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An inverse spectral problem on surfaces

Philippe Castillon

Abstract. The purpose of this paper is to prove how the positivity of some operators on a

Riemanman surface gives informations on the conformai type of the surface (the operators
considered here are of the form A + XX where A is the Laplacian of the surface, X is its
curvature and À is a real number). In particular we obtain a theorem "à la Huber": under a

spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface

with a finite number of points removed.
This problem has its origin in the study of stable minimal surfaces.

Résumé. On montre dans cet article comment la positivité de certains opérateurs sur une
surface riemannienne permet d'obtenir des informations sur le type conforme de la surface (les

opérateurs considérés ici sont de la forme A + XX où A est le laplacien sur la surface, X
sa courbure et X un réel). On montre en particulier un théorème "à la Huber" : partant d'une
hypothèse spectrale, on en déduit que la surface est conformément équivalente à une surface de
Riemann compacte privée d'un nombre fini de points.

Ce problème trouve son origine dans l'étude des surfaces minimales stables.

Mathematics Subject Classification (2000). 58J50, 53A30, 53A10.

Keywords. Spectral theory, minimal surfaces, stability operator.

Introduction

Minimal submanifolds are solutions of a variational problem: they are critical points
of the volume functional for deformations with compact support. The second derivative

of the volume functional is given by a quadratic form associated to a selfadjoint
operator (the stability operator). A minimal immersion is called stable when it is

a local minimum of the volume functional, that is, when the stability operator is

nonnegative.
For a minimal surface M in M.3, the stability operator is given by S A + 2X,

where X is the (intrinsic) curvature of M. For a surface immersed in a manifold
with nonnegative scalar curvature, the positivity of the stability operator implies the

positivity of the operator L A + X. In order to study stable minimal surfaces,
these remarks lead the authors of [FC-Sc] to consider the problem of relating the
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positivity of operators of the form A + X X (X g R) on a surface to the geometry of
the surface.

Let (M, h) be a complete noncompact Riemannian surface and let X be its curvature.

For all X g R, consider the operator L-k A + XX and the associated quadratic
form qx. It is easy to see (cf. [FC-Sc]) that the set Ih {X e R \ qx positive} is

a closed interval: Ih [an, bh] with — oo < ah < 0 < bh <+oo. The general
problem is to find relations between the geometry of M and the numbers ah and bh.

In [FC-Sc] the authors asked the following question: On the disc D {z e C |

\z\ < 1}, consider the complete metrics which are conformai to the Euclidean one;
for such a metric h, what are the possible values ofbh which can occur? As a first
step to answer this question, they remark that bh \ if h is the Poincaré metric and

they prove that bh < 1 for a complete conformai metric on D (cf. [FC-Sc], Remark 1

and Theorem 2). One of the purpose of this paper is to answer this question (cf.
Section 4).

In the more general context of a complete noncompact Riemannian surface we
prove the following result.

Theorem A. Let (M, h) be a complete noncompact Riemannian surface. Ifbf, > \
then M is conformally equivalent fo C or C* C \ {0}.

A straightforward corollary is that bh <\ when h is a complete conformai metric

on the disc. Moreover, with a similar proof we get the following theorem which is to
be compared with Huber's theorem (cf. [Hu]).

Theorem B. Let {M, h) be a complete noncompact Riemannian surface. If there

exists a compact domain Q, e M and a real X > \ such that qx{u) > 0 for every
C°°-function u with compact support in M \ Q, then M is conformally equivalent to

a compact Riemann surface with a finite number ofpoints removed.

In the first section we precise the notations and give preliminary results. The
second and third sections are devoted to the proofs of Theorem A and Theorem B

respectively. In the fourth section we treat the particular case of complete conformai
metrics on the unit disc.

The main results of this paper were already announced without proof in [Ca2].

1. Notations and preliminary results

Let (M, h) be a surface endowed with a Riemannian metric h ; we note X its curvature
and dvh its volume form. For a real number X, we note L-k the operator L-k A+XX
acting on the space C£° (M) of compactly supported C00 functions (where A is the

positive Laplacian); each of these operators admits a unique self-adjoint extension
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(also denoted Lx). We shall note qx the associated quadratic form; for all u e Cq°(M),
wehaveqx(u) fM(\du\2h + XXu2) dvh.

In order to study the relations between the positivity of some of the forms qx and

the geometry of M, we introduce the set Ih {X g R | qx is nonnegative}.

Proposition 1.1. The set h is a closed interval of R containing 0: h [ah, bh]
with — oo < an <0 < bh < +oo.

Proof. Let F (A.) inf{qx(u) \ u e C^(M)}; the set 4 is just the subset of R where
F is nonnegative. Since F is the infmium of affine functions, it must be concave, and

the proposition follows.

Example 1.2. It is easy to see that bh +oo if and only if X > 0 on M, and that

ah — co if and only if X < 0 on M.

Example 1.3. Let D {z £ C | \z\ < 1}, and let /?jp be the Poincaré metric on D.
It is a well-known fact that the spectrum of the Laplacian is o (A) [5,00). Since

the curvature is constant and equal to -1, we have ct(A + XX) \_\ — X, 00). It
follows that bhB2 \ in this case.

Doing the samefor an arbitrary hyperbolic surface (M, h), wehaveè^ =inf (ct(A)).

Notations. Let xo be a point in M. In the sequel we shall note r(x)
the distance function to xo, Bs {x e M \ r(x) < s} the ball of radius s, and

C's={x e M \s < r(x) < t}.
Moreover, we shall note V(s) the volume of the ball Bs, £(s) the length of the

geodesic circle of radius s (i.e. t(s) \61(dBs)) and G(s) the total curvature of
the ball Bs (i.e. G(s) fB X dvh). Using the coarea formula, we easily have

V'(s) l(s) and G'(s) fdB X das where das is the volume form on dBs.

Topology of noncompact surfaces. For a compact surface S we shall note gs its

genus and ns the number of connected components of its boundary; in particular, the

Euler characteristic of S is given by / (S) =2(1 — gs) — ns.
A noncompact surface S is said to be of finite topology if there exists a compact

surface S without boundary and a finite number of pairwise disjoint closed discs D;,
i 1, N, in S so that S is homeomorphic to S \ U^Li A (i.e. S is homeomorphic
to the interior of a compact surface with boundary). In this case, we define the Euler

characteristic of S to be / (S) / (S \ \jf=1 bt) =2(1 - gj) - N.
For a complete Riemannian surface (M, h), we have the following relations

between the asymptotic behaviour of / (Bs) and the topology of M:
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Lemma 1.4. Let (M, h) be a complete Riemannian surface.

(i) If M is offinite topology, then there exists sq such that for all s > so we have

X(BS)<X(M).

(ii) If M is not offinite topology then lim^oo / (Bs) — oo.

Proof. Suppose that M is of finite topology. Then there exists a compact surface M,
a finite set {p\, pn) C M and a homeomorphism f : M —* M \ {p\, pn).
Let U\, UN be simply connected open neighborhoods of the points p\,..., pN
which are pairwise disjoint, let C M \ \jf=1 \J\, and let C f~l (C). The set C

is a compact domain in M, and by construction we have / (C) / (C) / (M).
Choose so such that C C5io ; for all s > so, we have C c Bs, which implies that

gC < gBs- (1-1)

For all s > so, note Bs f(Bs). Since C <ZBS we have dBs c M\C, and since Bs

is compact in M \ {p\,..., pN}, we also have dBs n C/,- 7^ 0 for all f e {1,..., A^}.

It follows that

nBs =n^s>N nc. (1.2)

From the inequalities (1.1) and (1.2) we deduce that for all s > so we have

x(Bs)<x(C)=x(M).

To prove (ii), we suppose that x(Bs) does not tend to —00, and we shall prove
that the topology of M is finite. Using the hypothesis, there exists a constant A > 0

and an increasing sequence (s;);em such that lim^oo s, +cx) and x(Bs;) > —A

for all i G N. In particular we have 2(1 — gßs. — rißs. > —A, from which we deduce

that gBsi < ^ and nBh < A + 2.

For all i G N, note £";,_,¦, j 1,..., a,- the compact connected components of
M\BSi. We construct an exhaustion of M by compact domains in the following way:

• Suppose that Qo, ¦ ¦ ¦, &k are known; let i^ such that Qk ^BSlk, and let £lk+\

By construction, Q^ is connected and M \ Qk has no compact connected component.
Moreover, for all k g N we have g&k < gß, < ^- and na < n» < A + 2.

From these inequalities we deduce that there exists a constant A\ > 0 such that for
all k g N we have

2(1 - gak) - nak >-Ax. (1.3)
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For all k g N write Qk+i \^k Uyli Fkj where the domains Fkj are the connected

components of Qk+i \ &k- For all k and all j 1,..., bk, dFkj has at least two
connected component: one in dQk because Qk+i is connected and one in dQk+i
since M \ Qk has no compact connected component. It follows that x(Fkj) < 0,

and since
h

we have xi^k+i) < xi^k). From the inequality (1.3) we deduce that there exists
ko £ N such that xi^k) x(^k0) for all k > ko. On the other hand, since the

sequence (gak)k is increasing and bounded, we can assume (up to a change of ko),
that gak gak(} for all k > ko; it follows that Qk and Qk0 are homeomorphic for all
k > k0.

Let k > ^o; from equality (1.4) we deduce that Y^jLi x(Fkj) 0, and sincej
< 0 for all 7 1,..., bkwehavex(Fkj) 0, which implies that IJ/li ^t,y

is homeomorphic to 9^^0 x]0, 1].

Let M be the surface obtained by gluing i^0 and 9Œ,t0 x [0,1 [ along their boundaries

9^^0 and 9^^0 x {0}. Let (ck)k>k0 be an increasing sequence of real numbers
which tends to 1 and such that c^ 0, and let Q.k &ko u 9^2jt0 x [0, ck\ C M. We
construct a sequence of homeomorphisms /& : £lk -+ &k in the following way:

• fk0 ¦ ^k0 -> ^^o is the identity;

• if fk is known, we extend it to a homeomorphism fk+\ : ßfe+i ^^ ^jt+i (which
is possible since £lk+\ \ &k is homeomorphic to dQko *Yk, cfe+i])-

This construction gives a homeomorphism f : M -> M defined by f\ak fk for
all k > ko, and the surface M is of finite topology, which proves item (ii) of the

lemma.

Remark 1.5. Lemma 1.4 holds if we replace the geodesic balls of the metric by an
exhaustion of M by a sequence of compact domains (and the proof is the same).

In the proof of item (ii), the construction of the homeomorphism from its restrictions

to compact domains is a classical tool in the theory of surfaces (cf. for example
the proof of Kerékjârto's theorem on the topological classification of noncompact
surfaces, Theorem 1 in [Ri]).

Remark 1.6. When M is of finite topology, we may have / (Bs) < x (M) for
arbitrarily large s. Moreover, the converse statement of item (ii) is false.

The length of geodesic circles. The regularity properties of the function i were
already studied, in particular in connection to the isoperimetric problem (cf. [Fi],
[Ha], [Sh-Tal], [Sh-Ta2]). In general, the function I is not continuous, however we
have the following result:
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Theorem 1.7. The function £ is differentiable almost everywhere and we have

(i) for almost all s e R, l'(s) < 2nx(Bs) - G(s);

(ii) for all 0 < a < b, l(b) - i{a) < Jba i\s) ds.

Proof. Cf. [Sh-Tal] and [Sh-Ta2].

A technical lemma. In the proofs of Theorem A and B, we will evaluate the quadratic

formst onfunctions of the former), wherer is thedistance function onM. Todo
this, we have to handle with terms of the form fM X^(r)2 dv^ which will be estimated

using the following lemma. The proof of this lemma is based on the method used by
T. Colding and W. Minicozzi in [Co-Mi].

Lemma 1.8. Let R < Q, and let §: [R, Q] -^ R such that ^(Q) 0, § > 0, §' < 0

and^" > 0. Ij'there exists a constant A such that x.(Bs) < A for all s g [R, Q], then

[ 2 2/ XÈ(t") dvji <—è(R) G(R)—2È(R)i
R

Proof Using the coarea formula we have

r rQ / r \ rQ
/ X^(r) dvh I C(s) I / Xdas I ds I Ç(s) G(s)ds.

JC% JR \JdBs JR

Let H(s) jsR G(t) dt. Doing two integrations by parts we get

c Q

R
JR

fQ
-Ç(R)2G(R) - [(fY(s)H(s)]^ + / (f)"(s)H(s) ds

JR

/ (f)"(s)H(s) ds.
JR

By Theorem 1.7 we have G(t) < 2nA - £'(t), and therefore

H(s) < 2nA{s - R) - / t'(t)dt < 2nA{s - R){s - R) - / t'
JR

Since {Ç2)" > 0, we getg

rQ
dvh < -Ç(R)2G(R) + 2jt A / (f)"(s)(s - R) ds

JR

fQ fQ
+ KR) (fy'(s)ds- (fy/(s)i(s)ds.

JR JR
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Doing an integration by part and using the coarea formula we get the desired

inequality:

f XÇ(r)2dvh

< -Ç(R)2G(R)

- 2ttA /" (§2)/(.) ds + l(R)[(f)'(s)\QR -fJ R J R

f f)'\r)dvh. D

A result ofpotential theory. In order to determine the conformai type of the ends of
M, we will use the following result whose proof is based on the proof of Theorem 1.2

in [Co-Mi].

Proposition 1.9. Let Xd be a complete Riemannian manifold of dimension d such

that the volume of the geodesic balls of radius R satisfies VX(R) < cR2 and let
4> € L11OC(X) be a function which is nonnegative almost everywhere. If the operator
Ax — 4> is nonnegative then the function <fi is equal to 0 almost everywhere.

Proof. The idea of the proof is to use the volume estimate to compare the manifold
X with M2.

Let xo G X be a fixed point; in this proof, we shall note rx{x) dx{xo, x), Bs

the ball of radius s centered in xo, Vx(s) the volume of Bs, ix(s) the volume of dBs,
and C\ {x e X \ s < rx(x) < t}.

In the same way, for x e M.2 we shall note r (x) |x|, Bs the Euclidean ball of
radius s, V(s) the volume of Bs, l(s) the volume of dBs and C\ {x g M.2 \ s <
r(x) < t}. The hypothesis implies that Vx(s) < aV(s) for some constant a.

For Q > 0, let i-Q(s) / * ; up to a multiplicative constant, §(f is the Green

function of the ball of radius Q in R2 and we have A£(r) 0 on R2 \ {0}.
Let i? > 0, and let rj : [0, Q] -+ R the function defined by

Uß(tf) on

Let /? be the quadratic form associated to the operator A — 4>. Since p(r\ (r)) > 0

and since <fi is nonnegative almost everywhere, we have

)2lx(s)ds.f <pdvx< f \dÇQ(r)\2dvx f Ç'(s
Jbr Jc% Jr
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Since £x V'x, an integration by parts gives

„ r r n0 rQ

JBr iff

Using the upper bound on Vx and doing another integration by part we have

-Q
£(s)V(s)ds

Q

<Wo(.sY(Vx(S)-aV(s))\i+ / ç'o(s)2ï(s)ds

f Q f' I (pdvx < ^q(s) Vx(s)\r —a I 1£,'(

J Br J R

%(s)2(Vx(s)-aV(s))]%+ Tç'ç
J R

< an + / \d^n(r)\ dv,

where we used that VX(Q) < aV(Q) and the fact that V(R) nR2. From Green's
formula in M2 we deduce

Çq(R)2 f 4>dvx<an +a I\ ÇQ{Ï){VÇQ{Ï), v)dö + I ÇQ(r)AÇQ(r) dv

<a7t-aÇQ(R)Ç'Q(R)ï(R),

where v is the exterior normal vector to C® and da is the volume form on 9C®.

Finally we get

an al{R)
Jb, RI-q(R)

and letting Q tend to +00 (X is complete) we obtain fx 4> dvx < 0, which gives the

desired result since <fi is nonnegative almost everywhere.

Remark 1.10. There is a similar result on surfaces which are conformally equivalent
to a compact Riemann surface with a finite number of points removed: if 0 is a

nonnegative function and if the operator A — 0 is nonnegative, then 4> must be zero
almost everywhere. This is a consequence of the conformai invariance of the Dirichlet
integral in dimension 2 (cf. [Bé-Be], Appendix 1).

2. Proof of Theorem A

Let (M, h) be a Riemannian surface such that b% > \. In particular, for X b%, the

quadratic form qk is nonnegative. The proof of Theorem A splits into three parts.
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The topology of the surface

Proposition 2.1. Under the hypothesis of Theorem A, M is homeomorphic to C or
C* C \ {0}.

Proof. Suppose that M is neither homeomorphic to C, nor to C* ; then we must be in
one of the two following cases:

• M is of finite topology and / (M < — 1 ;

• M is of infinite topology.

In these two cases, by Lemma 1.4, there exists R such that for all s > R we have

X(BS) < -1.
Let Q > R and let § : [0, Q] -> R be the function defined by

t(s) UQ-wa on[°'^[;
\(Q-s)a for dl s e[R,Q],

where a > 1 will be chosen later.

Since the form qk is nonnegative, we have

o<

< kÇ(R)2G(R) + I J'(rYdvh+X / X^{r)Ldvh.I J'(Jc%

Since x(5^) < -1 for all s G [R, Q], Lemma 1.8 gives

0 < kÇ(R)2G(R) + f t(rf dvh - kÇ(R)2G(R) -
f

Jc
(Ç2)"(r)dvh

f ((1
Ici

(r))dvh.

Using the definition of è, on [R, Q] we obtain

0 < -2X^{RW{R)l{R) - 2nXÇ(R)z + / ((1 - 4X)a2 + 2Xa)(Q - r)2""2 dvh.f ((1 -4X)a2 + 2Xa)(Q-r)2

Since 1 — AX < 0, we can choose a large enough so that (1 — AX)a2 + 2Xa < 0, and

we get
0 < -2XÇ(R) 2
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which implies

Since M is complete, letting g tend to +00 we get the desired contradiction.

The volume growth

Proposition 2.2. Under the hypothesis of Theorem A, there exists a constant c such

that for allR>0 we have V(R) < cR2.

Proof. Let g > Oandlet^: [0, g] -> R be the function defined by Ç(s) (Q-s)a,
where a > 1 will be chosen later. Since qi is nonnegative, we have

0< f t(r)2dvh+kf JCÇ(r)2dvh.
Jbq Jbq

Note that for all s > 0 we have x(Bs) < 1» so Lemma 1.8 gives

0< f t(r)2dvh+2nm0)2-X f (Ç2)"(r)dvh
JBq JBq

2a<2itXQ2a+ f
JB

Note Aa — ((1 — AX)a2 + 2ka)\ since 1 — AX < 0 we can choose a large enough
so that Aa > 0. Thus we have the following inequalities:

K f (Q-r)2a-2dvh<2irXQ2a,
JB
f
Bq

B
a (Q-r)2a-2dvh<2irXQ2a,

JB q
2

a 22a~2 \ 2

It follows that for all R we have

V(R) < i—11±R2_
A

The conformai type of the ends. It is a classical fact in potential theory that surfaces

with quadratic volume growth are parabolic (i.e. each end is conformally equivalent
to the punctured disc). For sake of completeness we give a proof of this fact which
uses Proposition 1.9.
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Proposition 2.3. Under the hypothesis of Theorem A, each end ofM is conformally
equivalent to the punctured disc D* {z g C | 0 < \z\ < 1}.

Proof. Suppose that M possesses an end E which is not conformally equivalent to D*.
Then there exists a < 1 and a conformai diffeomorphism F : E --* Da {z G C |

a < \z\ < 1}.

Let %2 be the Poincaré metric on D, and let ho F* (AH2). The diffeomorphism
F being conformai, and the metric AH2 being conformai to the Euclidean one on D,
we have h /x2/?o on E.

Let 4> '¦ M —>¦ R be the function defined by

10
ifxGM\£;

4^F lfxe£-

Let p be the quadratic form associated to the operator A - <fi; for all functions
u g C^° (M) we have

f \du\2hdvh+ f (\du\2h--^u:
Jm\e Je \ 4/i.

1 \ f (l ] dvh.
m Jm\e J V 4

Using the conformai invariance of the Dirichlet integral in dimension 2 and the con-
formal diffeomorphism F, we get

p(u)= f \du\2hdvh+ f (\d(uoF-l)\l huoF-l)2)dvh
JM\E JDa H 4

It is a well-known fact that the second term of this sum is nonnegative.
We proved that there exists a function 4> £ ^ioc(^) which is nonnegative on

M and positive on a subset of positive measure, such that the operator A - 0 is

nonnegative. Since M has quadratic volume growth, this contradicts Proposition 1.9.

D

3. A theorem "à la Huber"

Let (M, h) be a Riemannian surface satisfying the hypothesis of Theorem B: there
exists a compact domain Q, g M and a real X > \ such that qx{u) > 0 for every
function u g C^°(M \ Q). Let Ro such that Q c Br0; the quadratic form qk is

nonnegative on Cq°(M \ 5/j0).
The proof of Theorem B is similar to the one of Theorem A. The difference is that

we have to construct test functions whose supports are in M \ Br0 Choose R\ such
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that Ro < Ri - 1, and define §0 : [#i - 1, #i] ^ K by Ç0(s) s - Ri + 1. In the

sequel we shall note

which only depends on the metric h and on X.

Proposition 3.1. Under the hypotheses of Theorem B, M is offinite topology.

Proof. Suppose that the topology of M is not finite. Let A be such that 0 > 2n AX +
ch,x ; by Lemma 1.4, there exists R such that for all s > R we have x.(Bs) < A.

Let Q > R and let § : [R\ - 1, Q] -? R be the function defined by

d(j) for all j G [/?i — 1, Ri[;
on [/?i, /?[;

#=C for all s G I7Î, öl.

where a > 1 will be chosen later.

Since the quadratic form ^ is nonnegative on Cq°(M \ 5r0), we have

)Ä + A. / Xdvh+ f
Je? Je!

0 < /. (§o(r)2 + XJC^o(r)2) dvh+k f X dvh + f Ç'(r)2 dvh

XÇ(r)2dvh
ei

<cKX+XG{R)+ f Ç'(r)2dvh+k (jCÇ(r)2dvh.
JcR JcR

Since x(Bs) < ^ f°r all s e t-^» ß]» Lemma 1.8 gives

0 < cKk + XG(R) + f t(r)2 dvh - XG(R) - 2X^(R)l(R) + litAX
JcR

-X f (Ç2)"(r)dvh.
JCR

Using the definition of § on [R, Q] we get

0 < ch

Since 1 — 4A. < 0, we can choose a large enough so that (1 — AX)a2 + 2Xa < 0, and

letting Q tend to +cx) we get 0 < ch,x + 2jtAX which is in contradiction with the

choice of A.



Vol. 81 (2006) An inverse spectral problem on surfaces 283

Proposition 3.2. Under the hypotheses of Theorem B, there exists a constant c such

that for allR>0 we have V(R) < cR2.

Proof Let Q > Ri and let § : [R\ - 1, Q] -> R be the function defined by

[jQ^ir fora11^ G lRi> 01-

where a > 1 will be chosen later.

The nonnegativity of ^ gives

0< / (§o(r) + ¦^-^§o(r) dvh + / § (r) dvh~\-k I X^(r) dv^.f / 2 2 /" / 2 /"

CQ

Since for all jr > 0 we have / (5^) < 1, Lemma 1.8 yields

0 < cftÀ -2X^(^1 )£(/?i) + 2ttA. + / ^'{r)2dvh-k\ {^l)"{r)dvh— ' /„e ' /„r'eg.

Ô-^i ~ (Ô-^i)2
"1

where A„ — ((1 — 4À)a2 + 2kaj ; since 1 — 4k < 0 we can choose a large enough
so that Aa > 0. Thus we have the following inequalities:

Q-Ri'

Let i? > R\ and let Q > R\ such that i? ^f^. It follows from the above

inequalities that

From this inequality we deduce that -^f^ is bounded above on [R\ + l, +oo); since

7T, -^f^ is bounded above on R, which implies the result.

Proposition 3.3. Under the hypotheses of Theorem B, each end of M is conformally
equivalent to the punctured disc.

Proof. The proof is the same as the one of Proposition 2.3.

Remark 3.4. The hypotheses of Theorem B are satisfied if there exists k > | such

that the operator A + kX as a finite number of negative eigenvalues.
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4. Complete conformai metrics on the unit disc

In the following, a "complete conformai metric on the unit disc" will denote a metric
/?onD {zeC||z|<l} which is complete and conformally equivalent to the

Euclidean metric.
In this section, we are interested in the question asked in [FC-Sc]: If h is a

complete conformai metric on the unit disc, what are the possible values ofb% which
can occur? Since the unit disc is not conformally equivalent to C nor C*, Theorem A
gives a first answer to this question.

Corollary 4.1. If h is a complete conformai metric on the unit disc, then bh < \.

Remark 4.2. The statement of Theorem A is the best possible since bh \ for the

Poincaré metric on D. Moreover, C and C* admit complete flat metrics wich are

conformally equivalent to the Euclidean one. For such metrics we have bg +oo.

It is not hard to see that bh can take any value in [0, ^] for a complete conformai
metric h on the unit disc. Namely, we have the following proposition.

Proposition 4.3. Let h /j,2\dz\2 be a complete conformai metric on the unit disc.

If the metric ha ß2a\dz\2 is complete, then we have bha \bh

Proof. Let qx,h (resp. qx,ha) denote the quadratic form associated to the operator
A + XX for the metric h (resp. ha). Using the conformai invariance of the Dirichlet
integral, and the expressions of the curvature and the volume form of h in terms of
the conformai factor /x, we get

qx,h(u)= \ {\du\2e+X{A\ogix)u2)dve,
Jd

where \du\e and dve denote the norm of du and the volume form for the Euclidean
metric.

A similar calculation gives

qi,ha(u) / (\du\2e+aX(A log ix)u2)dve
JD

so that qx,ha qax,h and the proposition follows.

If h is the Poincaré metric (i.e. /z(z)
2

2), and if a > 1, then it is easy to see

that the metric ha ß2a \dz\2 is complete, so we have bha ^.
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Consider now the metric h iJ,2\dz\2, with /x(z) exp _j 2). Let R < 1 and

let i=R : [0,1] -> R be the function defined by

ifs<R;

0 >

Then a simple calculation proves that, for all X > 0, qx,h{%R{\z\)) becomes negative
if R is close enough to 1. This implies that bh 0.

Finally, for each ß e [0, \] we found a complete conformai metric h on D such

that bh ß.
Another natural question is to know whether the value bh \ is characteristic

of the Poincaré metric among the complete conformai metrics on the unit disc. The

(negative) answer is given by the following proposition.

Proposition 4.4. There exists a universal constant e such that for all complete con-

formal metrics h on the unit disc satisfying X < -1 and fD \ X + 1|2 dvh < ewe
have bh \.

Proof. The surface being simply connected, the upper bound on the curvature implies
an upper bound on the heat kernel ph of (D, h). This is obtained by comparing p%

with the hyperbolic heat kernel, using standard comparison theorems; using known
estimates on the hyperbolic heat kernel, we get that there exists a universal constant

Aq such that ph{t, x, x) < Aof~5e~4 (cf. for example [Cal], Proposition 2.4).

Using Lieb's theorem (cf. [Cal], Theorem 1.3), there exists a universal
constant A such that for every operator of the type R A — \ + <fi, the number of

negative eigenvalues of R satisfies Jfo(R) < A fD \<p\ t- dv%. Let e \, and suppose

fD \X + \\t- dvh < s. Since the operator L\_ is L\_ A + \x A-\ + \{X + \),
we have

This inequality implies that -Mo(Li) 0, so q\ is non negative and bh > \.
4 4

Using Corollary 4.1 we get bh \.

Remark 4.5. The hypotheses of Proposition 4.4 are satisfied by some of the minimal
surfaces of H3 introduced in [Ne-Sp]. For some simply connected domain ßcl2,
the authors prove that there exists a function fo. which is zero on 9^ and positive on
Q, whose graph Mq, is a minimal surface in the upper half space endowed with its

hyperbolic metric (when Q is a Euclidean ball, Mq is a hyperbolic plane).
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Now, the Gauss equation implies that X < — 1 on Mq and taking Q close enough

to a Euclidean ball, it is not hard to see that fM \X + 112 dv^ can be made small

enough to fit the hypothesis of Proposition 4.4.
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