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Bubbling location for F'-harmonic maps and inhomogeneous
Landau-Lifshitz equations

Yuxiang Li and Youde Wang*

Abstract. Let f be a positive smooth function on a closed Riemann surface (M, g). The
f-energy of amap u from M to a Riemannian manifold (N, &) is defined as

Ef(u) :/ fIVul?dv,.
M

In this paper, we will study the blow-up properties of Palais—Smale sequences for Ey. We will
show that, if a Palais—Smale sequence is not compact, then it must blow up at some critical
points of f. As a consequence, if an inhomogeneous Landau-Lifshitz system, i.e. a solution of

up=u Xt +rr@), u:M— s2,

blows up at time 00, then the blow-up points must be the critical points of f.

Mathematics Subject Classification (2000). 35Q60, 58E20.

Keywords. f-harmonic map, inhomogeneous Landau-Lifshitz equation, f-harmonic flow,
blow-up point.

1. Introduction

Let (M, g) and (N, k) be two Riemannian manifolds. A C!-smooth map u from
M into N is called a harmonic map if and only if « is a critical point of the energy
functional E (v), which is defined in local coordinates by

E®w) E/ Trace, (v*h) dVy,
M

where
ij qu” Jub s ()
dxt oxJ b
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Trace,(v'h) =g
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Itis well known that the energy functional is conformally invariant when dim(M) = 2.

In this paper we would like to study a class of C!-smooth maps from a Riemann
surface into a compact Riemannian manifold which are defined as the critical points
of the inhomogeneous energy functional written as

Ef(v) E/ Traceg (v*h) f d Vg,
M

where f is a smooth real function. In [L] and [E-L] (see page 48, (10.20)), such
maps are called f-harmonic from M into N. Obviously, they are just harmonic maps
if f = 1. Moreover, when m = dim(M) # 2, an f-harmonic map is nothing but
a harmonic map from (M, f %g) to (N, k). In local coordinates, the f-harmonic
map satisfies the following Euler-Lagrange equation

frw)+Vf -Vu=0.
Here 7 (u) is the tension field of ¥ which can be written as

s ouf du”
(07 _ [e2 yyro -
(u) = Agu” + g Fﬂy(u) B F T
To see the physical motivation for the f-harmonic maps, we consider a smooth
domain €2 in the Euclidean space R™. An inhomogeneous Heisenberg spin system is
given by
du = funAu)+Vf-(unVu),

where f is a real-valued function defined on €2, u(x, ) € Sz, A denotes the cross
products in R3 and A is the Laplace operator on R”. Physically, the function f
is called the coupling function, and is the continuum limit of the coupling constants
between the neighboring spins. Itis easy to see that if « is a smooth stationary solution
of the above equation, then  is just an f-harmonic map from Q into S2. Indeed, in
this case the tension field of « can be written as Au + |Vu|?u, therefore, the right
hand side of the above equation can be expressed by u A (fr(u) +V f - Vu), and u
satisfies the following equation

frw)+Vf -Vu=0.

The above inhomogeneous Heisenberg spin system is also called inhomogeneous
Landau-Lifshitz system. Landau and Lifshitz also suggested considering the follow-
ing dispersive system

u=un{(ftu)+Vf -Vu)—unun(ftu)+Vf- Vu)),

with an initial value condition
u(0) = ugp.
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For the well-known equation, Tang [T] proved that it admits a global weak solu-
tion which is smooth except for finitely many points, if the domain manifold M is
2-dimensional closed , f is a smooth positive function and the initial value map be-
longs to Wh2(M, 5?) (see also [St] and [G-H]). The bubbles which the weak solution
blows are called the magnetic bubbles ([Sh]). A natural question arises: Where do
the bubbling points of the Landau—Lifshiiz equation locate? In this paper, we intend
to answer this problem partially.

Throughout this paper, we will always assume that f is smooth and positive. In
order to answer the above question, mathematically we need to consider the conver-
gence and bubbling of the sequence of f-harmonic maps with coupling function f.
Precisely, we obtain the following results.

Theorem 1. Let D be the unit disc in R>. Ifu: D\ {0} - N isa Wli’cz-map with
finite energy and satisfies the following equation

() =aVu+g,

where « € CO(D) and g € LP(D, T N) for some p > 2, then u may be extended to
amap it € W»P(D, N).

Theorem 2. Let (M, g) be a closed Riemann surface and N a compact submanifold
of RE. Let f be a smooth positive function on M. Assume that up € W>*(M, N) is
a sequence which satisfies

frlu) +Vf-Vu =

and
/ Va2 f dV, < C,
M

where oy lies in Lz(u,:1 (T'N)) and satisfies
llakllf2 = 0 as k — +oo.

If p is a blow-up point of the sequence, i.e.,

lim lim inf \Vur|>f dVg > 0,
r—0 k—+o0 B.(p)

then p must be a critical point of f.

Applying the above theorem to the inhomogeneous Landau-Lifshitz equation we
can partially answer the above question. Concretely, we come to the following result.
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Theorem 3. Let (M, g) be a closed Riemann surface, and let S2 be the unit sphere
with standard metric. Suppose that the coupling function f is smooth and positive
on M and u € L*((0, 00); W22(M, S2)) is the unique weak solution for the ini-
tial value problem of the inhomogeneous Landau—Lifshiiz equation with initial map
ug € WHE(M, S?). Ifu(t) = u(-, t) blows up at time infinity, then the blow-up points
must be the critical points of the coupling function f.

2. Removable singularity

Itis well known that the removable singularity theorem of Sacks and Uhlenbeck says
that a harmonic map from D \ {0} — N with finite energy can be extended to O
smoothly. The main aim of this section is to generalize Sacks—Uhlenbeck’s theorem
to the present case, i.e., to prove Theorem 1. The method adopted here is essentially
due to Sacks and Uhlenbeck. One still sees that the Hopf differential is the key in the
proof. However, in our case the Hopf differential is no longer holomorphic, thus the
proof will be a little more delicate than theirs.
Let us first recall the e-regularity discovered by Sacks and Uhlenbeck.

Lemma 2.1. Suppose that u € W»2(D, N) satisfies
t(u) =g e L*D,TN).
Then there exits ¢ > 0 such that iffD |Vul? < & we have

o — L_‘HWZ’Z(D%) = C(|IVullp2py + llgll2(py)-

Here u is the mean value of u over the unit disc and D is a disc with radius % and
2
centered at the origin.

Proof. Cf. [S-U], or [D], or [D-T]. a
Using the standard elliptic estimate, we have
Corollary 2.2. Suppose thatu € W>2(D, N) satisfies
(u) =aVu+g, (2.1)

where a(x) € CO(D) and g € L? (D, T N) for some p > 2. Then there exists € > 0
such that whenever f D |Vul? < & we have

IVul(0) < C(llallcopy P)(IVullp2py + llgllzom)-
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In this section, we always assume « to be a map from D \ {0} to N which belongs
to Wli’cz(D \ {0}, N) and satisfies the equation (2.1). In order to prove Theorem 1,

we need to prove the following lemmas. First, we have

Lemma 2.3. There exists ¢ > O such that if /D |Vu|?dx < &, then there holds true

22
[x[IVul(x) = CUIVull 2y, + X177 xlgllLepyyy) forallx € Dy,

where C is a positive constant which depends only on s.

Proof. Fixanxg € D%, we define 2 = u(x|xo| + x¢). Then we have

7(@) = |xol*g + xo| Vi,
Notice that |Vi|(0) = |Vu||xo|, hence we get this lemma from Corollary 2.2.

Now, let

ou 8u>

W = () = g, ) = 20, my) = 4(57

where z = x + iy. It is easy to sce that

9.0 = 8<Au, ‘;—Z> - 8<A(u)(du, du) +aVu + g, %‘)

du
=8 <aVu + g, —>
az
We need to prove a Stokes type equality for the 1-form z\W.

Lemma 2.4. There holds true that
/ Wdz = / z20;Wdz Adz.
lz|=r D,

d(zWdz) = 07(zWdz) = z9;Wdz A dz,

by applying the Stokes formula, for any ry < r we have

/ Wdz = / zaz\II dz Ndz.
|z|=r\|zl=r0 Dr\DrO

Proof. As

By (2.2),

/ |zd:Wdz Adz| < Cry (|aVu|* + |g|*)dx — 0
D

) Dro

O

(2.2)
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as ro — 0. Therefore, to complete the proof of the lemma, we only need to prove

2n
/ Wdz = «/—1/ 22 db||z)=r, — 0.
lzl=r0 0
However this last equality follows from Lemma 2.3. |

Lemma 2.5. There holds

/<ur,ur>—/ (g, ug) = Or).
D, D,

Proof. By a direct computation, we have

Re(z2 W) = —|ug|? + |z|*|u,|*.
Then
27
‘Re/ zzllldé‘ = ‘Im/ 2Wdz| = ‘Im/ 20:Vdz A dZ
0 |z|=r Dy
5/ |29: W dz A dZ]
D,
= r/ leVu + g||Vu|dx
D,
sCr/ I/ + 1 Vul?) dx.
D;
ie.,
2r 27
/ luy (r, 0)2r2 do —/ lug(r, 0)|?dO = O(r).
0 0
Therefore

r 2 5 1 .
[ trar) = wnnony = [ [ (10 = Slual? ) dsar
D, 0 JO r
:/rlomdr:/r()(l)dr
o r 0

= 0(r). O

Proof of Theorem 1. As in [S-U] we approximate « by the function ¢ which is har-
monic on every domain,

Du(ro) = {z: 27" Ly < |2 < 2710},
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and equals
2
— u(2"rp,0)do
27 0

and

27
— w2 ry,0)d0,
2w 0

respectively, on the boundaries {z : |z| = 27"ro} and {z : |z| = 27" !ry}. Then
g 1is piecewise linear in log r and depends only on the radial coordinate. Now, for
2Ly & £ Xy,
lg(r) —u(r,0)] < lq(r) —q(27"ro)| +1q(27"ro) — u(r,0)|
<1g27"'ro) =g (27" ro)]

1 2r
+ —/ W20, 0') — u(r, 6] d6’
27 0

<C sup r|Vu|

2 lyg<ir|<2 g
2-2
< CUIVullp2(pyy + 17 2llgllLe,,))-
Now, we estimate the difference between ¢ and u:

27"rg

o0 27
é V- =3 r /O (. 6) — gy, ) — 'y ao| "
0 m=0 0

2.3)
—/ (g —wiAlg —u)d.
D,

Since ¢’(r) = constant x % on D,,(rg),

2r
/ W(r.6) — g(r)g'(r) d6 = 0. forall r = 2~"rp.
0

Hence,

—m,,

et 27 2
) r/o (u(r,0) = q(r)(ur(r.0) = g'(r)) 6|

—m—1
rQ
m=0

2w
= ro/O (u(ro, 0) — q(ro))u,(ro, 0) do

2
— lim 2—'"r0/0 (2™ r, 0) — (27" r0))uy (2" ™o, 0)) d6.

m——+00
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By Lemma 2.3, we have

27
2_’”ro/0 (@(27"ro, 0) — q(27"r0))ur (27" ro, 0) dO

< lu(2™r0,0) —q(27"ro)lI>e sup r|Vu(r,0)| -0

r=2 "5

asm — +o0.
Moreover, we have

27
o /0 (uro, ) — q(ro))ur(ro, 6) d6

1

2 2 b
Sro(f (u(ro, 0) — q(ro))* do / |ur<ro,e>>|2de>
0 0

; . 2.4)
2 2 2 2
s(/ [ue(r0,9)|2d9> (/ r§|ur<ro,e>|2d9>
0 0
1 27 . . ro 27 )
55/ (lus(ro, O)F + 1t (ro, 0)] r0>d9=3/ (Vu(ro, 6)2ro d6
0 0
and
/ |<q—u><A<q—u>>|=/ ] ¢ | Al i) — @ W — g
Dro Dro (2.5)

<llg— u||Loo<D,0><||A||Loo/ IVuldx + VarollaVi + gll 2y )-

0

Obviously, for any 1 > § > 0, we can always pick up r¢ which is small enough such

that
/ I(q—u)(A(q—u)MSS(/ |Vu|2dx+ro>.
D, D

70 0

Applying Lemma 2.5, we get

J,

|V<u—q>|2dxz/ (g, ug) dx
By

0

1
= 5/ ((uo, uo) + (ur, ury)) dx
Dfo
1 (2.6)
_|_§ ((ug, ug) — (ur, ur)) dx
Dy,

1
= —/ |Vul? dx + O(ro).
2/p

70
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Then, from (2.3), (2.4), (2.5) and (2.6) we can derive that

2r
xf VP < ro/ Vu(ro, 6)2ro d6 + Cro,
0

Dy,

where A is a positive constant which is smaller than 1.
Set

f(r) = / |Vul|? dx.
D,

Then we have
rf(r) < rf'(r)+Cr,

<§) > —Cr*.

By integrating the above differential inequality over the interval [r, 1] we obtain

and hence

1
fr) < CM/ s™Hds + f()rt < Cr*.
r
By applying Lemma 2.3, it follows from the above inequality that
|Vul () < [x]*~".

Thus, we can complete the proof of the theorem by standard elliptic estimate theory.
O

3. A variational formula

For the inhomogeneous functional Ey( -) defined on Wl2(M, N), we can easily see
that the first variational formula at point u € W>2(M, N) can be written as

dEs(§) = /M<ff(u> + VuV f,&)dV,,

for any & € T.WY2(M, N). Here, we need to derive another formula for E¢(-)
with respect to the variation of the domain manifold. The following calculation is
essentially due to Price ([P]).



442 Y. Liand Y. Wang CMH

Take a 1-parameter family of transformations {¢,} of M which is generated by
the vector field X. We have

1
Brlwed) =5 /M V(o) fx)dVe
= % /M 2{1: |d(u o ¢S)(ea)|2f(X) dVg(x)
= /M Xa: |[du(ps 4 (ea)) " (s (x)) f(x) dVy(x)
1
2 /MZ i (s (ea)) 2(0) £ () Tac(b ) LV,

where {ey} is a local orthonormal basis of 7M. Noting

d _ . d
TJac(py ) AVl g = —dV(X) dVe,  ——F (o) = —df (X),

we have
d 1 % ST 1 2
EE/(M O¢S)|s:o ==5 y [Vul” fdiv(X) dV, — 3 Mdf(X)|Vu| dVy
+Z/ (du(Vo,X), duleq)) f dV,.
— JIM
So, we have proved the formula

AEf(u)(uy(X)) = — %/M \Vul? fdiv(X)dV, — %/M df (X)|Vul?dV,

e Z /M(du(veaX), du(ey)) fdVs.

4. The proof of the theorems

The task of this section is to prove Theorems 2 and 3. Infact, what concerns Theorem 2
this just means the blow-up analysis for a so-called Palais—Smale sequence of Ey (u).
We will focus on what occurs if the sequence is not compact in the Sobolev space
WL2(M, N).

Proof of Theorem 2. By the assumptions stated in Theorem 2, {uz} € W>2(M, N)
is a Palais—Smale sequence of maps from M into N. Then it satisfics

frlur) +VfVu = ay, 4.1
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Ep(up) <C, (4.2

where i € u ' (T'N) fulfills
]| ;2 — 0. (4.3)

First we note that in local complex coordinates (4.1) can be written as
Srolur) + Vo f - Vour = |Bla,

where 7 and V are the operators defined on R? with standard Euclidean metric, since
7 is a conformally invariant operator. Without loss of generality, we may assume that
g = dx? + dy?* in a complex coordinate system.
Set
8= [x : lim lim inf |Vuy|* dV, > 0}.
r—0 k—+o00 D, (x)

Usually, we say that x is a bubbling point for the sequence {u;} if and only if x € 4.
It is easy to see that 4 contains only finitely many points. By the Lemma 2.1, for any
xg € 4, we have

lim inf |Vug|*dV, > ¢ forany r > 0.
k=>+00 /D, (x)

By the weak compactness of W12(M, N) we know that there exists a subsequence
of {uz}, still denoted by {u}, and u € WH2(M, N) with

Ef(u) < 400,

such that {uy} converges weakly to u in W“(M , N), which is an f-harmonic map.
Moreover, Theorem 1, Lemma 2.1, Corollary 2.2 and elliptic estimate theory tell us
that u € C*(M, N) and
Up —> U
inWhe(Q, N)forany Q cc M\ Sand g > 1.
Thus, to prove Theorem 2 we only need to show that

4 C {the critical points of f}.

Now, pick up a point p € S. As we have pointed out, we may assume g = dx> +dy?
in a complex coordinate chart & around p. Without loss of generality, we may
assume that p = (0,0), Q =[—1, 1] x[-1,1]C Nand QNS = {p}. If pisnota
critical point of f, then, without loss of generality, we may suppose that

df (0) = Adx,

where A is a positive constant. Thus, in a neighborhood of p, df (x) = Adx + O(r)
where 2 = x? 4 y2.
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We need to choose two functions to cut off the vector field % in x and y directions,
respectively. First, we take a cut off functiono € C*(R) whichis 1 on[—3, §],and 0
on [—238, 28]°, where

AE

5= - :
1611 Vatl 2, 1 llco

Then we define the second function as follows:

1 if [t| < ¥/,
b-0/b-0b") ifb <t<b,
b+0/b-=0b) if —b<t<-b,
0 ift >bort < —b.

n(t) =

Here b and b’ are chosen to satisfy 0 < a < b’ < b < 2a < 1, where a is a constant
such that

/ Y « — 25 4.4)
[~2a,2a]x[~1,1] 8llo’[lcol [ f1lco ‘
Set
ad
X = n(X)O(y)a—.
X
By a direct computation we have
div(X) = n'(x)o (y),
and
duy 2 dur Juyg
D (dur(Ve, X). dugleq)) = n/(X)o(y)’a— + 1@ (MG, S,
~ X dx  dy
By the formula derived in Section 3, we have
, duy % Juy 2 , Jup Juy
— | wwem( |52 — || )Fdxdy =2 [ 0o’ 0)(TE S f dxay
0 X ay 0 dx  dy

= /Q(K + O(M)n(x)o ()| Vugl* dxdy + 2/Q<ak, Uy (X)) dxdy.
Note that

supp(n’(x)o (¥)) U supp(n (x)o’ () C @\ (—a, a) x (=8, 8),

we can replace Q in the left side of the above equality with QO \ (—a, a) x (—3§, §).
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For arbitrarily fixed @ and 8, uy is bounded in W>2(Q\ (=%, %) x (=5, 3)). So,
by taking a subsequence, we have Vuy — Vuin L2(Q\ (—a, a) x (8, 8)). Therefore

’ duy 2 duiy .
— | n"(x)o(y) | oy fdxdy
Q x dy
2 2 4.5)
du du
/7
—>—/ n(x)o(y)( o )fdxdy,
Q x dy
and
, duyp duy
=2 | n)o' W=, =) fdxdy
dx dy
Y
du du
— _2/ n(x)o’ (y)(z=, =) f dxdy
[—2a,2a]x[-1,1] dx dy
4.6)
<2/l llesl flleo | Vul dxdy
[-2a,2a]x[-1,1]
re
& Rar=a
4

where we have used (4.4) in the last inequality. Moreover, once § and a are chosen,
then
/ |Vup|? dxdy > &
[—a,alx[-$,58]
when k is sufficiently large. Hence
/Q(A + O()n(x)o (3)|Vuy|*dxdy + 2/Q<Otk, ks (X)) dxdy > %)\8- 4.7)

In view of (4.5), (4.6) and (4.7), we have

/’<><> 2l 12005 ey >
X)Oo = === — X = = AEx
s U P B Y74
Letting b’ — b, we get
dul®  |oul|? 1
/ o(y)(—‘—u i >fdy>—}»8.
[x|=b dx dy 4

Recall that suppo C [—24, 28]. Then

rE
5 > 5 ,
16[|Vull ol f 1l co
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which contradicts the definition of 5. This means that A must be zero. Therefore p is
a critical point of f. This completes the proof of Theorem 2. O

Now we return back to our problem on the location of the bubbling points of
the weak solutions to the inhomogeneous Landau-Lifshitz equations. Consider the
following initial value problem:

U =uA(fX)Au+Vf -Vu)—uAun(f(x)Au+Vf - -Vu)),
u(0) = up(x) € Whi(M, s%).
Noting |u|> =

UNUA(f(X)Au+V [-Vu))=(u-(f () Au+V f-Vu))u—(u-u)(f (x) Au+V f-Vu),

1 and the identity

we can see easily that the above equations may be rewritten as

o= fxX)t(u)+Vf -Vutun(f(x)r(u)+VSf- Vu),
4.8)
u(0) = uo(x) € Wh(M, $?).

Here 7 (1) = Au + |Vu|?u is the tension field of the map u: M — S2.
Tang has ever employed Struwe’s method to study the existence and uniqueness
of the above equation. We outline the argument in [T] as follows.

1. There exists T > 0O such that (4.8) is solvable in M x [0, T).
2. u(t) blows up at finitely many points.

3. u(t) convergestoau(T) € wLi(M, N) weakly, and on any sub-domain which
does not contain a bubbling point, u(z) strongly converges to u(7') locally.

Then we construct a new flow which stems from «7. Then, by the same argument
as in [St], we know that there exists 77 > O such that the new flow exists on the
interval [T, T7) and blows up at 77. At each bubbling point u(¢) blows one or more
bubbles, i.e. one or more non-constant harmonic maps. It is well known that u(z)
must lose energy at every bubbling point. Hence, we always have a T such that

o = f(x)t(u) +Vf -Vutun(f(x)r(u) +Vf- -Vu),
u(0) = u(T) e WH2(M, %)

is solvable on [0, c0). The results in [T] can be summarized in the following lemma.

Lemma 4.1. Let (M, g) be a closed Riemann surface and f be a smooth posi-
tive function on M. For any ug € WY2(M, S?) there exists a distribution solution
u: M x RY — S? of the above equation which is smooth on M x Rt away from
at most finitely many points (xi, tx), 1 < k < Ko, 0 < tx < oo, which satisfies the
energy inequality Er(u(s)) < Ef(u(t)) for all 0 < s < t, and which assumes its
initial data continuously in WY“2(M, S?). The solution is unique in this class.
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It is easy to see that the following identity holds for the solution to (4.8) and any
O0<n <t <oo:

15)
By (o) — Eyu(t) == [ 10 3sd.

n

Hence, it follows that
+o0
/ |19u][3, < +o0.
0

This implies that there exists a sequence d;u(x, ;) such that
[10u(x, ;)] 2 — 0.

So, {u(t;)} is a Palais—Smale sequence of Ey(u). Therefore, if u(t) does blow up at
infinity, then by applying Theorem 2 we obtain the conclusion of Theorem 3.

As another example, we may also consider the gradient flow of the function Ey,
i.e. a solution of

up = f(x)r(u) +Vf- Vu,
u(0) = uo(x) € Wh(M, N).

If u(t) does blow up at infinity, we also have results similar to Theorem 3.
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