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Fixed point sets of parabolic isometries of CAT(0)-spaces

Koji Fujiwara, Koichi Nagano and Takashi Shioya*

Abstract. We study the fixed point set in the ideal boundary of a parabolic isometry of a proper
CAT(0)-space. We show that the radius of the fixed point set is at most /2, and study its
centers. As a consequence, we prove that the set of fixed points is contractible with respect to
the Tits topology.
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1. Introduction

CAT(0)-spaces are generalizations of Hadamard manifolds in Riemannian geome-
try to geodesic spaces. The classification of isometries of the hyperbolic plane into
elliptic, hyperbolic, and parabolic applies to the CAT(0) setting. The flat torus the-
orem (cf. [B], [BH]), which is one of the important results concerning hyperbolic
isometries, remains true for CAT(0)-spaces.

In the study of isometries of Hadamard manifolds and CAT(0)-spaces, hyperbolic

isometries have been extensive. We remark that in a cocompact, proper, isometric
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group action, there are no parabolic isometries. However, if one does not include the
cocompactness assumption, then the group could contain parabolics.

In this paper, we focus on parabolic isometries of CAT(0)-spaces. We generalize
the results of Schroeder from Appendix 3 in [BGS] on the fixed point set of a parabolic
isometry in the ideal boundary of an Hadamard manifold to the setting of proper
CAT(0)-spaces. Our results are not straightforward generalizations since much less
has been known concerning analysis on proper CAT(0)-spaces than on Hadamard
manifolds. As a new ingredient in our argument, we study the geometry of complete
improper CAT(1)-spaces. We then apply the results to the Tits ideal boundary of a
CAT(0)-space. At the end, as an example of our theorems, we examine a symmetric
space in detail.

1.1. Main theorems and examples. Let X be a complete CAT(0)-space and X (c0)
the ideal boundary of X defined as the asymptotic classes of rays in X. We classify
anisometry f of X as elliptic, hyperbolic (or axial), or parabolic. f is called elliptic
if it has a fixed point in X, and hyperbolic if there exists an invariant geodesic line,
called axis, y in X such that f acts on y by a non-trivial translation. If f is neither
elliptic nor hyperbolic, then it is called parabolic. We recall that f is parabolic if
and only if the displacement function dy(p) := d(p, f(p)) of f does not attain its
infimum in X. X(o0) is equipped with a natural topology called sphere topology.
Any isometry of X also acts as a homeomorphism of X (c0) since the isometry takes
geodesics to geodesics.

It is known that if X is proper (i.e., any closed bounded subset is compact), then
any parabolic isometry of X has at least one fixed point in X (co) (cf. [B], [BH]). This
does not necessarily hold if X is improper. In fact, there is an example of a parabolic
isometry f of a separable Hilbert space X of infinite dimension, which is an improper
CAT(0)-space, such that f has no fixed point in X (c0) (and in X) (cf. [BH]). We
denote by X (o0) the fixed point set of f in X (00).

The ideal boundary X (c0) has a natural metric, called the 7its metric, denoted 7d.
The metric space (X (c0), Td), the Tits ideal boundary, is a complete CAT(1)-space.
The topology defined by the Tits metric on X (co) is stronger than the sphere topology.

For a metric space (Y, d), we define

radY =rad(Y, d) := inf supd(x, y),
xeY yeyY

which s called the radius of Y. For p € X, we denote by X, X the space of directions
at p. As one of the main results of this paper, we state the following:

Theorem 1.1. Let X be a proper CAT(0)-space such that ¥, X is compact for every
p € X, andlet f beaparabolicisometry of X. Thenwe haverad(Xy(00), Td) < /2.
In particular, (Xy(00), Td) is contractible.
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Schroeder has proved Theorem 1.1 for smooth Hadamard manifolds in Appendix 3
in [BGS]. We remark that /2 is the optimal upper bound of rad Xr(oo) even
for Hadamard manifolds (cf. Example 1.4). We also have some examples with
0 < rad Xr(oo) < m/2 (cf. Examples 1.5 and 1.6). Notice that if X is proper
and geodesically complete, then %, X is compact for any p € X.

Recall that X is visible if and only if Td(x, y) = oo for any distinct points
x,y € X(o¢). By Theorem 1.1, we immediately obtain:

Corollary 1.2. Under the same assumption as in Theorem 1.1, if X is visible, then
Xy (00) consists of a single point.

Buyalo [Bu] has shown that if X is a complete, not necessarily proper, Gromov-
hyperbolic CAT(0)-space, then the infimum of the displacement function of any
parabolic isometry f of X is equal to zero, and X¢(o0) consists of a single point.
Let X be a proper CAT(0)-space. If X is Gromov-hyperbolic, then X is visible. If X
admits a cocompact group action, then the converse is true (cf. [BH]).

Next, we study the centers of X (00). A center of a metric space (Y, d) is a point
in ¥ where the function ¥ > x +— supyeyd (x,y) € [0, o] attains the infimum,

rad Y. We denote by C(A) the set of all centers of A, and define CX(Y) = C(C(Y)).

Theorem 1.3. Let X be a proper CAT(0)-space of finite covering dimension such
that X, X is compact for every p € X. Let f be a parabolic isometry of X. Then
C*(X £(00)) consists of a single point, which is fixed by any isometry of X leaving
Xy(00) invariant. In particular, the point is a fixed point of any isometry of X
commuting f.

Theorem 1.3 for Hadamard manifolds has been shown by Eberlein [E] following
Schroeder’s work in Appendix 3 in [BGS].
We give some examples.

Example 1.4. Let us denote the hyperbolic plane by H2. We consider the product
Riemannian manifold X := R x H? x --- x H?, m > 1. Form parabolic isometries
—_——

m times
hi, ho, ..., hy, of H2, we define the product map f := (idg, 41, ..., hy), where idp
is the identity map on R. f is a parabolic isometry of X. We denote by S”~1(1) the
standard unit (m — 1)-sphere in the Euclidean m-space E™ and set

AT = (. xm) € SPTH1) CB™ | x> 0 forall i}, (1.1)

which we call the standard spherical (m — 1)-simplex. X (00) is isometric to the
spherical suspension over A}~ ! We refer [BBI] for the definition of spherical suspen-
sion. We haverad X¢(o0) = 7 /2. C(Xy(00)) is isometric to A’I”_l and CZ(Xf (oc0))
consists of the barycenter of AT‘l.



308 K. Fujiwara, K. Nagano and T. Shioya CMH
The following example is discussed in Section 6.

Example 1.5. We consider X := SL(3, R)/SO(3), which is a five-dimensional,
irreducible symmetric space of non-compact type and rank two. SL(3,R) is the
identity component of the isometry group of X. The Tits ideal boundary (X (co), Td)
is a thick spherical building of dimension one. Weyl chambers of X are corresponding
to edges of the building (X (c0), Td) and any edge has length 77 /3. By Theorem 6.1,
for any parabolic isometry f € SL(3,R) of X, Xr(o0) is one of the following:

(1) an edge,
(2) aclosed interval of length 7 consisting of three edges,
(3) the union of an edge ¢ and all edges incident to c.

In (3), X ¢(co) has uncountably many edges.

For the irreducible symmetric space X := SL(n, R)/SO(n), n > 3, let f be any
isometry of X. Since for any Weyl chamber c at infinity, fc Nc is a (possibly empty)
face of ¢ and since rad ¢ > 7 /6 (cf. [BH]), we have either rad Xy (co0) = 0 or > 7 /6.

For any given 6 € (0, 7 /2), we have an example with rad X ¢ (c0) = 6, where X
is a manifold with boundary.

Example 1.6. Let & be a parabolic isometry of H? and x its fixed point in H?(c0).
Let ¥ be a ray in H? tending to x, and by, the Busemann function associated with y
(see Section 2 for the definition of b, ). Note that / leaves every horosphere b L)
invariant. For an arbitrarily given 6 € (0, 7/2), we consider the closed convex subset

X:={(p,s)eH xR| by(p) < —t, |s| < tsin6 for some t > 0}

of HZ xR. Xisa proper CAT(0)-space and (X (c0), Td) is isometric to a closed
interval of length 260 whose midpoint corresponds to x. The product map (%, idg)
leaves X invariant, and its restriction, f, on X is a parabolic isometry of X. Since
X7 (00) coincides with X (00), we have rad X (o0) = 6.

1.2. Key ideas of the proof of main theorems. We prove Theorem 1.1 in Section 3
by using the gradient curves for the displacement function, the existence of which is
established by Jost and Mayer ([J], [M]). Our proof is based on Schroeder’s original
argument for Hadamard manifolds in Appendix 3 in [BGS]. Since a CAT(0)-space X
is not differentiable in general, we need to investigate the directional derivatives of a
Lipschitz continuous, convex function on X. Itis non-trivial to prove a first variation
formula for such a function (see Lemma 3.5).

For Theorem 1.3, the original proof in [BGS] does not seem to work for a CAT(0)-
space. We take a new approach using the geometry of the Tits ideal boundary
(X (00), Td) as explained in the following.
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For a topological space Y, dim¢ Y is defined as the supremum of the covering di-
mensions of compact subsets of ¥ (cf. [K]). A key theorem needed for understanding
the set of centers of X¢(00) is the following.

Theorem 1.7. Let Y be a complete CAT(1)-space of dim¢ Y < oo and diameter
diamY < z /2. Then there exists a constant § > O, which depends only on dim¢ Y,
such thatradY < m /2 — 8. In particular, C(Y) consists of a single point.

Schroeder has shown the same statement if ¥ is a closed convex subset of the
unit sphere of dimension # in Appendix 3 in [BGS]. The basic strategy of the proof
is following [BGS], however the proof is more delicate because Y is possibly non-
compact. Namely, we cannot avoid a discussion of error estimates (i.e., the estimate
of 8). We only need rad Y < 7 /2 for Theorem 1.3.

It is necessary for Theorem 1.7 that dim¢ Y is finite. In fact, the inductive limit,
Y, of the standard spherical (m — 1)-simplices A’I”‘l, m=1,2,...,givenin (1.1)is
a complete CAT(1)-space such thatdimc Y = co,diamY == /2, andradY = /2.

For applying Theorem 1.7 to ¥ := X (00), we need the next result.

Proposition 1.8. For a proper CAT(0)-space X we have
dime (X (o0), Td) <dim X — 1,
where dim X denotes the covering dimension of X.

Theorem C in [K] implies Proposition 1.8, provided that X has a cocompact group
action. For the proof of the proposition, we use a result in [FSY] on the dimension
of X (co) with sphere topology. There is another way to obtain the proposition using
Lemma 11.1 of [L]. We would like to thank A. Lytchak for bringing his work to our
attention. We do not know whether dim¢ in Proposition 1.8 can be replaced with the
covering dimension.

Theorem 1.3 is proved as follows. By Theorem 1.1, ¥ := C(Xy(c0)) has
diamY < s /2. Proposition 1.8 implies dim¢ ¥ < oo. Therefore, applying The-
orem 1.7, we obtain Theorem 1.3. The details are given in Section 3.5.

We would like to thank the referee for carefully reading the original manuscript
and giving helpful comments.

2. Preliminaries

A minimizing geodesic is, by definition, a length-minimizing curve joining two points
in a metric space. We assume that all minimizing geodesics have unit speed parame-
ters. Denote by y,, a minimizing geodesic from a point p to a point ¢, and by [p, ¢]
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its image. A geodesic triangle A(p, q,r) means a triple of minimizing geodesics
Ypg» Vgr» and yyp for three points p, g, and r, called vertices.

Forx € R, let M ,% be a complete, simply connected model surface of constant
curvature «. We set D, := diam M,?. Note that D, is equal to 7 /./k if € > 0, and
to oo if ¥ < 0. We say that a metric space X is a CAT («)-space if the following
properties (1) and (2) are satisfied.

(1) Any two points p,q € X with d(p, q) < D, can be joined by a minimizing
geodesic in X.

(2) (CAT(x)-inequality) Let A(p, g, r) beany geodesic triangle in X with perimeter
< 2D, and A(p,q,7) a comparison triangle of it in M2, i.e., having the
same side lengths as A(p, g, 7). For any four points x € [p,ql, y € [r, pl,
X e[p,g)l,and ¥ € [7, p] such that d(p,x) = d(p,X) and d(p,y) =
d(p,y), we have

d(x,y) <d(X,y),
where d denotes the distance function.

Let X be a CAT(«)-space. A minimizing geodesic y,, joining twopoints p, g € X
with d(p,q) < D, is unique. For p € X and g1,92> € X \ {p}, we denote by
Lp(Ypg1» Ypgo) the angle at p between ypq, and ypq,. £, is a pseudo-distance function
on the set of all minimizing geodesics emanating from p. The quotient metric space
by the relation Z, = 0 is denoted by X7 X. Let X, X be the Z,-completion of 27X,
which is called the space of directions ar p. We denote by C, X the Euclidean cone
over X, X, and call this the tangent cone at p. X, X is a complete CAT(1)-space and
C, X is a complete CAT(0)-space. We denote by y (0) the equivalence class in X ;X
of a minimizing geodesic y from p.

Assume that X is a complete CAT(0)-space. Two rays y, o : [0, +00) — X are
said to be asymptotic if d(y (), o (¢)) is uniformly bounded for all ¢+ > 0. The ideal
boundary X (o0) of X is defined as the set of all asymptotic equivalence classes of
rays in X. X (c0) is equipped with the sphere topology, which is the restriction of the
cone topology (cf. 1.8 [BH]) on X L X (c0). We denote by y (00) the equivalence
class in X (o0) of aray ¥ in X. Forany p € X and x € X (o0) there exists a unique
ray ypx : [0, 00) — X from p to y(o0) = x.

Forx, y € X(00),weset L(x, y) 1= sup,.y Lp(x, y), theangle distance between
x and y, where we write Z,(x, y) := £ (¥px, ¥py). Note that Z is a distance function
on X (o0) and is lower semi-continuous with respect to the sphere topology. We
remark that if X is proper, then X (co) is compact with respect to the sphere topology.
The Tits distance on X (00), denoted by 7d, is the interior distance induced from
/. We have / = min{7d, =}. The Tits ideal boundary (X (00),7d) of X is a
complete CAT(1)-space, which is non-compact in general. The Busemann function
b, : X — R associated to a ray y in X is defined as

by (p) = lim {d(p, y (1)) - 1}.
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This is a 1-Lipschitz continuous, convex function with b, (y (0)) = 0.

A subset A of a metric space X is said to be convex in X if any x, y € A can be
joined by a minimizing geodesic and the image of every such geodesic is contained
in A. If this condition holds only for any x, y € A with d(x, y) < r, then A is said
to be r-convex in X.

Let B be a closed subset of a metric space X. We define a function dg: X —
[0, o0) by dp(p) := d(p. B), the distance function from B. For p € X \ B, we
denote by y,p a minimizing geodesic in X from p to B, i.e., to a point ¢ € B with
dp(p) =d(p,q).

Assume that B is a closed, convex subset of a complete CAT(0)-space. Then, for
any p € X there exists a unique point ¢ € B with dg(p) = dp(p, g), in particular,
Ypq = VpB. We note that dp is a 1-Lipschitz continuous, convex function.

3. Estimate of radii of fixed point sets
We prove Theorem 1.1.

3.1. Directional derivatives of convex functions. Let X be a complete CAT(0)-
space and F': X — R alocally Lipschitz continuous, convex function. We discuss
the directional derivatives of F'. For any geodesic y in X, F o y has the left and
right derivatives. Recall that the tangent cone C, X is the quotient space [0, +-00) x
2, X /{0 x X, X. Weidentify the subspace {1} x X, X of Cp, X with X, X. Denote any
element (7, v) € C, X by tv and define |1v] := 1. Let C)X := [0, 00) x X7 X/{0} x
XX C CpX. The directional derivative Dy F: C;X — Rof Fatapoint p € X is

defined as
D, F(tv) = lim L) ~FGO),

s—0+ 5

’

where y, is a minimizing geodesic from p with v = y,,(0). The existence of the limit
above is guaranteed by the convexity of . D, F'(tv) is independent of the choice of
vv. Dy F extends to a unique Lipschitz continuous function on C, X, which is convex
(cf. Lemma 2.4 in [K]). Moreover, it is linear along each ray from the vertex o, of
CpX.

Assume that %, X is compact for every p € X. We say that apoint p € X is a
critical point of F if D, F(u) > 0 for every u € X, X. Note that, by the convexity
of F, a point is critical for F' if and only if it is a minimizer of F. For more general
functions, such as c-convex functions (cf. [BBI]), this is not true and we still have some
local properties stated below, e.g. Theorem 3.1 and Lemma 3.5. By the convexity of
D, F and the compactness of X, X, for any non-critical point p of F, there exists a
unique direction u, € X X where Dy F|y, x attains its minimum (< 0). We call u,
the gradient direction of —F at p. Define the gradient vector grad,(—F) € Cp X
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of —F at a point p by
grad,(—F) == |DpF(up)lup € CpX

if p is non-critical, and by grad, (—F) := o, (the vertex) if p is critical. It follows
that | grad,,(—F)| = =D, F(up).

3.2. Jost—-Mayer’s gradient curves. The following theorem is a restricted version
of aresult in [J], [M].

Theorem 3.1 ([J], [M]). Let X be acomplete CAT(0)-space such that £, X is compact
forevery p € X, and let F: X — R be a convex function. Then, for every p € X
there exists a Lipschitz continuous curve cp: [0, 00) — X from p = ¢,(0), called
the gradient curve from p for —F, such that for any t > 0 we have

. d(ept+s),cp()) . —Focplt+s)+Focy(t)
M) e s TS0 dlep(t+ ), cp0))
ey ~F @+ Fep(0)
g—cp(t) d(q, Cp([))
= |gradcp(t)(_F)|’

2) (F ocp)y (1) = | grad o (= F),

where (F o cp), (1) is the right derivative of F o c,, at t. Moreover, for anyr > 0, the
gradient curve cc, ) from ¢y (t) for —F satisfies

Cep(ty(r) = cp(t +r).
Under the same assumption as in Theorem 3.1, we have:

Lemma 3.2. For the gradient curve c, from p of —F, the right tangent vector
(¢p)+(0) € Cp X exists and coincides with grad,,(—F).

Proof. By taking a sequence {s;} with s; — 04, we have a limit v € £, X of the
direction ypc,(s;)(0) as i — oo. By Theorem 3.1(1), DpF(v) must be equal to
Dy F(up) = —|grad,(—F)|. We see that v = u,, by the uniqueness of the gradient
direction u,. O

3.3. First variation formula. The following is well known.

Lemma 3.3. Let X be a complete CAT(0)-space.
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(1) Let B be a closed, convex subset of X. Then forany p € X\ Bandv € ;X
we have

Dydp(v) = —cos L,(ypp(0), v).

(2) Lety bearayin X. Then for any p € X and v € X, X we have
Dpby, (v) = — 08 Ly (Vpy(00)(0), v).

Proof. (1) follows from a standard argument (cf. Section 4.5 of [BBI]).

We prove (2). Set B; := b;l(—oo, —t]fort > 0. Byisconvexin X. Letp € X
be any point. If r > 0 is large enough for p, then p € X'\ B, anddp, (p) = b, (p) +t
(cf. Proposition I1.8.22 in [BH]), which and (1) imply (2). O

Some variants of Lemma 3.3(1) are seen in Section 4.5 of [BBI]. Note that the
CAT(0)-condition for X is not essential for Lemma 3.3.
To prove a first variation formula for convex functions, we need a lemma.

Lemma 3.4. Let S be a sector in B? bounded by two distinct rays from the origin o.
Let F: S — R be a function that is linear along each ray from o. If the directional
derivative D, F: C,S — R of F at a point u € S\ {o} exists, then D, F is linear
on C,S.

Lemma 3.4 is shown by a standard argument. We omit the proof.
We prove the following first variation formula.

Lemma 3.5. Let F: X — R be alocally Lipschitz continuous, convex function on a
complete CAT(0)-space X. Let p € X be a non-critical point of F such that X, X is
compact. Then for any v € 2, X we have

Dy F(v) > —|grad,(—F)|cos Lp(up, v),

where uy, € X, X is the gradient direction of —F at p.

Proof. Letv € X,X be adirection. If Z,(u,, v) = 0, the lemma is obvious. In the
case where Z, (up, v) = 7, the minimizing geodesic yy,,, in C, X fromuy, to v passes
through the vertex oy, so that the convexity of Dy, F' along v, implies the lemma.
We assume that 0 < /,(u,,v) < m. Now consider the second derivative
Dy, DpF: Cy,Cp X — R. Let S C CpX be the 2-dimensional flat sector gen-
erated by yy,v. S is convex in CpX. We set & 1= 7,,»(0) and n := yu,0,(0),
both which belong to Eup S. Note that CupS is a flat half plane in Cup CpX. Take
the direction ¢ € X%,,S perpendicular to n. Setting 6 = /,,(0p,v), we see
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& = (cost)n + (sin6)¢. Since Lemma 3.4 implies the linearity of Dy, D) F, we
have
Dy, DpF (&) = Dy,DpF(n)cost + Dy, DpF(¢)sind.

The linearity of Dy, F along vy, shows that Dy, D, F'(n) = —D, F(up) > 0. Since
up is the minimum point of D, F on %, X, we have D,, D, F(¢) > 0. Thus, by
noting 0 < 6 < /2,

Dy, DyF(£) > —DypF(up) cosd (> 0). (3.1)

It follows that the distance between u), and v in C, X is equal to 2 cos 8, so that, by
the convexity of D, F along Yupvs

DypF(v) = DpF(up) +2 Dy, Dp F(§) cos 6. (3.2)
Combining (3.1) and (3.2) yields
DpF(v) > —DpF(up)cos26 = Dy F(up) cos Lp(up, v),
which completes the proof of Lemma 3.5. o

Note that the equality in Lemma 3.5 does not necessarily hold. Lemma 3.5
remains true for a locally Lipschitz continuous, c-convex function F on a locally
CAT(x)-space X, ¢,k € R,

3.4. Monotone points. Let X beacomplete CAT(0)-spaceand F': X — Raconvex
function. The following terminology was introduced by Eberlein in Section 4.1 of
[E] for a Riemannian manifold. A point x € X (o0) is said to be F-monotone if
there exists a ray v : [0, oc0) — X with x = y(c0) such that F o y(¢) is monotone
non-increasing in ¢t > 0. We denote by X r(c0) the set of all F-monotone points in
X (00), called the F-monotone set. For anisometry f of X, we recall the displacement
function dy(p) := d(p, f(p)), which is a 1-Lipschitz continuous, convex function
on X. Foraray y in X, y (00) is dy-monotone if and only if f o y is asymptotic to y.
This leads to X4, (00) = X (00).

The following lemma is obtained by the same discussion as in Section 4.1 of [E].
We omit the proof.

Lemma 3.6. Let F: X — R be a convex function.
(1) For a point x € X(o0), the following properties are equivalent to each other.

(a) x is F-monotone.

(b) For any ray y with x = y(o0), F o y(t) is monotone non-increasing in
t>0.
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(c) There exists a sequence {p;} of points in X converging to x in the cone
topology such that F(p;) is uniformly bounded from above.

(2) XF(00) is closed with respect to the sphere topology.
(3) If X is proper, then X (00) is a closed, w-convex subset of (X (00), Td).

3.5. Proof of Theorem 1.1. We prove the theorem in the same way as in [E] by using
Lemma 3.5. Let X be a proper CAT(0)-space such that X, X is compact for every
p € X, and f a parabolic isometry of X. Since the displacement function dy has
no minimal (or critical) point in X, we have the gradient direction u;, of —dy at any
p € X, which satisfies Dydy(u,) < 0. We fix a point p € X and take the gradient
curve ¢, from p for —dy. By Lemma 3.2, the right tangent vector (¢,)4(f) € Cp X
satisfies (¢p)4(t) = gradcp(,)(—df) for any ¢ > 0. It follows from Theorem 3.1(1)
that dy o cp(¢) is strictly monotone decreasing in t > 0. There exists a sequence
t; — oo such that ¢, (%) converges to some point x € X (c0) in the cone topology.
Lemma 3.6(1) implies x € Xy(00).

We take any y € Xr(oo) and fix it. It suffices to prove that 7d(x, y) < 7 /2. Let
Ur 1= Ye,(1)y(0). Consider the Busemann function b := b, associated with y,,.
Since y is dy-monotone and by Theorem 3.1(1), Lemma 3.3(2), and Lemma 3.5, we
have

(bo Cp)q.([) = —| gradcp(;>(—df)| COS Zcp(t) (ucp(t), V) < Dcp(t)df(vt) <0

forany r > 0, and hence b o ¢, (¢) is monotone non-increasing in ¢. By Lemma 3.6(1),
x is b-monotone and, for any ¢ € X, b o y,x (f) is monotone non-increasing in . It
follows from Lemma 3.3(2) that

— 08 Ly (x,¥) = (b o yg), (0) <0,

which proves Td(x, y) < m /2.
Since (X (00), Td) is CAT(1), X ¢(00) is contractible. This completes the proof
of Theorem 1.1. O

Let X be as in Theorem 1.1. Then we have rad Xr(o0) < = /2 for any locally
Lipschitz continuous, convex function I on X with no minimum in X.

4. Dimension of Tits ideal boundaries

We need the following to prove Proposition 1.8.

Proposition 4.1 ([FSY]). Let X be a proper CAT(0)-space. Then, the covering
dimension of X (c0) for the sphere topology satisfies

dim X (c0) <dim X — 1.
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Proof of Proposition 1.8. By Proposition 4.1, it suffices to show that
dime (X (00), Td) < dim X (00).

We consider the identity map ¢: (X (00), Td) — X (00), which is continuous. Take
any compact subset K C (X (c0), Td). Since X (o0) is Hausdorff, t|g : K — «(K) is
ahomeomorphism. Thus, wehavedim K = dim((K) < dim X (c0). This completes
the proof. O

We denote by A" = A"(agp,ai,...,a,) a (closed) n-simplex with vertices
ap,at, ..., ay. Let F; C 9A™ be the (n — 1)-simplex that is the opposite face to
aj, where 3 A" is the boundary of A", We say that a map v from A" to a set collapses
aA" if

Y(Fo) Ny (Fr) NN (Fu) # 0.

The following is a consequence of Sperner’s lemma (cf. 2.1 in [F]).

Lemma 4.2. Let Y be a Hausdorff space of dimY < n — 1, n > 1. Then any
continuous map : A" — Y collapses dA".

Proof. Suppose that there exists a continuous map ¢ : A" — Y thatdoes not collapse
dA" Weset U; .= Y \ ¢ (F;),i =0,1,...,n, which are open in the Hausdorff
space Y. Since v does not collapse dA", {U;}!_, is an open covering of Y. By
dimY < n — 1, there exists a refinement {V;} of {U;} of order at most n. Since  is
continuous and the order of {V;} is at most n, we can take a sufficiently refined trian-
gulation of A" such that for each simplex s of it, ¢ (s) intersects at most » members
of {V;}. Then we give alabel by i =0, 1, ..., n to each vertex of the refinement as
follows. A label of a vertex a is i if ¢(a) € V;, which implies that this label is a
Sperner label on A™. Namely, each original vertex «; has the label i, and each vertex
in the refinement contained in a j-dimensional simplex A/ = AJ(ay, ajy, ..., a;;)
is labelled by one of ig, i1, ..., i;; e.g., a vertex contained in F; does not have the
label i. Therefore, by Sperner’s lemma there exists at least one n-simplex s” in the
refined triangulation of A" such that the vertices of s™ have the n + 1 different labels,
0,1,...,n.

On the other hand, since 1 (s™) is contained in at most n different V;’s, the simplex
s™ has at most n different labels. This is a contradiction. O

Lemma 4.2 plays a key role in the proof of Theorem 1.7 in Section 5. As another
application of Lemma 4.2, we have:

Proposition 4.3. Let Y be a CAT(1)-space of dim¢ Y < m, m > 1. Then, for any
embedding W from an m-sphere S™ into Y we have rad ¢ (S™) > m. In particular, if
m =1, then Y is locally an R-tree.
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Proof. Suppose that there exists an embedding v : S — Y satisfying rad ¢ (S™) <
. Since Y is CAT(1), v»(S™) is contractible in Y. Hence, for a closed (m + 1)-
disk D™ there is a continuous extension ¢ : D"+! — Y of /. By identifying
D™ with an (m + 1)-simplex, ¥ does not collapse D"+ and dim (D" *1) <
dim¢ Y < m. This contradicts Lemma 4.2. O

Remark 4.4. Let X be a proper CAT(0)-space of dim X < n. By Proposition 1.8,
we can apply Proposition4.3to ¥ = (X(o0),Td) and m =n — 1.

5. CAT(1)-spaces of small diameter
In this section we shall prove Theorems 1.3 and 1.7.

5.1. Small triangles. Let Y be a CAT(1)-space. For x, y,z € Y weset /,(y, z) :=
Lx(¥xy, ¥xz)- Denote the image of yyy by [x,y]. Let A = Alap, ay, a) be a
geodesic triangle in Y with sides [ag, a1], [a1, a2], [a2, ap], and A = A(ay, a1, az)
a comparison triangle in S*(1) of A with the same side-lengths as A. Recall that
Lai(aj, ax) < Lz (a;,ar) for distinct i, j, k = 0, 1, 2. We say that A(ag, a1, az) is
small if d(a;, a;) < w/2forany i, j = 0,1,2. If A(ag, a1, ay) is small, then we
have d(ap, x) < /2 for any x € [ag, a1] by the CAT(1)-inequality. If A(ag, a1, a2)
is small and if d(ay, x) = /2 for some x € [ag, a1] \ {ap, a1}, then the triangle is
an isosceles triangle and bounds a convex spherical surface.

As usual, O(¢g) denotes Landau’s symbol, i.e., some universal function such that
limsup,_, o |O(e)|/e is finite. We assume that O (¢) is positive.

For the proof of Theorem 1.7, we first show:

Lemma 5.1. Let ¢ € (0,1) be a positive number. Let A = Alao, a1, a2) and
AN = Naj, ay, ab) be small geodesic triangles in Y and in S*(1), respectively. Then
the following holds:
(1) if |d(ai, aj) — d(a}, a})| <& foranyi, j =0,1,2 and if d(a, a;) > &'/* for
each j = 1,2, then we have
Laglar, az) < Ly (@), a5) + O(e"/?):;

(2) if Lgglar, ap) > Zaé(ai,aé) — ¢ and |d(ag, a;) — d(a6,a]{)| < & for each
j =1,2, then we have

d(ay, az) > d(ai,aé) — 0(e).
Proof. (1) Let A = A(Gp, 31, 3) be a comparison triangle in S?(1) of A. Since Y

is CAT(1), we have /g4, (a1, a2) < /7, (a1, az). By the assumption of A and A’, we
have the conclusion of (1).
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We omit the proof of (2). O

We next prove the following lemma.

Lemma 5.2. Lete € (0, 1), and let A = A(ao, a1, az) be a small geodesic triangle
in Y. Assume that there exists a point y € [ag, a1] such that min;—o 1 d(a;, y) > &'/
and d(az, y) > /2 — . Then we have

() [ Lylaz, a) = 7/2] < O@E'?),i =0,1,

(2) d(az,x) > /2 — O(el/?)
Jor any x € lag, a1].
Proof. (1) Let A] = A(Y',al,a}), i = 0,1, be two spherical triangles in S2(1)
such that d(y’, a}) = d(y, a;), d(a], a)) = d(a;, az), and d(a;, y') = 7/2. Since
each A} is small, we have /,/(a},a]) < m/2. By d(ay,y) > m/2 — &, we have
|d(az, y) — d(a}, y')| < e. Applying Lemma 5.1(1) to A(y, a;, az) and A} yields
that Zy(az, a;) < m/2 + O(e'/?). Therefore, by w < /y(az, ag) + Ly(az, a1) we
have /y(az, a;) > /2 — O(/?).

(2) For any given x € [ag, a1]\ {»}, letus take a small spherical isosceles triangle
A" = Ay, x",a}) such that d(a¥, x") = d(a),y") = w/2 and d(x",y") =
d(x, y). Since Zy/(al, x") = /2 and by (1) we have /y(az, x) > Lyn(a, x") —
0(£'/?). Applying Lemma 5.1(2) to A(y, x, az) and A” shows (2). O

Lemma 5.3. Let e € (0, 1) be a positive number. For two small geodesic triangles
A = Aag, a1, ap) inY and N = A(ag, ay, a5) in S2(1), we assume that

(1) d(ap,x) > /2 — € for any x € [ag, a1];

(2) d(aj,x") =m/2 for any x" € [ay, aj];

(3) ld(ao, ar) — d(ap, aj)| <e.

For any four points x; € [ay, a;], x] € [a}, al], i =0, 1, such that

d(ay, xi)/d(ay, a;) = d(ay, x})/d(a), aj),

we have
|d(x0, x1) — d(x}, x})| < O(eV%). (5.1)

Proof. Take such four points xo, x1, x(, and x]. We may assume that d(aj, aj) >
4e'/2. Note that d(ao, a;) > 3¢V/2. Take y; € [ao,a1] and ¥, € [a}, aj] with
d(a;, ;) = d(a],y;) = e/?fori = 0,1. Let y; € [a2,¥;] and y! € [a}, ¥}] be the
points determined by

dlay, yi) dlag,xi)  dlay,y)  dlay, x))
d(ay,y;) dlay,a;))’  d(a,y;)  d(a},a)
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(cf. Figure 1). Let A = A(?o, §13 a>) be a spherical comparison triangle in S2(1)
of A = A(3g, V1, a2), and Yo, ¥1 € A the corresponding points to yo, y1. Consider-
— = =

ing the two geodesic triangles A and Ay, ¥y, ab) in S*(1), we have |d( 5o, ;) —
d(yg, YDI. [d(o, 31) — d(¥g, yPI < O(e),

d(y0.51) < d(¥5.¥1) + Ofe), (5.2)

and d(yo, y1) < d(¥, ) + Oe). By d(xi, y;),d(x],y)) < O(&'?), we have
d(xo, x1) < d(x},x]) + O(e'/%). To obtain the opposite inequality, it suffices to
prove

d(yo, y1) > d(yh, y}) — O(e¥%). (5.3)
a aé
X1 xi
/7
X
*o A%\ g ; yi
Yo Yo
ag Yo V1 ar  a Yo v aj

Figure 1. A = A(ao, a1, az) and A" = A(a)), af, aj).

Applying Lemma 5.2(1) to A(ag, y1, a2) and A(yy, a1, az) yields
7/2 — 0(eY?) < [5,(a2, 7)), L3,(a2,7) < /24 OV, (54)
Consider A (¥, ¥, yo) and A(¥g, ¥, ¥)- By Z%(aé, ¥1) = /2 and (5.4), we have
L5y(a2,31) > Ly (ah, 57) — O(e'/?). Hence Lemma 5.1(2) implies d(yo,y;) >
d(y). 7)) — O(e'/?). This together with (5.2) implies
|d(yo0, 1) — d (3, VDI < O(e!?). (5.5)
Therefore, by Lemma 5.1(1) we see that Z5, (3o, yo) < Ly, (¥, ¥o) + o@EYH. It
follows from (5.4) and Zy/l (ah,¥) =7 /2 that
L3,(vo, y1) = L3,(31, Y0) — L3,Vo, Yo)
> /2 = Ly (3, ¥0) — O = L5 (09, ¥)) — O™,
By (5.5), (5.6), and Lemma 5.1(2), we have (5.3). This completes the proof. O

(5.6)
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5.2. Proof of Theorem 1.7. We need a lemma.

Lemma 5.4. Let ¢ and l be positive numbers, and let c: [0,1] — Y be a 1-Lipschitz
continuous curve from a point xo to a point x1 in a metric space Y such that

I < d(xp,x1)+&. (5.7)

Assume that there exists a minimizing geodesic Yxyx, joining xo to x1. Then, for any
s € [0, 1], setting x5 := Yxox, (s d(x0, x1)) we have

d(xg, c(sl)) < 2e.
Note that the parameter of ¢ is not necessarily proportional to the arc-length.
Proof. Since c is 1-Lipschitz continuous, it follows from (5.7) that
d(xo, c(sl)) +d(c(sl), x1) < sl + (1 =)l < d(x0, x1) + &,
and hence, by the triangle inequality,
0 <sl —d(xg,c(sl)) <e. (5.8)

By (5.7) and d (x5, x1) < (1 — s)l, we have

sl > d(xg, x5) = d(x0, x1) — d(xg, x1) > sl —e.
Combining this and (5.8) yields

|d(x0, x5) — d(xg, c(s]))| < 2e.

By the triangle inequality, this completes the proof. O

Let Y be a CAT(1)-space with diam ¥ < s /2,andlet p: ¥ — R be the function
defined by p(x) := sup,cy d(x, y). By the definition, rad ¥ = infey p(x) < 7/2.
We define the constant 6, := 7/2 — rad A'ln, where A’I” is the standard spherical
simplex defined in (1.1). §,, is strictly monotone decreasinginm = 1, 2, . ... Denote
the barycenter of AT by b,

The distortion dis ¢ of a map ¢: A1 — A between metric spaces is defined by

disp := sup |d(p(x), p(y)) —d(x, y)l.
X, yEA1

We prove the following:

Lemma 5.5. Let ¢ be a positive number with ¢ < 8,,. Assume that there exists
a 1-Lipschitz continuous map ¢p: A7 — Y such that dis ¢, < & and p(by) >
/2 — &, where by, := @u(b)). Then, there exists a 1-Lipschitz continuous map
Qma1: AT Y such that dis i1 < O(eV/3).
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Proof. Denote by ay, ..., a;, ; the vertices of AT and set a; := @ (a)). Let

AT < 9AT™! be the face opposite to a, , ;.

d(am+1,bm) > w/2 —e. We construct a map ¢p+1: A'ln“ — Y as follows. For
any given x’ € A'1”+1, the segment [a;, e x'] extends to a segment [a], 41 X'] with

X e Al'. Set X := ¢, (x’). There is a unique point x € [a;,41, X] such that

There exists a point a,+1 € Y with

d(any1, %) dal, 1. %))

d(ans1, %) d(@)y . 7).

We then define ¢, 41 (x") := x. It follows that ¢ 11(a;, ;1) = amy1 and @41 lam =
¢m. Note that ¢, and ¢,,41 are not necessarily injective.
Let us prove that for any z € ¢, (A]"),

d(amy1,2) > 7/2 — O(e'?). (5.9)

Take a point 7" € A" with ¢, (z) = z. The segment [b},, z'] extends to a segment
[z, 271 with z, 27 € dAT. Since §,, coincides with the radius of the inscribed
sphere of A" centered at b),, we have d(b},,z;) > 8y for each i = 0,1. Set
% = (pm(zlf ). Consider the 1-Lipschitz continuous curve ¢ := ¢ o Va2, joining
zo and z1. Note that ¢ passes through z and b,,. Choose a number s € [0, 1] with
c(sd(zy, 7)) = by and let b := y;;, (s d(z0, 21)) (cf. Figure 2). Since dis ¢, < &,

/
am+1 Ayl
b
20 v 21 20 7 ~ ]
m
C
b N

Figure 2. A(zo, 21, am+1) and A(zg, 75 4, 1)-

we see that d(z(, 2}) < d(zo, z1) +&. Lemma 5.4 implies that d(b, b;,) < 2e and so
d(am+1,b) > m/2 — 3¢ by the assumption for a,,+1. By € < §,; we have

d(b,z;) > dbl,, 7)) —3e = 8, —3e > &'/?

m
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for each i = 0,1. Applying Lemma 5.2(2) to A(zo, 21, am+1) yields that
d(amy1,y) > m/2 — O(e'/?) for any y € [z0, z1]. Therefore, by Lemma 5.4 we
obtain (5.9).

For any given two points x}, x| € AT, either segment [a/, . x/] extends to
a segment [a,  ,,X/] with ¥] € AT, Letx; := @up1(x]) and X; = @p11(X)).
Since ¢,, is 1-Lipschitz continuous, we have d(xop, x1) < d(x{, x]). Comparing
A(Xo, X1, am+1) and A(Xy, X1, ay, ), the CAT(1)-inequality leads to d(xg, x1) <
d(x{, x1). Thus, ¢p41 is 1-Lipschitz continuous. It remains to prove that

d(xo, x1) > d(xf, x}) — O'/3). (5.10)

By Lemma 5.4, for any point w € [Xo, x1] there exists a point z € ¢y, ([x;, X{1) with
d(z, w) < 2e. This and (5.9) imply

d(amer, w) > 1/2 — OV, (5.11)
/7

m+1
a unit 2-sphere in A’l’”'l. By dis ¢, < &, (5.11), and applying Lemma 5.3 to their
triangles, we obtain (5.10). This completes the proof of Lemma 5.5. O

Consider the small geodesic triangles A(xo, X1, am+1) in ¥ and A(xy, X7, a), ;) in

Letn :=dimc Y + 1 < oo and let ¢ be a positive number with ¢ < §,. To prove
Theorem 1.7, we suppose thatrad ¥ > 7 /2 —e. Note that p(y) > 7 /2 — & holds for
any y € Y. Take a point ag € Y. There exists a point a; € Y with d(ay, ag)m/2 — &.
Let gy : Al — [ag, a1] be the linear bijective map. Since 7/2—¢ < d(ag, ar) < /2,
this is a 1-Lipschitz continuous map A% — Y withdis¢; < e. By Lemma 5.5, we

inductively have 1-Lipschitz continuous maps ¢y, : A’1" — Y m=1,2,...,n,such
that dis ¢, < O(e/¥"). Since dim on(A}) <dimc Y =n — 1, Lemma 4.2 implies
that ¢, collapses dA]. Hence, there exist n + 1 points y; € F;,i =0,1,...,n, that

are all mapped by ¢, to a common point of ¥, where F; C A is the opposite face to
aj. We set
{ /

%y | % € Fy, %] #x;foranyi #7j}>0.

oy = inf{max d(x;, x;
i,

Then for some ig # jo we have a, < d(yj, y;) < disgy < O(£'/%"), which gives a

lower estimate of . Therefore we obtainrad Y < 7 /2 — § for some positive constant
8 depending only on n.

Since Y is complete, C(Y') consists of a single point (cf. Proposition 3.1 in [LS2]).
This completes the proof of Theorem 1.7. O

Remark 5.6. For A C Y, we denote by Cy(A) the set of all points where the
function ¥ > x — SUPyea d(x,y) € [0, o] attains the infimum. For an arbitrary
subset A of a CAT(1)-space ¥ with diam A < 7z /2, we have diam A = diam B
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for the closure B of the convex hull of A (cf. Lemma 4.1 in [L.S1]). By applying
Theorem 1.7 to B, we obtain the following generalization. Let ¥ be a complete
CAT(1)-space of dimc Y < oo, and A C Y a subset of diam A < x/2. Then
infycy SUPyea d(x,y) <m/2—4,and Cy(A) consists of a single point.

5.3. Proof of Theorem 1.3. Let f be a parabolic isometry of a proper CAT (0)-space
X and let B := X(00). It follows from Theorem 1.1 and Lemma 3.6(3) that B is
a closed, -convex subset of (X (oc0), Td) with rad B < 7 /2. Hence, B itself is a
complete CAT(1)-space.

First, we verify that C(B) is non-empty. Let p: B — R be the function defined
by p(x) :=sup,cp d(x, y). There exists a sequence {x;} in B with p(x;) — rad B
as i — oo. Since X(oo) is compact with respect to the sphere topology, some
subsequence of {x; } converges to a point x. Wehave x € Bbecause B is closed. By the
lower semi-continuity of Tits distances, we have p(x) < rad B. Thus, p(x) =rad B
and x € C(B).

By the convexity of B, C(B) is a closed, convex subset of (X (o0), 7d) with the
property that diam C(B) < rad B < z/2. By setting Y := C(B), it is a complete
CAT(1)-space of diamY < z/2. By Proposition 1.8, dim¢ (X (c0), Td) is finite.
Therefore, by Theorem 1.7 we have radY < z/2, and C(Y) consists of a single
point. Moreover, the second half follows from the uniqueness of the point and its
property. This completes the proof of Theorem 1.3. O

Theorem 1.7 and the proof of Theorem 1.3 imply the following:

Proposition 5.7. Let Y be a compact CAT(1)-space ofdimY < ocoandradY < z /2.
Then C%(Y) consists of a single point.

Remark 5.8. Let X be a complete CAT(0)-space and G a subgroup of the isometry
group of X. Set Xg(00) := ({X,(c0) | ¢ € G}. We say that G is admissible if
Xg(00) # ¥ and rad X (o0) < 7/2. It follows from Theorem 1.3 that if G is an
abelian group containing a parabolic element, then G is admissible, provided X is as
in Theorem 1.3. This is an extension of Proposition 4.4.2 of [E]. Similarly, we can
obtain some extensions of Propositions 4.4.3, 4.4.4, and Corollary 4.4.5 of [E] for
CAT(0)-spaces. Proposition 4.4.6 of [E] can be also extended by using the flat torus
theorem for CAT(0)-spaces (cf. Theorem I1.7.1 of [BH]).

6. Example of a symmetric space

In this section we discuss the symmetric space SL(3, R)/SO(3, R) in detail as an
example for Theorems 1.1 and 1.3. A good reference for standard facts we use here
is I1.10 in [BH]. We would like to thank M. Bestvina for suggesting this example,
and also K. Wortman for useful discussions and informations.
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6.1. Manifolds P (n,R) and P(rn,R);. Let P(n, R) denote the space consisting
of all positive definite, symmetric (n x n)-matrices with real coefficients. Naturally,
P(n,R) is a differentiable manifold of dimension n(rn + 1)/2. The tangent space
T, P(n,R) at a point p is naturally isomorphic (via translation) to the space of all
symmetric (n x n)- matrices, S(n, R). The inner product (, v), = tr(p™ up~'v)
on T, P(n,R) >~ S(n, R) defines a Riemannian metric on P (n, R), where tr u is the
trace of a matrix u. P(n, R) is a simply connected, complete, non-positively curved
Riemannian manifold, so that it is a proper CAT(0)-space.

Let P(n,R); C P(n, R) be the subset of matrices with determinant 1. P(n, R);
is a totally geodesic submanifold, whose tangent space at p is the subspace in S(n, R)
of matrices with trace 0. P(n, R) is a simply connected, complete, non-positively
curved Riemannian manifold of dimension n(n 4 1)/2 — 1, so that it is a proper
CAT(0)-space as well.

SL(n, R) acts on P(n, R) by isomeltries according to the rule

fp):=fp'f, pePnR), feSL(nR),

where ' f is the transpose of f. The right hand side of the definition is by the multipli-
cation of matrices. We may write f - p instead of f(p). P(n, R); is invariant by this
action, and the action is transitive on this submanifold. Let e be the identity matrix.
The stabilizer of e is SO(n), so that P (n, R) is identified as SL(n, R)/ SO(n).

6.2. Geometry of P (3, R); and Tits boundary. We collect some standard facts on
P(3,R); from I1.10 in [BH]. Most of them are true for all P(n, R);,n > 3 with
appropriate change. Put X := P (3, R);. X isa 5-dimensional, irreducible symmetric
space of non-compact type of rank 2, which is a proper CAT(0)-space.

Let us denote the Tits boundary (X (c0), Td) by X (o0) for simplicity. X (co) is
a “thick spherical building” of dimension 1 such that each apartment is isometric
to S1(1) and each Weyl chamber at infinity is an edge of length 7 /3. Moreover,
diam X (o0) = m. Since X (co) is a spherical building, any two Weyl chambers at
infinity are contained in at least one apartment.

The action of SL(3, R) induced on X (o0) is by simplicial isometries. It is tran-
sitive on pairs (A, ¢), where A is an apartment, and ¢ C A is a Weyl chamber at
infinity. A Weyl chamber is a fundamental domain for the action. (cf. I1.10.71, 75,
76, 77 in [BH]). Therefore there are two orbits in the vertices of X (co) by the group
action, so that X (oo) is a bi-partite graph. It follows that any loop in X (o0) consists
of an even number of edges.

The isometry group of X, I(X), has two connected components, and the one
which contains the identity map, Io(X), is SL(3,R). Let o be the involution of
X at e, which is an orientation reversing isometry. It is given by o (f) = ‘f~L
I1(X) = Ip(X)Uolh(X).
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Let f be an isometry of X. Min(f) denotes the set of all points in X at which
the displacement function dy of f attains its infimum | f| := inf,ex df (p), which is
the translation length. If £ is elliptic, then Min( f) coincides with the fixed point set
Fix(f) of fin X. If f is hyperbolic, then the axes of f are parallel to each other,
and the union of their images is Min( f). If f is parabolic, then Min(f) = @. f is
said to be semi-simple if f is elliptic or hyperbolic.

In this section we calculate those geometric characters of f € SL(3, R).

6.3. Real Jordan forms. Itisknown that f € SL(3, R) is semi-simple as an isom-
etry of X if and only if it is semi-simple as a matrix, i.e., diagonalizable in GL (3, C).
(cf. 11.10.61 in [BH]).

Calculation of Xr(oc) and Min(f) of f € SL(3, R) is mostly by linear algebra.
Each f € SL(3, R) is conjugate to g in SL(3, R) such that g is one (and only one)
of the following list. g is a real Jordan form of f. The symbol diag(a, b, c) is for the
(3 x 3)-diagonal matrix with entries a, b, c.

Since f and g are conjugate in I (X), f is elliptic, hyperbolic, or parabolic if and
only if so is g, respectively. If & € I(X) is a conjugating element, i.e., hifh~! = g,
then Xy(o0) = h - Xg(00), Min(f) = h - Min(g), and | f| = |g|. We discuss g
instead of f.

List of real Jordan forms in SL(3, R).

1 00
1 [o 1 1
00 1
1/a*> 0 0
(2) 0 a 1],where0,1#aeR.
0 0 a
110
3 [0 1 1].
00 1
a b 0
@ |-b a 0 where a, b € R with a® + b> # 0 and b # 0.

0 0 1/(a*+b%

This one is conjugate to diag(a + ib, a — ib, 1/(a* + b?)) by an element in
GL(3, C).

(5) diag(a,b,c)suchthata,b,c e R,abc =1,a #b # ¢ # a.
(6) diag(a,a,1/a*),a eR,a #0,1.
(7) e.
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6.4. Flat and Weyl chambers. Consider the following linear subspace in 7, X.
ap :={u | u = diag(uy, uz, u3), ru =0} C T, X.

Let
Fo:={exp(u)|lueca} CX.
Fy is a flat plane in X and Ag := Fp(00) is an apartment in X (c0).

For x € Ay, let v, be the geodesic in Foy from e to x. y.x is exp(tu(x)),t > 0
for some u(x) € ag. The tangent vector at e, u(x), is uniquely determined by x up
to scaling by a positive number, so that let us denote the one of unit length by u (x),
which we write as diag(u1(x), uz(x), us(x)).

Ag is a 6-gon as a building with the following Weyl chambers (see Figure 3).
{ui(x) > uj(x) > ug(x)} means the set {x € Ao | u; (x) > u;(x) > ur(x)}.

c1 :={u1(x) 2 uz(x) > usz(x)}, c2:={uzp(x) > ui1(x) > uz(x)},
c3:={ua(x) > uz(x) >u1(x)}, c4:={uzlx) >ua(x) > ui(x)},
csi={uz(x) > up(x) 2 up(x)}, c6:={u1(x) = usz(x) > uz(x) }.

Ag =c1U---Ucg. Definev; :=c;j—1N¢i,i =1,2,...,6, where cop = c¢. They

are the vertices of X (c0) in Ag. We may write ¢; = [v;, vi+1], 1 < i < 6, where
vy = Vi.

Vg v2

V5 v3

v4

Figure 3. 6-gon.

A bi-infinite geodesic, or simply line, in X is always contained in some flat plane
because X is a symmetric space. If a line is contained in a unique flat, then it is
called regular (cf. 10.46 [BH]), and otherwise it is called singular. There are three
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singular bi-infinite geodesics (without orientation) on F, which are v,y U¥ev, s Yev, U

Yevss Yevs U Yevs .-
Set wy = u(vy) = (1/4/6) diag(1, 1, —2). This is a unit vector at e tangent to
Foy, pointing the vertex vy at infinity. Define a line in Iy by

wo(t) = exp(twy), teR.

yo i a line through e such that yp(c0) = v, yo(—00) = vs. As a set, yp =
{diag(s, s, 1/ 10<seR} = Ve, Y Yevs. Y0 18 a singular geodesic.

For aline y in X, let P(y) denote the union of all lines in X parallel to y. This
is a convex subset in X, so that let P(y)(co) C X (o0) denote the set of points at
infinity of P(y).

Denote by F the set of all flat planes in X containing yp. Then, P(yo) = [J{F |
F e Fu}. P(yo) is a totally geodesic, 3-dimensional submanifold, which is naturally
isometric to P (2, R); x R (cf. Proposition I1.10.67 in [BH]). P(2, R); is isometric
to H? up to a scaling factor. We note that P (yp)(c0) = [J{F(c0) | F € Fo}.

6.5. Theorem

Theorem 6.1. Suppose g € SL(3, R) is one in the list of Subsection 6.3. Then we
have the following in the order of the list:

(1) gisparabolic and X z(00) is the union of all edges incident to c3. Xg(00) is not
compact in (X (c0), Td), with uncountably many edges; |g| = 0.

(2) g is parabolic and X ¢(o0) = ¢1 U ca U ez, |g| = 24/610g |al.
(3) g is parabolic and X ¢(o0) = c1, gl = 0.
4) g is semi-simple, and
(@) Xg(00) = {v2, vs}.
(b) Ifa® 4+ b*> =1, then g is elliptic, and Fix(g) = o.
(¢) If a®> + b*> # 1, then g is hyperbolic and |g| = ~/6log(a® + b?);
Min(g) = yo.
(5) g is hyperbolic, and |g| = 2,/(log |a])2 + (log |b])2 + (log |c|)2.
(a) Xq(00) = Ao.
(b) Min(g) = Fo.
(6) g is hyperbolic, and |g| = 2\/610g |a|.
(@) Xg(00) = P(y0)(00).
(b) Min(g) = P (o).
(7) g is the identity map, i.e. elliptic, with Fix(g) = X and Xg(00) = X (00).
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6.6. Stabilizers. The analysis of the stabilizing subgroup in SL(3, R) of a point
v € X (00) is important for the proof of the theorem. We quote Proposition 11.10.64
in [BH] in the following form.

Lemma 6.2. Let g = (g;;) € SL(3,R), and x € Ag. Then g(x) = x if and only if
gije W= ) converges as t — oo for all i, j.

This implies the following.

Proposition 6.3. Let G; be the subgroups of SL(3, R) stabilizing v;. Then,

% k% * k% * 0 =%
G = 0 = =% , Go= * ok %k , Gi3= * ok %k ,
0 * 0 0 0 =
* 0 * 0 % ok %
Gy = * % %k , Gs= * 0 , Gg= 0 0 ,
* % % * % % * % %
where x € R.

Let H; be the following subgroup, parameterized by ¢ € R, which fixes edges c1,
7, €3, pointwise.

1 00
H = 0 1 ¢ relR
0 0 1

H, fixes v1 € X(o0). Hj acts transitively on the set of all edges incident to vg
other than ¢1. To see it, consider the following subgroup in SL(3, R) containing ;.

0 0
J = * ok *eR
0 =

S O *

For a given edge ¢ # cj, incident to v, we will find 2 € H; with h(c) = cg. Take

an apartment, A, containing ¢ and c3. Then it automatically contains c1, cp as well.

Recall that SL(3, R) acts transitively on the set of pairs of an apartment, A’, in X (c0)

and a Weyl chamber, ¢/, in A’, (A’, ¢/). Take j € SL(3,R) which maps (A4, ¢) to
p 00

(Ag, cg). Clear that j € Jp since it fixes ¢y, ¢, c3. Let j = (0 gs |, pqr = 1.
00r
/p 00 . 10 0
Takek = ( 0 1/4 0 ) € SL(3,R). Then kj — (on/q) — h € Hy. We have
0 0 1/r 00 1

k(c;) = ¢; for all i, so it follows from j(¢) = cg that h(c) = kj(c) = k(cg) = c¢.
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Also, Hj acts transitively on the set of all edges incident at v4 other than c3. Each
of the two sets is parameterized by ¢ by the action.

Off-diagonal entries except for the (2, 3)-entries of matrices in Hj are (. Since
there are 6 off-diagonal entries in (3 x 3)-matrices, we consider 5 other similar
subgroups, M, H3, Hy, Hs, He, which we define later.

6.7. Proof. We discuss each case in the order and prove Theorem 6.1. Case 7 is
trivial.

Cuse 1. g is parabolic since it is not diagonalizable as a matrix. By Proposition 6.3,
Xg(00) M Ay = c1 Ucp Ucs. To see that any edge, ¢ # c2, 3, incident to v3 is fixed
by g, take a (unique) element 2 € Hg such that i(c) = c3, where

1 0 ¢
Hg = 010 telR
0 01

Since g(c3) = ¢3, = gh(c) = ¢. Then it follows from hg = gh that g(c) = ¢,
pointwise.

To see any edge ¢ # ¢, incident to v is fixed by g, take a (unique) clement
h € H, such that #(c) = ¢y, where

1 00
H, = t 1 0 relR
0 0 1

As before, we have hg = gh, therefore g(c) = ¢, pointwise. We know X, (oo) has
no more edges because it is connected and its diameter is at most 7.

The edges in X, (o) other than ¢q, ¢z, ¢3 are those which are parametrized by H;
and the others which are parametrized by Hg, so that uncountable. It is not compact
because the mid points of the edges are at least 7 /3 apart from each other.

Let us prove |g| = 0 by computation. To deal with Case 3 at one time, suppose

1k0 . .
g = (0 1 1) . It suffices for us to show that there exists a geodesic, y(¢), such that

limy_, o0 d(g(y (1)), y(t)) = 0. We use the notations from the subsection 6.4. For
x € Ag, set y(t) = vex(t) = exp(tu), where u is the diagonal matrix u(x) =
diag(uy, u, u3). For simplicity, we write the result of the action by a group element
gonapoint p as g - p, instead of g(p), in this discussion. Then,

d(g - exp(tu), exp(tu)) =d (exp (—%u) - g -exp(tu), exp <—%u> ~exp(tu)>

=d <exp (—%u) gexp (%u) -e, e) ,
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because exp (5u) - e = exp(tu). By the computation of matrix multiplications,
exp (—5u) gexp (5u) is

1 kexp(t(us —u)/2) 0
0 1 exp(t(u3 — uz)/2)
0 0 1

For g in Case 1, we have k = 0, so that if up > u3, then as t — oo, this matrix
tends to e, which means that d(g - y (1), y(t)) — 0. We got |g| = 0. We remark that
uy > u3 is satisfied for x € Ag if and only if x € (c1 U c2 U c3)\(v1 U vy).

For g in Case 3, wehave k = 1. So,if u1 > uy > us, thend(g-y(t), y(t)) — 0,
which shows that |g| = 0. The condition u; > uy > u3 holds for x € Ay if and only
if x € c1\(v1 Uwvy).

Case 2. Asin Case 1, g is parabolic and X (00) N Ag = ¢1 Uz Ucs. To see there are
not more edges than those in X, (00), suppose there was an edge, ¢ # ¢3, c3, incident
to v3 with g(c) = ¢. Take, as before, i € Hg such that h(c) = c3.

1 0 ¢
h=10 1 0
0 0 1

Then, hgh~1(c3) = c3. Since ¢ # c3, we have ¢ # 0, which is important to get a
contradiction in this case. By computation

1/a®> 0 t(a—1/a%)
heh™'=1 0 1
0 0 a

Sincet(a—1/a?) # 0, hgh~!isnotin G4, so thatdoes not fix v4 € c3,acontradiction.
To see there is no edge ¢ # c1, c2 at vo with g(¢) = ¢, use Hy, as before. If there
was, take h € H, with h(c) = ¢1 such that

1 00
h=1t 1 0], t#0.
0 0 1

Then hgh~'(c1) = ¢1, pointwise. By computation,

1/a* 0 0
hgh_lz t(1/a* —a) a 1
0 0 a

such that 7(1/a®> — a) # 0, therefore hgh~! ¢ G1 does not fix vy, which gives a
contradiction since it is supposed to fix ¢; = [vy, v2].
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We get the claim because X (o0) is connected and with diameter at most 7.
We postpone the computation of | g| until the proof of Case 6. Itisnot a coincidence
that | g| is the same number in Cases 2 and 6.

Case 3. Asin Case 1, g is parabolic and X, (0c0) NAg = c¢1. To see this is all, suppose
there was an edge, ¢ # c1, incident to vy with g(c) = ¢. Take h € Hj such that
h(c) = ce. It follows that high~'(cg) = ce. Let

By computation

O ==
=

therefore hgh‘1 ¢ G¢ does not fix vg € cg, a contradiction.
To see g does not fix any edge incident to vy other than c¢p, use Hs and do the
same argument, where

1
Hs = 0
0

O = =

0
0 reR
1

We get the claim since X, (00) is connected.
Since we already showed that |g| = 0 in the proof of Case 1, we finish Case 3.

Case 4. g is semi-simple because it is diagonalizable in GL(3, C).
(a) By Proposition 6.3, X, (00) N Ag = {vy, vs}. To see this is all, we first show
that there is no edge incident to vz in X¢(00). Suppose there was one, c. We know

00
that ¢ # 1, c3. Take h € Hy such that h(c) = c1. If h = (é(l)(f),then

a—tb b 0
heh™' = | =b(1+1%) a+1b 0 ,
0 0 1/(a? + b?)

which does not fix v; because —b(1+12) #0. Buthgh~(c1) = hg(c) = h(c) = ¢y,
so that it fixes vy € c1, a contradiction. Similarly there is no edge in X, (c0) incident
o vs.

To finish, suppose there was a vertex, v, in X, (00)\Ag. Then Td(v, v2) = m,
because if it was less than 77, then the unique geodesic from v to v would have to be
in X, (co), which is impossible since there is no edge incident to v, fixed by g. By
the same reason, 7d (v, vs) = 7. Consider a loop made of three geodesics: one from
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v to vy, one from v; to vs and one from vs to v. This loop consists of 9 edges, which
is impossible because X (00) is a bi-partite graph.

(b) Recall that we have yy = {diag(s, s, 1/s%) | 0 < s € R}. Under the
condition a® + b> = 1, by computation, gp'e = p,p € P(3,R); if and only if
p = diag(s, s, 1/s%),0 < s € R. We get the claim.

(c). By computation, g(yp) = yp. Since e € yp and e # g(e), g is hyperbolic,
and yp is an axis. The translation length, |g|, is d(e, g(e)) = d(e, ge'g) = d(e, g'g),
where

g'e = diag(a® + b%, a* + b, 1/(a® + b*)?) = expllog(a® + b?) diag(1, 1, —2)].

Since the norm | diag(1, 1, —=2)|, = +/6, |g| = ~/61og(a® + b?).

We know that y9 C Min(g) C P(yo) because an axis of g is parallel to yp. Since
¢ leaves yp invariant, g leaves P (yp) invariant as well. We remark that the action of
g is by a shift and a rotation about y9. We define the following subgroup in SL(3, R),
which is in fact in SO(3).

R ={h = (hij) € SO3) | (hij)1<i,j<2 € SO(2), h3z =1,
h13 = h31 = hyz = h3p =0},

If 7 € R, h fixes e, vy, vs, so that & fixes all points on yy. Therefore i leaves P (yp)
invariant, and acts on Fo.

Claim. The action of R on ¥y is transitive.

To see it, let F' € %, be a flat. Then there is an element w € T, X such that w
and wyp commute as matrices and the image by exp of the subspace spanned by w, wy
in T,X is F. The two commuting symmetric matrices w, wy are simultaneously
diagonalizable by an element, /2, in SO(3). Moreover since w; is diagonal, one may
assume that 4 commutes with w,. By computation, this implies that % is in R. We
claim that » maps F to Fp. Indeed, let ¥ be the geodesic through e defined by
y =exp(sw),s € R. Itisin F. Since h(yp) = yo, it suffices to show h(y) C Fo.
Since h € SO(3),

h(y) = hexp(sw)'h = hexp(sw)h ™" = exp(shwh™"),
which is in F because hwh~! is diagonal. We got the claim.

Suppose there was an axis of g, o, which is not yy. Take the plane F' € ¥y which
contains «. Such F exists since « is parallel to yy. Take & € R with h(F) = Fy.
Since & commutes with g, i(w) is an axis of g as well. It implies that Fy is invariant
by g, so that Fp(oco) C Xg(c0), which is impossible. We got Min(g) = yg. We
finished Case 4.

We are left with those g which are diagonal. Suppose e # g = diag(a, b, c) €
SL(3,R). g is a semi-simple isometry and the flat Fy is g-invariant, so that
Ag C X4(c0).
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Set

N = \/(log |al)? + (log [b|)? + (log |c])?
and define a unit length element u, € T, Fy by

1
Hg 1= Ndiag(log lal, log|b|, log |c]).
Let y, be the bi-infinite geodesic in Fy through e defined by
ve(t) :=exp(tug), teR.

This is of unit speed. Computation shows that y, is g-invariant, therefore it is an axis.
gl = d(e, g(e)) = d(e,g's). g'g = diag(a®,b*, c*) = exp2Nug) = yz(2N).
Since y, has unit speed, |g| = 2N.

There are two cases: y, is regular (Case 5) or singular (Case 6). We already know
that g is hyperbolic and calculated |g|.

Case 5.

(a) Since I is invariant by g, Ag = Fo(00) C Xg(00). Let v € X4(00). Then
there is a flat I" with y, C F and v € F(00). Indeed, if ¥ is a bi-infinite geodesic
through e with y (oc) = v, then since g(v) = v, y and y, is on some flat.

Since y, is a regular geodesic, it is contained in only one flat, so that ' = Fy. We
getv € Iy(oo) = Ag.

(b) Since Fy is g-invariant, Fy C Min(g). Min(g) consists of axes of g. Let y
be an axis different from y,. Then there is a flat strip between them, so that there is
indeed a flat, F, containing both of them because it is in a symmetric space. Since
v 1s regular, we have F = Fy, so that y is in Fy.

Case 6.

(a) As in Case 5, A9 C X (00). Since g commutes with any element in R,
X (00) is R-invariant, so that R - Ag C X,(00). R - Ag = P(yp)(c0) implies that
P(y0)(00) C Xg(00). To see the other inclusion, let v € Xg(c0). Then there is a
flat, I, such that yo C FF and v € F(c0) (cf. (a) in Case 5). By definition, I’ € ¥y,
sothat F C P(y0). We getv € P(yp)(00).

(b) In this case, y, = yo. I is g-invariant, so that Fy C Min(g). Since g
commutes with any element in R, Min(g) is R-invariant, so that R - [y C Min(g).
Because R - Fy = P(yy), P(y) C Min(g). On the other hand, since P(yy) is the
union of all geodesics parallel to yy, Min(g) C P(yp), therefore Min(g) = P(yp).
Case 6 is done.

To finish the proof, we show |g| = 2+/6log |a| for g in Case 2. It is easy to see
that g is conjugate in SL(3, R) to the matrix, 7 = <§ % 1/8,12) , so that it suffices to
show || = 2+/6log |al.
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Although yg is not h-invariant, /1 fixes yp(00) = vz, yo(—00) = vs because
h € G2NGs, so that & leaves not only the subset P (yp), but also its product structure
P(yo) = H? x R invariant.

The restriction of i to P = P (yp), h|p, is also parabolic. Since P is convex in X
and h-invariant, |k| p| = ||, so that we compute | k| p|. k| p actson P = H? xRbya
product of isometries: a parabolic isometry on H?, denoted by £| m2. and a translation
on R, denoted by h|r. Since |A|gz| = 0, we have |k|p| = |h|R].

Consider the following matrix in SL(3,R), &k = ((18 11)/[1 (?). This is also a
parabolic isometry, which leaves P (yp) invariant such that it acts on it as a prod-
uct of isometries of H? and R. The action of k on R is trivial since the (3, 3)-entry of
k is 1. This is because one can show by computation that the geodesic from e € X
to k(e) is perpendicular to yo at ¢, so that k(e) € H? in H? x R. Or, one may use the

. . . . . 0
fact that P (yp) is the union of matrices of the following form in P (3, R)q; (% % 0) p
*

where the set of top-left (2 x 2)-matrices corresponds to H? and the (3, 3)-entries,
which are positive numbers, (by taking log) correspond to R in the product decompo-
sition P(vo) = H? x R. By the definition of the action, k acts trivially on the second
factor. Therefore, |hk|p| = |h|p|. By the same reason as h, |hk|p| = |hk|. By
computation, ik = diag(a, a, 1/a*), which is hyperbolic. We have just computed
that | diag(a, a, 1/a%)| = 2+/61og |a|. To summarize,

gl = |h| = |kl p| = |hk|p| = |hk| = 2v/610g]al.

We finished the proof. ]
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