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Sur la compatibilité entre les correspondances de Langlands
locale et globale pour U(3)

Joél Bellaiche

Résumé. En utlisant un argument d’augmentation du niveau (et un résultat de Larsen sur I’image
des représentations galoisiennes apparaissant dans des systémes compatibles), nous prouvons
que pour toute forme automorphe 7 de U(3), la représentation galoisienne [-adique p; attachée
a 7 par Blasius et Rogawski est a chaque place finie celle associée a  par la correspondance de
Langlands locale (au moins a semi-simplification prés, et pour un ensemble de densité 1 de 1).
Nous nous appuyons sur le travail de Harris et Taylor, qui ont prouvé les mémes résultats (pour
U(n)) sous I’hypothese que le changement de base de 7 est de carré intégrable en au moins une
place. Un corollaire de notre résultat est que toute représentation automorphe pour G tempérée
a une infinité de places est tempérée partout.

Abstract. Using a level-raising argument (and a result of Larsen on the image of Galois repre-
sentations in compatible systems), we prove that for any automorphic representation 7 for U(3),
the /-adic Galois representation p; which is attached to 7 by the work of Blasius and Rogawski
is the one expected by local Langlands correspondance at every finite place (at least up to semi-
simplification and for a density one set of primes /). We rely on the work of Harris and Taylor,
who have proved the same results (for U(n)) assuming the base change of 7 is square-integrable
at one place. As a corollary, every automorphic representation which is tempered at an infinite
number of places is tempered at all places.

Mathematics Subject Classification (2000). 11FXX.

Keywords. Langlands correspondance, generalized Ramanujan conjecture, unitary groups.

1. Introduction

1.1. Résultats. Soit E/F une extension CM de corps de nombres, ¢ I’élément non
trivial de Gal(E/F), G le groupe unitaire 2 trois variables défini par

G(R) = {g € GL,(E ®F R), 'c(g)g = 1}

pour toute F-algébre R. On choisit une cloture algébrique E de E et on pose I'p =
Gal(E/E).
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Dans [Rog3], Rogawski a étudié en grand détail les représentations automorphes
de G. 1l a construit une application de changement de base attachant a chaque repré-
sentation automorphe = de G une représentation automorphe 7g de Gg = GXp E >~
(GL3) g (voir 2.2.1). De plus, avec Blasius, dans [BR], il a montré I’existence d’un
systeme compatible de représentations galoisiennes attaché a 7 (ou a 7 g), que nous
explicitons ci-dessous.

Pour chaque place finie w de E, choisissons une cloture algébrique E,, de E,, et
notons I'g, = Gal(E,,/E,,). Choisissons également un plongement de E dans E,,,
ce qui permet d’identifier I'z,, a un sous-groupe de décomposition D, de ' en w.

Pour / un nombre premier, choisissons une cloture algébrique @l de Qy et notons
(a la suite de [HT, page 6]) r; la correspondance de Langlands locale qui associe
a une classe d’isomorphisme de représentations complexes lisses irréductibles de
GL3(E,) une classe d’isomorphisme de représentations continues de dimension 3
de I'g,, sur @l.

Enfin, pour r une représentation d’un groupe G, nous notons dans cet article r| g
la restriction de r a un sous-groupe H de G et rlsﬁl la semi-simplification de cette
restriction.

Théoreme 1 (Blasius-Rogawskil). Soit 7= une représentation automorphe de G
dont le changement de base g est cuspidal. 1l existe un corps de nombres L, et
pour toute place finie p de L une représentation continue, absolument irréductible,
Pu: Gal(E/E) — GL3(L,,) telle que pour toute place finie v de F premiére a
N(p)Disc(E/Q) telle que m, est non ramifiée, et pour toute place w de E divisant
v, On ait

(o), = r((TE)w)-

De plus, soit mg est Uinduite automorphe d’un caractere de Hecke V d’une ex-
tension cubique E' de E, soit les représentations p,, sont fortement absolument irré-

ductibles, i.e. leur restriction a tout sous-groupe ouvert de Gal(E/E) est absolument
irréductible.

Si L est un corps de nombres satisfaisant la conclusion du théoréme 1, on dira
que L est un corps de définition de m. Tout corps de nombres contenant L est alors
aussi un corps de définition de 7.

Les p,, forment donc un systeme de représentations compatibles de Gal(E/E)
a coefficients dans L. Mais le théoréme précédent ne décrit les représentations p,
qu’aux bonnes places w de E. L’objectif de cet article est d’étendre cette description
aux autres places. Nous y parvenons, mais seulement pour un ensemble de densité 1
de places u, et a semi-simplification pres. Plus précisément, notre résultat principal
est le suivant :

1Voir [BR] théordme 1.9.1 (a) et théordme 2.2.1.
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Théoreéme 2. Soit = une représentation automorphe de G dont le changement de
base wwg est cuspidal, et L un corps de définition de m. Il existe un ensemble S de
densité 1 de nombres premiers tel que pour toute place p de L divisantl € S, et pour
toute place finie w de E ne divisant pas [, on ait

(Pu)stw >~ rn((me)w)®.

Remarquons que si 7 est une induite automorphe d’un caractere de Hecke W,
le théoreme 2 découle aisément des propriétés de compatibilité locale/globale de
I’induction automorphe (cf. [AC]) et du théoreme de multiplicité un forte pour GL3.
Pour prouver le théoréme 2, on peut donc supposer, et 1’on supposera par la suite, que
les p,, sont fortement absolument irréductibles.

Le résultat suivant se déduit aisément du théoréme 2 :

Corollaire 1. 1) Si 7 est une représentation automorphe de G dont le changement
de base g est cuspidal, alors g est tempérée en foute place w de E.

2) Si v est une représentation automorphe de G dont le changement de base ng
est cuspidal, alors 7 est tempérée en toute place v de F.

3) Si w est une représentation automorphe auto-duale de GL3(F) (F un corps
totalement réel), tels que moo est discrete a poids distincts pour toute place réelle 0o
de F, alors m vérifie la conjecture de Ramanujan.

Démonstration. Le premier point se prouve a partir du théoréme 2 exactement comme
le théoreme VIIL.1.11 de [HT]. Le second résulte du premier. Pour le troisi¢me, pour
toute place finie v de F', on peut choisir un corps CM E/F tel que le changement de
base g est cuspidal et v décomposé dans E. Les hypotheses faites sur 7z assurent
alors que 7 g provient par changement de base d’une représentation automorphe 7’ du
groupe unitaire G attaché a E/F. Le fait que m, est tempérée résulte alorsde 1). O

1.2. Méthode. La preuve du théoréme 2 s’appuie sur le résultat essentiel suivant,
di a Harris et Taylor :

Théoreme 3 (Harris-Taylor). Soit =@ une représentation automorphe de G dont le
changement de base g est cuspidal, et L un corps de définition de I1. On suppose
que (g )y est de carré intégrable pour au moins une place finie w de E. Alors pour
toute place  de L (de caractéristique résiduelle 1), et pour toute place finie w de E
ne divisant pas I, on a

(/%L)f?)w B IT((:7:3 T

L’ objetdu théoreme 2 est donc d’enlever 1’hypotheése que g est de carré intégrable
au théoreme 3. Pour cela, on prouve d’abord deux propositions qui sont des cas
particuliers du théoréme 2 :
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Proposition 1. Soit 7w une représentation automorphe de G dont le changement de
base wwg est cuspidal, et L un corps de définition de m. Il existe un ensemble S de
densité 1 de nombres premiers tel que pour toute place p de L divisantl € S, et pour
toute place finie w de E ne divisant pas [, on ait

(puir, = r((TE)w)],

ou I, C Wy, est le sous-groupe d’inertie.
On note G, le groupe G(F,), et B, un sous-groupe d’Iwahori de G,.

Proposition 2. Soit w une représentation automorphe de G dont le changement de
base mg est cuspidal, et L un corps de définition de m. Il existe un ensemble S de
densité 1 de nombre premiers tel que pour foute place p de L dont la caractéristique
résiduelle | appartient a S, et pour toute place finie v de F ne divisant pas 1, si
7TUB v # 0, on ait, pour w place de E au-dessus de v,

(), = n((TE)w)™.

Pour prouver les propositions 1 et 2, I'idée est, en premiére approximation, de se
ramener au théoreme 3, appliqué a une représentation automorphe 7, qui en vérifie
I’hypothese (de carré intégrable en une place) et qui est congrue a = modulo p”,
pour n = 1,2, ..., la représentation 7, étant obtenue en appliquant le théoréme
d’augmentation du niveau de [BG] a 7 en une place inerte auxiliaire vg. Cette méthode
consistant a utiliser des augmentations du niveau pour se ramener au cas ol une
hypothese technique est satisfaite a d’ailleurs déja été utilisée dans la these de Taylor
([Taylor]), dans un cadre et un but différents (il s’agissait de montrer 1’existence de
représentations galoisiennes attachées aux formes modulaires de Hilbert)

Cependant on bute ici sur deux difficultés : la premic¢re est qu’en appliquant un
théoreme d’augmentation du niveau a 7 modulo u™ avec n > 1, on n’obtient pas, de
représentations automorphes s, mais seulement des formes automorphes f, qu’on
ne peut supposer propres pour les opérateurs de Hecke. On contourne ce probleme en
imposant & f;,, d’apparaitre dans un espace de formes automorphes admettant un type
de Bushnell-Kutzko adéquatement choisi (pour prouver la proposition 1) ou d’étre
propre modulo " pour un caractere adéquat du centre de 1’algebre de Hecke-Iwahori
(pour prouver la proposition 2).

La seconde difficulté consiste a montrer I’existence de bonnes places inertes auxi-
liaires : on ne peut pour cela utiliser le théoreme 2 de [BG], qui montre I’existence de
places auxiliaires vg, mais telles que p est non normale pour v (voir 2.3.3), ce qui
empéche de montrer que la forme obtenue f;, vérifie les hypotheses du théoreme 3.
On utilise a la place un résultat récent de Larsen sur I’image des représentations
galoisiennes dans un systéme compatible ([La]), qui combiné avec un résultat de
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Steinberg, permet de montrer 1’existence de bonnes places inertes vg, telles que p
est normale pour vy (quoique non banale — voir 2.3.3), ol augmenter le niveau, a
condition d’exclure un ensemble de mesure nulle de nombres premiers /.

Enfin, pour prouver le théoréme 2, on utilise un changement de base non galoisien
pour ramener le calcul de la trace d’un élément de D, — I, dans le cas général a la
proposition 2, ce qui, combiné avec la proposition 1 (déterminant la trace des actions
des éléments de I,,) permet de conclure.

2. Notations et rappels

2.1. Notations. On garde les notations de I’introduction, E/F est une extension
CM, ¢ I’élément non trivial de Gal(E/F). On choisit un relevé y de ¢ dans I'r =
Gal(F/F), tel que y? = 1. On note I'f; le groupe de Galois Gal(E/E), et pour X un
ensemble de places de E, F?: le groupe de Galois de la plus grande extension de E

dans E non ramifiée hors X.

Soit G le groupe unitaire défini dans I’ introduction. Onnotera G, le groupe G(F,).
On notera g, le cardinal résiduel de F,, et @, une uniformisant de F,

2.2. Le changement de base de Rogawski

2.2.1. Changement de base global. Rogawski définit une partition des représen-
tations automorphes de G en A-paquets globaux, et pour chaque A-paquet IT, son
changement de base g qui est une représentation automorphe de G g. On peut donc
définir sans ambiguité le changement de base d’une représentation automorphe w de
E comme le changement de base du A-paquet auquel elle appartient.

2.2.2. Changement de base local. Soit v une place finie de F, G, = G(F,). Ro-
gawski définit, suivant les conjectures d’ Arthur, des parties finies de I’ensemble des
classes d’isomorphismes de représentations lisses complexes irréductibles de G, qu’il
appelle A-paquet locaux. Si v est décomposée, tous les A-paquets sont des singletons.

Soit w une place de E au-dessus de F. Si I, est un A-paquet local, on peut définir
son changement de base (local) a E,, qui est une représentation lisse complexe irré-
ductible de GL3(E,,). Les A-paquets globaux sont produits tensoriels de A-paquets
locaux et le changement de base global est compatible au changement de base local.

Une représentation complexe lisse irréductible de G, peut appartenir a plusieurs
A-paquets locaux. Cependant :

Lemme 2.2.3. Si deux A-paquets 1y, et TT,, contiennent une représentation en com-
mun, leurs changements de bases sont des sous-quotients d’une méme induite para-
bolique. En particulier, les images de ces deux changements de base par la corres-
pondance de Langlands ont méme semi-simplification.
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Deplus, si T1, et I/, contiennent deux représentations m, et ), ayant méme support
supercuspidal a équivalence inertielle pres, il en va de méme de leur changement de
base.

Démonstration. 111’y a rien A prouver pour v décomposée. On suppose v inerte ou
ramifiée.

D’apres [Rog3], les seules représentations appartenant a plusieurs A-paquets sont
celles notées 7w° () loc. cit., page 199, pour x un caractere de U(1). Ces représenta-
tions appartiennent exactement a deux A-paquets, {77* (&), 72(£)} (qui est tempérée),
et {7*(&), 7" (&)} (qui ne I’est pas). Les changements de base de ces deux A-paquets
sont respectivement 1a sous-représentation irréductible et la représentation quotient
de I’induite du Borel du caractere (£, &g |, 1).

Le “en particulier” résulte par exemple de [He].

Le “de plus” résulte de [Rog3, proposition 13.2.2]. o

Si i, est la composante locale d’une représentation automorphe, elle appartient a
au moins un A-paquet local. La notation r; ((7,) g, )** est donc définie sans ambiguité
par r;((IT,) g, )%, ou I, est n’importe quel paquet local contenant 7.

2.3. Rappels locaux

2.3.1. Algebres de Hecke non ramifiées. Si v est inerte ou ramifiée, G, est un
groupe unitaire quasi-déployé de rang un. Si v est inerte, G, est de plus non ramifié.
On dispose alors d’une classe de conjugaison privilégiée de sous-groupes compacts
maximaux de G, la classe de conjugaison hyperspéciale. Si K, appartient a cette
place1’algebre de Hecke # (G, K,) des fonctions a support compact, K ,-invariantes
a gauche et a droite, a valeurs dans Z, munies de la convolution est commutative,
isomorphe a Z[ T, ). Ici, T, est1’opérateur de Hecke standard, défini comme la fonction
caractéristique de la double classe de la matrice diagonale (=, 1, @ 1. Onle notera
aussi parfois T, o w est la place de E au-dessus de v

Si v est une place décomposée, le choix d’une place w de E définit un isomor-
phisme G, >~ GL3(F,) ~ GL3(E,,), canonique 4 automorphismes intérieurs pres. Si
K, est le compact maximal correspondant 2 GL3(9,) via cet isomorphisme, on no-
tera T, I’opérateur de Hecke dans # (G, K,) donnée par la fonction caractéristique
de la double classe de 1a matrice diagonale (@, 1, 1).

2.3.2.  On peut reformuler le théoréme 1 en termes des opérateurs de Hecke ainsi
définis. En gardant les notations de ce théoréme, pour toute place v telle que iy, est
non ramifiée, w place de E au-dessus de v, si A, est la valeur propre par laquelle agit
I’opérateur T, sur la droite erK v, alors

Aw = trp, (Froby).
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2.3.3. Caractéristiques normales et banales. Si v est inerte, on dit que / est une
caractéristique normale® (resp. banale) pour G, ou pour v sil ne divise pas g, <q3 +1)
(resp. qu(gy — 1)(g; + 1))

2.3.4. Centre de Bernstein. Nous rappelons un fragment de la théorie du centre de
Bernstein. Soit B, un sous-groupe d’Iwahori de G,, K, un compact maximal. On
note Z(G,, By) le centre de 1’algebre de Hecke-Iwahori # (G, B,). Alors

Lemme 2.3.5. 1] existe un isomorphsime d’algébre
b: Z(Gy, By) @ C =~ H(Gy, Ky) @ C,

tel que, pour toute représentation m, lisse irréductible de G, telle que ;" # 0,

1) Z(G,, By) agit sur 7rUB“ par un caractere yr, et # (G, Ky) agit sur nUK“ (éven-
tuellement nul) par le caractére yr o b1

2) Ilexiste une unique représentation ' avec }(U # 0, et telle que He , , agissent

K - ; PP
sur wy¥ par y o b=, De plus et ' apparaissent dans une méme induite non
ramifiée.

3) La représentation galoisienne r;((my) g, )> est non ramifiée et
tr (), ) (Froby) = ¢ o b= (Ty,).

Démonstration. L’ existence de I’isomorphisme b vérifiant 1) résulte de [B].

D’apres la théorie classique des représentations non ramifiées, toute représen-
tation lisse irréductible i, apparait comme facteur de Jordan-Holder d’une induite
parabolique indécomposable / d’un caractere non ramifié, qui contient un unique fac-
teur non ramifié r/. La représentation / est de plus engendrée par ses BY-invariants.
Drapres 1’équivalence de catégorie bien connue de Borel ([B]), 1 By st un module
indécomposable sur # (G, By). Le centre Z (G, By) agit donc par un caractere sur
1B donc par le méme caractére sur 7 2 et sur /52, et le point 2) en résulte.

Enfin 3) résulte de [He]. g

2Note surla terminologie ajoutée aux épreuves : cette terminologie est celle introduite dans ma these. Clozel,
Harris, et Taylor lui préfere celle de quasi-banale dans un preprint récent.
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3. Existence de places inertes et normales ou augmenter le niveau

3.1. Enoncé

3.1.1. Dans toute cette partie, 7 est une représentation automorphe pour G dont le
changement de base a E, est cuspidal, w est une place de E et v est la place de F
divisant E. On choisit un corps de définition L de 7, et pour p place finie de L, on
note p,, lareprésentation galosisienne associée, qu’on suppose fortement absolument
irréductible.

Le but de cette sous-partie est de prouver le résultat suivant :

Proposition 3.1.2. 1] existe un ensemble S de nombre premiers, de densité 1, tel que
pour toute place finie p de L divisant une place de S, et pour tout entier n > 1, il
existe une infinité de places vy de F, inertes dans E, telles que my, est non ramifiée,
et telles que la valeur propre A = Ay, de l'opérateur de Hecke standard T, sur my,,
et le cardinal résiduel g = qy, de F, vérifient

r=q(g®+1) (mod u"), 1)
g=1 (mod u™). 2)

3.2. Réduction a une propriété de 'image de p,

3.2.1. D’apres [BG, 6.2.8], il existe une base de Li telle que dans cette base, la

représentation p,, définisse un morphisme p,, : Gal(E/E) — GL3(0,,), vérifiant
pour tout g € Gg

pulyey™" = Alpu(e) A7, 3)

ou A € GL3(0,). Comme y est une involution, on voit en appliquant deux fois (3)
que A 'A=1 est dans le commutant de Pu» done est un scalaire «. D’ou A = wA,
ce qui implique o = =£1, et le cas antisyméirique « = —1 est impossible car A est
inversible. On a donc

A=A @)

3.2.2. Notons p, la réduction de p,, modulo ", et @ : Gal(F/F) — (Z]1"Z)*
le caractere cyclotomique. La proposition 3.1.2 se réduit a la proposition suivante :

Proposition 3.2.3. Il existe ¢ € Gal(E/E) tel que p,(g) = ald avec a € (O /u™)*
etwpm(g) = —1.

3.2.4. Prouvons que la proposition 3.2.3 implique la proposition 3.1.2. Soit G le
produit semi-direct
GL3(0/u") x C,
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ol C est le groupe 2 deux éléments {1, ¢} et ¢ agit sur G par g — ‘g~ . Les rela-
tions (3), (4) permettent de prolonger p, en un morphisme, noté g, : Gal(E/F) — G
par

(o) =p(e) x 1, o €Gal(E/F), ©)

Pu(y) =AXc. ©

Si g est comme dans 1’énoncé de la proposition, on a p,(gy) = (aA) X c et
wpn(gy) = 1. 1l existe done une infinité de places vg de F telles que p, (Frob,,) =
(aA) x c et wyn(Frob,,) = 1. Ces places ne peuvent &tre décomposées, une infinité

d’entre elles sont donc inertes. Pour vg une telle place, ona (g, =)g = 1 (mod u™"),
et si wo est la place de E au-dessus de vy,

P (Frobuy,) = f, (Froby)? = (aA)' (aA)™ =1d

(cf. [BG, 6.2.8]), ce qui implique que A = g(g®>+ 1) (mod p™) d’apres la transfor-
mation de Satake, cf. [BG, 3.7.1]

3.3. Preuve de la proposition 3.2.3

3.3.1. Pour tout nombre premier /, et toute place p de L au-dessus de [, p,, est

une représentation de Gal(E/E) de dimension 3 sur L, qu’on peut également voir
comme une représentation de dimension 3[L,, : Q;] sur ;. Posons

P1=@puiPpu
qui est une représentation de dimension
3) [Lu:Q1=3[L:Ql
wull

Les p; forment un systeme compatible de représentations /-adiques.

Notons I'; I'image de p; (dans GL3[7.01(Q1)) et G; son adhérence Zariski. Comme
les représentations p,, (sur L) sont irréductibles, elles sont semi-simples en tant que
représentation sur (;, ainsi que les p;. Les groupes G; sont donc réductifs. On note
G? la composante neutre de G;, auquel on peut appliquer un résultat de Serre (cf.
[Serre, théoréme, page 15]) :

Lemme 3.3.2. 1 existe une extension finie E’ de E, tel que pour tout I,
p(Gal(E/E')) =Ty N G (Q).

Quitte a remplacer E par E’, on peut donc supposer que G; = G?. Comme
Py est fortement absolument irréductible, Ce changement de E en E’ n’affecte pas
I’hypothése que p,, est absolument irréductible.



458 J. Bellaiche CMH

3.3.3. On note, suivant [La], Gf‘d le groupe adjoint de G; et Gj° le revétement
universel de G?d. Ce sont des groupes réductifs connexes, et Gj° et G?d sont méme
semi-simples.

D’apres [LaPi], il existe un ensemble de densité 1 de nombre premiers, tel que
pour tout nombre premier / de cet ensemble, le groupe réductif G}° est non ramifié
(cf. [Ti]). On peut donc parler de sous-groupes compacts maximaux hyperspéciaux
de G3°(Qy) pour [ ¢ S (cf. [Ti]). Notons enfin I'# I'image de I'; dans G34(Q;) par
I’application canonique, et I';° I'image réciproque de Flad dans G7°(Qy).

Iy ry Iy

NN N\

G (Q) GHQ) G*(Qn)

Le théoréme suivant est le résultat principal de [La].

Théoréme 3.3.4 (Larsen). 1l existe un ensemble de densité 1 de nombres premiers tel
que pour toutl de cet ensemble, I'}¢ estun sous-groupe compact maximal hyperspécial
de G5°(Qy).

Corollaire 3.3.5. I[ existe un ensemble S de densité 1 de nombres premiers tel que
pour tout I de cet ensemble, I'}° n’a pas de quotient d’ordre 2.

Démonstration. On prend pour ensemble S de nombre premiers celui du théoréme
précédent privé de 2. Pour / en dehors de cet ensemble, G;¢ a un (unique) modele
a fibres semi-simples connexes sur Z; tel que I} = G7°(Z;). Comme le noyau de
la réduction, surjective d’apres le lemme de Hensel, G;°(Z;) — G;°(IF;) est un pro-
[-groupe avec | # 2, il suffit de voir que Gj°(IF;) n’a pas de quotient d’ordre 2. Or
d’aprés un théoreme de Steinberg ([St], voir aussi [PR, page 406]), comme le [F;-
groupe algébrique G° est semi-simple connexe et simplement connexe, le groupe de
ses points rationnels G7°(IF;) est d’abélianisé trivial. O

Dorénavant, S désigne un ensemble de nombres premiers comme dans le corollaire
ci-dessus.

3.3.6. Notons maintenant I, I'image de p, dans GL3(L,), et G, I’adhérence
Zarsiki de I', dans GL3(L,,) considéré comme groupe algébrique sur Q, i.e. dans
Resé@‘; GLs3.

La projection p: p; — py, définit un morphisme surjectif p de I'; sur I, qui
se prolonge en un morphisme surjectif (noté aussi p) de Q;-groupes algébriques
G; — G,. Le groupe G, est donc connexe. On définit sz comme le groupe adjoint



Vol. 81 (2006)  Sur la compatibilité entre les correspondances de Langlands pour U(3) 459

de G, et G} comme le revétement universel de sz. On définit I’ Zd comme I’image
5 L, . d
dely,et 'y comel image réciproque dg rg-
On a donc le diagramme commutatif suivant :

Iy o Iy

AR I

G1(Qr) l GH(@Qp <l— G (Qn)
r, rad — T

N I o

G (Qi) GH Q) - G Qi)

Les fleches verticales se déduisent de p par fonctorialité et sont toutes surjectives
par construction. On note t le morphisme naturel G/Sf((@;) — G;‘f((@l) ainsi que sa
restriction a Fff(@l).

Lemme 3.3.7. Si u|l etl € S, '} n’a pas de quotient d’ordre 2.

Démonstration. Comme ¢’estun quotientde Flsc, celarésulte ducorollaire 3.3.5. O

Lemme 3.3.8. Le groupe sz((@z) / r(fo(Qz)) est abélien de 3-torsion.

Démonstration. Considérons G, comme un sous-groupe algébrique de
ResLﬂ/QlGLg.

Le groupe G, x Q; est donc un sous-groupe algébrique de

(ReSLM/QZGI@) X @l = l_[GL3
w

ou W est I’ensemble des plongements de L, dans Q. On en déduit que le groupe

G xQy estunsous-groupe de [ [y SL3. Soit Z son centre : comme p,, estabsolument
irréductible, ¢’est un sous-groupe du centre de [ [y, SL3, et il est donc de 3-torsion.

Considérons la suite exacte courte de groupes munis d une action de Gal (Q/L )t
0— Z@) - GX@) > @) — 0.

La suite exacte longue de cohomologie associée identifie sz Qp/ t(GISj(Qz)) aun
sous-groupe de H Lp s Z(Qp)) qui est abélien de 3-torsion. O
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Lemme 3.3.9. Si u|letl € S, I“Zd n’a pas de quotient d’ordre 2.

Démonstration. Le groupe sz Q) /t(G,Sj(Qz)) est abélien de 3-torsion, d’apres le
lemme précédent. Il en va donc de méme du groupe de /7 (")), qui n’a donc pas
de quotient d’ordre 2. D’apres le lemme 3.3.7, (I';7) n’a pas non plus de quotient
d’ordre 2. Il en va donc de méme de F;‘Ld. O

Lemme 3.3.10. Le centre Z(I',) est composé d’homothéties de Ly, et I'y/Z(T',,)
n’a pas de quotient d’ordre 2.

Démonstration. La premicre assertion résulte du lemme de Schur, qui montre aussi
que Z(I'y,)) = Z(G,,(Qp)) NT', et la seconde résulte alors du lemme précédent, car
Tu/Z(Ty) =Tu/(Z(Gu(@Qp)) NTy) =Tad, O
3.3.11. Findelapreuvedelaproposition3.2.3. Considéronslecaractere col(f,n —bi2),
Son image est {£1}. D’apres le lemme de Goursat et le lemme précédent, 1’ applica-
tion p, x @y ¥ Gal(E/E) — T,/Z(T',,) est surjective. Il y a donc un g’ €
Gal(E/E) dont I’'image est (1, —1). Posons g = g/U"=V72 Alors ou(g) € Z(I'y)
donc est un scalaire, et il en va de méme de sa réduction p, (g). De plus wjn (g) = —1,
ce qui prouve la proposition.

4. Preuve de la proposition 1
On reprend les mémes notations que dans la partie 3.1.1.
4.1. Choix d’un niveau et d’un type pour la preuve

Lemme 4.1.1. 1] existe un sous-groupe compact ouvert K, de G, et une représenta-
tion J, de K, tel que

a. Homg, (Jy, my,) # 0.

b. Pour v une représentation lisse irréductible de G, si Homg, (Jy, my) on a pour
toute place p de L

r(te, ), = (e, -

Démonstration. D’apres [Bus, page 772] si v est décomposé, ou le théoréme principal
de [BI] si v est inerte ou ramifiée, il existe un type (K,, J,), tel que pour toute
représentation lisse irréductible ¢ de G, Homg, (Jy,, 7) # 0 si et seulement si 7 et
T, ont méme support supercuspidal a équivalence inertielle pres. Pour un tel type, la
propriété a. est évidemment satisfaite.
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Si v est décomposé, on a G, = GL3(Ey,); soit {my, ..., 7} le support super-
cuspidal de w (ona 1 < k < 3, et les 7; sont des représentations supercuspidales
irréductibles de GLj, (Ey), avec Zle n; = 3). Si Homg, (Jy, 7) # 0, le support
supercuspidal de = est donc {m; ® x1 o det, ..., 7 ® xi o det}, ou les x; sont des
caracteres non ramifiés de E;. Les propriétés de compatibilité a I’induction pata-
bolique ([HT, propriété 2, page 6]) et au twist par un caractere ([HT, propriéié 3,
page 6]) de ry, et le fait que deux constituants d’une méme induite parabolique aient,
a semi-simplification prés, la méme image par r; (cf. [He]) implique que

r1(my)® =~ & i (), @)

m(0)* = & ri(7) ® r(xi), (8)

ce qui implique (r;(t)%)7, = (r1(7,)*) 1, . Comme la restriction a I, commute a la
semi-simplification pour une représentation de D,, (cela résulte de [Ta, 4.2.1]), on a
donc

(o) = nm), .

Supposons v inerte ou ramifiée dans E. Soit t tel que Homg, (J,, 7) # 0. Soit
g, et () £, les changements de base de n’importe quel A-paquet contenant t et 7z,,.
D’apres le lemme 2.2.3, tg,, et (;1,) g, ont méme support supercuspidal a équivalence
inertielle pres. On est alors ramené au cas précédent. o

4.12. Soit Ky, J, comme dans le lemme. Soit KV = [],, K\ un sous-groupe
compact ouvert de [ [, G(Fy) tel que

%" £0. ©)

Posons K = K, KVetJ =J,® 1.

Pour toute @,-algeébre R, on note Sg 7 r..,,r l& R-module (libre de rang fini) des
formes automorphes de niveau K, type J et méme poids que 7 qui sont définis sur
R, défini en [BG, 5.2].

4.2. Formes anciennes et nouvelles

4.2.1.  Soit vg une place inerte de F, distincte de v, et telle que K, esthyperspécial.
Onnote T = T,, 'opérateur de Hecke standard de #(G,,, K,,) et ¢ le cardinal
résiduel de Fy,. Soit By, un sous-groupe d’Iwahori de G, contenant K, et soit
B := By K™ ot K™ := ]z, Ku'.

Onnote N.j .. € OB J 7.,k les R-modules (libres de rang finis) des formes
nouvelles et anciennes (respectivement) en vg sur R de niveau B, de type J et de poids
o, tels qu’ils sont définis en [BG, 5.3.6]. La formation de ces espaces commute a
tout changement de base R — R’.
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4.2.2. On rappelle que si X est I’ensemble fini des places v’ telles que K, n’est
pas hyperspécial, 1’algebre de Hecke commutative

HE = ]_[ H(Gy, Ky)
VgD
agit par opérateurs R-linéaire sur les espaces Sk j ., R> NB,J,70,R € OB.J 70 R>
et ceci fontoriellement en R. (cf. [BG, 5.2.2 et 5.3.4]). Rappelons en particulier que
I’action de #H (G, Kyy) = Z|T] sur les espaces NB,7,7..,R € OB, 7z, R €St définie
en identifiant #(Gy,, Ky,) a une sous-algébre de #H(Gy,, By,), 'opérateur T étant
identifié a I’opérateur T’ défini en [BG, 3.3.2]. Aux autres places v’ ¢ 2, ’action de
H (G, K,) est1’action évidente.
Rappelons aussi ([BG, 5.1.3]) que si R est une L ,-algebre, les actions de #* sur
les espaces considérés sont semi-simples

4.2.3. Pour tout @, -algebre R, notons N; Joo,R TSP, Np ;) le noyau
Ker(T — q¢(¢> + 1)) (resp. Ker(T + (g3 + 1)) sur NB.Jo,R-

Lemme 4.2.4. Supposons que (g>+1)#£0 (mod p). Ona
NB. 1 7R = N?B—,J,noo,R © Np 1700 R
et pour tout morphisme R — R’ de O,-algébres on a

° _ a7e ’
Ngjrok =NB o r QR R

pour e € {4, —}.

Démonstration. Comme ¢(g°> + 1) # —(¢®>+ 1) (mod ) par hypothese, il suffit
de montrer que I"opérateur 7 (ou Tp) sur NB7/-7R est annulé par le polyndme
(X —q(g® + 1))(X + (g° + 1)). Par fonctorialité il suffit de le faire pour R = 9,
et donc comme N j r..0, C NBJ‘%O’@Z pour R = Q ~ C. Comme 7 agit de
manicre semi-simple sur cet espace, il suffit de voir que pour f € N, z.,C propre
pour #*, 1a valeur propre A de T est —(@*+Doug(g®+1).0r d’apres [BG, 6.1.2],
a une telle forme nouvelle propre f est attachée une représentation automorphe i,
telle que 7y, est soit la Steinberg St, soit la représentation 7* (voir [BG, 3.6.5]) et

que T agisse par A sur njé”o . Le lemme résulte donc de [BG, 6.7.2] O
4.3. Augmentation du niveau
4.3.1. D’apres le point a. du lemme 4.1.1 et (9), la représentation automorphe 7

définit un €lément de Sk, 77,0, Propre pour #* de caractere propre noté ¢ (cf.
[BG, 6.7.1])
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Proposition 4.3.2. Pour tout entier n > 1, on peut choisir une place vy de ¥ comme
en4.2.1, et tel qu’il existe un vecteur non divisible f € N; J e, VeTifiant

Uf =4¢U)f (mod pn"),

pour tout U € H*.

Démonstration. D’apres la proposition 3.1.2, il existe une infinité de vg inertes telles
queg =1 (mod pw)ety(T) = g(g>+1) mod p”. Onen choisit une qui vérifie les
conditions de 4.2.1, i.e. qui est distincte de v et telle que K, est hyperspéciale. On
peut alors appliquer le théoréme d’augmentation du niveau en vg modulo ¢ de [BG]
(théoreme 1, page 2). Celui-ci implique I’existence d’une congruence non triviale
modulo " entre Op, J 70,0, () ('espace propre de caractere propre y pour HE
sur Op,J .0,0,) €L NB j x,0, donc d’un f nondivisible dans Np s . 0, Vérifiant,
pour tout U € #*

Uf =y U)f (mod pu"). (10)

Soit P la projection de N, s n.,,0, sur N;,J,noo,(% parallelementa Np ; . o .
La projection P commute 2 #* car c’est un polyndme en 7. Donc P(f) satis-
fait aussi la relation (10). Par ailleurs, la relation (10) donne en particulier
Tf = q(¢> + 1)f (mod u™), si bien que P(f) = f (mod u"), donc P(f) est
non divisible. Remplagant f par P(f), la proposition est prouvée. o

Fixons dorénavant n > 1, et vop comme dans la proposition précédente.

Pour R une ,-algebre, notons Tp la R-algebre des endomorphsimes de
N;;’ 7.7, & €Dgendrée par ’action de H*. C’est une R-algébre commutative, semi-
simple si R estune L, -algebre, dont la formation commute a tout changement de base
R — R’ et on a un morphisme d’algébres surjectif #* ® R — Tg. La conclusion
de la proposition précédente se reformule en

Proposition 4.3.3. La réduction modulo " du caractére 4 de Jy, se factorise en
un caractere, noté yry, de T, a valeur dans Oy, /",

Par ailleurs, on a

Proposition 4.3.4. 1] existe un pseudo-caractére x de Gal(E/E) & valeur dans T 5
tel que

x (Froby) = T,y  pour toute place w' divisant une place v’ ¢ T, (11)
x (&) = ttri((mwy)E,)*(g) pourtout g € L. (12)
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Démonstration. 11 suffit de montrer la proposition pour ‘I@ =%0,® Q; puisque Q;
est plat sur @,,. Mais S@l est commutative semi-simple et de dimension finie, donc
est isomorphe 2 un produit fini de copies de Q;. Si 6 désigne la projection de ‘I@l
vers ’un de ces facteurs il suffit de prouver I’existence d’un pseudo-caractere ¥ de
Gal(E/E) a valeur dans Q; vérifiant la propriété (12) et, au lieu de la propriété (14),
la propriété

x (Froby) = 6(T,) pour toute place w’ divisant une place v’ ¢ X. (13)

Comme @l est algébriquement clos, il existe une forme 0 # f € N;; J 500,01
propre pour #* de caractére propre 6. D’aprés [BG, 6.1.2], il existe une représen-
. z & ~ E .9
tation automorphe 7/ attachée a £, tel que #* opere par 6 sur 7’5~ (ou K* =
[T ¢ Kv), et telle que my, = Stoum; =~ . Soit x le caractére de la représenta-

tion de Gal(E/E) sur Q; attachée a 7/ ; il vérifie (13) d’apres 2.3.2.

Comme 6(T) = q(g> +1) # —(g°> + 1) (mod p), on a m,, = St (cf. [BG,
lemme 3.7.3]) Donc (777;) estla Steinberg en vg (dapres [Rog3, proposition 13.2.2(b)])
qui est de carré intégrable, et I’on peut appliquer le théoréme 3 a 7/, ce qui montre
que x(g) = tur((w))g,)*(g) pour g € D,,. Mais comme Homg, (J,, ;) # 0, le

lemme 4.1.1 montre que rl((né)Ew)fiw >~ r((my)E, T;w, d’ou la formule (12). O

4.3.5. Fin de la preuve de la proposition 1. Composons le pseudo-caractére
x: Gal(E/E) — %o, de la proposition 4.3.4 avec le caractere v,
‘3:(9# — Ou/1"
de la proposition 4.3.3. On obtient un pseudo-caractére
$n =m0 x: Gal(E/E) — O /p".

D’apres la formule (14), et le théoreme de Cebotarev, on a

trpu(g) = dulg) (mod u") pour tout g € Gal(E/E).
Mais d’apres (12), on a

$u(g) = tri((7y)E,)*(g) (mod p") pourtout g € I,,.
D’ou

trp,(g) = trr ()£, )*(g) (mod p*) pourtout g € Iy.

Dans cette dernicre congruence, les deux membres sont indépendants de » (et de vg).
Comme celle-ci est valable pour toutn > 1, 0n a

trp,(g) = trry((my) E,)* (g) pour tout g € Iy

et la proposition 1 en découle.
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5. Preuve de la proposition 2

La preuve est trés proche de celle de la proposition 1, mais un peu plus simple. Nous
indiquons seulement quels sont les changements a faire.

5.1. Choix d’un niveau et d’un type. On prend pour K, un sous-groupe d’Iwahori
B, de G, On prend pour K" un sous-groupe compact ouvert de [ [, 2y Oy tel que
7K" #£0.Onprend K = B,K et J = 1.

5.2. Formes anciennes et nouvelles. Rien ne change sauf en 4.2.2 : on définit X

comme I’ensemble des places v’ différentes de v telles que K, n’est pas hyperspéciale.
On définit #* comme

Q H(Gy.K)) ©Z(Gy, By,
v'gn, v

et cet anneau agit encore sur les espaces de formes Sk 7 ., R» OB,/ w00, R N 5 1
oue € {J, +, —}. Le lemme 4.2.4 et sa preuve restent valables sans changement.

5.3. Augmentation du niveau

5.3.1. La proposition 4.3.3 reste valable sans changement, avec la méme preuve.
La proposition 4.3.4 a pour analogue

Proposition 5.3.2. 1l existe un pseudo-caractere x de Fgo avaleur dans g, tel que

x (Froby) = Ty pour toute place w' divisant une place v’ ¢ X. (14)

Démonstration. Comme dans la preuve de la proposition 4.3.3, il suffit de montrer,
pour tout caractere 6 de S@Z, I’existence d’un pseudo-caractere ¥ de Fgo a valeur

dans Q; vérifiant
x (Frob,) = 6(T,/) pour toute place w’ divisant une place v’ ¢ X. (15

Raisonnant encore comme dans la preuve de la proposition 4.3.3, on voit qu’il
existe une représentation automorphe 7’ attachée a f, tel que #* opere par 6 sur
7K (o K = [1¢s Ku), et telle que 7y, est la Steinberg en la place au-dessus
de vg.

Soit x le caractere de la représentation de Gal(E/E) sur Q; attachée a 7’
D’apres 2.3.2,0ona

x (Frob,) = 6(T,) pour toute place w’ divisant une place v’ ¢ X, v’ # v.
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D’aprés le théoreme 3 appliqué a =/, x(g) = ur;((7w,)g,)*(g) pour g € Dy,
donc yx est aussi non ramifiée en w et ’on a

x (Froby) = 6(Ty)

d’apres le lemme 2.3.5, point 3). La méme chose vaut pour I’autre place w de E
au-dessus de v dans le cas ou v est décomposée. O

5.3.3. Fin de la preuve de la proposition 2. Composons le pseudo-caractére
X FEO — T, de la proposition 5.3.2 avec le caractere ¢,

T, = Ou/u"
de la proposition 4.3.3. On obtient un pseudo-caractere
by = Ym0 x: Gal(E/E) — Oy /p".
D’apres la formule (14), et le théoreme de Cebotarev, on a
wpu(8) = ¢ulg) (mod u") pourtout g € I'z",

et aussi
trp,(g) = Pn(g) (mod u")

Mais d’apres (12), on a
trp, (Froby,) = (1) = trr((7,) g, )™ (Froby,,) (mod ") pour tout g € I,

la deuxieme congruence découlant du lemme 2.3.5. Dans cette congruence, les deux
membres extrémes sont indépendants de n (et de vg). Comme elle est valable pour
toutn >1,ona

trp,, (Froby,) = trri((7wy) g,,)*° (Froby,).

Ceci est aussi valable pour I’autre place w divisant w. Comme les représentations
ri((my)E, )" et (pu)sgw sont non ramifiées (lemme 2.3.5, point 3), et ont méme ca-
ractere central (par Cebotarev), elles sont isomorphes. O

6. Preuve du théoréme principal
6.1. Changement de base local
6.1.1. Onnote r la représentation r;*((7y) g, ) du groupe Gal(Q;/Ew). Soit

M= @}(err.
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On a Gal(M/E,,) = r(Dy,). On dispose de la suite exacte
0 — I, > Dy, — Gal(E}] /E,) — 0,
d’oll une suite exacte
0 — r(Iy) = r(Dy) — r(Z) =0
Notons que r(1y,) est fini.

6.1.2.  Soit « un élément de D,, = Gal(Q;/E,). On suppose que u ¢ I,,. On note
(r (u)) I’adhérence du sous-groupe engendré par r (u) : sous notre hypothese, ¢’est un
sous-groupe d’indice fini de r (Dy,).
On pose
N = Mra)

On a Gal(M/N) = (r(u)). U'extension N/E,, est finie mais n’est pas en général
galoisienne.

Lemme 6.1.3. L’extension M /N est non ramifiée, et son Frobenius est r(u).

Démonstration. 11 suffit de montrer que pour toute extension finie galoisienne M’ de
N contenue dans M, on a M’/N non ramifiée, de Frobenius I’'image de r(«) dans
Gal(M’/N), et ¢’est clair. o

6.1.4. Si B/A est une extension de corps p-adique, on définit le changement de
base local de A a B d’une représentation s irréductible lisse de GL, (A), qu’on note
7g, par la relation

TR = rec;1 oresA/B o reca (i),

ouresa,p estlarestriction d’une représentation de Wp a Wy.

Si la représentation 7 est-elle méme le changement de base d’une représentation
d’un groupe unitaire, par exemple 7 = (7,) g, on notera (7,) g son changement de
base a B, au lieu de ((my,) g, ) B, ce qui ne crée pas d’ambiguité.

Proposition 6.1.5. Le changement de base local (w,) y de (my)E, @ N a une droite
invariante par un Iwahori de GL3(N) .

Démonstration. Par définition, r; ((7,,) &) estlarestrictionde r; (7, ) g, ) a Gal (Q;/N).
D’apres le lemme 6.1.3, cette représentation est non ramifiée. La proposition en dé-
coule. H

Soit Ny la cloture galoisienne de N, qui est finie et résoluble sur E,,.
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6.2. Changement de base global

Lemme 6.2.1. 1] existe un corps de nombres F’ vérifiant
i. F’ est totalement réel,
ii. F'/F estrésoluble et le changement de base g de Tlg a EF’ est cuspidal.
iii. EF’ admet une place w' divisant w telle que (EF),/E,, soit isomorphe a
No/E,.
Démonstration. Cela résulte aisément de [AT, théoréme 5, page 103]. Voir [BC,
preuve de la proposition 3.2] pour plus de détails. o

OnaGal(Ny/E,) C Gal(EF’/E) = Gal(F’/F). Le sous-groupe Gal(Ny/N) de
Gal(No/ E,) s’identifie 2 un sous-groupe de Gal(F’/ F) et définie donc un sous-corps
H de F’, contenant F, et tel que (EH),,/E,, est isomorphe & N/E,,

Le lemme suivant est montré dans [Ha]

Lemme 6.2.2 (Harris). Il existe une représentation automorphe cuspidale wgp de
GL,(EF) qui est le changement de base fort de w, i.e. dont la composante locale
(mEH)x en toute place x de E H divisant une place y de E est le changement de base
local de (g)y .

Par Cebotarev la représentation galoisienne associée A mgy est
Pu)Ga@em):
D’aprés la proposition 2, appliquée a 7 en la place w’ de EH,on a
(Pu)ﬁ)w/ > ri(my)n = (r(7m)E,)ID,, -
Comme u € D,y = Gal(Q;/N) par définition de N, on a en particulier

tr(pp)(u) = ter(m) g, ()

Cette égalité est valable pour tout u € Dy, — I,,. Mais par ailleurs, d’aprés la propo-
sition 1, elle est aussi vrai pour u € I,,. On a donc montré tr(o,)|p, = tur(7wy)E,
et le théoréme.
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