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An inverse spectral problem on surfaces

Philippe Castillon

Abstract. The purpose of this paper is to prove how the positivity of some operators on a
Riemannian surface gives informations on the conformal type of the surface (the operators
considered here are of the form A + AKX where A is the Laplacian of the surface, X is its
curvature and A is a real number). In particular we obtain a theorem “a la Huber”: under a
spectral hypothesis we prove that the surface is conformally equivalent to a Riemann surface
with a finite number of points removed.

This problem has its origin in the study of stable minimal surfaces.

Résumé. On montre dans cet article comment la positivité de certains opérateurs sur une
surface riemannienne permet d’obtenir des informations sur le type conforme de la surface (les
opérateurs considérés ici sont de la forme A 4+ AKX ol A est le laplacien sur la surface, X
sa courbure et A un réel). On montre en particulier un théoréme “a la Huber” : partant d’une
hypothese spectrale, on en déduit que la surface est conformément équivalente a une surface de
Riemann compacte privée d’un nombre fini de points.

Ce probleme trouve son origine dans I’étude des surfaces minimales stables.

Mathematics Subject Classification (2000). 58J50, 53A30, 53A10.

Keywords. Spectral theory, minimal surfaces, stability operator.

Introduction

Minimal submanifolds are solutions of a variational problem: they are critical points
of the volume functional for deformations with compact support. The second deriva-
tive of the volume functional is given by a quadratic form associated to a selfadjoint
operator (the stability operator). A minimal immersion is called stable when it is
a local minimum of the volume functional, that is, when the stability operator is
nonnegative.

For a minimal surface M in R, the stability operator is given by S = A + 2.X,
where K is the (intrinsic) curvature of M. For a surface immersed in a manifold
with nonnegative scalar curvature, the positivity of the stability operator implies the
positivity of the operator L = A 4 K. In order to study stable minimal surfaces,
these remarks lead the authors of [FC-Sc] to consider the problem of relating the
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positivity of operators of the form A + AKX (2 € R) on a surface to the geometry of
the surface.

Let (M, h) be a complete noncompact Riemannian surface and let J be its curva-
ture. For all » € R, consider the operator L; = A 4+ AKX and the associated quadratic
form g;. It is easy to see (cf. [FC-Sc]) that the set I, = {A € R | g, positive} is
a closed interval: I, = [ap, by] with —00 < a; < 0 < by < 400. The general
problem is to find relations between the geometry of M and the numbers a; and by,.

In [FC-Sc] the authors asked the following question: On the disc D = {z € C |
|z| < 1}, consider the complete metrics which are conformal to the Euclidean one;
Jor such a metric h, what are the possible values of by which can occur? As a first
step to answer this question, they remark that b;, = % if 4 is the Poincaré metric and
they prove that by, < 1 for a complete conformal metric on D (cf. [FC-Sc], Remark 1
and Theorem 2). One of the purpose of this paper is to answer this question (cf.
Section 4).

In the more general context of a complete noncompact Riemannian surface we
prove the following result.

Theorem A. Let (M, h) be a complete noncompact Riemannian surface. If by, > %
then M is conformally equivalent to C or C* = C \ {0}.

A straightforward corollary is that by, < % when 7 is a complete conformal metric
on the disc. Moreover, with a similar proof we get the following theorem which is to
be compared with Huber’s theorem (cf. [Hu]).

Theorem B. Ler (M, h) be a complete noncompact Riemannian surface. If there
exists a compact domain Q2 € M and a real » > % such that g, (u) > 0 for every
C>®-function u with compact support in M \ Q, then M is conformally equivalent to
a compact Riemann surface with a finite number of points removed.

In the first section we precise the notations and give preliminary results. The
second and third sections are devoted to the proofs of Theorem A and Theorem B
respectively. In the fourth section we treat the particular case of complete conformal
metrics on the unit disc.

The main results of this paper were already announced without proof in [CaZ2].

1. Notations and preliminary results

Let (M, h) be a surface endowed with a Riemannian metric /; we note K its curvature
and dvy, its volume form. For a real number A, wenote L, the operator L;, = A+A.K
acting on the space C§°(M) of compactly supported C™ functions (where A is the
positive Laplacian); each of these operators admits a unique self-adjoint extension
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(alsodenoted ;). We shall note ¢, the associated quadratic form; forallu € C§°(M),
we have g, (u) = [;,(|dul} + 2K u?) dvy.

In order to study the relations between the positivity of some of the forms ¢, and
the geometry of M, we introduce the set I, = {A € R | g, is nonnegative}.

Proposition 1.1. The set I, is a closed interval of R containing 0: I, = [an, by]
with —o0 < ap <0 < by < +00.

Proof. Let F(x) =inf{g; (u) | u € C§°(M)}; the set I, is just the subset of R where
F is nonnegative. Since F is the infimum of affine functions, it must be concave, and
the proposition follows. O

Example 1.2. It is easy to see that b, = +o0 if and only if X > 0 on M, and that
ap = —oo if and only if X <0 on M.

Example 1.3. Let D = {z € C | |z| < 1}, and let /i be the Poincaré metric on D.
It is a well-known fact that the spectrum of the Laplacian is o (A) = [% oo). Since
the curvature is constant and equal to —1, we have o (A + LK) = [% — A, 00). It
follows that by, ,, = % in this case.

Doing the same for an arbitrary hyperbolic surface (M, &), wehave by, =inf (o (A)).

Notations. Let xo be a point in M. In the sequel we shall note r(x) = dp(x0, x)
the distance function to xg, By = {x € M | r(x) < s} the ball of radius s, and
Cl={xeM|s<r(x) <t}

Moreover, we shall note V (s) the volume of the ball By, £(s) the length of the
geodesic circle of radius s (i.e. £(s) = vol(dBy)) and G(s) the total curvature of
the ball B (i.e. G(s) = f B, K dvy). Using the coarea formula, we easily have
V'(s) = £(s) and G'(s) = fBBS K dog where doy is the volume form on 9 By.

Topology of noncompact surfaces. For a compact surface S we shall note gy its
genus and n s the number of connected components of its boundary; in particular, the
Euler characteristic of S is given by x (S) = 2(1 — gg) — ns.

A noncompact surface S is said to be of finite topology if there exists a compact
surface S without boundary and a finite number of pairwise disjoint closed discs D,
i =1,..., N,inS sothat S is homeomorphic to S'\ UlNzl D; (i.e. S is homeomorphic
to the interior of a compact surface with boundary). In this case, we define the Euler
characteristic of S to be x(S) = x (§\ UlN:1 51‘ ) =2(1—-gz)—N.

For a complete Riemannian surface (M, ), we have the following relations be-
tween the asymptotic behaviour of x (Bs) and the topology of M:
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Lemma 1.4, Let (M, h) be a complete Riemannian surface.

(1) If M is of finite topology, then there exists so such that for all s > so we have
x(Bs) < x(M).
(11) If M is not of finite topology then im,_, o x (Bs) = —

Proof. Suppose that M is of finite topology. Then there exists a compact surface M,
a finite set {pl, ..., PN} C M and a homeomorphism f: M — M \{pr1,..., PN}
Let Uy, ..., Uy be simply connected open nelghborhoods of the points p1, ..., pn
which are pairwise disjoint, let C=M \ Ul 1 U,, andlet C = f~ 1(C) The set C
is a compact domain in M, and by construction we have x (C) = x (C) =x(M).

Choose sg such that C C E%SO; forall s > 59, we have C C By, which implies that
8Cc = &B;- (1.1)

For all s > s9, note ES = f(By). Since C CBS we have aBS C M \ C and since Bs
is compactin M \ {p1, ..., pn}, we also have 8B N U #{Pforalli € {1,...,N}.
It follows that

np, = ng >N =nc. (1.2)

From the inequalities (1.1) and (1.2) we deduce that for all s > s¢9 we have
X (Bs) < x(C) = x(M).

To prove (ii), we suppose that x (B,) does not tend to —oo, and we shall prove
that the topology of M is finite. Using the hypothesis, there exists a constant A > 0
and an increasing sequence (s;);eN such that lim;_,~ s; = +00 and x (By;) > —A
foralli € N. In particular we have 2(1 — g By, )—n By & —A, from which we deduce
that 8B, = ATH and o <A+2

For lall i € Nynote E; ;, j = 1,...,a; the compact connected components of
M\ By;. We construct an exhaustion of M by compact domains in the following way:

o Qo= By, U (U]ap:l E()’j).
e Suppose that Q, .. ., 2 are known; let iz such that € Clgsik, and let Q41 =
a;
lek U (Uj:kl Eik»j)'

By construction, €2 is connected and M \ 2 has no compact connected component.
Moreover, for all k € N we have g, < 8B, = A+2 and ng, < nBy, < A+4+2.
k —1

From these inequalities we deduce that there ex1sts a constant A > O such that for
all k € N we have

x(82) = 2(1 — gqy) — ngy = —Ar. (1.3)
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Forall k € Nwrite Qr11\ Q% = Uf": 1 Fr.j where the domains Fy ; are the connected
components of Qry1 \ Q. Forall kand all j =1, ..., b, 3F ; has at least two
connected component: one in 92 because 241 is connected and one in 9241
since M \ €2 has no compact connected component. It follows that x (Fy ;) < 0,

and since
by

X( Q1) = x () + D x(Fr ), (14)
j=1

we have y (Qi+1) < x (k). From the inequality (1.3) we deduce that there exists

ko € N such that x(Qx) = x(Qy,) for all k > ko. On the other hand, since the

sequence (gg, )k 1s increasing and bounded, we can assume (up to a change of ko),

that gg, = 8, for all k > ko; it follows that €2 and €2, are homeomorphic for all
k > ko.

Let k > ko; from equality (1.4) we deduce that Zf": 1 X(Fr, ;) = 0, and since

X (Fr ;) <Oforallj =1,..., by wehave x (Fy, ;) = 0, whichimplies that U?’;l Fr ;
is homegmorphic to 982, x]0, 1].

Let M be the surface obtained by gluing €2, and 92, x [0, 1[ along their bound-
aries 02, and €2, x {0}. Let (cx)r=k, be an increasing sequence of real numbers
which tends to 1 and such that cg, = 0, and let 2 = Qg U 8, x [0, cx] € M. We
construct a sequence of homeomorphisms fi: Q2 — 2 in the following way:

o fip: Quy — Qko is the identity;
o if f; is known, we extend it to a homeomorphism fy1: Qgy1 — §~2k+1 (which
is possible since ;41 \ €2 is homeomorphic to 92, X ]ck, cr41]).

This construction gives a homeomorphism f: M — M defined by fie, = fi for
all k£ > ko, and the surface M is of finite topology, which proves item (ii) of the
lemma. s

Remark 1.5. Lemma 1.4 holds if we replace the geodesic balls of the metric by an
exhaustion of M by a sequence of compact domains (and the proof is the same).

In the proof of item (ii), the construction of the homeomorphism from its restric-
tions to compact domains is a classical tool in the theory of surfaces (cf. for example
the proof of Kerékjartd’s theorem on the topological classification of noncompact
surfaces, Theorem 1 in [Ri]).

Remark 1.6. When M is of finite topology, we may have x (Bs) < x (M) for arbi-
trarily large s. Moreover, the converse statement of item (ii) is false.

The length of geodesic circles. The regularity properties of the function ¢ were
already studied, in particular in connection to the isoperimetric problem (cf. [Fi],
[Ha], [Sh-Tal], [Sh-Ta2]). In general, the function ¢ is not continuous, however we
have the following result:
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Theorem 1.7. The function £ is differentiable almost everywhere and we have

(i) for almost all s € R, V/(s) < 27w x (Bs) — G(s);

(ii) forall0 <a < b, £L(b) — l(a) < fab (s)ds.
Proof. Cf. [Sh-Tal] and [Sh-Ta2]. O
A technical lemma. Inthe proofs of Theorem A and B, we will evaluate the quadratic
forms ¢, on functions of the form &(r), where r is the distance function on M. To do
this, we have to handle with terms of the form f w KE (r)?* dvy, which will be estimated

using the following lemma. The proof of this lemma is based on the method used by
T. Colding and W. Minicozzi in [Co-Mi].

Lemmal.8. Let R < Q, andlet&: [R, Q1 — Rsuchthar§(Q) =0, >0, <0
and &” > 0. If there exists a constant A such that x (Bs) < A forall s € [R, Q], then

/ o KEC) doy <—E(R*G(R)-2£(R)E' (R)L(R)+2m AE(R)*~ / L, E () dun.
CR CR

Proof. Using the coarea formula we have
Q Q
/ KEr)? dvoy, = / g(s>2(/ JCdos) ds = / £(5)2G’(s) ds.
el R B, R
Let H(s) = [ ; G(t) dt. Doing two integrations by parts we get

[¢)
/C L KE( ) dvy = [E26)]E - /R (€2)(5)G(s) ds
Y
= —E(RG(R) — [ ()H()] + /R (3 (s)H (s) ds

= —E(R)’G(R) + /R ’ (€%)'(s)H (s) ds.
By Theorem 1.7 we have G (1) < 2w A — £/(t), and therefore
H(s) <27wA(s — R) — /1: ¢ (t)dt <2mA(s — R) + £(R) — £(s).
Since (§%)” = 0, we get

Q
[, e an, < 2GR + 274 [ €515~ Ryds
&) R

Q Q
+e(R) /R (€2)/(s) ds — /R E2)/(5)(s) ds.
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Doing an integration by part and using the coarea formula we get the desired
inequality:

/ KE(r)? duy
cg

< —E(RPG(R) + 2w A[(£Y (5)(s — R)]2
o o
—2mA /R (€2 (s) ds + L(R)[(EH 9)]2 - /R (€2 (5)0(s) ds

< —E(R)*G(R) + 2w AE(R)* — 25(R)E'(R)L(R) — /C LED (). D

A result of potential theory. In order to determine the conformal type of the ends of
M, we will use the following result whose proof is based on the proof of Theorem 1.2
in [Co-Mi].

Proposition 1.9. Let X be a complete Riemannian manifold of dimension d such
that the volume of the geodesic balls of radius R satisfies Vx(R) < cR* and let
¢ € Llloc(X ) be a function which is nonnegative almost everywhere. If the operator
Ax — ¢ is nonnegative then the function ¢ is equal to O almost everywhere.

Proof. The idea of the proof is to use the volume estimate to compare the manifold
X with R?,

Let xo € X be a fixed point; in this proof, we shall note rx (x) = dx(xg, x), B
the ball of radius s centered in xg, Vx (s) the volume of By, £x(s) the volume of 9 By,
and C! = {x e X | s < rx(x) <t}

In the same way, for x € R? we shall note 7(x) = |x], ES the Euclidean ball of
radius s, V (s) the volume of By, £(s) the volume of 8B; and C! = {x € R? | s <
7(x) < t}. The hypothesis implies that Vy (s) < a‘N/(s) for some constant a.

For Q > 0,letép(s) = SQ %; up to a multiplicative constant, & () is the Green
function of the ball of radius Q in R? and we have A&(7) = 0 on R2 \ {0}.

Let R > 0,and let n: [0, Q] — R the function defined by

_J&o(R) on[0, R[;
n(s) =
Eop(s) foralls € [R, Q).

Let p be the quadratic form associated to the operator A — ¢. Since p(n(r)) >0
and since ¢ is nonnegative almost everywhere, we have

Q
foR? [ pavx < [ atot)Pdvx = [~ €p(srxts) s
Bg 4 R
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Since £x = Vg, an integration by parts gives

o
Eo(R)? | pdux <[5 Vx(9)]2 — | 265(s)80(s) Vi (s) ds.
B R

Using the upper bound on Vy and doing another integration by part we have
2 ’ 2 Qg 2 g ” at
§0(R) 2 pdvx < [55()" Vx(s)]g —a A 255(s)Ep(s)V(s)ds
R

” e ~
< [0 (Vx(s) —aV())]2 + /R £p ()2 (s) ds

<ar+ [, eI
.

R

where we used that Vy(Q) < aV(Q) and the fact that ‘7(R) = 7 R?. From Green’s
formula in R? we deduce

foR? [ pavx <an va [, eo)Feo).0)d5 + [, ko R0 () db
Bg aCY 4
< am — aég(R)EH(RII(R),

where v is the exterior normal vector to E‘Ig and do is the volume form on 851%
Finally we get

/ bdvyg < 9% 4 al(R)
vx =
Br £o(R)2 ' RE&p(R)

and letting Q tend to +o0 (X is complete) we obtain f x ¢ dvx < 0, which gives the
desired result since ¢ is nonnegative almost everywhere. O

Remark 1.10. There is a similar result on surfaces which are conformally equivalent
to a compact Riemann surface with a finite number of points removed: if ¢ is a
nonnegative function and if the operator A — ¢ is nonnegative, then ¢ must be zero
almost everywhere. This is a consequence of the conformal invariance of the Dirichlet
integral in dimension 2 (cf. [Bé-Be], Appendix 1).

2. Proof of Theorem A

Let (M, h) be a Riemannian surface such that by, > %. In particular, for A = by, the
quadratic form g, is nonnegative. The proof of Theorem A splits into three parts.



Vol. 81 (2006) An inverse spectral problem on surfaces 279
The topology of the surface

Proposition 2.1. Under the hypothesis of Theorem A, M is homeomorphic to C or
C*=C\ {0}

Proof. Suppose that M is neither homeomorphic to C, nor to C*; then we must be in
one of the two following cases:

e M is of finite topology and x (M) < —1;
e M is of infinite topology.

In these two cases, by Lemma 1.4, there exists R such that for all s > R we have
x(Bs) < —1.
Let Q > Randlet&: [0, Q] — R be the function defined by

(0 —R)¥ onl0,R[;
§(s) = o
(Q —s)* foralls € [R, O],

where « > 1 will be chosen later.
Since the form g, is nonnegative, we have

0< | E)?+rKEer)?) dy,
Bg

< 2E(R’G(R) + f E(r) dvg + 2 / KE(r)? dup.
5 | o
Since x(Bs) < —1foralls € [R, @], Lemma 1.8 gives

0 < AE(R1*G(R) + / o &' duy = AE(R)PG(R) — 20E(R)E'(R)L(R)
CR

— 2mAE(R)? — A / ()" (r) dvy,
u
< —20E(R)E'(R)L(R) — 27 AE(R)?

+ /CQ ((1 — 2A)§’(r)2 — ZAS(r)S”(r)) dvy,.
R
Using the definition of &€ on [R, Q] we obtain

0 < —2x6(R)E'(R)E(R) — 2 AE(R)? + / Q((l — 4n)e? + 20a)(Q — r)** 7 dy,.
CR

Since 1 —4x < 0, we can choose « large enough so that (1 —41)a? + 2a¢ < 0, and
we get
0 < —22£(R)E'(R)L(R) — 2mAE(R)?,
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which implies

(R £(R
0SB ppy 2B
§(R) O—-R
Since M is complete, letting Q tend to 400 we get the desired contradiction. a

The volume growth

Proposition 2.2. Under the hypothesis of Theorem A, there exists a constant ¢ such
that for all R > 0 we have V(R) < cR?.

Proof. Let Q > Oandleté: [0, @] — R be the function defined by £(s) = (Q —s)%,
where « > 1 will be chosen later. Since g, is nonnegative, we have

0< £'(r)? duy +x/ KEr)? dvy,.
Bg Bg

Note that for all s > 0 we have x (Bs) < 1, so Lemma 1.8 gives

0< [ &) du+272E072 -2 / (£2)(r) dvy
Bg Bo

<2700 +/ ((1 — 4n)a® + 22a)(Q — r)** 2 duy,.
Bg

Note Aq = —((1 —4M)a? + 2ha); since 1 — 44 < 0 we can choose o large enough
so that A, > 0. Thus we have the following inequalities:

Ay | (Q =12 dvy, <2700,
Bo

Ay / (Q — 122 duy, < 2700,
Bg
2

200—2
A ¢ V(Q

20
ey 5 > <27 AQ"".
It follows that for all R we have

22at+ly
V(R) < TR? O

o

The conformal type of the ends. Itis a classical fact in potential theory that surfaces
with quadratic volume growth are parabolic (i.e. each end is conformally equivalent
to the punctured disc). For sake of completeness we give a proof of this fact which
uses Proposition 1.9.
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Proposition 2.3. Under the hypothesis of Theorem A, each end of M is conformally
equivalent to the punctured disc D* = {z e C |0 < |z| < 1}.

Proof. Suppose that M possesses anend E which is not conformally equivalent to D*.
Then there exists a < 1 and a conformal diffeomorphism F': £ — D, = {7 € C |
a < |z| < 1}

Let A2 be the Poincaré metric on D, and let g = F*(hyp). The diffeomorphism
F being conformal, and the metric /2 being conformal to the Euclidean one on D,
we have 1 = p2ho on E.

Let ¢: M — R be the function defined by

M@zﬁer

0 ifx e M\ E;
P(x) = {

Let p be the quadratic form associated to the operator A — ¢; for all functions
u € C§°(M) we have

2 2 2 2 [
p(u) = | (|dulj, — pu”)dv, = |duly, dvp + |dulj, — —5u” | dvp.
M M\E E 4p

Using the conformal invariance of the Dirichlet integral in dimension 2 and the con-
formal diffeomorphism F, we get

. 2 12 1 1,2
p(u) = |dulydop + | (|dwo F7);  — —(wo F~)") dvp,.
M\E D, 4 H

It is a well-known fact that the second term of this sum is nonnegative.

We proved that there exists a function ¢ € Llloc(M ) which is nonnegative on
M and positive on a subset of positive measure, such that the operator A — ¢ is
nonnegative. Since M has quadratic volume growth, this contradicts Proposition 1.9.

a

3. A theorem ‘4 la Huber”

Let (M, h) be a Riemannian surface satisfying the hypothesis of Theorem B: there
exists a compact domain 2 € M and a real A > % such that ¢, (1) > 0 for every
function u € Cgo(M \ €2). Let Ro such that Q2 C Bg,; the quadratic form g, is
nonnegative on C°(M \ Bg,).

The proof of Theorem B is similar to the one of Theorem A. The difference is that
we have to construct test functions whose supports are in M \ Bg,. Choose R; such
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that Ry < R; — 1, and define &: [R; — 1, R1] — R by &y(s) =s — Ry + 1. In the
sequel we shall note

.= [ gy (660024 AKEo()) dug = AG(Ry),

Clel

which only depends on the metric # and on A.
Proposition 3.1. Under the hypotheses of Theorem B, M is of finite topology.

Proof. Suppose that the topology of M is not finite. Let A be such that 0 > 2w AA 4+
cn,5.; by Lemma 1.4, there exists R such that for all s > R we have x (B;) < A.
Let Q > Randlet&: [R; — 1, @] — R be the function defined by

&(s)  foralls € [Ry — 1, Ri[;

S(S) =11 on [R],R[v
% forall s € [R, Q].

where o > 1 will be chosen later.
Since the quadratic form g;, is nonnegative on C§°(M \ Bg,), we have

0 [, @oP+axaetdnn [ Ko+ [ €0
]71 Cligl CR

CR1

+x/ KE(r)? doy
o
< cnn+MG(R) + / &(r) dup + / KEE)? do.
g g
Since x(Bs) < A for all s € [R, O], Lemma 1.8 gives

0 < ¢z +AG(R) + f L £ vy — LG (R) — 20€ (R)E(R) + 2w AL
Ck

Ry / Q<s2>”<r> dvy.
CR

Using the definition of & on [R, O] we get
20Al(R) 1

2m AL
0<cppt+2m +Q—R 0 _R=

/Q((l—4,\)a2+2m)(Q—r)2“—2dvh.
CR

Since 1 —4x < 0, we can choose « large enough so that (1 —41)a? + 2a¢ < 0, and
letting Q tend to 400 we get 0 < ¢p,3 + 2 AA which is in contradiction with the
choice of A. a
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Proposition 3.2. Under the hypotheses of Theorem B, there exists a constant ¢ such
that for all R > 0 we have V(R) < cR?.

Proof. Let Q > Ryandlet&: [R — 1, Q] — R be the function defined by

ey {SO(S) forall s € [Ry — 1, Ry[;

((QQ_—I;); forall s € [Ry, Q].

where o > 1 will be chosen later.
The nonnegativity of g, gives

0 [, @7 +axamDdu [, €0Pdu v [ KeoR du,
1 “ 2]

Ri-1

Since for all s > 0 we have x (Bs) < 1, Lemma 1.8 yields
0 < e — 206" (RDERY) +2mh+ | €' ()P doy — & / , E)'(r)duy
Ck, CR,

2arl(Ry) Ay o
Q—Ri _<Q—R1>2ach(Q_r)2 oy

Ry

SC}L)M—FQJT}»—{-

where A, = —((1 — 40 + Zxa); since 1 —4x < 0 we can choose « large enough
so that A, > 0. Thus we have the following inequalities:

Ay / - 2aMl(R)
— —r dvp <cpp+2mh+ ——,
(Q — R)™ cgl(Q ) e 0-Ri
Am(Q + Rl)Za—Z Rie 20()»£(R1)
(CoZ )< a4+ —— 7,
a2 — Rl)ZD‘VO ( R ) <cp)+2mr+ O_R,

Let R > Rp and let Q@ > Rj such that R = &}Q. It follows from the above
inequalities that

- arl(R)\ 22 (R — R))*™
V(R) = V(R)+Vol(Cg,) < V(R1)+| cha+27h +

R— R A R22-2

From this inequality we deduce that Vlg) is bounded above on [R] + 1, +00); since
limg_0 Vlg) =, Vg) is bounded above on R, which implies the result. O

Proposition 3.3. Under the hypotheses of Theorem B, each end of M is conformally
equivalent to the punctured disc.

Proof. The proof is the same as the one of Proposition 2.3. o

Remark 3.4. The hypotheses of Theorem B are satisfied if there exists A > % such
that the operator A + AJK as a finite number of negative eigenvalues.
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4. Complete conformal metrics on the unit disc

In the following, a “complete conformal metric on the unit disc” will denote a metric
hon D = {z € C| |z] < 1} which is complete and conformally equivalent to the
Euclidean metric.

In this section, we are interested in the question asked in [FC-Sc]: If h is a
complete conformal metric on the unit disc, what are the possible values of by, which
can occur? Since the unit disc is not conformally equivalent to C nor C*, Theorem A
gives a first answer to this question.

Corollary 4.1. If h is a complete conformal metric on the unit disc, then by, < %.

Remark 4.2. The statement of Theorem A is the best possible since by, = 1 for the
Poincaré metric on D. Moreover, C and C* admit complete flat metrics wich are
conformally equivalent to the Euclidean one. For such metrics we have b, = +00.

It is not hard to see that by, can take any value in [0, %] for a complete conformal
metric # on the unit disc. Namely, we have the following proposition.

Proposition 4.3. Leth = w2ldz|* be a complete conformal metric on the unit disc.
If the metric hy = w2 |dz|* is complete, then we have by, = %bh

Proof. Let g, 5, (resp. g,,p,) denote the quadratic form associated to the operator
A + AKX for the metric % (resp. /i, ). Using the conformal invariance of the Dirichlet
integral, and the expressions of the curvature and the volume form of % in terms of
the conformal factor p, we get

0w = [ (duf? + 2(&tog ) d,
D
where |du|, and dv, denote the norm of du and the volume form for the Euclidean

meitric.
A similar calculation gives

Qi hy (1) = / (|dul? + ar(Alog p)u®) dv,
D
so that ;. .z, = gua,n and the proposition follows. O

If 4 is the Poincaré metric (i.e. u(z) = 1%212)’ and if ¢ > 1, then it is easy to see

that the metric hy = pu2¥|dz|? is complete, so we have by, = ﬁ.
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Consider now the metric & = u?|dz|?, with 1(z) = exp (ﬁ) Let R < 1and
let &g [0, 1] — R be the function defined by

1 if s < R;
Er(s) =  BH=2 jf R <5 < BEL
0 ifs > 2L

Then a simple calculation proves that, for all A > 0, g5 7 (£r(|z])) becomes negative
if R is close enough to 1. This implies that b, = 0.

Finally, for each 8 € [0, %] we found a complete conformal metric ~ on D such
that b, = B.

Another natural question is to know whether the value b;, = % is characteristic
of the Poincaré metric among the complete conformal metrics on the unit disc. The
(negative) answer is given by the following proposition.

Proposition 4.4. There exists a universal constant & such that for all complete con-
3

Jormal metrics h on the unit disc satisfying X < —1 and fD | K 4+ 112 dvy, < e we

have by, = %.

Proof. The surface being simply connected, the upper bound on the curvature implies
an upper bound on the heat kernel py of (D, k). This is obtained by comparing py,
with the hyperbolic heat kernel, using standard comparison theorems; using known
estimates on the hyperbolic heat kernel, we get that there exists a universal constant
Ag such that py(t, x, x) < Aot_%e_% (ctf. for example [Cal], Proposition 2.4).
Using Lieb’s theorem (cf. [Cal], Theorem 1.3), there exists a universal con-
stant A such that for every operator of the type R = A — % + ¢, the number of

negative eigenvalues of R satisfies My(R) < A f D |q§|% dvy. Lete = %, and suppose
Ip IJC—HI% dvy <. SincetheoperatorL% is L% = A—f—%e]{ = A—%—i—%(](—f—l),
we have
A 3 1
Moty =g [ 1%+ 1t < ¢

This inequality implies that Ay(L 1 ) =0,80¢q 1 is non negative and by, >

1
1
Using Corollary 4.1 we get by, = %. O

Remark 4.5. The hypotheses of Proposition 4.4 are satisfied by some of the minimal
surfaces of H? introduced in [Ne-Sp]. For some simply connected domain €2 C R2,
the authors prove that there exists a function fg which is zero on d€2 and positive on
2 whose graph Mg, is a minimal surface in the upper half space endowed with its
hyperbolic metric (when €2 is a Euclidean ball, M, is a hyperbolic plane).
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Now, the Gauss equation implies that X < —1 on M, and taking €2 close enough

to a Euclidean ball, it is not hard to see that f Mo | K + l|% dvy, can be made small
enough to fit the hypothesis of Proposition 4.4.
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