Hodge Structure.

Theorem 4.5. Set
00

V

s=l
There exists

• a increasing filtration W, on V and

• a decreasing filtration F' on V

such that, for each m g N, the filtration on Grm(W) Wm/Wm_i defined by

Fp(Grm(W)) (Wm n Fp)/(Wm_l n Fp)

satisfies

Fp(Grm(W)) @ Fm-p+l(Grm(W)) Grm(W).

Proof. It suffices to construct two filtrations W. and F' satisfying the following
property: Ifwe Wm and p, q are integers such that p + q m + 1, then there exist

w\ g Fp n Wm, W2 g Fq n Wm and wq g V7m_i such that w w\ + W2 + wo-

Moreover, this decomposition is unique modulo Wm-\.
We define W. setting Wm M™+1.

To define F' we first consider the set # of all functions that are induced by modular
forms of weight 2 and their conjugates as in (5). Specifically, # contains all functions

/ : f) -+ C with the property that

f(z) {I,{xo,z}}, for all z g ft,
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for a homotopy functional I e BS(X) such that

I / w\ ws mod Bs-\ (X)

for some w-, corresponding to weight 2 modular forms and their conjugates. We do
not require that the modular forms inducing / belong to the basis fixed in the proof
of Proposition 4.1.

We next consider the set $p of all F e # induced by forms w, among which at

least p are holomorphic. Fp is then defined as the space generated by products of
the form / ¦ F, with / in Mq and F e $p, i.e.

Fp :=(f-F;f &Ml0,F &$p)-

Now, Theorem 4.4 implies that each F e Wm M™+1 can be expressed as a sum
of functions of the form fi ¦ A l where L is an indexing vector of length m and /l £

Mq. By the construction of AL, each of them can be expressed, uniquely modulo a

function in M™, as a linear combination of the Fj's constructed in Proposition 4.1.

Here / is an indexing set of length m. Therefore, F can be written in the form

2iFi + F0 (8)

for some Fç, e V7m_i M™ and // e Mq.
Let p, q be positive integers such that p + q m + 1 and let Fr be one of the

functions in the right-hand side of (8). If the set of 1-forms inducing Fi contains less

than p holomorphic forms, then it contains at least q m — p + 1 anti-holomorphic
ones. In addition, by the construction of 1/ 's and Fi's, Fi e #. Hence Fi is induced

by at least q holomorphic forms and // Fj e Fq. This completes the proof.

As mentioned above, this structure is not quite a MHS mainly as the Grm W 's are

not finite dimensional. It is also not clear that the definition is functorial. However,
it appears that there is an interesting subspace which has a genuine mixed Hodge
structure. We will discuss this in a future paper.
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