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Zero entropy and bounded topology

Gabriel P. Paternain*and Jimmy Petean®

Abstract. We study the existence of Riemannian metrics with zero topological entropy on a
closed manifold M with infinite fundamental group. We show that such a metric does not exist
if there is a finite simply connected CW complex which maps to M in such a way that the
rank of the map induced in the pointed loop space homology grows exponentially. This result
allows us to prove in dimensions four and five, that if M admits a metric with zero entropy
then its universal covering has the rational homotopy type of a finite elliptic CW complex. We
conjecture that this is the case in every dimension.

1. Introduction

Let M" be a closed connected smooth manifold. Given a Riemannian metric g, let
¢ be the geodesic flow of g.

One of the most fundamental dynamical invariants that one can associate to ¢ is
the topological entropy, which we denote by hyop(g). It roughly measures the orbit
structure complexity of the flow. Positive entropy means in general, that the geodesic
flow presents somewhere in the phase space (the unit sphere bundle of the manifold)
a complicated dynamical behaviour. There are various equivalent ways of defining
entropy, but for the geodesic flow, Mafi¢’s formula [14] provides a clear understanding
of this invariant in terms of geodesic arcs. Given points p andg in M and T > 0,
define n7(p, ¢) to be the number of geodesic arcs joining p and g with length < 7.
We have

1
huop(g) = lim 7105; /MxM nr(p.q) dpdq.

The main goal of this paper is to address the following natural question: which
manifolds admit metrics with zero topological entropy?

A classical result of E. I. Dinaburg [3] asserts that if M admits such a met-
ric, then 1 (M) must have subexponential growth. It is still unknown if there are
finitely presented groups which are of subexponential growth, but not of polynomial
growth. If such groups do not exist, then zero entropy implies that 51 (M) is virtually
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f1. Petean is supported by grant 46274-E of CONACYT.
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nilpotent, thanks to a celebrated theorem of M. Gromov [8]. For closed geometrizable
3-manifolds, this obstruction on the fundamental group is enough to determine those
which admit a metric with zero topological entropy, cf. [1].

In the late 1980’s new topological obstructions were found, this time for simply
connected manifolds. Y. Yomdin [19] proved a fundamental theorem for general
C™ dynamical systems relating the topological entropy with the volume growth of
submanifolds which paved the way to Mafié’s formula. When combined with the
Morse theory of the loop space and a beautiful discovery of Gromov [7] concerning
cycles with bounded length in the pointed loop space 2M, it gave strong restrictions
to zero entropy. Namely, if M is simply connected and admits a C* metric g
with hyop(g) = 0, then the sum of the Betti numbers S dim H; (M, kp) grows
subexponentially with » for any field of coefficients k,, p prime or zero. When
kp = Q, this implies that M is rationally elliptic, i.e. 7. (M) ® Q is finite dimensional
(cf. [6]). We refer to [16] for an account of these developments.

However, these results only hold for simply connected manifolds (or finite 771 (M))
because Gromov’s theorem does require to control the length of paths running on the
1-skeleton of a triangulation of M. When M is simply connected, one can always
collapse the 1-skeleton to a point by a map homotopic to the identity, thus allowing
to ignore — at the level of homology — paths running on the 1-skeleton.

What topological restrictions to zero entropy do we have when 1 (M) is infinite
and of subexponential growth? We begun looking at this problem in [18] motivated
by the minimal entropy problem for compact complex surfaces. Here we show:

Technical Lemma. Let M be a closed manifold. Let f: K — M be a continuous
map, where K is a finite simply connected CW complex and let Q( f) be the induced
map between pointed loop spaces. Let Hi(Q2(f), kyp) be the map induced in homology
with some field of coefficients ky and let R; be the rank of this map in dimension i.

Set .
A log (Z Rj>.

j=i

R :=lim sup
=00

If R > 0, then given any smooth Riemannian metric g on M we have

A
htop(g> > %

In the inequality, A(g) is the volume entropy of the Riemannian manifold which
is defined as the exponential growth rate of the volume of balls in the universal
covering of M. Recall that Manning’s inequality [15] asserts that for any metric g,
hiop(g) > A(g)anditis wellknown thatA(g) > Oif and only if w1 (M) has exponential
growth. We are interested in the inequality as an obstruction to the existence of
metrics with vanishing topological entropy, particularly in the case when 71 (M) has



Vol. 81 (2006) Zero entropy and bounded topology 289

subexponential growth. It would be quite interesting to be able to replace A(g)/2 by
A(g) in the Technical Lemma. _

It seems useful to note the following point: if M is the universal covering of M,
then the projection induces an isomorphism between the homology of the loop space
of M and the homology of the connected component of the loop space of M given by
the contractible loops. Therefore one can consider a CW complex K which maps to
M and then compose with the projection to M to be in the conditions of the Technical
Lemma. We will use this remark in all of our examples.

Recall that a connected CW complex X is said to be nilpotent if m1(X) is a
nilpotent group and operates nilpotently on 77; (X) for every i > 2. As an immediate
corollary of the lemma we have:

Corollary. Let M be a closed nilpotent manifold. If M admits a smooth metric with
zero topological entropy, then 7,.(QM) ® Q is finite dimensional.

Indeed, if M is nilpotent, all the homology groups of M are finitely generated (cf.
[13, Theorem 2.16]) and thus there is a finite simply connected CW complex K and
a homotopy equivalence f: K — M. The complex K must be rationally elliptic by
the Technical Lemma.

We proved the lemma in [18, TheoreLn C] when K is a smooth compact manifold
with boundary which is embedded in M and for which the corresponding map in
the loop space homology is an injection. The disadvantage of this earlier version is
that in order to use it we need to have some apriori knowledge of M so that we can
find our embedded K, while with the current version K and f will arise by simple
topological considerations as in the corollary above.

Nevertheless the old version was good enough to prove results like the following
[18, Theorem D]J: if M admits a metric with zero entropy and it can be decomposed
as X1#X», where the order of the fundamental group of X is at least 3, then X5 is a
homotopy sphere.

We now pose the main topological question that the Technical Lemma suggests:

Question. Let M be a closed manifold whose fundamental group has subexponential
growth. If dim H,(M, Q) = oo, does there exist a finite 1-connected rationally
hyperbolic complex K and a map f: K — M for which the rank of H.(Q2(f), Q)
grows exponentially?

Of course one can formulate similar questions for other fields of coefficients, but
we believe it should be easier to deal first with the case of characteristic zero, due to
the technology at our disposal provided by Rational Homotopy Theory.

If the Question has a positive answer, then the Technical Lemma implies that if M
admits a metric with zero entropy then M has the rational homotopy type of a finite
elliptic 1-complex, so we see that zero entropy implies bounded topology in a very
strong sense.
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In the present paper we will prove by simple topological arguments that the Ques-
tion has a positive answer indimensions 4 and 5. This in turn will give us an essentially
complete picture of which 4-manifolds have metrics with zero entropy and will allow
us to close some gaps left open in [18].

Let us describe these results in more detail. Fromnow on if in ordinary homology
coefficients are not indicated they are meant to be Z. In the next theorem, ¢ and x
stand for signature and Euler characteristic respectively.

Theorem A. Let M be a closed 4-manifold with infinite fundamental group w. If
M admits a metric with zero topological entropy, then o (M) = x(M) = 0, M has
the rational homotopy type of a finite simply connected elliptic CW complex and
Hy(M) = H?(m,Z[n]). Moreover, if we assume further that = has polynomial
growth then, M is finitely covered by one the following:

(1) $3 xS,
(2) a manifold s-cobordant to S* x T?;
(3) a nilmanifold.

Using the results on 4-manifolds, we can now complete the classification of com-
pact complex surfaces which admit a metric with zero entropy. We begun this clas-
sification in [18], but our results excluded two cases: surfaces of general type and
surfaces of class VII with positive second Betti number. It is unknown if there are sur-
faces of general type homeomorphic to S x S% or CP?# CP?, although it is known
that there is no surface of general type diffeomorphic to S* x S? or CP*#CP?. We
call such a potential example, an exotic surface of general type. In the next theo-
rem we view compact complex surfaces as smooth 4-manifolds and we ignore their
complex structures.

Theorem B. Let S be a compact complex surface which is not an exotic surface of
general type. Then S admits a metric with zero topological entropy if and only if
S is diffeomorphic to one of the following: CP?, a ruled surface of genus 0 or 1,
a complex torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a
Kodaira surface modulo a finite group.

Finally in dimension 5 we prove:

Theorem C. Let M be a closed 5-manifold with infinite fundamental group. If M

admits a metric with zero entropy, then M has the rational homotopy type of a finite
1-connected elliptic complex. Moreover, Hy(M) = H?(x, Z[x ]).

In fact, for most groups 7 with subexponential growth the second end group
H?(z, Z[r)) is either O or Z. Our methods also yield information at the torsion level.
For example we will show that if = has one end and H 2(s, Z[r]) is either O or Z,
then H, (M) has no finite subgroup as a direct summand.
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In all the known examples of closed manifolds which admit metrics with zero
topological entropy, M has a finite covering which is a nilpotent space. The following
problem was posed to us by B. Totaro.

Problem. Is it true that if M admits a metric with zero topological entropy, then there
is a finite covering of M which is nilpotent?

A positive answer to the Problem implies that the universal covering of M is
homotopy equivalent to a finite CW complex, which by the Technical Lemma must
have loop space homology with subexponential growth. Observe that by Theorem A,
the Problem has a positive answer in dimension 4 if we assume that 7 has polynomial
growth. As Totaro suggested one can now make the following definition of elliptic
space to incorporate all these observations and allow infinite fundamental group. A
topological space X is elliptic if it is homotopy equivalent to a finite CW complex,
it has a finite covering which is a nilpotent space and the loop space homology of
the universal covering of X grows polynomially with any field of coefficients. The
results in this paper give considerable evidence of the following conjectural fact: If
M admits a metric with zero topological entropy it must be elliptic in this broader
sense.

Acknowledgements. We thank Burt Totaro for several useful comments on the first
draft of the manuscript.

2. Proof of the Technical Lemma

Let (M, g) be a Riemannian manifold and let K be a finite simply connected CW
complex. Given a continuousmap f: K — M weletQ(f): Q(K) — Q(M) be the
obvious map induced between the corresponding pointed loop spaces. The following
lemma is essentially due to Gromov [7, 10]:

Lemma 2.1. There exists a constant C = C(K, f, M, g) such that given any ho-
mology class € H; (2(K)), the class Q(f). () can be represented by a cycle of
Lipschitz curves in M with length bounded by Ci.

Proof. Since K is homotopy equivalent to a finite simply connected simplicial com-
plex [11, Theorem 2.C5], we can assume that K is actually a simplicial complex. We
can consider K as a subcomplex of a simplex A" and restrict the standard metric on
AN to give a metric on K. Of course, this metric restricts to the standard Euclidean
metric on each simplex of K. It is easy to see that one can approximate f by a
homotopic map which is Lipschitz with respect to this metric. Therefore we will also
assume that the map f is Lipschitz.
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Let h: L — Q(K) be a map from a finite simplicial complex of dimension
i with an i-th homology class mapping to v». The map / corresponds to a map
H:L x[0,1] - K. Given a positive integer k we will consider the simplicial
structure on [0, 1] obtained by subdividing the interval into k subintervals of equal
length. The simplicial structures on L and [0, 1] give a natural cellular decomposition
on L x [0, 1].

For this cellular decomposition one can obtain a simplicial approximation similar
to the simplicial case as follows:

Let S be any simplicial complex. We callamap R: L x [0, 1] — S simplicial if
itis a simplicial map when restricted to each L x {j/k}and foranyx € L, R(x, j/k)
and R(x, (j + 1)/ k) belong to a simplex in S and the restriction of R to the vertical
segment {x} x [j/k, (j + 1)/k] is linear.

Given a continuous mapr: L x [0, 1] — S, we say that R is a simplicial approx-
imation of r if it is a simplicial map such that R(g) € Carrier(r(g)) (the smallest
simplex containing r(g)) for any ¢ € L x [0, 1]. Itis easy to see as in the simplicial
case that if R is a simplicial approximation of r, then R and r are homotopic.

Recall now that the open star of a vertex in a simplicial complex is the union of the
interior of all the simplices containing the vertex, and for a vertex (v, j/k) € Lx[0, 1]
define its open star as Star(v, j/k) = Star(v) x ((j —1)/k, (j+1)/k). Itis clear that
after enough subdivisions of the simplicial structure on L and taking k big enough,
we can assume that the diameter of the open star of any vertex is as small as we want.
Therefore we can assume that for any vertex (v, j/k) € L x [0, 1] there exists a
vertex w € S such that the open star of (v, j/k) is contained in »~!(Star(w)). We
define R(v, j/k) = w. As in the simplicial case, we can extend R to each L x {j/k}
as a simplicial approximation of the restriction of » to L x {j/k}.

Given x € L,let o = Carrier(x) and let vy, ..., v; be the vertices of o. Let w; =
R(v;, j/k) and w;y; = R(v;, (j + 1)/ k). Note that Interior(c) x (j/k, (j + 1)/k)
is contained in the open stars of each (v;, m/k)(m = j or j + 1). By construction
we have that r(Interior(c) x (j/k, (j + 1)/k)) is contained in Star(w;) for each
i =1,...,2l. The intersections of these sets is nonempty and this implies that those
vertices form a simplex in S. We have done this to show that there exists a simplex
of S which contains both R(x, j/k) and R(x, (j + 1)/k) and so we can extend R as
a simplicial map on L x [0, 1].

Let us finally check that R is actually a simplicial approximation of r. We have
to show that for any (x, ) € L x [0, 1], R(x, t) € Carrier(r(x, t)). We already know
this if ¢ is a vertex of [0, 1]. So we can assume thatt € (j/k, (j + 1)/k) for some j.
As in the previous paragraph, let vy, ..., v; be the vertices of Carrier(x) and let
w1, ..., wy be the corresponding vertices in S. We have that (x, t) € Star(v;, j/k)N
Star(v;, (j + 1)/k) foreachi = 1,...,[. Then r(x,t) lies in r(Star(v;, j/k) N
Star (v, (j+1)/k)) C Star(w;)NStar(w;y). Thisimplies that w;, w;4; are elements
of Carrier(r(x, t)). Since R(x, t) is a linear combination of w1, ..., wy; and all these
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vertices belong to the simplex Carrier(r (x, t)), we get that R(x, r) € Carrier(r(x, 1))
and therefore R is a simplicial approximation of r.

Hence we can take a simplicial approximation R of themap H: L x [0, 1] — K.
It is clear from the discussion above that we may assume that R fixes the end points
and thus it can be viewed also as amap r: L — Q(K). Let us consider the space
Q(K)p r C Q(K) given by those paths which are linear on each segment of the form
[j/k, (j+1)/k]. Note that by construction there exists a k such that the image of r is
contained in €2(K'),; . Each element in 2 (K),; ; determines a point in K k=1 and in
this way we identify 2(K),; ; with a subset of K k=1 (recall that the initial and final
points are fixed). The simplicial structure on K induces a cellular decomposition in
K*1and Q(K) 1.1 is a subcomplex: it is the union of all the cells o1 X - -+ X o1
such that o; and o;41 are contained in a simplex of K and the same for the initial
point and o1 and the end point and oy—1.

After another homotopy we can assume that the image of r is contained in the i-th
skeleton of €2 (K),; ;. with respect to the cell decomposition described above.

Since K is simply connected there exists a Lipschitz map «: K — K homotopic
to the identity, which maps the whole 1-skeleton of K to a point.

Now let ¢ be a path in the i-th skeleton of Q2 (K),; ;. This means that ¢ belongs
to a cell of the form o x - - - X op—1 with X;dim(o;) < i. Thus, the path ¢ is formed
by segments joining a pair of vertices of the triangulation and at most 2; segments in
which one of the points is not a vertex. After composing with the map « the former
are sent to a point while the latter are sent to paths of length bounded by a constant
which depends on « but not on i. Hence there exists a constant C’ such that the
image of the i-th skeleton of €2 (K) ,; ; is sent by composition with & (o a set of paths
with length bounded by C’i. In this way we see that we can represent ¥ by a cycle
formed with paths with length bounded by C’i. Composing with f we see that we can
represent Q2 (f). () by a cycle formed with paths of length bounded by Ci, where
C is a constant depending only on « and the Lipschitz constant of f. o

We will use the lemma in the form of the following corollary.

Corollary 2.2. Let (N, g) be a connected complete Riemannian manifold. Let K
be a finite simply connected CW complex and f: K — N be a continuous map.
Denote by H; (Q2(f), kp) the induced map between the i-th homology groups of the
corresponding pointed loop spaces (for some field of coefficients ky) and let R; be
the rank of this map. Then, there exists a positive constant C depending only on
K, f, g such that foranyx € K, T > Ci and any y € B(f(x), T/2) we have that
bi( QT (N, f(x), y), kp) = Ri.

Proof. We know from the lemma that for any i —t/h homology class ¢ in Q (K, x, x),
Q(f)+(¥) can be represented by a cycle in Q€1 (N, f(x), f(x)). Consider now a
minimizing geodesic between f(x) and y. Following the paths in the cycle by this
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geodesic we obtain a cycle in Q€T @OI(N | f(x), ). If C =2C', T > Ci and
y € B(f(x), T/2) we get that our new cycle is in 7 (N, f(x), y) and the corollary
follows. o

We are now ready to prove the Technical Lemma in the introduction.

Technical Lemma. Let M be a closed manifold. Let f: K — M be a continuous
map, where K is a finite simply connected CW complex and let Q( f) be the induced
map berween pointed loop spaces. Let H,(Q2(f), kp) be the map induced in homology
with some field of coefficients k;, and let R; be the rank of this map in dimension i.

Set ,
R = limsupflog( R~).
i—soo 1 }251: J
If R > 0, then given any smooth Riemannian metric g on M we have

A
htop(g) > %

Proof. By the lifting property of covering spaces we can assume that we have a map
f: K — M. Letus recall that for any x € M (cf. [16]),

, 1
hiop(g) > hmsupflog/ nr(x,y)dy.
M

T—o0

Let p: M — M be the covering projection. It is easy to check that given any
x € M we have

f nr(p(x),y)dy = /N ny(x,y)dy =/ nr(x,y)dy.
M M B(x,T)
Thus for any x € M we have
. 1
hop(g) > hmsupflog/ nr(x,y)dy. (D
T—00 B(x,T)

Now assume that x = f(z) for some z € K. Morse theory tells us that if y and x
are not conjugate, then

nr(x,y) = Y bi(QF (M, x, ), ky).
j=0

But now, using the previous corollary we get that if y € B(x, Ci/2),

D by QM x, y), kp) = DR,

i=0 J=i
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where C is the constant appearing in the corollary. Integrating the previous inequal-
ities with respect to y € B(x, Ci/2) yields:

/B(x,cl'/z) Bt p) oy (Z RJ'>V01(B(X, Ci/2)).

J=i
Therefore we obtain

, 1
heop(g) > hmsupalog/( )nCi(x,y) dy
B(x,Ci

i—00

i—00

1
> limsup — log (Z Rj)Vol(B(x, Ci/2)).
i<

And thus, if R is the exponential growth rate of ) e R;,

R A(g)
hiop(g) = Pl + - (W

3. Topological preliminaries

In the following sections we will try to apply the Technical Lemma to find obstructions
to zero entropy. This is of course a purely topological problem and in this section we
will summarize some general techniques and concepts we will use.

3.1. Domination. Recall that a topological space Z is dominated by a topological
space Y if there exist continuous maps r: ¥ — Z and ¢: Z — Y such that r ¢ is
homotopic to the identity of Z. In several occasions we will make use of the following
lemma, sometimes without explicit mention to it.

Lemma 3.1. Let X and Y be simply connected spaces which are rational homotopy
equivalent. Suppose Z is dominated by Y. Then there is a map g: Z — X such that

H,(R2(g), Q): Hi(Q(Z),Q) — H,(2(X),Q)

is an injection.

Proof. Let f: Y — X be a rational homotopy equivalence. Since Y dominates Z,
there is a map ¢: Z — Y such that H,(Q2(1), Q): H.(2(Z), Q) — H.(Q(Y),Q)
is an injection. By the Whitehead—Serre theorem (see Theorem 8.6 in [6]),
H (Q2(f),Q): Ho(R(Y), Q) — H.(2(X),Q) is an isomorphism and therefore
g := f o t has the desired property. O
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3.2. Moore spaces. Given G an abelian group, let M (G, n), n > 1, be the Moore
space (uniquely determined up to homotopy type) whose n-th homology group is &
and whose i-th homology group is zero for i # n. For example, M(Z,n) = S"
and M (Zy,, n) = "1 Uy S*, where f: S* — S™ is a map of degree m. Note that
M (G, n) has the rational homotopy type of a wedge of spheres.

We will use the following properties of Moore spaces (cf. [2, Proposition 1.7]):

(1) M(A® B,n) =M(A,n)v M(B, n);

(2) amorphism f: A — BinducesacontinuousmapM (f): M(A, n) — M (B, n),
sothat M(fg) = M(f)M(g) and M(f). = f.

In particular if f: A — B is an injection and there exists g: B — A such that
gf = lathen M (B, n) dominates M (A, n). If G is afinitely generated abelian group,
then M (G, n) is given by the wedge sum of copies of S* and copies of M (Z,,, n) and
M (G, n) dominates any of these Moore subspaces.

3.3. Homology decompositions. Every simply connected CW complex Y has a
homology decomposition (cf. Theorem4H.3 in [11] or [2, Theorem 2.2]). This means
that there exists a homotopy equivalence f: X — Y such that X can be constructed
by the following iterated procedure.

Let G, := H,(Y). There is an increasing sequence of complexes X1 € Xo C -+
with H; (X)) = G; fori < n and H;(X,) = 0 fori > n where:

(1) X is a point and X is the Moore space M (G, 2);

(2) X4 1s the mapping cone of a cellular map 4, : M(G,41,n) — X, such that
the induced map (h)y: Hy(M(Gyq1, n)) — Hy(X,) 18 trivial;

3) X =, X,.

If Y is a simply connected CW complex whose only non-zero homology groups
are H,(Y) and H,11(Y), and H,41(Y) is a free abelian group, the homology decom-
position says in this case that ¥ has the homotopy type of M (G, n) VM (Gy41, n+1)
(cf. for example [2, Lemma 2.6.5]). From this we deduce the next result.

Proposition 3.2. Suppose Y is a simply connected CW complex whose only non-zero
homology groups are Hy,(Y) and Hy41(Y), where H,11(Y) is a free abelian group.
Then Y dominates M(H,(Y), n) and M(H,1(Y),n 4+ 1).

Remark 3.3. An important point in the proofs of Theorems A and C will be the fact
that the rational Hurewicz map 7. (M) ® Q — H (M, Q) is surjective.

Let X be an arbitrary simply connected CW complex. By Theorem 4.5 in [6] the
property of 7.(X) ® Q — H; (X, Q) being surjective is equivalent to saying that
X has the rational homotopy type of a wedge of spheres or that X has the rational
homotopy type of a suspension.
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Proposition 3.4. Suppose X is a simply connected CW complex whose only non-zero
homology groups are H,(X) and Hy41(X).

(1) If by = dim H,(X, Q) > 2 there exists a map g: S" v S* — X such that
H.(2(g), Q) is an injection.

(2) If by = 1 and Hy41(X) = Z, then there exists amap g: S" Vv St X such
that H.(Q2(g), Q) is an injection.

Proof. Note that the Hurewicz map 7. (X) — Hy(X) is surjective. Hence X has
the rational homotopy type of a wedge of spheres and by Lemma 3.1, if b, > 2 there
exists amap g: S" v §" — X such that H.(Q2(g), Q) is an injection which proves
the first item. Similarly, if b, > 1 and H,4+1(X) = Z, then Lemma 3.1 gives a map
g: 8" v 85"t — X such that H,(Q2(g), Q) is an injection, which proves the second
item. O

3.4. Ends of groups, £2-Betti numbers and amenability. The space of ends E(X)
of a locally compact separable metric space X is given by the inverse limit

lim 7o(X — K),
KcX

where the sets K are compact. The space E(X) is a totally disconnected topological
space and when X is connected and locally connected, E(X) is compact. Given a
group 7 acting freely on a connected simplicial complex X with finite quotient, the
homeomorphism type of E(X) only depends on r. The cardinality of E(X) is usually
denoted by e(sr) and is called number of ends of 7. A finitely generated group = has
0, 1, 2 or infinitely many ends. It has O ends if and only if it is finite.

The higher order end groups of a group 7 are defined as the cohomology groups
of a K(m, 1) space with coefficients in the group ring Z[7]. We denote them by
H*(z,Z[x]), k > 0. If the group is infinite, then H (s, Z[x]) is a free abelian
group of rank e(mr) — 1.

The group 7 has two ends if and only if it is virtually Z. If = has infinitely many
ends, then it must contain a non-cyclic free subgroup by virtue of Stallings’ structure
theorem.

Finally, we note that if M is the universal covering of a closed n-dimensional
manifold M with infinite £undamental group 7, then H 1 (m, Z[r]) & Hy—1(M). Of
course, one also has H,(M) = 0.

Let M be a closed manifold with an infinite amenable fundamental group and let
ﬁ,ﬁz) be the k-th ¢;-Betti number of the universal covering of M. It is interesting to
note the following fact:

o If dim Hy (M, Q) is finite, then B> = 0 ([4]).
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This prompts the following question which is closely related to the Question in the
introduction: If for some k, /3,&2) # 0, is it true that there exists a finite 1-connected
rationally hyperbolic complex K and a map f: K — M for which the rank of
H.(2(f), Q) grows exponentially?

We will make use of the following theorem.

Theorem 3.5. Let M be a closed n-manifold with an infinite amenable fundamental
group m and let M be the universal covering of M. Suppose M is (k —1)-connected,
k > 2, and dim Hy(M, Q) is finite. Then H,_x(M) = H*(rr, Z[x]).

Proof. 'The proofis exactly the same as the proof of Theorem 3.1 in [S5]. The hypothe-
sisdim Hy (M, Q) < oo and the amenability of 7w ensures that the k-th £2-Betti number
Vamshes and one argues with the commutative diagram on Rage 507 to conclude that
(M 7) = H*(, Z[x]). By Poincaré duality H,_;(M) = (M Z). 0O

comp oomp

4. Proof of Theorems A and B
We first show:

Theorem 4.1. Let M be a closed 4-manifold with infinite fundamental group 7. If M
admits a Riemannian metric with zero topological entropy, then x (M) = o (M) =0
and H?(M) H?*(z, Z[x]). Moreover, M has the rational homotopy type of a point,
S% or 3,

Proof. If M admits a metric with zero entropy, 7 has subexponential growth and hence
itisamenable and can only have 1 or 2 ends. Following B. Eckmann in [4], we note that
if 7 is amenable we can construct a Fglner sequence, that is, an increasing sequence
Y;,j=1,2,3,...,of finite subcomplexes of M with the following properties:

(1) Y; consists of N; translates of a closed cellular fundamental domain D for the
action of 7 ;

@ U Y;=M

(3) let N '; be the number of translates of D which meet the topological boundary of
Y;; then

lim — =0.
Eckmann shows in [4, p. 389] that

by(Y;)
x(M) =l =

’
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where by (Y;) = dim H>(Y;, Q). Moreover, by Proposition 2.1 in [4] we know that

if by (M) is finite, we must have lim;_, ”ng) —0.

Note that H; (1\71) = H4(A7I) = 0 and hence the Hurewicz map 7@(1\7) — H+(A7I)
is onto and M has the rational homotopy type of a wedge of spheres

X = (Vo S3) v (Vs SH).

Since X dominates any finite subcollection of them and the rational loop space homol-
ogy of the wedge of at least two spheres grows exponentially, the Technical Lemma
implies that M must have the rational homotopy type of either a point, S? or S. Thus
by (M) is finite and y (M) = 0 as desired.

Toprove thato (M) = 0, we use the following observation of Gromov in [9, p. 85]:
if o (M) # 0, then by (M) must be infinite (this is a consequence of the amenability
of  and the index theorem for infinite coverings).

Once we know x (M) = 0, the isomorphism between HZ(M) and H2(x, Z[r])
is precisely Theorem 3.1 in [S] or Theorem 3.5. a

Remark 4.2. Let M be a closed manifold of dimension 2k and suppose thatz; (M) =
Ofor1 <i <k — 1 (the condition is vacuous for k = 2). Suppose further that 7 :=
71 (M) satisfies the following property: it is infinite and the end groups H' (r, Z[r])
are zero for 0 < i < k. Itis quite easy to check (see Proposition 2.1 in [5]) that
Hi(M) = H¥*~i(z Z[n]) for k < i < 2k. Thus Hi(M) is the only non-zero
homology group. If M admits a metric with zero entropy, then y (M) = 0. The proof
is the same as in the 4-dimensional case.

Corollary4.3. Let M be a closed 4-manifold whose fundamental group has two ends.
If M admits a metric with zero topological entropy, it is finitely covered by S3 x S'.

Proof. Theorem 11.1 in [12] says that a closed 4-manifold whose fundamental group
has two ends and x (M) = 0 is finitely covered by $3 x St a

Finding the homeomorphism types of such manifolds is a fairly complicated
problem, we refer the interested reader to Chapter 11 in [12].

The last corollary and Theorem 4.1 tell us that if we wish to move further into the
classification of closed 4-manifolds which admit a metric of zero entropy we need to
know more about H?(r, Z[x]) for = with subexponential growth and one end. As
far as we know, there is no general result in this direction. However, note that if 7
is the fundamental group of a closed manifold whose universal covering is R”, then
H?*(z, Z[n)) is zeroif n # 2 and Z if n = 2.

We can state:
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Corollary 4.4. Let M be a closed 4-manifold with H*(r, Z{x]) = Z. If M admits
a metric with zero topological entropy, M has a covering space of degree dividing 4
which is s-cobordant to S* x T?.

Proof. By Theorem 4.1, mp(M) = HZ(JVI) = Hz(yr, Z[r]) = Z. The corollary now
follows from Theorem 10.1 in [12]. a

There is no example known of a finitely presented group which is of subexponen-
tial growth, but not of polynomial growth. Recall that the existence of a metric with
zero entropy implies subexponential growth of 7.

Theorem 4.5. Let M be a closed 4-manifold whose fundamental group 7 is infinite
and has polynomial growth. If M admits a metric with zero topological entropy, then
M is finitely covered by one of the following:

(1) $3 x s1;
(2) a manifold s-cobordant to S* x T?;

(3) a nilmanifold.

Proof. By a celebrated theorem of Gromoyv, 7 is virtually nilpotent. Thus by passing
to a finite covering we can assume that 7 is nilpotent. It follows that 7z coincides with
its Hirsch—Plotkin radical /7, which is the maximal nilpotent normal subgroup.

Let A(r) denote the Hirsch length of 7, i.e., the number of cyclic factors of a
composition series. If () < 2, then up to finite index, 7 must be Z or Z2. If 7 is Z,
then by Corollary 4.3, M falls under item 1. Similarly, if 7 is Z?, by Corollary 4.4,
M falls under item 2.

Finally if h(sr) = h(y/m) > 3, Corollary 8.1.1 in [12] implies that M is finitely
covered by a nilmanifold, since by Theorem 4.1, x (M) = 0. O

Theorems 4.1 and 4.5 give Theorem A.

4.1. Compact complex surfaces. Using the results on 4-manifolds from the previ-
ous subsection, we can now complete the classification of compact complex surfaces
which admit a metric with zero entropy. We begun this classification in [18], but our
results excluded two cases:

(1) surfaces of general type;
(2) surfaces of class VII with positive second Betti number.

Recall that a compact complex surface is of general type if it has Kodaira dimen-
sion 2. The surface is said to be of class VII if it has Kodaira dimension —oo and first
Betti number equal to 1. More precisely, in [18, Theorems E and F] we proved:
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Theorem 4.6. Let S be a compact complex surface which is not of general type.
Moreover, suppose that S is not a surface of class VII with positive second Betti
number. Then S admits a metric with zero topological entropy if and only if S is
diffeomorphic to one of the following: CP2, a ruled surface of genus 0 or 1, a complex
torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a Kodaira surface
modulo a finite group.

It is well known that surfaces of general type have x > 0. A surface of class VII
has first Betti number equal to one, thus a surface of class VII with positive second
Betti number must also have y > 0. Hence in both cases, Theorem 4.1 implies that
neither of these classes admits a metric of zero entropy unless the fundamental group
is finite. Obviously, surfaces of class VII have an infinite fundamental group. On
the other hand, we know that a closed simply connected 4-manifold that admits a
metric with zero entropy must be homeomorphic to S, CP?, §2 x S2, CP?# CP?
or CPHC P? (cf. [17]). Thus if there exists a surface of general type with a metric
of zero entropy and finite fundamental group, its universal covering (which is also a
surface of general type) would have to be homeomorphic to S x S? or CP?#CP>.
It is unknown whether there are such exotic examples, although it is known that there
is no surface of general type diffeomorphic to S* x S? or CP?#CP?. Below we call
such a potential example, an exotic surface of general type.

We now combine this discussion with Theorem 4.6 to obtain:

Theorem B. Let S be a compact complex surface which is not an exotic surface of
general type. Then S admits a metric with zero topological entropy if and only if
S is diffeomorphic to one of the following: CP?, a ruled surface of genus 0 or 1,
a complex torus, a hyperelliptic surface, a Hopf surface, a Kodaira surface, or a
Kodaira surface modulo a finite group.

5. Proof of Theorem C

Theorem C. Let M be a closed 5-manifold with infinite fundamental group. If M
admits a metric with zero entropy, then M has the rational homotopy type of a finite
1-connected elliptic complex. Moreover, Hy(M) = H?(r, Z[x']).

Proof. We know that since 7 is infinite amenable it can only have one or two ends.
Moreover, we know that H5(M) =0and H4(M) H(x, Z[n)).

Sgppose first that 7 has one end. Since H4(M ) = 0, the Hurewicz map (M ) —
H, (M) is surjective and M has the rational homotopy type of a wedge of spheres

X = (Vo S3) v (Vs SH).
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Since X dominates any finite wedge K of spheres from the collection of S[% and Sg, we

conclude that if dim H+(A7 , Q) > 2, there exi§t a finite simply connected rationally
hyperbolic complex K and a map f: K — M such that H.(2(f), Q) is injective.
Hence the Technical Lemma implies that dim Hy (M, Q) < 1 and M has the rational
homotopy type of a point, S? or S3. 5

Suppose now that 7 has two ends and so Hq(M) = Z. Let us consider the
homology decomposition of M and note that M has the homotopy type of the mapping
cone of a cellular map k3 : M(Z,3) — Xssuchthat (h3),: Hz(M(Z, 3)) — H3(X3)
is trivial. Since the Hurewicz map 7. (X3) — Hy(X3) is onto, X3 has the rational
homotopy type of a wedge of spheres

Y= (Vva S2) v (Vv Sp)

and let f: X3 — Y be a rational homotopy equivalence. The image of the map
/o h3 can only intersect a finite number of spheres from the collection. Therefore if
the collection is infinite it would follow that M has the rational homotopy type of a
space that dominates the wedge product of two spheres. Since the rational loop space
homology of the wedge of two spheres grows exponentially the Technical Lemma
would imply positive entropy. Therefore there are only a finite number of 2-spheres
and 3-spheres in the collection and M has the rational homotopy type of a finite CW
complex (which of course must be elliptic).
The conclusion H3(M) = H?(x, Z[x]) follows now directly from Theorem 3.5.
a

5.1. Torsion of 5-manifolds

Theorem 5.1. Let M be a closed 5-manifold whose fundamental group has one end
and H?*(t, Z[x)) is either O or Z.. If M admits a metric with zero entropy, then:

(1) dim HZ(A71 ,Q) <1land Hz(ﬁ ) has no finite subgroup as a direct summand;
(2) Hxy(M) is either O or Z;

3) ifs (A7I ) =Z, then HZ(M ) is a torsion group with no finite subgroup as a direct
summand.

An example of a group as in item 3 is the quasicyclic group of type p™ (p prime)
given by the p*-th roots of unity, k running over all natural integers. We do not know
if such a group can be realized as 72 (M) of a 5-manifold.

Proof. Since the fundamental group of M has one end, H4(1\N4 ) = 0. By Theorem C,
H3 (A7I ) is 0 or Z and we can apply Proposition 3.4 to M. This proposition combined
with the Technical Lemma proves all the claims in the theorem except the one re-
garding the absence of finite groups of H, (M) as a direct summand. Suppose there
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is such a group. Then there exists a prime p such that the group Z,« appears as

a direct summand for some k£ > 1. By Proposition 3.2, M dominates the Moore
space M(Zx, 2), but the latter has the property that its loop space homology with
coefficients in Z, grows exponentially. Again, this cannot happen by the Technical
Lemma. (]

Note added in proof. J. A. Hillman pointed out to us that in Corollary 4.4 (and thus
also in Theorems A and 4.5) “s-cobordant” can be replaced by “homeomorphic”, see
Theorem 10.10 in [12].
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