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Tangent bundle embeddings of manifolds in Euclidean space

Mohammad Ghomi*

Abstract. For a given n-dimensional manifold M” we study the problem of finding the smallest
integer N (M™) such that M" admits a smooth embedding in the Euclidean space RY without
intersecting tangent spaces. We use the Poincaré—Hopf index theorem to prove that N (S) = 4,
and construct explicit examples to show that N(S") < 3n + 3, where S” denotes the n-sphere.
Finally, for any closed manifold M”, we show that2n +1 < N(M") <4n + 1.

Mathematics Subject Classification (2000). 53A07, 57R40.

Keywords. Submanifold, embedding, tangent bundle, tangent developable, skew loop, totally
skew submanifold, T-embedding.

1. Introduction

Every Cl-immersion f: M" — RY, where M" is an n-manifold and RY is the
Euclidean N -space, induces a mapping of the tangent bundle TM via the differential
mapdf: TM — RN, Wesay that f is a tangent bundle embedding, or a T-embedding
for short, provided that df is one-to-one. In other words, a submanifold of Euclidean
space is T-embedded provided that it has no pairs of intersecting tangent spaces. The
aim of this note is to begin the study of and call attention to the following basic
question:

Problem 1.1. For a given manifold M", what is the smallest integer N(M") such
that M"™ admits a T-embedding in RN ?

The above problem may be regarded as a generalization of the investigations
conducted in the 1940’s by H. Whitney [12], culminating in his celebrated theorem
that every n-manifold may be embedded in R?". The prime stimulus for this work,
however, is due to the recent renewed interest in studying global geometry of tangent

*The research of the author was supported in part by NSF Grant DMS-0204190 and CAREER award DMS-
0332333,
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lines of closed curves and knots ([1], [2], [4], [11], [13]), see Note 1.8. Our first result
shows that the circle S' admits no T-embedding in R>.

Theorem 1.2. Every closed C'-immersed curve in R3 has uncountably many pairs
of intersecting tangent lines.

The proof of Theorem 1.2, which we present in Section 2, follows from the
Poincaré—Hopf index theorem (Proposition 2.3) together with a perturbation argument
for bitangent planes (Proposition 2.4). The remaining results of this paper, which are
proved in Section 3, are concerned mainly with some explicit constructions of T-
embeddings:

Theorem 1.3. Every torus T" admits a smooth T-embedding in R*" given by
C">T" 3 (21, 20) —> (21,255 -+, 20, 22) € T

In particular, there exists a T-embedded closed curve in R*,

Where C" denotes the complex n-space. The previous two theorems solve Prob-
lem 1.1 for the case M" = S!:

Corollary 1.4. N(S') = 4. ]

Another class of T-embeddings may be constructed using cubic curves, and ex-
ploiting the fact (Proposition 3.2) that T-embeddings are preserved under cartesian
product:

Theorem 1.5. Let f: M"* — RY be any C'-embedding, and f;, i = 1,..., N be
the components of f. Then

M > pr— (A, fE0), [2P)s ooy fn(p), R (p). fa(p)) e RN

is a T-embedding. In particular, N(R") < 3n and N(S") <3n + 3.

Since every planar curve has intersecting tangents, the above theorem immedi-
ately yields that N(R') = 3. Further, note that the above result, via Whitney’s
2n-embedding theorem [12], implies that any n-manifold admits a T-embedding
in R®. Working a bit harder, via successive projections into subspaces of lower
dimension, we obtain:

Corollary 1.6. N(M") < 4n + 1, for any manifold M™.
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Using Thom’s transversality theorem, it can be shown that the above result is in
fact a generic property [5]. That is, any immersion of M" in R**! can be turned
into a T-embedding by an arbitrarily small perturbation. In Section 3, we also obtain
a lower bound:

Theorem 1.7. N(M") > 2n + 1, for any non-contractible manifold M™".

Note that since dim(7M™) = 2n, we trivially have N (M") > 2 for all manifolds.
The last theorem improves this lower bound for manifolds whose homotopy type
is different from that of a point. In particular, when M" is a compact manifold
without boundary, N (M™) > 2n + 1. However, the author does not know if the non-
contractibility assumption in Theorem 1.7 is necessary. More generally, the author
does not know if the estimates in the last two results can be improved. But it would
be reasonable to conjecture that N (M") < 4n.

Note 1.8 (Terminology and some history). The class of mappings we study in this pa-
per, the T-embeddings, are not to be confused with skew immersions, or S-immersions
([11, [2], [4], [11], [13], [8]), which are defined as immersions without any pairs of
parallel tangent lines. The first proof of the existence of an S-embedding of a circle,
or skew loop, in R3 is due to B. Segre [8]. For an explicit formula for such a curve
see [2]; there skew loops where used to solve Wente’s shadow problem which is re-
lated to stability questions concerning surfaces of constant mean curvature [3]. Skew
loops are also of interest due to their connection with quadric surfaces: the author
and B. Solomon [4] showed that the absence of skew loops characterizes ellipsoids,
and S. Tabachnikov [11] has ruled out the existence of skew loops on any quadric
surface.

One may also introduce a notion of rofally skew embedding, or TS-embedding [5],
which is defined as an embedding which is both a T-embedding and an S-embedding;
an example is the cubic curve x —> (x,x%, x3), and another example is given
by Proposition 3.1. Though in this paper we confine our attention primarily to T-
embeddings, Problem 1.1 can be stated for S-embeddings and TS-embeddings as
well. The case of TS-embeddings will be studied in [5], and is related to the existence
of nonsingular bilinear maps, and the “generalized vector field problem”. The present
work has a different flavor which is in part due to the fact that, unlike T-embeddings,
TS-embeddings are not preserved under cartesian product (see Note 3.3).

2. Proof of Theorem 1.2

The basic idea for the proof of Theorem 1.2 is as follows. Let C  R? be (the image
of) a closed Cl-immersed curve. For every unit vector u € S2, let TT(u, A) be the
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plane which is orthogonal to u and passes through iu; that is,
M, 2) :={x eR®: (x —u,u) =0},

where (-, -) denotes the standard inner product. Let 1, be the infimum of all A such
that IT(u, &) is disjoint from C. Then IT, := II(«, A,) is tangent to C. Let L, be
the collection of all tangent lines of C which lie in IT,. We claim that, for some
u € S?, L, must contain a pair of intersecting lines. Suppose not. Then, for each
u € S?, let £, be a line which passes through « and is parallel to the elements of L.
Since I, is orthogonal to u, this yields a tangent line field on S?. As we show in
Lemma 2.1 below, u — £, is continuous. But it follows from the Poincaré—Hopf
index theorem (Lemma 2.2), that there are no continuous line fields on the sphere.
Hence we obtain a contradiction. So atleastone of the planes IT, musthave contained
a pair of intersecting tangent lines. A perturbation argument (Proposition 2.3) applied
to IT, then yields the existence of infinitely many pairs of intersecting tangent lines
in nearby bitangent planes, and completes the proof.

To proceed more formally, let ¢: S! ~ R/27Z — R? be a C! unit speed curve,
i.e., a C! mapping with ||¢/|| = 1. For any u € $?, let #, € S! be a maximum point
of t > {c(t), u), and set £(u) := {£c'(t,)}.

Lemma 2.1. Suppose that c’(t1) = +c'(t;) whenever t; and ty are maximum points
of t — (c(1), u). Then £: S* — S?/{£1} =~ RP? is well-defined and continuous.

Proof. Our hypothesis, together with the definition of ¢, implies that
Lu) = (£ ()} <= (@), u) < (c(t),u), forall € S". )

Thus ¢ is well-defined. To prove the continuity of £, let u; € S* be a sequence, and
t,; be a maximum point of ¢ — (c(¢), u;). Then

Cuy) = {=£c'(tu,)}- €y

Since S! is compact, ,; has a limit point 7. Thus, since c is cl, ¢ (t,,) has a limit
point at ¢’ (7). So, (2) yields that

{£=c/ (1)} is a limit point of £(u;). 3)
Next note that (1) and (2) imply
(c(t), ui) < (c(ty;), ui). “
Now let « be a limit point of «;. Then, since (-, -) is continuous, (4) implies

(c(t), ) < (c(t),u).
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Consequently, (1) yields
e(ir) = {£c'(1)}.
So, by (3), £(u) is a limit point of £(u;); therefore, we conclude that ¢ is continuous.
Od

We also need to recall the following well-known fact:
Lemma 2.2. There exists no continuous tangent line fields on S%.

Proof. By a generalization of the Poincaré-Hopf theorem on vector fields [10], the
sum of the index of the singularities of a line field on a 2-manifold M is equal to
the Euler characteristic y (M) . In particular, if M has a line field which is defined
every;vhere, i.e., it has no singularities, then we must have x (M) = 0, which rules
out S°. ]

Combining Lemmas 2.1 and 2.2, we obtain:.

Proposition 2.3. For every C! immersed curve c: S' — R3, there exists a plane
1 c R3 such that

(1) (S lies entirely on one side of T1

(2) ¢ has a pair of tangent lines in I1 which intersect transversely
Inparticular, there exist ty, so € SY, such that c(1o), ¢(so) € Mand ¢’ (1y) x ¢’ (s0) # 0.

Proof. After a reparametrization, we may assume that ¢ has unit speed. For each
u € S?, let 1, be a maximum point of 7 — (c(z), u), and let IT, be the plane given by

I, .= {x eR: (x,u) = (c(ty), u)}.

Note that #, is a maximum point of 7 — {c(¢), u) if and only if ¢(z,) € I1,.

Suppose now that ¢ has no pairs of intersecting tangent lines in I1,,. Then at all the
maximum points #, of 1 —> (c(t), u), the tangent vectors ¢’(1, ) should be equal up to a
sign. So, by Lemma 2.1, the mapping ¢ : S* — S?/{=1}, givenby £(u) := {&c'(t,)},
is well defined and continuous. But (¢/(#,), u) = 0, so £ determines a tangent line
field on S?, given by

L, ={u+iv:vel(u), andr e¢R}.
This contradicts Lemma 2.2 and thus completes the proof. o

Next we show that it is possible to perturb the plane IT in the previous proposition
to produce infinitely many pairs of intersecting tangent lines. For every r € S and
€ € R we define

Uc(t) :={x € S' 1 distg1(x, 1) < €},
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where distg; is the intrinsic distance in S'. The end points of the above interval are
denoted by dU,(1).

Proposition 2.4. Let c: Uy(to) U Us(sg) — R3 be a C! immersion for some 1,
S0 € Sl, to # so, and n, & > 0. Suppose that there exists a plane T1 C R3 such that

(1) c(Uy(to) U Us(so)) lies on one side of T1;

(2) c(to), c(s0) € ITI;

(3) (t0) x '(s0) #0;

(4) Forevery0 < o <34, thereisa 0 < B < « such that c(dUg(sp)) N IT = 0.

Then there exists an 0 < € < n with the following property: For every t € Uc(t)
there exists an s € Us(so) such that the tangent lines of ¢ at c(t) and c(s) intersect
transversely.

Proof. Since (t,s) — /(1) x ¢’(s) is continuous and ¢’ (fg) x ¢(s¢) # 0, we may
choose € small enough so that

(1) x (s) £0, forall (z,s) € Uc(1p) x Ue(s0)- 4)

In particular, U, (o) N U¢ (so) = @. Further, item 4 above implies that we may assume

c(dU.(so)) NIT = @, (6)

where dU denotes the endpoints of U.

Now let £, denote the tangent line of ¢ at ¢(x). Using (6), and the assumption
that ¢’ (19) x ’(s0) # 0, we may rotate IT around ¢, to obtain a new tangent plane,
say Iz, such that

Iy, separates c(so) from c(aU, (sp)). @)

That is, c(sp) lies in one of the open half-spaces determined by I, while c(3dU, (sp))
lies in the other open half-space.

Let no denote a unit normal to Iz, and n: Uc(fp) — S? be any continuous unit
normal vector field of ¢ with n(#y) = ng. For every ¢t € Uc(1p), let [1; be the plane
which pass through c(#) and is perpendicular to (7). Then, by continuity of ¢ — I1;,
(7) implies that there exists 0 < ¢’ < ¢ such that

I1; separates c(so) from c(dUc(sp)),

forall t € Uu(tp).

So, for each ¢ € U./(tp), we may rotate I1; around ¢; until we obtain a plane, say
I}, which is tangent to ¢(Uc(s0)). Then, in addition to ¢;, IT; will contain another
tangent line /5, for some s € Uc(s¢). Thus (5) implies that ¢; and ¢, intersect
transversely, which completes the proof. O
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The above propositions now yield:

Proof of Theorem 1.2. For any C! immersed closed curve c: S' — R3, Proposi-
tion 2.3 ensures that all the conditions of Proposition 2.4 are satisfied except possibly
Condition 4. If Condition 4 is also satisfied, then Proposition 2.4 yields that ¢ has
uncountably many intersecting tangent lines. On the other hand, if Condition 4 is not
satisfied, then it follows that ¢ maps an open neighborhood of S! into IT. In particu-
lar, ¢ is tangent to IT uncountably often. But this again results in uncountably many
intersecting tangents, because IT contains a pair of nonparallel tangent lines. O

Note 2.5. It is comparatively easy to prove the existence of intersecting tangents for
knotted curves ¢: S! — R3. To see this let 4 be the maximum distance of ¢(S!)
from the origin o := (0, 0,0), and S C R3 bea sphere of radius r > d centered at o.
Then, for each ¢ € S', the ray

R :={c(t) + A/ (t) : A >0}

has a point inside and a point outside of S. So R; intersects S at a unique point, say
c(r) + A’ (¢). Since ¢ is continuous, ¢ — A; is continuous as well. Thus

ci=c(t) + rc(t)
gives a closed curve in S. Suppose that ¢ has no pairs of intersecting tangents. Then
RNR;, =0 8)

for all # # 5. Consequently ¢ is one-to-one. So, by Jordan’s curve theorem, c(S!)
bounds an embedded disk, and is therefore unknotted. Now define /: S' x [0, 1] —
R? by

h(t,s) = c(t) + shc' (1),

Clearly # is continuous. Further, (8) implies that / is one-to-one. Thus 2 gives an
isotopy between c(SY) and 2(S1), which is a contradiction. So we conclude that ¢
must have a pair of intersecting tangent lines

Note 2.6. The set of all tangent lines to a C! curve ¢: S' — R? determines a surface
parametrized by ¢(¢) + s¢/(¢), and called the fangent developable of ¢. Theorem 1.2
implies that the tangent developable of any closed C! curve in R? has infinitely many
double points. The multiple points and singularities of the tangent developable of
“generic” curves have been studied by a number of authors. For a survey of results
of this type and references see [7].
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3. Proof of other results and examples

In the previous section we established the nonexistence of closed T-embedded curves
in R®. The following result shows that such curves may be constructed in R*.

Proposition 3.1. The mapping c: S — R*, given by
CoS'sz+5 (3,729 e C?,
is a TS-embedding.
Proof. We may paramelrize c as
c(t) := (cost, sint, cos 2¢, sin 2¢).
First we verify the skewness. To see this let

7 =20 = L G, cost, ~2sin2t, 2c0521)
= = —(—sint, cost, —2sin 2t, 2 cos 2f).
Il /3
It is enough to check that T (¢) # £T (s), unless t = s (mod 2r). Suppose T'(t) =
T(s). Then sint = sins, and cost = coss. This yields t = s (mod 27). Next

suppose that 7 (t) = —T (s). Then sint = —sin s, and cos t = — cos s. This yields
t =5+ (mod2m). )]
But we also have sin 2t = — sin 2s, and cos 2t = —cos 2s. So
2t =2s + 7 (mod2m). (10)

Subtracting (9) from (10) we get ¢ = s (mod 2). So ¢ is skew.
To see that ¢ is totally skew, note that

cost —sint 0 0 1

o) = sint  cost 0 0 0
0 0 cos2t —sin2t 1

0 0 sin2t  cos 2t 0

That is, ¢ is the image of a one parameter subgroup of the special orthogonal group
SO(4) acting on ¢(0). In particular, ¢ is invariant under such rotations. Thus to show
that the tangent lines of ¢ do not intersect, it is enough to check that the tangent line
of ¢ at ¢(0) does not intersect any other tangent line. Let

Li(s) :=c(t) + s/ (1)
= (cost —ssint, sint + scost, cos2t — 2ssin2¢, sin2t + 2s cos 2t ).



Vol. 81 (2006) Tangent bundle embeddings of manifolds in Euclidean space 267

be a parametrization for the tangent line of ¢ at ¢(¢). Setting #,(s1) = £o(s2) yields:

cost —sysint =1,
Sint + s1CoSt = s2,
(11)

cos2t —2sy8in2t =1,
sin 2t + 2s1 cos 2t = 2s7.

Eliminating s1 from the first and third equations, we get
2sin2tcost —sintcos2t = 2sin2¢ — sinz.

Using the identities sin 2t = 2sinfcost and cos2t = 1 — 2 sin? t, we may rewrite
the above equation as
2sint (1 —cos)? = 0.

The solutions to this equation, modulo 2z, are t = 0 and + = 7. But a quick
examination of (11) reveals that only + = 0 satisfies all the equations. Thus the
tangent line £ is disjoint from all other tangent lines of ¢, and we conclude that ¢ is
totally skew. O

Proposition 3.2. If M1 C R™ and M, C R™ are T-embedded submanifolds, then
50 is My x My c Rritn2,

Proof. Suppose, towards a contradiction, that M7 x M» has intersecting tangent lines.
Then there are distinct points p, g in My x M, and vectors v € T, (M7 x M>) and
w € T, (M;y x M), such that

ptv=qg+w.

Note that p = (p1, p2) and g = (g1, g2) where p;, ¢; are points in M;, i = 1, 2.
Further, v = (v, v2) and w = (w1, wz) where v; € Tp,M; and w; € T;; M;. Thus
the above equality implies that

pr+vi=q1+wr and p2+ vy =g+ ws.

Since, by assumption, p # ¢, we must have p; # py or q1 # g2. Thus the
above equalities imply that M; or M must have a pair of intersecting tangent lines
respectively. O

Note 3.3. In contrast to the previous proposition, S-embeddings are not closed under
cartesian product. Indeed, the cartesian product of any two submanifolds will always
have parallel tangent lines. To see this let M; € R™ and M C R™ be a pair of
submanifolds, and p € M1,v € Ty,My,andg,r € M>. Then (v, 0) € Ty o M1 x M2,
and (v, 0) € T(p,» M1 x M. Thus M1 x M has parallel tangent vectors at all pairs
of points (p, r) and (p, q).
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Combining the previous two propositions immediately yields Theorem 1.3. Fur-
ther, the last proposition also yields:

Proof of Theorem 1.5. Any submanifold of a T-embedded submanifold is also T-
embedded. Thus, by Proposition 3.2, it suffices to check that

R>x+> (x,xz,x3) cR?

has no intersecting tangent lines. Suppose otherwise. Thentherearex,y € R, x # v,
such that

(e, 2%, 0% + M1, 2%, 3x%) = (3, y%, ) + w(l, 2y, 35%),
for some X, u € R. The above equality yields three equations:
X—Y=pH—Ah,

x?—y? =2(uy — Ax),
=y =3(uy* — ax?).
Solving for y in the first equation and substituting in the second yields that A = .

If A = p, then the first equation yields x = y, which is a contradiction. If A = —p,
then dividing the third equation by the first yields that

3
x4 xy+y2 = E(y2 +x2).
The above equation is equivalent to (x — y)2 = 0, which yields x = y, another
contradiction. O

From this we immediately obtain the following result.

Corollary 3.4. Ifamanifold admits an embedding in R™, then it admits a T-embedding
in R3™, a

Further, we can use Theorem 1.5 to etablish Corollary 1.6.

Proof of Corollary 1.6. As is well-known, every compact manifold M" admits a
smooth embedding into R™, provided that m is sufficiently large [6, p. 23]. Thus, by
the previous corollary, M" admits a smooth embedding without intersecting tangents
into RY, where N = 3m. If N < 4n + 1 we are done. So suppose that N > 4n + 1.
Define g: (TM x TM — ATM) — SV~1 by

X =Yy
llx — Il

glx,y) =
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where A denotes the diagonal elements of a cartesian product. Since
dim(TM x TM — ATM) = 4n < N — 1 = dim(SV 1),

and g isa C! mapping, the image of g must have measure zero [6, p. 68]. In particular,
g is not unto. Let u € SV~ be a vector in the complement of the image of g, Hy
be the hyperplane through the origin and orthogonal to «, and 7, : RY — H, be the
orthogonal projection

Tyu(x) == x — {x, u)u.

Then 7 is an embedding on 7M. But n(TM) = T(x(M)). Thus 7 (M) has no
intersecting tangent spaces, and we obtain a T-embedding of M in H, ~ RN-1,
We may repeat this procedure until we reach the desired dimension, 4n + 1, for the
ambient space. O

Finally, we prove the last observation mentioned in the introduction. The proof
below uses the notions of contractibility and retract of a topological space X. Recall
that X is contractible if there exists a point xo € X and a continuous mapping
f: X x[0,1] - X suchthat f(x,0) = x,and f(x,1) = xo. Asubset Y C X is
called a retract of X if there exists a continuous map f: X — Y suchthat f(y) =y
forally e Y.

Proof of Theorem 1.7. Suppose that there exists a non-contractible manifold M"
which is T-embedded in R?". Since dim(7M) = 2n, it follows from the theorem
on the invariance of domain that 7M is an open subset of R?*. We claim that TM is
closed in R?" as well. To see this let p; be a sequence of points in TM converging
to a point p in R*". Let g; be the corresponding sequence of points in M such that
pi € T;; M. Since M is compact, g; have a limit point g in M. Since the tangent space
T, M is a limit point of 7;;, M, it follows that p € T, M C TM. Thus TM is both open
and closed in R?", which yields that TM = R*". In particular TM is contractible.
But M is a retract of TM, and the retract of a contractible space is contractible. So
M is contractible — a contradiction. ]

Acknowledgments. The author thanks Bruce Solomon, Ralph Howard, and Serge
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