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H-minimal graphs of low regularity in H!

Scott D. Pauls*

Abstract. In this paper we investigate H-minimal graphs of lower regularity. We show that
noncharacteristic C! H-minimal graphs whose components of the unit horizontal Gauss map
are in W11 are ruled surfaces with C2 seed curves. Moreover, in light of a structure theorem of
Franchi, Serapioni and Serra Cassano, we see that any H-minimal graph is, up to a setof perimeter
zero, composed of such pieces. Along these lines, we investigate ways in which patches of C!
H-minimal graphs can be glued together to form continuous piecewise C'! H-minimal surfaces.

We apply this description of H-minimal graphs to the question of the existence of smooth
solutions to the Dirichlet problem with smooth data. We find a necessary and sufficient condition
for the existence of smooth solutions and produce examples where the conditions are satisfied
and where they fail. In particular we illustrate the failure of the smoothness of the data to
force smoothness of the solution to the Dirichlet problem by producing a class of curves whose
H-minimal spanning graphs cannot be C2.

Mathematics Subject Classification (2000). 53C17, 53A10.

Keywords. Carnot—Carathéodory geometry, minimal surfaces, Plateau problem.

1. Introduction

In this paper, we further investigate the properties of H-minimal surfaces in the Heisen-
berg group with a focus on the regularity of H-minimal surfaces that satisfy Dirichlet
boundary conditions.

The study of H-minimal surfaces was introduced in the foundational paper of
Garofalo and Nhieu ([11]) where they showed the existence of H-minimal surfaces
of bounded variation that satisfy certain boundary conditions. Expanding on these
results, several authors extended the investigation showing different properties and
constructions of H-minimal surfaces in various settings (see, for example, [1], [4],
[S1, [6], [71, [12], [14], [15], [16], [17]). Recently, N. Garofalo and the author ([12])
gave a characterization of C?> H-minimal surfaces used to investigate an analogue of
the Bernstein problem in the Heisenberg group. A different approach to the study

*The author is partially supported by NSF grant DMS-0306752
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of analogues of the Bernstein problem was completed by Cheng, Hwang, Malchiodi
and Yang in [5] and [4]. We note that there is some overlap between the results in
[12] and those of [5] and [4] but that the techniques are independent. In particu-
lar, both [12] and [5] make the observation that C? H-minimal surfaces are ruled
surfaces but analyze them using different tools (in fact, [S] uses the machinery of
pseudohermitian geometry and hence many of their results apply to a larger class
of Carnot—Carathéodory spaces). Using the machinery of [5], two of the authors
classify properly embedded H-minimal surfaces in the Heisenberg group in [4] while
[12] gives a geometric description of the properties of embedded H-minimal surfaces
which are graphs over some plane. Again, the results overlap in some respects, but
the techniques are independent.

With respect to the discussion in this paper, we will use the tools developed in
[12]. For the purposes of this paper, the two most important theorems from [12] are:

Theorem 1.1. Let k > 2. A noncharacteristic patch of a C* surface S  H! of the
type

S = {t,y. ) eH | (x,y) € Q, 1 =h(x,»),
where h: Q@ — R is a C* function over an open domain 2 in the xy-plane, is an
H-minimal surface if and only if for every p € S, there exists a neighborhood U of p
so that U can be parameterized by

(s.7) = (1) +ry3(8), vals) = ry{(s), his, 1), 6]

where -
his,r) = ho(s) — §<V(SJ,V/(S)> (2

and
y e CHL o pg e Ck,

Thus, to specify such a patch of smooth H-minimal surface, one must specify a single
curve in H' determined by a curve in the plane, vy (s), parameterized by arc-length,
and an initial height function ho(s).

The curve y (s) in the theorem is called a seed curve and determines almost all
of the behavior of the neighborhood U. Indeed, under the assumption of at least C*
smoothness, we have:

Theorem 1.2. Let S ¢ H! be a C? connected, open, complete and embedded H-
minimal surface. Then, either S is averticalplane, or S is determined by a generalized
seed curve I' = {(y] (s), 5 (s), ho(s))}.

A generalized seed curve is a collection of seed curves, height functions and
patching data which, taken together, give a description of a single curve in H'. In
other words, for such H-minimal surfaces, a single curve determines the entire surface.
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As all H-minimal surfaces have locally finite perimeter (i.e. they are X-Caccioppoli
sets), we turn now to the work of Franchi, Serra Cassano and Serapioni ([10]) and
recall the following theorem.

Theorem 1.3. Let E c H' be an X-Caccioppoli set, then the reduced boundary
of E, % E, is X-rectifiable, i.e.,

%E = N u | Jk;,

where JféC(N ) =0, and K; is a compact subset of a non-characteristic hypersur-
Jace S; of class Cﬁ. Moreover, one has for any g € K; and every & € Ty oS;

wE@), &) =0,

where vf}:(g) denotes the generalized horizontal outer normal to E in g, Ty gS;
indicates the non-characteristic plane orthogonal to the horizontal normal to S
in g, H2c is the 3-dimensional Hausdorff measure in H' constructed with respect
to the Carnot—Carathéodory distance and Cﬁ is the space of functions which are
horizontally continuously differentiable, i.e. X1 f, X2 f exist and are continuous.

The reduced boundary, 9%, is the set of boundary points where the unit horizontal
Gauss map is well-defined (see the next section for a precise definition). For the
discussion of this paper, it is important to note that the reduced boundary is a full
measure subset of the boundary. The main point of this theorem is that H-minimal
surfaces can be decomposed into a set of #¢2-measure zero and a union of C}; sets.
As we will restrict ourselves to investigating graphs over the xy-plane, we remind
the reader that a Cﬁ graph is C!. This, of course, leaves a gap — the pieces given by
Theorem 1.3 are C' while Theorem 1.2 applies only to C? surfaces. The first goal of
this paper is to partially bridge the gap between the two theorems.

Theorem A. If S is an open C' H-minimal graph over a domain  C R* with no
characteristic points and unit horizontal Gauss map vy whose components are in
WLL(Q), then the integral curves of vx™ are straight lines and S can be locally
parameterized by

(s,7) = (1(s) +ry3(s), v2(s) — ry{(s), h(s, 1)), 3

where »
h(s,r) = ho(s) — §<V(S),V’(S)> 4

and vy is an integral curve of vx. Moreover, if there exists € > 0 so that d(2, y) >
e > 0then ho(s) € Cland y (s) € C%.
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In this theorem d(€2, ) is a measure of the “horizontal thickness™ of the set €2
(see Definition 3.5 for a precise statement).

This theorem is shown in a series of steps. First we show that the weak directional
derivative of vy in the direction of vy~ is zero. This is enough to show that the
integral curves of v x 1 are lines. Second, forming y (s) as the integral curve of vy, a
geometric argument shows that y’(s) is Lipschitz. Coupled with a further estimate,
this shows that y”(s) exists and is continuous. Applying arguments similar to those
in [12] yields the representation given in the theorem.

Combining this theorem with Theorem 1.3 of Franchi, Serapioni and Serra Cas-
sano yields:

Theorem B. If S is an H-minimal graph then

[o.0]
S:NUUKf,
i=1

where N is a set of Jt’éc-measure zero and each K;, a graph over ;, with its unit
horizontal Gauss map in WL Q) and d(K;,y) > ¢ > 0isa compact piece of a ct
H-minimal graph which can locally be parameterized by equations (3) and (4) with
y € C2and hy € C.

While this theorem recovers the characterization of H-minimal surfaces as ruled
surfaces in the Heisenberg group, it still leaves a gap between the baseline results of
Franchi, Serra Cassano and Serapioni and Theorem 1.1. Specifically, Theorem 1.3
allows that the C! pieces may be glued together in nonsmooth ways. We find that
this can happen:

Theorem C. Suppose S1 and S are subsets of C' H-minimal graphs with no charac-
teristic points, each parameterized by a single seed curve and height function, defined
over closed sets 21, Q2 C R2 with openinterior, C = Q1N a cl curve, 0€2; € cl
and d($2;) > O fori = 1,2. Moreover, let vi = (py,q1) and v2 = (p,, q,) be the
respective unit horizontal Gauss maps. Then S1 U Sy is an H-minimal graph if and
only if (vi — va)|c is tangent to C almost everywhere.

This provides one way in which a continuous, piecewise C! H-minimal graph is
constructed.
This brings forward an obvious question:

In standard minimal surface theory, the solutions to the minimal surface equation
subjectto Dirichlet boundary conditions gain additional regularity from the regularity
of the boundary. Do H-minimal surfaces have a similar property?
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We devote the remaining part of the paper to exploring this question. First, we
examine some of the best behaved H-minimal surfaces, those that are minimal in
Riemannian approximators of H! as well as H-minimal. We call these persistent
minimal surfaces and classify them.

Theorem D. The persistent H-minimal graphs fall info two categories:
(1) Sisgivenby (x,y,u(x,y)) where

2

m , m°—=1 m 5
ulx,y) = 1+m2(3€—x0) +m2+ (X—XO)()’—)’O)—H—mZ()’—yO)
+ e (x — %0) + = (v — y0) + b
—F—X — X0 —F—=y =)
V1 4+ m? V1 4+ m?

form,a, b, xg, yo € R

(2) S, given in cylindrical coordinates, is
(pcos(8), psin(@), abd + b)

fora,b eR.

These surfaces give examples of the best possible case — they are C* spanning
surfaces. Second, in Section 7, we consider the question of the existence of smooth
minimal spanning surfaces. For a fixed smooth closed curve, we focus on finding
the C'! smooth ruled H-minimal spanning graphs, those C! H-minimal graphs which
satisfy the additional condition that the rules may be extended over the characteristic
locus (as straight lines). We note that by work in [12] or [5], all C? H-minimal graphs
satisfy this condition. However, using techniques similar to those of Theorem C, one
can construct C! minimal graphs that are the union of two ruled surfaces along a
common characteristic locus and do not satisfy this condition. For simplicity, we will
ignore this type of construction. Taking the characterization of H-minimal surfaces
as ruled surfaces, we create a necessary and sufficient condition for a smooth closed
curve which is the graph over a curve in the xy-plane to be spanned by a C! ruled
H-minimal graph.

Existence Criteria. Given a closed smooth curve c(0) = (¢1(0), c2(6), ¢3(0)) which
is a graph over a curve in the xy-plane, ¢ is spanned by a C' ruled H-minimal graph
if and only if there exists a monotone C 1 Sfunction ¢ : ST — SYwith (6) € A®9).

In this statement, A(6) is the set of points on ¢ that are accessible from c(6) via
a rule of an H-minimal surface:

1 1
A©) = {60 | e360) = ¢3(6) = Se1(B0)e2(8) + 31)eat) = 0},



342 S. D. Pauls CMH

The examples in this section show curves that satisfy the criteria and curves that
exhibit an obstruction. We also discuss the genericity of these classes. Finally, we
show that there are many curves, ¢, which do not have smooth ruled H-minimal
spanning graphs. This provides an upper bound on the regularity of the solution to
the Plateau Problem for these curves: the solution to the Plateau Problem cannot be a
C! ruled minimal graph.

Theorem E. Suppose c is a C' curve with no Legendrian points which is spanned
by a C' smooth ruled H-minimal graph, S. Then there exists an interval, I, so that
c(1I) is contained in a plane.

Corollary 1.4. If c is a smooth curve with no Legendrian points and no portion of ¢
is contained in a plane then an H-minimal surface spanning ¢ cannot be a C' ruled
H-minimal surface.

These different examples show that solutions to the Dirichlet problem and the
Plateau Problem may not have any specified regularity. In particular, the persistent
H-minimal graphs show that some curves have a C* solution to the Plateau Problem
while the subsequent examples show instances where C* curves may not have a
solution to the Dirichlet problem of high regularity. Indeed, the last set of examples
show that for certain totally non-Legendrian curves, the graphical solutions to the
Dirichlet (and hence the Plateau) problem are necessarily at most C! but cannot be
ruled surfaces. A consequences of this is that these surfaces must have unresolvable
discontinuities in their unithorizontal Gauss maps. Wereiterate that Theorem B shows
that any H-minimal graph is piecewise C! and its seed curve, on the C! patches, is C.

The author would like to thank the referee for many helpful comments and sug-
gestions. The author would also like to thank J. H. Cheng, J. F. Hwang and P. Yang
for pointing out an error in an earlier version of this paper.

2. Definitions and notation

Throughout this paper, we restrict our attention to the topologically three dimen-
sional Heisenberg group, H!. For convenience, we represent H! via an identification
with R3. Considering R? with its usual coordinates labeled as {x, y, }, we define the
following vector fields:

a y d B x 0 ad

Xi=— -2+ Xp=—-toem, T=—.
158 28 Ty 2w a1
The vector fields {X1, X2, 7'} form a basis for the Lie algebra of H! at any point

(x,y.1). Note that, via the exponential map at the origin, we identify H'! with R3
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using these coordinates, denoting the point ¢*X1T8X2+YT by (¢, B, ). For the pur-
poses of this paper, we define a left invariant inner product on H', (-, -), which
makes {X1, X2, T'} an orthonormal basis at each point. Notice that at each point,
[X1, X2] = T and hence {X1, X7} is a bracket generating set for H!. We define a
subbundle on H, called the horizontal subbundle of H!, by

HH' = {(x, y,1,w) € H' x R® | w € span{X1, X2}}.
The single nontrivial bracket relation yields the following multiplication law via the
Campbell-Baker—Hausdorff formula:
1
(@, b, c)(a, B, y) = (a tab+picty+5ap - ab)).

To define the Carnot—Carathéodory metric on H', we construct a path metric.
Letting 4 (m, n) be the set of all absolutely continuous paths in H! so that y (0) = m,
y(1) =nand /(1) € H,H' when y’(¢) exists we define:

dec(m.n) = _inf { /I<y’<z>,y’<r>>%}.

Note that, since (-, - ) is left invariant, so is dcc. Moreover, dcc admits a homo-
thety at each point (x, y, 1):

hs(x,y,t) = (sx, 5y, 5%1)

whereby
doc(hsm, hgn) = sdec(m, n).

We denote by €5 the k-dimensional spherical Hausdorff measure constructed
from dcc.

Definition 2.1. The horizontal gradient operator is
Vo = (X1, X2).

Hence,
Vof = (X1f) X1+ (X2f) Xo.
The horizontal divergence of a vector field V = v1 X1+ vy Xo is

divoV =V -V = X1v1 + Xovs.

In addition to the three dimensional Hausdorff measure, we recall the perimeter
measure introduced independently by Capogna, Danielli and Garofalo ([2], [3]) and
Franchi, Gallot and Wheeden ([9]).
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Definition 2.2. Let 2 be an open subset of H'. We say that f: € — Ris of bounded
variation (i.e. f € BV (Q)) if

o feLl(Q)
e sup{/ fdivoVdh|V e Cl(Q HHY),|V| <1} < cc.

We define BV 1,.(€2) analogously.

Definition 2.3. We say that £ C H' is an X-Caccioppoli set if the characteristic
function x g of E is contained in BV 1. The measure | Vo xg| is called the perimeter
measure and will be denoted by 2.

We recall that (see [11], [10]) if 9 E is a smooth surface given by ¢ = u(x, y),
then # is mutually absolutely continuous with Jt’gc. Moreover, up to a choice of
constant, J(,’éc(()E ) is given by

/ X1 = e, y)? + (Kot — u(x, y))? dA.
oE
Again from [10], we recall the definition of the generalized horizontal normal.

Definition 2.4. There exists a # measurable section vy of HH! such that

—/divo(pdh:/ (vE, @) dP
E H!

forall p € C§°(Q2, HHY), [vg(p)| = 1for P ae. p € H'.
We next recall the definition of the reduced boundary:

Definition 2.5. Let E be an X-Caccioppoli set. Let U(p,r) be the open ball of

radius r and center p. A point p is in the reduced boundary of E, p € 8%11 E, if

(1) PU(p,r)) > 0forany r > 0,

(2) lim,_ ¢ m / vE dP exists,
U(p,r)

3) 1imrﬁom/ Vg dﬂ" _ 1.
U(p,r)

We note that Lemma 7.3 in [10] ensures that Bﬁl FE has full &» measure in 3 E.

In this paper, we will be examining smooth graphs over the xy-plane in H! by
which we mean surfaces which can be represented as ¢+ = u(x, y) using the coor-
dinates described above. As shown in [16] and [7], H-minimal surfaces are criti-
cal points of an area functional based on the horizontal Gauss map of the surface
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t = u(x,y). The horizontal Gauss map is the projection of the Riemannian normal
of the surface to the horizontal bundle:

G:S—> HS,
G(x,y,ulx,y)) = (X1(t —u(x, y))) X1+ (X2t —u(x, y))) Xa.

We give classically inspired names to these horizontal derivatives of f, letting

p=X1(t —ulx,y)),
g = Xo(t —u(x,y)).

In this paper the unit horizontal Gauss map plays a crucial role and so we define
the unit horizontal Gauss map by

vy = pX1+gX2
P q
p2+q2 p2+q2 '
defined at points where both p and ¢ are zero. Such points are called characteristic
points and play an important role in the study of surfaces in Carnot—Carathéodory
spaces.
In this paper we consider surfaces which are graphs over the xy-plane. In other
words, the set E in the previous theorem is given as

where p = andg = Notice that v x has a limited domain and is not

{Ge, 3, 0) [ £ < ulx, y)}.

Thus the hypersurface d E would be given as t — u(x, y) = 0. The function ¢ —
u(x, y) is horizontally continuously differentiable if and only if « is continuously
differentiable.

With this notation in place, we next review the characterization of smooth non-
characteristic area minimizing graphs by an appropriate partial differential equation
via the first variation of the energy. The first variation formula has been explored
in a variety of settings by a number of authors including the aforementioned paper of
Cheng, Hwang, Malchiodi and Yang ([5]), Danielli, Garofalo and Nhieu ([7]), the au-
thor ([16]), Bonk and Capogna ([1]), Ritoré and Rosales ([17]). For the convenience
of the reader, we recall the derivation of the equation here. First, the energy integral we
use for the variational setup is

E(u) =/ VP2 +4?,
Q

where t = u(x, y) defines the graph in question over a domain €2 and has at least two
weak derivatives.

Second, we consider a variation in the ¢ direction by a function ¢ (x, y) € C§°(2).
Then,

E(e):E(u+e¢):/Sz\/(ux+%+8%>2_|_<uy—%+5%)2.
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Abusing notation, we let p = u, + % andg =uy — % Thus, differentiating with
respect to ¢ twice and evaluating at zero, we have

PPx +qpy
E@©0)=|] =222
e vp*+4q?
and 5 Lo
E"(0) = (gpx —pey)” _ [ (Vo -G7)
@ (p2—|-q2)% Q |G|3

Inthe last equation we use the convention that if v is the vector given by coordinates
(a, b) then v is given by (b, —a). This convention will be used throughout the paper.
Note that the integrand of the second integral is nonnegative and is strictly positive
if Vg is not parallel to the vector G. Thus, to check if a given solution to the
Euler-Lagrange equation is a local minimum of area (with respect to this type of
perturbation), one must only check it against variations in this direction.

Lemma 2.6. Letu: Q@ — R, u € C?, be a critical point of the energy functional.
Then, for all test functions ¢ € C5°(R), E”(0) > 0.

Proof. Notice first that if V¢ - G is not identically zero on a set of positive measure,
then since the integrand is always positive, the result follows. If V¢ points in the
same direction as G, we now verify that for such a perturbation, E” > 0. In this case
let B be a function so that Vg = B(x, y)G = (BG1, BG2). Then BG is the gradient
of the C3°(€2) function ¢, so

Pxy — Pyx = IByGl "‘lgGl,y — BrG2 — BGyx =0.

But
ﬁGl’y - )BGQ,x = ﬁ(uxy —Uyy — 1) =-p.
So we have
—Vﬁ~GJ‘—ﬁ:(), )

By Theorem 1.1 in the introduction, we see that the integral curves of G are
straight lines (for a more detailed discussion of this fact, see [12]). Thus, (5) im-
plies that when B is restricted to such a straight line, we have 8/ = — B and hence
B = Ce™!, where ¢ is the parameter along the integral curve. However, as ¢ is
compactly supported in €2, 8 must tend to zero towards the boundary of 2. This is
a contradiction of the existence of a compactly supported normal variation ¢ with
gradient pointing in the same direction as G. o

Thus local minima of this area functional appear as solutions of the following
partial differential equation:

X1p+ X2q =0. (6)
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This equation says simply that the unit horizontal Gauss map is (horizontally)
divergence free:
diV() VY = 0.

In this paper we will also allow solutions that are only weak solutions to this equation.
In Section 4 we discuss a condition under which a piecewise C! graph can satisfy
this equation weakly, but not strongly.

Remark 1. In some of the references given above, there are versions of these first and
second variation equations for more generally defined surfaces. For example, in [7],
the authors give these formulae for surfaces defined implicitly as ¢(x, y, 1) = 0. We
also point out that without our restriction to graphs (and perturbations that remain
graphs) the second variation formula does not necessarily ensure that the critical
points are local minima. Again see the examples in [7].

In [7], Danielli, Garofalo and Nhieu introduce the notation of horizontal mean
curvature, which is used to define H-minimal surfaces in both [7] and [12]. We recall
slight variations of these definitions here using the notation above.

Definition 2.7. The horizontal mean curvature of S at noncharacteristic points of S
is defined by
H=Xip+ Xaq.

If xo € X, then
H = lim H(x).
()C()) 10’ ()C)

provided that the limit exists, finite or infinite. If the limit does not exist, the horizontal
mean curvature is not defined at such points.

This definition differs from that in [7] by a constant.

In [7] and [12] a C? surface is called an H-minimal surface if H is identically
zero. In this paper, we make a slightly different definition,
Definition 2.8. A C' graph S over a domain Q@ c R? is an H-minimal surface if,

for any subdomain ' C Q over which S is noncharacteristic, it satisfies (6) weakly.
More precisely, if vy = p X1 + g X3 is the unit horizontal Gauss map of S, then

/ Pox +qpy dx dy =0
Q/

forall ¢ € C5°(Q)).

For completeness, we also recall some of the results of [12].
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Definition 2.9. Let S be a C?> H-minimal graph and v x be its unit horizontal Gauss
map. Thinking of vx as a vector field on R?, any integral curve of vy is called a seed
curve of S. We denote a seed curve by y;(s),i.e. y-(0) = z, y/(s) = vx(y;(s)). If a
basepoint is understood, we denote the curve by y (s). We denote the integral curves
of vyt by £, (r) (or, simply £(r) if a basepoint is understood).

As mentioned in the introduction, in [12], N. Garofalo and the author show that,
for C* H-minimal surfaces, £ (r) are straight lines in the plane and lift to horizontal
lines in H!. This yields an adapted parameterization of the plane:

F(s,r) = (yi(s) +ry3(s), v2 — ry{(s)).

We recall that this parameterization ceases to be a local diffeomorphism along the
locus r = % where « 1is the signed curvature of the seed curve y and is given by

Kk(s) =y"(s) - ¥/ (s)t.

When lifted to H!, this yields a parameterization of the H-minimal surface as a
ruled surface

S = () +rv36) 2 = rH(©) hols) = 57 7).

This is the content of Theorem 1.1 in the introduction. Moreover, we can extend
this parameterization from this patch of surface to include all of the rules (i.e. allow
r € (—oo, o0)), which introduces characteristic points at the locus given by

r2

1
(s, r) = hy(s) —r+§’}//(s) ”,V(S)l—l-?/((s) =0. )

We recall that generically this yields two branches of the characteristic locus, one
on one side of the locus r = ﬁ and the second on the other side of this locus. We

refer the reader to [12], Section 7 for a more detailed discussion of these features.

3. Noncharacteristic C! H-minimal graphs

In this section we investigate C! H-minimal graphs. We will focus first on section
of C! H-minimal graphs that do not have characteristic points. In this setting, we
show that such graphs are ruled surfaces as in the C? case. At the end of the section
we will address the question of characteristic points. Throughout the section we will
consider a surface defined by (x, y, u(x, y)) whereu: @ — Risa C ! function.
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3.1. Weak directional derivatives. At first we will assume that the function u defin-
ing the H-minimal surface is at least C? and so the components of the unit horizontal
Gauss map are continuously differentiable. Under this assumption, we compute the
directional derivative of p in the direction of v = (1, —g) (the choice of this vector
will become evident in a moment):

_ _ P _ _ _ _
DUPZVP'<1»—§) =py— =Py=DPxt4q,.

STl

The last equation is true because g =+/1 — ﬁz and hence g, = —gp_y.
Thus we can interpret the integral equation

—/ﬁ¢x+é<ﬂydxdy=0
9

5 (1,—5) —0.
q

In other words, if S is an H-minimal surface, then p is weakly constant in the vx

as a weak form of the equation

L

direction (v ' and (1, —g) point in the same direction). We take this as a definition.

) is

Definition 3.1. The directional derivative of p in the direction of v = (1, -

R

weakly zero if
~ [ Fos e ao, dx dy =0,
Q
In this case we write D, p = 0

3.2. Rulings of C! H-minimal graphs. Mimicking classical arguments we have
the following result.

Lemma 3.2. Letv = (1, _§> where (p, q) is the unit horizontal Gauss map of an

H-minimal graph, S, over a domain O C R2 and P.q € W“(O). Assume Q C O
is an open domain so that

(1) The portion of S over 2 is noncharacteristic.
(2) v is continuous on Q2 (i.e. g £ 0).
Finally, let cx(t) be an integral curve of v with c(0) = x and let D{}ﬁ(x) =

w. Then for V compactly contained in 2, h < dist(x, 0€2), Df}ﬁ(x) =0
forae xeV.
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Proof. Letw be a continuous vector field on V and let ¢ (h) be anintegral curve of w
passing through the point xo. We note that ¢y (), as a point set, coincides with £, (r)

but is parametrized differently. We may reparametrize c;; so that (cy)'(s) = hw.
Assuming briefly that f is a smooth function, we have

1
2 () — F(e®(0)) = /O V() - (2 (s) ds
1
= / Vflcy(s) - hw ds
0

1
:h/ Dy f(c2)(s) ds.
0

So,

Dhf = S ey (h) — ey (0)) :/1

. ) Dy, f(c5y (5)) ds.

Integrating appropriately, we have, for example, that

/|D£3f|dxs/ Dy f| dx.
Vv Vv

Using standard mollification we can smooth the function p yielding a C* function
P.. Aswehave restricted to a set where p is continuous (i.e. there are no characteristic
points), we know that p, — p uniformly as ¢ — 0. Noting that 52, ¢, ppy, @7y €

L1(), we have that (p> + g%)y = 2ppy + 233y = 0in L1. Since % is continuous

on © we have —Lp, = gy in L}, (). Thus, Dyjp = px + Gy in Lo, (€2). Thus, by
H-minimality, for ¢ € C§°(),

/Dvﬁ(ﬂz_/ﬁ(ﬂx"‘ﬁ?(ﬂyzo
Q Q

and we have D,p = 0.

and
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As p, converges to p uniformly on V, itfollows by direct calculation that p, converges
to p uniformly on V as well. Similarly, g, converges to g uniformly on V and v
converges to v uniformly on V.

Under this definition we have that

PPt =1.

Differentiating with respect to y and solving for (p.), we have

(Ias)y = _Iq{; (és)y-
So . o
Dﬁlsa = (ﬁs)x - (ﬁs)y? = ([76))6 + (is)y;_g§ = (ﬁe)x + (ge)y-

AS (Dr)e = (Pe)xs (@x)e = (e)x, it follows that [|(p2 4+ 72)x ;1 — Oase — 0.
Therefore,

Pe
. oo 3
(P2 +32)?
S S
VP:+ 3?2

Similarly, [[(ge)y — gyl 1 — O and we conclude || D5 pellpiq — Oase — 0.
Hence, there exists a function C(g) — 0 as ¢ — 0 so that

I(Be)x — Prllp1¢qy < sup I(pF + @)l e

+ sup I(Px)e — Pxllpiy — O

/Wﬁay%»
«Q

So, applying the computation at the beginning of the proof with f = p., we have
[ 1Dk < ceo

Thus, as ¢ — 0, D’g pe — 0 for almost every xg € V. To complete the proof,
we would like to have that lim, ¢ Dg pe = D' p. Assuming this for a moment, this
would imply that Df} p = 0 almost everywhere as well. Then, taking a countable
dense sequence /i, — 0 and the countable intersection of full measure sets where
Dﬁ” p = 0, we have a full measure subset of V, denoted by Vy, where

D" p(xg) =0 foralln e Zy, xo € Vp.
By the continuity of p on this region, this implies that

Dip(x) =0 forall h < dist(x,d9),x € V.
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Thus we are left with verifying that
lim D} p. = D} j.

First we note that Dg Pe = Dél p + 0.(1) and that the convergence is uniform as
P — p uniformly on V. So we merely need to verify that

lim D!y =D!p. (8)

To calculate the value of the limit, we will construct a sequences of integral curves
using the work in appendix A. Letting @ = V, X = (p,q) and Xy = (P Gs;.)
for a sequence & — 0, we apply the construction in appendix A to form appropriate
integral curves for these vector fields. Then Lemma A .4 implies that p (cfcf)")(h) —
p(c (h)) and hence (8) is true. O

Remark 2. We note that if we assume v = (%, —1) and that S is a noncharacteristic
patch of surface where v is continuous, essentially the same argument proves that

D'g(x) =0

forx € Vand h < dist(x, 32). We note that since p° + - = 1,if D" = 0 implies
that D" p = 0 as well.

Lemma 3.3. If S, a C' H-minimal surface, is decomposed as N U U2, Ki, then on
each K; with nontrivial interior and with p, g € W4 the integral curves of v xtare
straight lines.

Proof. Let Q21 C K; be the open set where g # 0 and let Q27 C K; be the set where
p # 0. Then Q1 U Q» = K;. Let V; be compactly contained in €2;. By the previous
lemma, since D’ p = 0 on V;, we have that for each integral curve, £ of vx*, D! p
is zero on almost every point of .£. Thus, for these integral curves v xt =(g, —p)is
constant almost everywhere along its own integral curves (which are the same as the
integral curves of v). Thus, these integral curves are straight lines except potentially
on a set of measure zero. However, the structure theorem of Franchi, Serapioni and
Serra Cassano tells that p is a continuous function and hence, p is discontinuous
only at characteristic points. As the K; have no characteristic points, we see that p is
continuous on each K;. So, the integral curves are C Land thus, since they are lines
almost everywhere, they must simply be straight lines. Similarly, the integral curves
of v)J(‘ are straight lines on V; as well using Remark 2. Using a compact exhaustion
of the €2;, we see that the integral curves of v}( on K; are straight lines. O

This is the same basic result we found in Section 4 of [12] — the integral curves
of vy are straight lines. So, if we can construct a seed curve y as an integral curve of
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the vector field v x and repeat the proof of Theorem 4.5 in [12] (this is Theorem 1.1 of
the introduction), we have the same result for these C! noncharacteristic H-minimal
graphs:

Proposition 3.4. Let S ¢ H! be a noncharacteristic patch of a C* H-minimal surface
of the type
S = {.y,0eH |(x,y) e t=hxy)

with p, g € WH1(Q) and where h: Q@ — R is a C¥ function over a domain S in the
xy-plane. Then, there exists a C' seed curve y so that S can be locally parameterized
by

(s,7) = (n1(s) +ry3(s), vals) —ryf(s), h(s, 7)), ©)
where ,

hs,r) = hols) — {r{s), Y (). (10)

and ho(s) = h\y(s).

We note that if we knew y € C2, the argument used to prove Theorem A in [12]
would extend completely to this case, showing that a C! noncharacteristic graph is
an H-minimal surface if and only if it has such a representation for a neighborhood
of each point on the surface. A priori, y is merely C! and need not have any higher

regularity. However, we shall see that if 2 is “large in horizontal directions™ then y’
is indeed C!. To make this precise, we need a definition.

Definition 3.5. Suppose an open set 2 is parametrized by

F(s,r) = (r1(s) +ry3(5), v2(s) —ry(s))
where y is a seed curve. Let
d(s) = min{sup{rl | r1 >0, F(s,r)lre0,r) € 2},
sup{ra | r2 > 0, F(s,7)lre(-n,0) € Q}}
and let

d(2,y) =inf{d(s) | y(s) € Q}.

Lemma 3.6. Fix e > 0. Let S be a C' noncharacteristic H-minimal graph defined
over a planar domain Q with p,q € WV(Q) and let v be a seed curve for S. If
d(2,y) > &, then v'(s) is locally Lipschitz,.

Proof. We argue by contradiction. Suppose y’(s) is not Lipschitz at s = so. Then,
there exists a sequence {%,} tending to zero with

"so =+ b)) — '
7o +in) =60l _ pp
n
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with L,, — oo as n — 0o. Now
¥/ (so+hn) =y (s0)* = (¥ (sot+hn) = (50))- (¥ (so+Tn) =¥ (50)) = 2—2c08(6).

Where 6, is the angle between y’(so) and y’(so + hy). So we must have that

1-— 2
oo
n
Rearranging, we have
cos(d,) =1 —h2L,. (11)

Recalling that, by Proposition 3.4, vy is constant along integral curves of vy,
for vy to be well defined on €2, no two integral curves of vx1 may cross inside Q.
Indeed, it two such curves crossed, then infinitely many of them would cross and we
would have conflicting values for vx.

Next we use this to gain an estimate on L,. Referring to Figure 1, we see that
sin(0,) = - < Mﬂr[;_);y_@oﬂ Now, since d(2) > &, we have

e<d(Q) <a
< [r(so+ ha) — ¥ (s0)l
- sin(6,) (12)
_ lyGso4ha) =y (s0)l

JT—(-KL,)?

(by equation (11)).

Thus we have

m< ly (s0 + ha) — ¥ (50)]
n—n = - s

Or, after some algebraic simplification,

_ 2
e o) —y o)l o

= - =
gzh%(“r\/l_ k) y(so)|2> &

But, by assumption, L, — 00 as n — 00, so we reach a contradiction. O

Theorem 3.7. Let S be a C' H-minimal graph over a domain 2 of the xy-plane with
p.q € WhY(Q). If y is a seed curve for S and d(Q2,y) > & > 0, then y is C2.

Proof. By the previous lemma we know that y is Lipschitz and hence y”(s) exists for
almost every s. Now consider a parameter value sg and sequences {s;r }and {s;" } so
that Si+ — 50,5, — so and both y” (si+ yand y”(s;”) exist for all i. By the Lipschitz
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y(so + hn)

Figure 1. lustration for Lemma 3.6.

condition on y’, we can always find such sequences and we may also assume, picking
subsequences if necessary, that lim; _, o ¥”(s;") and lim; . y” (s;”) both exist. Then
we claim that

lim y”(sH) = lim y”(s;7).

1= 11— 00

To show this, we examine the Riemannian normal of the surface. As the surface
is C1, the normal must be continuous. We will show that if

lim y"(s;") # lim y"(s7)
i—00 i—00

then the normal cannot be continuous.
First, we a direct calculation using the representation of S by

(Fs.r o) = 37 -7')
yields that the vector
n(s,r) = yi(s) X1+ y3(s) Xo 4 (s, r) T
points in the direction of the Riemannian normal where

Bls.r) = / —ll—i—r/c(s) . .
o) —r+ 57yt + k(s

(13)
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We note that this computation is contained in Section 4 of [12]. Now, by assumption,
both ¥ and y’ are continuous. To argue by contradiction, we assume that

lim y"(st) =1
11— 00

and
lim y"(s7) =1
1—=>00

where I1 # [5. Let

k1= lim y”(sH) -y (sHt =1y (s0)t (14)
11— 0
and
Ky = ll_l)lgo y//(si—) . J//(Si—)J_ — 12 . J//(So)l‘ (15)

Now, looking at 5(s, ) along the two sequences, we know that the X; and X
components match as we tend towards sg as ¢’ is continuous. If 7 is to be continuous,
then S must be continuous as well, i.e.

—1 +rkg _ —1+riy
ho(so) —r+ Ly b+ S Blso) —r + 3y v+ S

After simplifying algebraically, this yields

r r 2
(k1 —K2) (rh6(so) + =y oyt - —) =0.
2 2
As r can vary, we see that k1 = ko. Since y is parameterized by arclength, we have
thaty”-y" = 0 where defined. Combining this with equations (14) and (15) we reach
a contradiction of the assumption that /1 # /. So we see that, where it is defined, y”
coincides with a continuous function. Consider a point so where, a priori, ¥’ is not
differentiable. Then in a neighborhood N of s¢ there is a full measure subset Ng so
thatif s € Ny, v”(s) exists. Then, as y” coincides with a continuous function where
is exists, we see that
B Y (s0) — y'(s)
im ————~
SENy, s—50 S0 — 8
exists. In other words, s is a point of approximate differentiability for y’. Since, by
the previous lemma, y’ is Lipschitz, Lemma 3.1.5 in [8] implies that y’ is differen-
tiable at sg as well. O

We combine the previous lemmas:

Theorem 3.8. Fix ¢ > 0. Suppose S is a C' noncharacteristic H-minimal graph
over a region Q2 with p,q € wLlQ). If v is a seed curve of S with d(2,y) > &,
then y € C2.
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Remark 3. The previous theorem is a type of regularity result for H-minimal sur-
faces. Recalling that vy = (¥{(s), y5(s)), the theorem says that the vector field vx
is continuously differentiable. Therefore, the arguments from [12] used to prove
Theorem 1.1 (this is Theorem A in [12]) apply and the surface can be realized by

(1) + i), 1206) = 7). o) = Ty - ().

Moreover, the smoothness of such a piece of H-minimal surface is completely de-
termined by the function %o(s). Given the structure theorem of Franchi et al., if the
surface is an X-perimeter minimizer, the function 4o (s) must be at least C L on the
sets K.

We end this section by summarizing the results.

Theorem 3.9. If S is an open C' H-minimal graph over a domain Q@ C R? with no
characteristic points with unit horizontal Gauss map vy in WH1(Q), then the integral
curves of vy are straight lines and S can be locally parameterized by

(s,1) = () +ry5(8), vals) —ry{(s), his, 1), (16)

where -
hs,r) = ho(s) — 5(V(S),V'(S)> (17)

and y is an integral curve of vy. Moreover, if there exists € > 0 so that d(2, y) >
e > 0 then ho(s) € Cl and y(s) € C2.

This is Theorem A in the introduction.
We note that, as y € C2, all of the computations of Section 4 of [12] are valid so
long as they do not involve more than one derivative of so(s). In particular, we have:

Proposition 3.10. Let S be a patch of C' H-minimal surface given by
(s,7) = (1(s) +ry3(s), vals) — ryi(s), h(s, 1)),
where

h(s.r) = ho(s) — §<y<s>,y’<s>>

with s € (sg, s1),r € (rg, r1). Then S may be extended to a surface S by including
all portions of the rules, i.e. extending the above parameterization to r € (—00, 00).
In this case the surface S has characteristic points at

/ | / 1 r2
ho(s) —r + 5)/ (s)-v(s)” + ?K(S) =0. (18)



358 S. D. Pauls CMH

Proof. The only new portion of this proposition is the identification of the character-
istic locus. We note that by hypothesis, d(2, y) =r1—rp > Oandsoy € C%. Aswe
assume the surface is C'!, we must have that sg € C! as well. To verify the position
of the characteristic locus, we repeat the arguments found in [12], in particular the
computations in the proof of Theorem A. We review them here for completeness.
We first compute tangent vectors to the surface at each point by taking the s and r
derivatives of the parameterization:

d

T = (nls) +ry3(s), va(s) — ryi(s), h(s, 1))

ar
1
= (), —H{(5), =5 (). ¥ () B
=y{(s) X1+ v3(s) X2,
a ¥ 4 " o
0 = (1) + 1Y), 72(6) = r¥{ (), hls. 7))
= (H{(5) + rv5 (), ¥j(5) — ry{(s), hip(s) — 5 - §<y<s>, Y ())) o0

= (Y1 (s) + 7y () X1 4 (3(s) —ry)' (s)) X2+ (hy(s) —r
1, n r2 T
+ E(V (s), ¥(s)7) + ?K(S)) .

Taking the cross product of these vectors with respect to the Riemannian structure,
we have

o XT= yll(s)B(s, r) X1+ yz/(s)B(s, N Xo+(—14+re(s)) T 21)

where
’ 1 / 1 r 2
B(s,r) = hy(s) —r + 5(3/ (8), y(s)™) + ?K(S)‘
As characteristic points arise when Riemannian normal, o x 7, has only a T compo-
nent, we have the desired description of characteristic points. O

We often use the notation
/ 1 7 N
Wo(s) = ho(s) + 5(;/ (8), y(s)™).

We end the section with an observation concerning the nature of the characteristic
locus along a single rule. Equation (7) shows that, generically, each rule contains two
characteristic points at

_ 1 " V1= 2k(s)Wo(s)
K (s) K (s)
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one to each side of the point at r = In the special case where Wy (s) = #@ we

1

k()"
have a double characteristic point at r = K(I—S)
Lemma 3.11. Let S be a C' H-minimal graph parameterized by

(Fs.r.ho(s) = 57() - ¥/(). (s.r) e 2 CRE
Suppose (sg, ro) and (s1, r1) are points so that F (sg, ro) = F(s1,r1). Then
1o ’
(FGso.r0). hotso) = Sy (s0) - ' (s0))

is a characteristic point of S.
Proof. Since we assume that S is a graph over the xy-plane, we must have that

140] e r1 ’
(F(So, ro), ho(so) — EV(SO) Y (So)) = <F(S1, r1), ho(s1) — 3)’(5"1) Y (Sl)> .

We recall that the unithorizontal Gauss map on S is givenby vx (s, r) = (y{(s), ¥;(s))
and that the unit horizontal Gauss map is constant along any rule. The vector

HBF] = i (s) X ¥5(s) X Bls,r) T
V1+B(s,r)? V1+B(s,r)? V1+B(s,r)?
where pom - 1t r(s)

Wols) —r + Suc(s)

points in the same direction as the unit Riemannian normal to the surface and is a
completion of the unit horizontal Gauss map. As the surface is C!, we must have that
lim, ., n(so, r) = lim,_,; n(s1, 7). Since we assume the two rules are not parallel
(they intersect), we have that v'(sg) # v’(s1) and hence, for these limits to be equal,
we must have that

lim B(s;, r) = +o0.

r—r;

Examining the formula for the denominator of 8 and equation (7), we see that the

intersection must be a characteristic point. O

Lemma 3.12. Let S be a C' H-minimal graph parameterized by
(Fer) o) = 576) - ¥'®) . (s.r) e R CRE

Then along each rule, £, (s (r), there is at most one characteristic point.
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Proof. As above, by equation (7), we see there are at most two characteristic points
along £, )(r). Suppose there are two characteristic points along a rule £ =
&L (s9)(r), one to each side of r = ﬁ We claim that, arbitrarily close tor = 7,
L crosses another (nearby) rule. To see this, we first left translate and rotate the
Heisenberg group so that y (so) = 0 and y/(s¢o) = (1, 0) and reparametrize y so that
so = 0. From this normalization, we have that F (0, r) = (0, —r). Consider a nearby

rule, £ (5 (r). Then, direct calculation shows that

7 <S1, _',Vl/(sl)> _r (O, s Vl(sl/)'}/{(sl)) ‘
75 (s1) Y5 (s1)

Taking that limit as s; — 0, we see that

Y1(s1)y(s1) !
v5(s1) k(0)

Thus we make pick s; small enough so that

v2(s1) +

Ly, (NNLC £<r>|r€(ﬁ—s,ﬁ+s)'
By the previous lemma, we see that there must be a characteristic point at this in-
tersection distinct from the two characteristic points assumed to be along «£. This is
a contradiction of (7), which shows that there are at most two characteristic points.
Thus, along a rule contained in a piece of H-minimal graph, there is at most a single
characteristic point. O

4. Continuous H-minimal surfaces

Again taking our motivation from the theorem of Franchi, Serapioni and Serra Cas-
sano, we now investigate the possibility of gluing two pieces of different of c!
H-minimal surfaces together to form a new H-minimal surface from their union. In
contrast to the classical cases, we can, under certain restrictions, create piecewise C 1
surfaces that are globally merely continuous and yet satisfy the H-minimal surface
equation.

We consider the problem, discussed in the introduction, of gluing together two
patches of C! H-minimal graphs so that the union satisfies the H-minimal surface
equation, at least weakly.

Proof of Theorem C. Assuming first that S U S, is H-minimal, we let

o vi on 1,
vx =(p,q) =

vy on £2;.
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Then

/ Pox +qoy = 0
Q1UQy

for a smooth compactly supported (on €21 U €27) test function ¢. Recall that by
Theorem 3.8, we know that vy |Qi e C1(Q;). First we compute

L Di9x +5i(ﬂy:/Q(ﬁi‘ﬂ)x_Isi,x‘ﬂ‘f'(qi(ﬂ)y_%,y‘ﬂ

1

:/Q(ﬁi(p)x"‘(‘?i(p)y_/ ﬁi,x(ﬂ‘*‘gi,y(p

7

:/ (Pip)x + (q;9)y

Q2;

= / —g;p dx + p;p dy (by Green’s theorem)
982

= / —q;9 dx + p;p dy
c

= / @(v; - 1) ds.
¢

The third equality holds because the surface over the interior of €2; satisfies the
minimal surface equation. The second to last equality holds because ¢ is compactly
supported on 21 U €25 and hence can only be nonzero on C = 1 N ;. In the last
equality, 7i; denotes the inward pointing unit normal vector to 9€2;.

Applying this we have

/ PPx +qpy = / D19x +q10y +/ D2¢x + G20y
21U Q1 Q2

=/ P (v 'ﬁl)-i—/ @(v2 - Ha)
0821 382

:/ p(n 'ﬁ1)+/ @(vy - (—n1))
C C
:/ @((v1 — ) - 71)
el
=0.

The second equality follows by the previous computation, where 7; are the inward
pointing unit normal vectors. The differentiability of the v; and the fact that the S;
are H-minimal implies that on the interior of 2;, we have that p; , +¢; , = 0. In the
third equality, we observe that ¢ is zero on the boundary of €21 U 2, and that on C,
np = —nj.



362 S. D. Pauls CMH

Thus, we have that (v; — vp) - 1y is weakly zero and hence, v — v, must be
tangent to C almost everywhere. Reversing the computation shows the sufficiency
of this condition as well. O

We illustrate this with an example where we glue two different H-minimal surfaces
along a rule.

Example 1. This theorem allows us to create many continuous H-minimal surfaces
which are piecewise C'. We illustrate how to use this theorem by constructing a new
H-minimal surface by gluing together the lower half of the plane ¢+ = 0 with a portion
of the surface t = % (see Figure 2). To do this we define the following seed curve:

(1,s) 0<s < o0,
y(s) = 4 (cos(s), sin(s)) —m <s <0,
(-1,—s—m) —oc0o<s<—T.

Note that, as a plane curve, y is two vertical lines glued to the bottom half of a circle.

Figure 2

Now, we construct an H-minimal surface from this seed curve. With appropriate
choices of /¢(s), this yields the parameterization:

(1+rs, -5 —35) 0<s <00, —1<r< o0,
S = { (1 +r)cos(s), (14 r)sin(s), 0) —nm<s<0,—-1<r <o,

—l—r,—s—zr,—r(s—;'”)—H'T”> —0<s<-m—1<r<o0.
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Calculating in xy-coordinates, we find the unit horizontal Gauss map to be:
(0, sgn(x)) y =0,

<—L L) y < 0.

Direct computation shows that, away from y = 0, these are H-minimal surfaces.
We note that, using the notation of the theorem, v1 = v, along the line y = 0 and

hence the hypotheses of the theorem are satisfied so long as we pick €21 and 2, away

from the characteristic locus (for example, we might consider 21 = {(x,y) | 2 >

x>1,2>y>0land Q2 ={(x,») [2>2x>1,-2<y <0}).

vx =(p.q) =

5. C% solutions to the Plateau Problem: persistent H-minimal surfaces

In [16], we showed that H-minimal graphs can arise as limits of minimal surfaces in
(H', g;.). In this section, we examine those surfaces which are minimal for all values
of A € [1, 00).

Definition 5.1. A nonparametric graph is called a persistent H-minimal surface if it
is H-minimal and is minimal in (H!, g;) for all » € [1, oo].

As shown in [16] Theorem 3.6 and 3.7 this implies that the surface is H-minimal
and, for any curve satisfying the bounded slope condition that such a surface spans,
it is the solution to the Plateau problem for this curve. Thus, the persistent minimal
surfaces are a (small) class of smooth solutions to the Plateau problem. Moreover, as a
consequence of Remark 1 in Section 3 of [16], we have the following characterization
of persistent minimal surfaces.

Theorem 5.2. An H-minimal surface S = {(x, y, h(x, y))} is persistent if and only
if Ah = 0where A is the usual Laplacian in R?.

In this section, we will use the representation formula from Theorem 1.1 and some
results from [12] to classify the persistent H-minimal surfaces.

Lemma 5.3. If an H-minimal graph S is persistent then the signed curvature of its
seed curve is constant.

Proof. First we assume that S is a persistent H-minimal graph. If S is given by
(x,y,h(x,y)) then p = hy — 5 and ¢ = hy + 5 and so Ah = 0 is equivalent to
Px + gy = 0. Using the notation from the previous section, we have p = «p and
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g = ag and so

pxt+qy = (ap)x + (aé)y
=Va vy +oulp,+q
xrelbetay) (22)
=V vy (since S is H-minimal)
=0 (since we assume S is persistent).

Thus « is constant along the curves F' (s, #p) and so we may write «(s, r) = «(r).
However, from Theorem 7.1 in [12], we know that

@rz —r 4 ap(s)

sl = 1 —«k(s)r

Since « is constant along F (s, 0) this implies that o (s) = g is constant, and so
«(s) must also be constant. o

Theorem 5.4. The persistent H-minimal graphs fall into two categories up to iso-
metric transformations of (H', dcc):

(1) (e =0)
m 2 m? —1 m 5
h(x,y) = 1+m2(x_x0) +m2+1(x—XO)(y—yo)—1+m2(y—yo)
a am
—l—m(?f—xo)‘Fﬁ(y—yO)-l—b
form,a,b e R

(2) (k #0) S, given in cylindrical coordinates, is
(pcos(0), psin(d), ab + b)

fora, b eR.

Proof. By the previous lemma, we know that « must be constant for S to be persistent.

Case 1. « = 0. If the curvature of the seed curve is zero, it is a line in the plane. By
left translation, we may move the surface S so that the seed curve passes through the
origin. Thus, we may assume that

(s)-( s ms )
¥ B «/l—i—mz’«/l—l—m2

for some m € R. Note that y(s) - y'(s) = s In this case the parameterization F is
simply a linear transformation of the plane and we can write (s, ) in terms of (x, y).
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Indeed, we have

X " my
s = R
N1+m?2 1+ m? (23)
mx y
r= = s
Vi+m?2 J1+m?
Plugging this into the representation given in Theorem A, we get
1
h(x,y) = hols) + 5rs
x my
(T )
N14+m?2  J14+m?
1
+_< mx y )( X L my )
2\V14+m?2  J1+m? N1+m?2  J1+m?
(24)
L X n my . m 2+m2—1 m )
= X Xy — .
0 S1+m2 o 1+ m2 1+ m? m?+1 ¥ l+m2y

Now, S is persistent if and only if Ah = 0,

, 1 m ” m? m
hyx +hyy = ( 01—|—m2+21+m2>+(h01+m2 _21+m2)
:h//
0
=0.

(25)

Thus, surfaces in this case are persistent if and only if /¢ is linear, i.e. hg = cs+d
forsome a, b € R. If we now left translate the resulting surfaces by a fixed basepoint
(x0, Y0, t9), we have that the surface is given by

X my
(x, ¥, h(x, y)) = (x0, Y0, o) - (x, Y, C( + )
\/l + m? \/l + m?2

m 2+m2—1 y m 2—|-d)

1—}—/712)C mz—l—lx _1—|—m2y

<+ + yo. 10 + ( Z__ 42 )
=\ XxTX0,y T Yo, lpoTC
N14+m?2 1+ m?

(26)

m 2+m2—1
X X
1+ m? m?+1

+

LI N !
— —X0y — =Yox ).
el w24 SX0Y = 530

Substituting x = x + xp and y = y — yo and collecting terms yields the claim.
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Case 2. « £ 0. If « = ¢ # 0, then y(s) must be a circle and after a suitable left
translation, we may write

1 1 .
y(s) = <— cos(s), — sm(s)) .
c c

Hence y (s) - y’(s) = 0. Moreover, the parameterization F yields

1 1
X = (r——) cos(s), y= (r——) sin(s),
c c
_ Y _Ja2iv2, !
S—arctan<x), r=,/x“+Yy —I—C.

— T ot - nats = =]
h = ho(s) + 2y(s) y'(s) = ho (arctan (x>) .
Computing the Laplacian of / yields
M (aretn (2)
x2+y2

Thus, Ak = 0 if and only if Aj(s) = O or that /o is linear. Thus, using cylindrical
coordinates, S is given by

and

Thus

(p cos(0), psin(d), ab + b)
fora,b € R. a

We record the observation made above:

Corollary 5.5. Any closed curve lying on the surfaces identified in Theorem 5.4 has
a C® solution to the Plateau problem.

6. Obstructions to H-minimal spanning surfaces of high regularity

Throughout the rest of this paper, we will be considering a smooth closed curve
c(0) = (c1(9), c2(9), e3(0)) C H!

with the property that c(6) is a graph over the projection of ¢ to the xy-plane. For
ease of notation, we will denote this projection by ¢(6) = (¢1(6), c2(6), 0). When
the context is clear, we suppress the last coordinate of the projection. We will be
considering H-minimal spanning surfaces for these curves and moreover will consider
only C! H-minimal spanning surfaces that are ruled graphs. To be precise, we make
a definition:
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Definition 6.1. A C' ruled H-minimal graph, S, over a closed domain Q@ € R?
is a ruled H-minimal graph with the property that every rule in S that meets a the
characteristic locus may be extended over the characteristic locus as a straight line.

In other words, we will not consider gluings of the type discussed in Theorem C.
We note that the work in [12] or [5] shows that C? H-minimal surfaces satisfy this
definition.

If ¢ lies on a C! ruled H-minimal graph then a geodesic line intersects each point
on ¢ and, potentially, one or more other points on ¢ (see Figure 3). One easy way to
determine the possible geodesic lines which are allowable for a specific point, c(6p),
on the curve is to left translate that point to the origin (recalling that left translation
preserves minimality). At the origin, the horizontal plane is the xy-plane and so,

Figure 3. The dotted arrows are the possible rules emanating from the point.

points which can be connected to ¢(6y) by geodesic lines are those points on the left
translated curve which lie on the xy-plane. Using the Campbell-Baker—Hausdorff
formula, one can calculate this set explicitly as:

1 1
ABo) = {0 | c3(0) — c3(60) — 501(9)62(90) + 501(90)02(9) =0}.

Note that 69 € A(9p). In terms of building up a ruled surface which spans c,
the larger A(6p), the more flexibility one has in developing a surface. On the other
hand, if A(9p) contains only 8 itself, this places great restriction on the possibilities
of smooth spanning H-minimal surfaces.

Consider a C¥ closed curve c: [, 1) — H' which is a graph over a curve, ¢,
in the xy-plane. Suppose c is spanned by a ruled H-minimal surface, S, which is a
graph over a closed domain €2 in the xy-plane so that 92 = ¢. Then the definition of
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A above implicitly defines a function ¢(t) for ¢ € [1g, #1) via the equation

1 1
c3(p(®)) — e3(t) — Serlp@)e2®) + er(Bealp(t)) =0.

As ¢; € Ck, @ 1s also Ck. Moreover, we claim that such a ¢ must be monotone.
To see this, suppose that ¢ is not monotone and that there exist fp, f1, £ so that
(to) = @(r2) and @(t1) # @(to). Let «L; be the rule connecting c(t;) to c(p(t;)) and
let £; be the projection of £; to the xy-plane. Then, the assumption on ¢ implies
that £ intersects either £» or £Lo. Without loss of generality, we will assume it
intersects £5. Further, £, must intersect the projection of every rule connecting c(t)
to c(p(t)) for t € (tg, t1). Such intersection points must be characteristic points of
the surface and so £, would contain infinitely many characteristic points in violation
of Lemma 3.12. We note that, given a monotone C* function ¢: S! — S, it is easy
to construct a C* ruled H-minimal graph.
We record this observation:

Existence Criterion. Given a closed curve ¢ € C* which is a graph over a curve in
the xy-plane, c is spanned by a ruled H-minimal graph if and only if there exists a
monotone C* function ¢: S' — S with p(0) € A(6).

Definition 6.2. A point c(6p) is called Legendrian if ¢’(6g) € span{X1, X,}. We call
a point isolated if
{60} = A(00).

We record an immediate consequence of the definition.

Lemma 6.3. Ifc(0) is an isolated point and ¢ is spanned by a ruled H-minimal graph,
then c(0) is Legendrian and the rule passing through c(8) must be tangent 1o c.

Proof. If c(0) is isolated then, by definition, it cannot be connected to another point
of ¢ via arule. As a consequence, we note that the projection a rule through ¢(9) to
the xy-plane cannot be transverse to ¢. Indeed, if the projection were transverse, then
it would intersect another point on ¢. As S is assumed to be a graph, this rule would
then be forced to intersect another point on c. Now, consider the rule through ¢(6).
It is the limit of rules connecting points near ¢(9). In other words, it is the limit of
secant lines and hence must be a tangent line to ¢ and c(6). O

We next consider the relationship between two points on ¢ which are connected
by a rule on a spanning H-minimal surface.

Lemma 6.4. Suppose c¢(01) and c(02) are connected by a rule, L, of a ruled surface
spanning c. Then c4(02) is proportional to the third coordinate of the parallel trans-
lation of ¢'(61) along L. The proportionality constant is given as the derivative at the
point c(63) of the parametrization of the curve induced by the ruling around c(6>).



Vol. 81 (2006) H-minimal graphs of low regularity in H! 369
grap

Proof. Without loss of generality, we may assume that ; = 0 and ¢(0) = 0 via
a reparametrization of ¢ and a composition with left translation in the Heisenberg
group. By hypothesis, A(0) contains the point c(62) which, by abuse of notation, we
will still identify by the parameter value 6, despite having reparametrized the curve.
Note, that under this renormalization, the rule /£ can be parametrized as

L(7) = (te1(02), T2(62), 0).

Moreover, the assumption that ¢ lies on a ruled surface implies that there exists a
mapping ¢: (—¢,&) — (62 — 8,62 4 §) (with appropriately small & and &) so that
c(p(t)) € A(c(t)) fort € (—e, &) and c(¢) is connected to c(¢(¢)) by a rule. Thus,
by the definition of A(0) we have

1 1
a3(p(®)) — e3(t) — Ser(en)ea(t) + Fert)ea(e)) = 0. 27

Taking a derivative at t = 0 and recalling that ¢1(0) = 0 = ¢(0) we get

c3(02)¢'(0) = ¢3(0) — %5(92) - (c3(0), —¢1(0)). (28)
Next we note that the vector field
W = ¢{(0) X1+ c5(0) X2 + (c3(0) + %(5(92) - (ch(0), =1 (0)) T
is parallel along £. Indeed, the tangent field to £ is given by
V =rc1(62) X1+ c2(02) X»

and a direct computation shows that VW = 0. Since the third coordinate of W
at T = 1 is proportional to the expression in equation (28), we have the desired
result. H

Remark 4. Geometrically, this says that the height function, relative to translation
in the Heisenberg group, remains constant along the rules. Thus, H-minimal surfaces
are significantly more limited than ruled surfaces in Euclidean R®. A comparable
class of ruled surfaces in R® would be those ruled surfaces that contain only rules
parallel to the xy-plane.

6.1. Curves with isolated points. We next turn to the problem of identifying curves
thathave ruled H-minimal spanning surfaces. We begin with an investigation of curves
that have isolated points.

Lemma 6.5. Suppose c is a C* curve in H' and c(0y) is an isolated point. Then
there is an open neighborhood, I = (6y — &, 6y + &), where c| sits on a piece of a
ruled surface.
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Proof. Note that, without loss of generality, by composing with a left translation and
reparametrizing the curve, we may assume that 6p = 0 and that ¢(0) = 0. We are
attempting to parametrize a piece of the curve for ¢ € (—e¢, 0] in terms of parameter
values ¢ € [0, §) by associating a ¢(¢) € (—e&,0]tot € [0, §). So, we will construct a
map ¢: [0, 8) — (—e, 0] with ¢(0) = O so that A(z) contains ¢(¢). By the definition
of A, this implies that

1
c3(p()) — e3(t) — clp()) - eyt =o0. (29)

Differentiating with respect to ¢ solving for ¢’(¢), we get

s = SO EEW) COL GO +ieew) dOT
(@) = 3¢ (@) - ()L (@) + ze(0) - ¢ (p()*
Note that, at t = 0, recalling that ¢(0) = 0, we see that
%
¢ 0) = #2,)(0) — Y02 =1.
Thus, for at least a small time, ¢(¢), defined implicitly by (29), exists and hence, for
some interval I, there exists a ruled surface spanning c|;. O

Remark 5. In the proof above, we see the obstruction — to be able to span a given
curve with a ruled surface we must be able to find a function ¢ describing how to
connect points on ¢ via rules that is monotone.

Example 2. Consider the curve (see Figure 4a)
c1(0) = (1 —cos(9), sin(@), 2 — 2 cos(d) + sin(f) — sin(0) cos())
for 6 € [0, 27). We quickly compute that
A(bp) = {9 | 2 cos(bp) + %sin(@o) 4+ sin(fg) cos(6y) — 2 cos(6)
+ % sin(f) — sin(#) cos(6) + %(sin(@) cos(fg) — sin(fg) cos(@))}
and note that for 6y = 0,
A0) = {0 | 2 —2cos(0) + sin(d) — sin(#) cos(8) = 0} = {2nx}.

Thus 6y = 01s an isolated point. Considering & as a function of 8y, we see in Figure 4b
that there is another isolated point for 6 slightly less than 7. We will denote this value
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of 6y by «. Observing Figure 4b, we see that for each 6y = (0, ) we can connect
c1(6p) to the unique point c1(@(0p)). Figure 4c illustrates several of the constructed
rules connecting points on the curve and Figure 4d shows the projections of Figure 4¢
to the xy-plane.

(@) c1(8) (b) 6 vs. 8y

(¢) Some rules of the spanning surface (d) Projection to the xy-plane

Figure 4. An example without an obstruction.

Of course, the example above is just about as well behaved as possible. However,
the situation is often much more complicated. For example, if one considers the curve

c(0) = (1 — cos(0), sin(d), sin(4 sin(0) (1 — cos(0)))).
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Figure 5 shows 6 plotted as a function of 6 (as in Figure 4b in the previous example).

I

= —

A0 (.

Figure 5. A more complicated example.

o

o 1

Example 3. In this example, we show an instance of the obstruction. In this case
¢’ (1) changes sign and we explore the effect of the sign change when building the
ruled surface. Consider the curve (see Figure 6a)

2(0) = (1 — cos(8), sin(@), 1/5 — 1/5 cos(9) + sin®(8)).

In this case, as in the first case, 69 = 0 is an isolated point and we can begin
constructing a ruled surface. Figure 6b shows 6 plotted as a function of 8p. While
tedious computation can confirm this, the figure clearly shows that ¢’ changes sign
at roughly % Figures 6¢ and 6d illustrate how the construction fails — endpoints of
the rules “backtrack” on the curve, creating a folded surface which, of course, is no
longer a graph.

We end this discussion by noting the genericity of each of these classes. As the
obstruction is defined by the monotonicity of ¢, we note that strict monotonicity and
non-monotonicity are open conditions in the C! topology by the implicit function
theorem. To make this precise, we make the following definition.

Definition 6.6. A C? curve c is generically nonmonotone if there exists an & > 0 so
that for any associated function ¢, there are parameter values 11, #, so that ¢’(11) > &
and ¢/ (1;) < —e.

Proposition 6.7. Suppose for a given ¢ € C2, there exists a C' ruled spanning
H-minimal graph. If the associated function ¢ is strictly monotone, then there ex-
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ists an open neighborhood, G, of C? closed curves with respect to the C' topol-
0gy containing c so that any curve in G has no obstruction to building a C' ruled
H-minimal spanning surface.

In addition, if d is a C* generically nonmonotone curve, then there exists an
open neighborhood of d with respect to the C' topology so that any curve in this
neighborhood cannot be spanned by a ruled minimal graph.

(@) c2(0) (b) 0 vs. Oy

(c) Some rules of the spanning surface (d) Projection to the xy-plane

Figure 6. An example with an obstruction.

Proof. This is a consequence of formula (30). For example, assume that ¢ is strictly
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monotone decreasing:

) (1) + 2e(p)) - ()t
P(t) = — 7 p T
Glp(1) + (1) - (p(1))

Then, if we replace c(¢) with ¢(¢) = c(z) + &(¢) where |e(t)| < § and |¢'(r)| < 8, we
have

< —a* <.

L B0+ 5w - T OF
P (t) = < — .
C3(W(I)) + QC(I) (1))

< —a® + o05(1).

Thus, for 8 sufficiently small (i.e. & sufficiently close to ¢ in the C! topology), oL
is strictly monotone decreasing. A similar argument shows the same genericity result
for curves where ¢ is generically nonmonotone. O

6.2. Totally non-Legendrian curves

Theorem 6.8. Suppose c is a C' curve with no Legendrian points which is contained
in an open Cl ruled H-minimal graph, S. Then there exists an interval, 1, so that
c(I) is contained in a plane.

Proof. We first record some easy observations:

+ S cannothave a characteristic point at any point of c. If ¢(#y) were a characteristic
point, then any smooth curve through c(#y) would be tangent to #(4,), including
c itself.

» Consider a point c(f) and let ¥ be a seed curve through c(#). Use Theorem A
to parameterize a neighborhood, N, of ¢(#y) that includes c¢(¢) forr € J where J
is an appropriate interval containing fy. By the non-Legendrian assumption and
continuity of the normal vector, we may assume that there are no characteristic
points in N and hence, by Theorem 3.8, y € 2, Using the parametrization
given by Theorem A, there exist functions s(¢) and r(¢) so that c¢(f) N N is
parametrized by

(',Vl (@) +r@)y3(s(0), 2 (s()) —r )y (s(1)), hols (1)) — %’V ~ V’(S(f))>~

+ A rule through c(#p) is transverse to c(t). Indeed, if the rule were tangent then,
by definition, c(#p) is Legendrian.

+ Forevery t € J, y(s(t)) is twice differentiable and, applying formula (18) at
these points determines the characteristic points along the rules passing through
those points.
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Let £;(r) be the rule through ¢(¢) and let &£, (r) be the projection of the rule to
the xy-plane.

Claim. There exists two rules of S that intersect in the interior of the portion of S
bounded by c.

To show the claim, we assume there are no such rules. First pick a parameter
value 01 and let Ly, (r) be the rule through ¢(61). Under the assumption that the
rule does not intersect any other rules inside ¢, it must intersect another point on c,
dividing ¢ (and the surface) into two parts. Next, pick a parameter value, 6;, so that
c(6) 1s on the “left hand side” of the cut (see Figure 7). The rule, Ly, (r) again must
cut the remaining portion into two parts. We continue this iterative process, picking
a sequence of parameter values {6;}. By construction, this sequence must converge
to a value f. Moreover, if the rule £Lg,, (r) does not intersect any of the {Lg, (r)}, it
must be tangent to ¢ at . This implies that c(6) is a Legendrian point, violating
the hypothesis.

Figure 7. Heuristic for picking points in the proof of Theorem 6.8.

Now, by the claim, we can pick 1, f2 so that £y, (r) N Ly, (r) # @. Then the
projection of these two rules must not be parallel and hence, as the projections are
lines, they must intersect in a single point, {x}. As S is a graph over the xy-plane, we
see that L, (r) N L4, (r) = {x} where x is the point on S over x. By Lemma 3.11, x
must be a characteristic point of S. A consequence of this observation is that

(£ = {x}.
teJ

Suppose that this claim is not true, i.e. that there exists 7o 5o that Ly, (r) N Ly, (r) =
{x'} # {x}. Then along «£;, there must be 2 characteristic points. By Lemma 3.12,
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as S is a graph over the xy-plane, this cannot happen. Using a left translation, we
may assume that {x} is the origin. Let I be the interval between 7y and #1.

Denote the portion of S bounded by ¢(1I), £L,(r) and £ (r) by Sp. We finish the
proof by showing that Sp is a portion of a plane. Since the origin is a characteristic
point, S must be tangent to the xy-plane at the origin. As each rule is a horizontal
straight line and every rule in Sy passes through the origin, we have that every such
rule lies in the xy-plane. Thus, Sy is a piece of the xy-plane and so ¢(I) is planar.

O

Corollary 6.9. If c is a smooth curve with no Legendrian points and no portion of ¢
is contained in a plane then ¢ cannot be spanned by a C' ruled H-minimal graph.

In particular, the solution to the Plateau Problem for such a curve cannot be C?
and, if it is C!, cannot be a ruled surface. The best result in this case would be a C!
H -minimal surface composed of ruled C' H-minimal patches glued along common
intersections.

Example 4. Let
c(8) = (1 —cos(0),sin(), f(6)).

Then,

_|_

¢'(0) = sin() X + cos(0) X2 + <f’(9) - 0052(9) %) T

Thus, for any periodic f so that

cos(@) 1
2 +2

for some fixed &, we have an example that is totally non-Legendrian.
An explicit example is given by

7o) — ‘>£>O

6) = L sin(®) +  sin(8
S _Esm()—l—gsm().

It is easy to show that no portion of this curve is planar.

A. Integral curves of continuous vector fields

In this appendix, we will review the existence of integral curves for continuous vector
fields and prove some results needed in the main body of the paper. The results
here are consequences of Picard’s standard iterative construction of solutions to first
order ordinary differential equations (see, for example, [13]). Our only modification
is to restrict our view to merely continuous vector fields (as opposed to Lipschitz
continuous ones). We make the following standing assumptions:
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(1) Let X be a vector field defined on a compact domain 2.

(2) Let {X;} be a sequence of C™ vector fields, defined on 2, which converge
uniformly to X on 2.

Let {M}} be a sequence constants tending to zero so that | X; — X| < Mj on €.
By compactness and the continuity of X, there exist constant M and a non-increasing
continuous function C: Ry — R4 with C(0) = 0 so that

M = max | X|
Q

and for x, y € €,
X (x) = X(»)| < C(x = y).

By the compacitness of €2 and the continuity of X, we have, for each k, constants
M (k) and non-increasing continuous functions Cy: Ry — R, with Cx(0) = 0 so
that

Mk) = mélx | X1l

Moreover, since X — X uniformly on €2, there exists a constant « so that
M(k) <aM

for all k. Next, we construct integral curves for X and X; emanating from a point
xo € Q using Picard’s approximation method. To do so, let

1) =0, ¢kt)=0

and
t t
2(t) = x0 + /O X(@0_ () ds. ¢k0) = xo+ /0 Xe(ok_,()) ds.

Lemma A.1. {(/),? } has a subsequence which converges uniformly on 2.

Proof. First, since

t t
|<p2<t>|:]xo+f0 X(¢)_1(s)) ds s|xo|+/0 | X (g1 ()] ds < |xo| + Mt

we have that the sequence is pointwise bounded. Second, since

151
o20) = ool = | [ X(ua () ds| < Mins ~ o
o
we have that the sequence is equicontinuous (in fact uniformly Lipschitz). By the
theorem of Arzela—Ascoli, there exists a subsequence that converges uniformly on €2.

O
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We note that the same argument applies (with appropriately defined constants) for
{(p’rf} as well:

Lemma A.2. {(p,’f Yen has a subsequence which converges uniformly (in both k and n)
on Q.

Proof. As in the previous lemma, we have

t
lok ()| < |xo|+/ | Xi(pk_ ()] ds < |xol +tM (k) < |xo| + taM.
0

In other words, the sequence is pointwise bounded in both k and n. Next,
n
|04 (1) — g5 (10)] < / Xi(pr_1 ()| ds < M)ty — to] < aM|ty — to).
fo

And so the sequence is equicontinuous as well. Thus, by the theorem of Arzela—
Ascoli, we may extract a subsequence that converges uniformly in both k and »n on 2.
O

For the purposes of this discussion, we assume that we have taken the appropriate
subsequences so that 0 — ¢° and ¢¥ — ¢f uniformly on Q. This gives us the
existence of integral curves for these vector fields. Of course, these integral curves
may not be unique.

We next show that, using these integral curves, X (¢ (1)) — X (¢%(1)).

Lemma A.3.
ok (t) — p2(0)] < Myt + C" Yk, 1),

where
C"™(k,t) =tC(Mpt +tC(Mypt +1tC(Mpt + - - +tC(Mp1))))

and the nested applications of the function C occur m times.

Proof. We proceed by induction. First, we note several initial cases:

lp& (1) — @3 (1) = 0,

t
lof (1) — @i (0)] < /O X (0) — X(0)| ds < Myt = Myt + COk, 1),
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t
k(1) — @3 0)) 5/0 Xk (0¥ (5)) — X (9D (5))] ds

t
< My + /0 X (o(s)) — X (0%(s))| ds

Co . 31)
< Myt +/0 C(lpk(s) — ) (5))) ds
< Mt +tC(Myt) (by the previous calculation)
= Myt + ClU(k, 1).
Now assume that
lpk (1) — @°_ ()] < Myt +1C"2(k, 1).
Then
t
lok(1) — o2(1)] < /0 | Xi(ok () — X (@0_1(s))] ds
t
< Myt + /0 1X (k1 () — X (@2_1(s)) ds
i
< Myt + [) Cok_1(s) — 0_y(s)]) ds (32)

t
< Myt + / C(Myt + St (k, 1)) ds (by the induction hypothesis)
0
< Myt + tC((Mit + C"V(k, 1)) = Myt + C*(k, 1).
This completes the induction and the proof. o

We note that as M, is a coefficient in every term of each argument of C in C" (k, 1)
and C(0) = 0, we have that limg_, oo C™(k, t) = 0 as limg_,oc My = 0. Moreover,
in light of Lemma A.2, we know that ¢X tends to some function uniformly as k — oo,
we see that the previous lemma implies that X — ¢0 as k — oo,

We now prove the claim:

Lemma A.4. limy_ o | Xz (0K (1)) — X (9°(1))| = 0.
Proof.
lim [Xe(o' (1)) = X (@) = limTim |Xi(ef(0) = X (]0))]
= lim lim [Xi(g[(0) — X (0 0))]

lim X (9)(1) = X (¢(1))] =0.
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In the second equality, we may switch the order of the limits because pX — ¢*

uniformly in both € and k as n» — 0 by Lemma A.2. o
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