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Distribution des valeurs de transformations méromorphes
et applications

Tien-Cuong Dinh et Nessim Sibony

Abstract. A meromorphic transform (MT) between compact Kahler manifolds is a surjective
multivalued map with an analytic graph. Let Fn : X -> Xn be a sequence of MT. Let an be an

appropriate probability measure on Xn and a the product measure of an, on X := Yln>i ^n-
We give conditions which imply that

^Fnn&xj - (Fnnsxj] -> o

for (7-almost every x (x\, X2, ¦ ¦ and x' (x[,x2, in X. Here &Xn is the Dirac mass at

xn and d(Fn) the intermediate degree of maximal order of Fn.
We introduce a calculus on MT: intermediate degrees of composition and of product of MT.

Using this formalism and what we call the ddc-method, we obtain results on the distribution of
common zeros, for random I holomorphic sections of high powers L" of a positive holomorphic
line bundle L over a projective manifold.

We also construct the equilibrium measure for random iteration of correspondences. In
particular, when / : X -> X is a meromorphic correspondence of large topological degree dt,
we show that dt " (/")*cok converges to a measure /x, satisfying f*/x dt/x. Moreover, quasi-
psh functions are /x-integrable. Every projective manifold admits such correspondences. When

/ is a meromorphic map, /x, is exponentially mixing with a precise speed depending on the

regularity of the observables.

Mathematics Subject Classification (2000). 32H, 37D, 37A25, 81Q50.

Keywords. Meromorphic correspondences, dynamical degrees, speed of mixing, random
polynomials.

Notations. Dans tout l'article {X,w), (X',o/) et (Xn,con) désignent des variétés

kahlériennes compactes de dimensions respectives k, k' et kn. On suppose que

fx cok 1, fx œ'k 1 et fx con" 1 sauf mention contraire. Les constantes

géométriques r{X,w), R*(X,a>), R|(X, a>, p) sont définies au paragraphe 2.1,

Rj(^, co, a), A(X, co,a,t) au paragraphe 2.2, les degrés intermédiaires Xi(F), les

degrés dynamiques d\{f), le degré topologique dt{f) et la constante A(/) sont définis

au paragraphe 3. L'espace projectif complexe P^ est muni de la forme de Fubini-
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Study «FS normalisée par f co^s 1, de la mesure de probabilité invariante Q^s et

d'une autre wîfs sur sa partie réelle WPk. L'espace multiprojectif P^1' =Wk x ¦ ¦ -x¥k
(l fois) est muni de la forme de Kahler comp, de la mesure de probabilité invariante
naturelle Qm? et d'une autre hîmp sur sa partie réelle (voir l'appendice).

1. Introduction

Une variété projective de type général admet au plus un nombre fini d'endomor-
phismes méromorphes dominants [15]. C'est dire que la dynamique de ces applications

est très pauvre. Il n' en est plus de même dès qu' on considère les correspondances.
En effet, si X est une variété projective de dimension £ et si g et A désignent deux

projections holomorphes surjectives de X sur Fk, le sous-ensemble analytique

r:={(x,y)eXxX, g(x)=h(y)}

définit une correspondance sur X, c.-à-d. une application multivaluée / := h~l o g.
On peut aussi considérer A"1 o m o g, où m est un endomorphisme holomorphe de Fk.

On obtient ainsi des correspondances dont la dynamique est très riche.

Dans un cadre plus large : celui des transformations méromorphes (TM), bon
nombre de questions dynamiques, ou de comportements asymptotiques de préimages,
se ramènent à l'étude du problème suivant.

On considère une suite Fn : X -> Xn d'applications méromorphes, de correspondances

ou plus généralement de TM. On se pose la question de donner des critères

véritables sur les Fn et les Xn assurant que les préimages F'1 (x„) par Fn des points
xn g Xn sont équidistribuées dans X.

Précisons les problèmes. Une TM de codimension / de X dans Xn est la donnée

d'un sous-ensemble analytique F(n) de dimension pure kn + / de X x Xn, 1 < / <
k — 1. On suppose que les projections n et nn, restreintes à chaque composante
irréductible de r(n\ sur X et Xn, sont surjectives. Pour xn g Xn générique, la fibre
F~l{xn) := 7r(7Tn|r(„))~1(x„) est de dimension /. Si SXn désigne la masse de Dirac

enxn, on pose

(Fn)*(8Xn) :=7r*(7r„|rw)*^n-

C'est un courant de bidimension (/, /) porté par Fn l (xn).

Les graphes r^"^ des Fn étant holomorphes, on peut espérer que dans les cas

"intéressants", génériquement F*(SXn) et F*(SxiJ, convenablement normalisés, aient
la même répartition asymptotique.
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Problème d'équidistribution. Trouver des conditions vérifiables, pour que généri-

quement sur les suites (xn) et (x'n)

au sens des courants. Ici d{Fn) désigne la masse d'une fibre générique de Fn, celle-ci
est indépendante de la fibre.

Problème de convergence. Dans certains cas, trouver la limite de la suite de courants

1

d(Fn)

Un cas particulier du problème de convergence est celui où on se donne une suite

/„ : Xn-\ --* Xn de correspondances, i.e. une suite de TM de codimension 0 entre
variétés de même dimension. On veut trouver la limite de la suite de mesures

(/ft°°/i)(^)d\...dn

et en donner les propriétés. On est dans le cas où Fn := fn o -- - o /1; le nombre de

points d'une fibre générique de /„ est égal à dn.

Du point de vue physique, on compose des applications voisines, et un théorème
dans ce cadre est signe de la robustesse du résultat. Une seconde raison de considérer
des suites d'applications est que pour l'itération d'applications birationnelles /, on
est amené à considérer le comportement de la suite (/", / "). Nous appliquons ainsi
cette approche au problème de la distribution des zéros des sections holomorphes
des puissances L" d'un fibre en droites positif L —>¦ X. On prend alors pour Xn la

projectivisé de l'espace des sections de L". Ce problème est lié au chaos quantique.
Voir Nonnenmacher-Voros [19] et Shiffman-Zelditch [22].

Dans le cas général, notre critère d'équidistribution utilise deux notions : l'une liée
à la croissance des Fn et l'autre à la géométrie des Xn. Si les (Xn, œn) appartiennent
à une famille compacte, seule la croissance des Fn intervient.

Les indicateurs de croissance sont les degrés intermédiaires d'ordres knetkn — l,
classiques en théorie de distribution des valeurs, associés aux Fn :

\) := f F:(cokn")Acol et S(Fn) := f
Jx Jx

d{Fn):= I F*K«)A«' et S(Fn) := / F^"1) A œ l+l

C'est le comportement de la suite S {Fn)d{Fn) l qui joue un rôle. Le calcul de d{Fn)
et 8(Fn) est cohomologique, d(Fn) est la masse d'une fibre générique de Fn et si

Xn est un espace projectif, 8(Fn) est la masse de l'image réciproque d'une droite
générique.
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La géométrie des variétés intervient par l'intermédiaire des meilleures constantes

pour résoudre ddc dans une classe de cohomologie donnée. Pour la distribution des

zéros des sections aléatoires, la propriété suivante est cruciale : pour cp quasi-psh sur
¥k avec ddc(p > —«fs et /p* çdm 0 on a

vaàxcp < c{\ + \ogk).

Ici m est la mesure invariante sur P^ ou sur sa partie réelle WPk et c est une constante
indépendante de k. Les estimations des constantes géométriques pour les variétés

multiprojectives permettent de déduire la convergence pour les zéros communs de

plusieurs sections holomorphes.
Notre approche du problème d'équidistribution général reprend celle que nous

avons utilisée pour l'étude des applications à allure polynomiale dans une variété de

Stein [5]. Ici, après avoir défini convenablement les images réciproques F* et les

images directes (F„)* des courants, il faut évaluer

L{Z ^fr ^{SXn ~ cokn", (FM) (1.1){FZ(8Xn) F^cfr), f)
a\rn)

pour une forme test lisse f de bidegré (/,/).
L'idée est de remplacer (Fn)^ par une autre solution ^jrn de l'équation ddcirn

ddc(Fn):¥tl/, c.-à-d. de retrancher à (Fn)^ une constante convenable. C'est ce que

nous appelons la méthode ddc. Les mesures 8Xn et a>nn étant de même masse, le membre
à droite de (1.1) ne change pas lorsqu'on remplace (Fn)^ par ^rn. On estime i/n en

fonction de ddc(Fn)^, d'où l'introduction de S(Fn) qui essentiellement mesure la

masse de ddc(Fn)^.
La vitesse de convergence de &(Fn)[d(Fn)]~l vers 0 a pour conséquence des

propriétés de convergence de (1.1) vers 0 sauf sur des ensembles de (x„) dont nous

pouvons majorer la mesure et préciser la nature. Cette méthode ddc permet d'obtenir
la vitesse de mélange dans le théorème 1.3 ci-dessous ou encore des estimées des

volumes de l'ensemble des "mauvaises sections" dans l'étude des zéros de sections
aléatoires.

L'article est organisé de la manière suivante. Au paragraphe 2, nous donnons

quelques propriétés des fonctions quasi-psh sur une variété kahlérienne compacte.
On utilise ces fonctions pour tester la convergence. Leurs propriétés de compacité
jouent un rôle clé dans les estimations. Nous définissons les opérations image directe
et image réciproque des courants que nous utilisons.

Le paragraphe 3 introduit les opérations de composition, de produit et
d'intersection, sur les TM. Nous donnons les estimations fondamentales des degrés
intermédiaires d'une composée ou d'un produit de TM. C'est un formalisme qui nous

l'espérons sera utile dans d'autres questions.
Auparagraphe 4 nous démontrons nos résultats de convergence abstraits sur l'équi-

distribution, pour des TM générales. Nous les appliquons dans les paragraphes 5, 6,



Vol. 81 (2006) Distribution des valeurs de transformations méromorphes et applications 225

7 aux diverses situations. Dans un appendice, nous rassemblons les estimations des

constantes géométriques qui nous sont nécessaires. Une notion de capacité dans les

variétés compactes est également introduite.
Nous précisons maintenant quelques cas simples de nos résultats. Ils seront

démontrés aux paragraphes 4 et 5.

Théorème 1.1. Soient Fn: X —* X' des TM de codimension l. Soient Sn, dn leurs

degrés intermédiaires d'ordre k' — 1 et k'. Notons 8 l'ensemble {exceptionnel) des

x' g X tels que

— [(Fn)*(&x') — (Fn)* (,<*>' )] ne tend pas faiblement vers 0.
d-n

(1) Si ^&nd~l < +oo alors 8 estpluripolaire.

(2) Si J2 exP(~(5^"1^n0 < +CO pour tout t > 0 alors 8 est de a mesure nulle pour
toute mesure modérée a.

Les mesures de Lebesgue sur X ou sur une sous-variété analytique totalement
réelle de dimension maximale sont des exemples de mesures modérées (voir
paragraphe 2.2). Lorsque les Fn sont des applications rationnelles de P^ dans P^ des

résultats analogues ont été obtenus par Sodin, Russakovskii et Shiffman [21], [20].
Pour les itérés d'une application holomorphe de P^ voir [10], [23], [2], [5]. Lorsque les

Fn sont les itérés /" d'une correspondance / : X --* X, le théorème suivant fournit
une solution au problème de convergence. C'est un corollaire du théorème 5.1.

Théorème 1.2. Soit f : X -> X une correspondance méromorphe de degré topologique

dt. Supposons que son degré dynamique d'ordre k — 1

\/n
4-1 : lim I / (/")V1 A œ

n—rco

vérifie <4_i < dt. Soient hn des fonctions positives vérifiant f hnœk 1 et

limsup ll^nllL2Qn < ^k-i^t- Alors \in := dfn(fn)*(hncok) converge vers une

mesure de probabilité yu. indépendante de (hn). De plus, on a /V dtß. Si cp est une

fonction quasi-psh elle est [i-intégrable (p. est PB) et {[in, q>) --* (/x, q>).

Pour montrer que les points périodiques répulsifs sont denses dans le support de [i
et que l'ensemble exceptionnel 8 est une réunion finie ou dénombrable d'ensembles

analytiques, il suffit d'appliquer directement une méthode géométrique développée

par Lyubich [17], Briend-Duval [2] et les auteurs [5], [4]. Rappelons que 8 est
l'ensemble des points x tels que d^n(fn)*Sx ne converge pas vers /x. Pour toute variété

projective X il existe des grandes familles de correspondances vérifiant <4_i < dt.
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On montrera que [i vérifie une propriété de régularité plus forte que PB (ja, est

PC). La notion de mesure PB a été introduite dans [5] et les résultats précédents y sont
démontrés dans le cadre des applications d'allure polynomiale. Pour les applications
rationnelles sur les variétés projectives, Guedj a, dans un travail récent [12], construit

fj, et montré qu'elle est PB. Il a étendu certaines propriétés ci-dessus en utilisant la
même méthode géométrique. Dans [6], [7], nous avons montré que [i est d'entropie
maximale log<i(.

Théorème 1.3. Soit f : X -> X une application méromorphe dominante vérifiant
dt > <4-i- Alors sa mesure d'équilibre [i est mélangeante avec une vitesse d'ordre
d^n{dk-\ + e)n pour tout e > 0. Plus précisément, si cp est une fonction de classe
G2 et f est une fonction bornée, posons

In{<p, f) :=
Ix

II existe c > 0 indépendant de ç et de tp tel que

In(<P, VOI < cdtn{dk-\ + e)"

Ce théorème est en fait valable pour <p quasi-psh (voir paragraphe 5). Pour le cas

des endomorphismes deP^ voir [10] et pour les applications d'allure polynomiale voir
[5]. Si / : X --* X est une application birationnelle on a dt 1 donc les hypothèses
des théorèmes 1.2 et 1.3 ne sont pas vérifiées. Nous obtenons cependant au
paragraphe 6 un résultat d'équidistribution en considérant simultanément /" et / ". On
construit à partir de ces applications des TM naturelles et on applique le théorème 1.1.

Remarques 1.4. Ce texte est une version abrégée d'une prépublication de juin 2003

disponible sur arXiv.org. Certains résultats énoncés alors dans le cas projectif sont
étendus ici au cas kâhlénen grâce au théorème d'approximation des courants démontré

par les auteurs dans [7]. Les observables utilisées ici sont les fonctions dsh ou
les formes G2. Nous avons noté que les estimations obtenues pour ces observables

entraînent des estimations analogues pour les formes ou les fonctions holdériennes

(voir aussi [8]). Pour le théorème 1.3, l'interpolation entre les espaces G0 et G2 [25]

implique pour tout a, 0 < a < 2, que

2. Préliminaires

Si S est un courant réel fermé de bidegré (r, r) de X, notons cl(S) sa classe dans le

groupe de cohomologie

Hr'r(X,R) := Hr'r(X,C)nH2r(X,R).
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On dira que cl(S) < cl(S') si cl(5" — S) peut être représentée par un courant positif
fermé. Si S, S' sont positifs fermés et si cl(S) < cl(S'), leurs masses vérifient \\S\\ <
|| S'||, où on a posé \\S\\ := fx S A cok~r. Lorsque S est positif fermé, sa masse ne

dépend que de cl S). Les espaces hp X) sont définis par rapport à la forme volume cok.

2.1. Fonctions quasi-psh et dsh. Une fonction <p: X -> KU {-ex)} est quasi-
plurisousharmonique (quasi-psh) sielleestintégrable, semi-continue supérieurement
et vérifie ddc</9 > —ca>, c > 0, au sens des courants. Une telle fonction appartient
à hp(X) pour tout p > 1. En effet, localement elle diffère d'une fonction psh par
une fonction lisse. Pour toute suite (<pn) de fonctions quasi-psh négatives vérifiant
ddc</9„ > —co, on peut extraire une sous-suite qui, ou bien, converge dans tout hp (X),
p > 1, vers une fonction quasi-psh cp vérifiant ddc</9 > —co, ou bien, converge
uniformément vers —oo, [13, p. 94] (voir aussi [3]). La proposition suivante s'en
déduit (voir aussi la proposition 2.3).

Proposition 2.1. La famille des fonctions quasi-psh <p vérifiant ddc(p > — co et l'une
des conditions de normalisation

max©
x

0, / <pa>k 0 ou \ \(p\cok < A
Jx Jx

est compacte dans hp(X) pour tout p > 1 ou A > 0 est une constante. De plus, ces

fonctions sont bornées supérieurement par une même constante.

Le résultat de compacité précédent est lié à la proposition suivante.

Proposition 2.2. Il existe une constante r > 0 telle que, pour tout courant positif
fermé T de bidegré (1,1) et de masse 1, il existe une (1, \)-forme lisse a, qui ne

dépend que de cl(T), et une fonction quasi-psh cp, vérifiant -rco < a < rco et
ddc</9 — T a.

On dit qu'un sous-ensemble de X est pluripolaire s'il est contenu dans (<p — oo)
où ç est une fonction quasi-psh. On appelle fonction dsh toute fonction, définie hors

d'un sous-ensemble pluripolaire, qui s'écrit comme différence de deux fonctions
quasi-psh. Deux fonctions dsh sur X sont égales si elles sont égales hors d'un ensemble

pluripolaire. Notons DSH(X) l'espace des fonctions dsh sur X. On vérifie facilement

que si f est dsh sur X, il existe deux courants T^1 positifs fermés de bidegré (1,1) tels

queddciA T+ - T~. Onacl(T+) cl(T~) et ||T+|| ||T-||. Réciproquement,
d'après la proposition 2.2, si T^ vérifient c\(T+) cl(T alors T+ — T~= ddc^
où f est une fonction dsh (on peut choisir f telle que fx i>cùk 0). Posons

:= \\f\\Li+M{\\T+\
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On dit que i/n converge dans DSH(X) vers tp si i/n --* tp au sens des distributions
et si (HVoiIIdsh) est bornée.

Deux fonctions i>\, i>2 dans L1 (X) diffèrent par une constante si et seulement si

ddci/a ddcV^2- Nous définissons deux constantes positives liées à la résolution de

ddc sur {X, où) pour des solutions normalisées. Soit r{X, œ) la borne inférieure des

constantes r qui vérifient la proposition 2.2. Posons

Q(X, ai) := [<p quasi-psh sur X, ddc(p > —r(X, a>)a>} (2.1)

et pour tout p > 1

R*(X,co) := sup! max<p, (p&Q{X,œ), f(pcok 0\

\ r h 1 (12)
sup | - / (pœ, ç G Q(X, œ), max</9 0[,

(p y J Xi
cpcok =oj. (2.3)

|(On verra à la proposition 2.4, que R|(X, a>, 1) < 2R^(X, «).

2.2. Mesures PB, PC et mesures modérées. Soit [i une mesure positive sur X.
On dira que /x est PB si les fonctions quasi-psh sont /x-intégrables. Dans le cas de

dimension 1, yu. est PB si et seulement si elle admet localement un potentiel borné

[5]. Une mesure PB est dite PC si l'application f i-> (/x, f est continue pour la

topologieconsidéréesurDSH(X).Soientc > Oeta > 0. Nous dirons qu'une mesure
PB [i est (c, a)-modérée si

/ exp(— aq>)dß < c
Jx

pour toute cp quasi-psh vérifiant ddc^9 > —a> et maxx <p 0. On déduit d'un résultat

classique [14, p. 105] que la mesure a>k est (c, a)-modérée pour c et a convenables

(voir proposition A.2). On verra aussi que les mesures invariantes sur les sous-espaces
projectifs réels WPk de P^ sont modérées (voir proposition A.7).

Proposition 2.3. Soit ß une mesure PB sur X. La famille des fonctions quasi-psh <p,

vérifiant ddc</9 > —a>, et l'une des conditions de normalisation

max</9 0, / çd/j, 0 ou I \<p\/j. < A,
x Jx Jx

est bornée dans L1 Qu.) et est bornée supérieurement. En particulier, il existe c > 0

indépendant de cp tel que n.{<p < —t) < et'1 pour t > 0.
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Démonstration. Soit (<pn) une suite de fonctions quasi-psh vérifiant ddc(pn > —co.

Supposons que maxx <pn 0. Montrons que (<pn) est bornée dans I^Qu.). Sinon,

quitte à extraire une sous-suite, on peut supposer que / (pndß < —n2. Posons <£> :=
J2 n~2q)n. D'après la proposition 2.1, <î> est une fonction quasi-psh vérifiant ddc<£> >
-2w. On a fx <£>d/z —oo. Cela contredit que <£> soit /x-intégrable.

Supposons maintenant que / <.pnd\.i 0. Posons an := maxx <pn et <p„ := (pn—an.
On a maxx <?« 0. D'après la partie précédente, (<pn) est bornée dans L^/x). Or
an — f <pndfj,, donc (an) est bornée et par suite (<pn) est bornée dans L1 (/x). On en
déduit aussi que (<pn) est bornée supérieurement. Le troisième cas se traite de façon
similaire. Si c est tel que IMIl1(X) - c' on a ^^ < ~f) - cf~1- D

Soit fj, une mesure de probabilité PB. Il résulte de la proposition 2.3 qu'on peut
définir les meilleures constantes pour la résolution de ddc, avec une normalisation
associée à [i. Posons (f 1

maxq>, q> g Q(X, co), / q>dß 0[

\ f 1 (14)
sup | — / q>dß, (p G Q(X, co), maxq> 0|,

J (2.5)

R3(X, co, ß) := sup { I (<pcok <p G Q(X, co),

:= sup
<p

et pour tout t g R

Q(X,co), j (pcok
(2.6)

A(X,co,ß,t) := sup\ß(c <-t), ç e Q(X,co), fcdß o\.
(pi J > nj)(pi J >

Proposition 2.4. On a

R2(X, «,/i.) < 2Ri(X, m,ß) et R3(X, <w, yu.) < Ri(X, «, yu.) + R*(X, «).

5i m est (c, a)-modérée alors A(X, co, n, t) < cexp(-ar~1f) om r := r(X, co).

Démonstration. Soit ^ une fonction quasi-psh telle que ddc</9 > — rco et / çd/j, 0.

Posons m := vaàxx (p. On a maxx(</? — m) =0, donc

/ \<p\d/J. < I \<p — m\d[i + m I\<p\d/J. < I \<p — m\d[i + m I (m — <p)d/j. + m 2m < 2Ri(X, co, /j.).
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D'oùR2(X, co,ß) < 2Ri(X, co, ß). D'après (2.2), on a

/ <po> < I \<p — m\co + m I (m — (p)co + m

< R*(X, co) +Ri(X, co, n).

Ceci implique que R3(X, to, yu.) < R\{X, to, yu.) + R\{X, w).
La fonction tf/ := r~1(cp — m) vérifie dd0^ > -co et maxx ^ 0. Si /x est

(c, cf)-modérée, on a /exp(-ai/0dM < c- D'autre part, comme / cpdß 0, on a

m > 0, donc ^ < r V- On en déduit que

/i.(^9 < —f) < /i.(V^ < — r~lt) < cexp(—ar~1t).

Ceci implique que A(X, to, [i, t) < cexp(—ar~1t).

2.3. Image directe d'un courant. Soit n : X -> X' une application holomorphe
surjective. Si S est un courant de bidimension (r, r) de X, avec 0 < r < min(£, k'),
le courant ^(S1) est défini par

pour toute (r, r)-forme lisse tp surX'. SiS est une forme à coefficients dans L1,7t^(5')
l'est aussi. Les coefficients de n^S) sont obtenus par intégration sur les fibres qui
sont presque partout de même dimension.

Proposition 2.5. Si les fibres génériques de n sont finies, l'application
7T*: DSH(X) -> DSH(X') est bien définie, bornée et continue. Enparticulier, l'image
de [cp quasi-psh sur X, ddc(p > -co, fx cpœk 0]parn* est relativement compacte
dans Lp(Xr) pour tout p > 1.

Démonstration. Notons I(n) l'ensemble des x' g X' tels que n 1(x/) ne soit pas
finie. La fonction n^if) est définie hors de l'ensemble I{n) qui est fermé et pluri-
polaire (voir proposition A. 1). Pourx' e X'\/(7r)ona

Jt(Xi)=X>

Soient T^ des courants positifs fermés tels que ddc^ T+ — T On a ddcn*tl/
7T*(r+) - 7r*(r~) (voir aussi [18]). Puisque les courants n^iT^) sont positifs
fermés, 7r*(V0 est dsh. Observons que l'opérateur n*: l}{X) -> \}{X') est borné

et que Htt^T1*1)!! < c||T"±|| avec c > 0 indépendant de T^. On en déduit que
7T* : DSH(X) -> DSH(X') est borné et continu pour la topologie considérée sur les

fonctions dsh.
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2.4. Image réciproque d'un courant. Soit n : X --* X' une application
holomorphe surjective. L'image réciproque n * (a) d'un courant a sur X' est définie lorsque

n est une submersion. En général, on peut définir n* dans les cas suivants. Lorsque

y est une (p, g)-forme à coefficients dans L00(X/), la forme n*(y) est à coefficients
dans L00 (X). Lorsque f est une fonction dsh sur X', f o n est aussi une fonction dsh

sur X. On peut définir Tz*{\jry) := {\jr o n)n*(y). On vérifie facilement le résultat
suivant.

Proposition 2.6. L'opérateur n* : DSH(X') -> DSH(X) est borné. En particulier,

l'image de {q> quasi-psh sur X', ddc(p > —œ', fx, cpœ' 0} par n* est relativement

compacte dans hp(X) pour tout p > 1.

Rappelons la définition de n* sur les courants positifs fermés de bidegré (1,1).
Soit T un tel courant sur X'. Il existe une fonction quasi-psh tf/ sur X' et une forme
lisse a telles que ddc^ T-a.Onpose^ := fon ç,in*{T) := ddc(p+jr*(a). C'est
un courant positif fermé de masse finie. Cette opération est continue et indépendante
du choix de a et de tp [18]. On a c1(tt*(T)) cl(n*(a)). Si tp est une fonction dsh

sur X' avec ddciA T+- T~, on a ddc7r*(i/0 tt*(T+) - tt*{T~).
Notons / l'ensemble des x' g X' tels que dim7r~1(x/) > k — k'. C'est un

sous-ensemble analytique de codimension au moins 2 de X' car dmnr~l{I) est au

plus égale à k — 1. Soit // un sous-ensemble analytique de dimension pure / de X''.

Supposons que dimtt~1(H CM) < l + k — k'. On définit tt*[H] comme un courant

d'intégration sur n~1 (H), il est alors de même bidegré que [H].
Si T est un courant positif fermé de bidegré (r, r sur X', on peut définir "la partie

principale" de l'image réciproque de T. Soit Q, c X l'ouvert, Zariski dense, où n
est une submersion locale. Le courant (jt\q)*(T) est bien défini, positif, fermé sur Q.

Notons (tt\q)*(T) son prolongement trivial.

Proposition 2.7 ([6], [7]). Le courant (tt\q)*(T) est de masse finie et le courant

(7r|î2)*(^) est fermé. Si Tn -> T, tout courant adhérent à la suite (7T\^)*Tn est

supérieur ou égal à (jt\q)*T.

3. Transformations méromorphes

Dans ce paragraphe, nous définissons les opérations : composition, produit, intersection,

sur les TM et les correspondances méromorphes. Nous étudions l'effet de ces

opérations sur les degrés intermédiaires.

3.1. Définitions. Notons jtj : X\ x X2 -> X; la projection canonique de X\ x X2
sur Xi. On appelle m-chaîne holomorphe (positive) de X\ x X2 toute combinaison
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finie F := J2 Fj où les Fj sont des sous-ensembles analytiques irréductibles de

dimension m de X\ x X2. Les Fj ne sont pas nécessairement distincts. L'intégration
sur la partie lisse de F définit un courant positif fermé [F] de bidimension (m, m).
Notons F c X2 x X\ l'image de F par l'application (x\, xi) i->- (x2, xi).

Soit / un entier naturel, £1 - £2 < Z < &i • On appelle transformation méromorphe
(TM) F de X\ dans X2 toute ()t2 + /)-chaîne holomorphe F J2 rj de X\ x X2 telle

que la restriction de tt, à chaque composante irréductible Fj soit surjective, f 1,2.
On dira que F est Ze graphe de F et que codim(.F) := Z est Za codimension de .F.

La TM F de X2 dans Xi associée à F est appelée TM adjointe de .F, elle est de

codimension k2 — h + l. Posons F := n2 o (ttiip)"1 et F"1 := tti o (7T2|r) 1- Ces

"applications" sont définies sur les sous-ensembles de X\ et X2. La fibre F l{x2)
de X2 G X2 est génériquement un sous-ensemble analytique de dimension Z de X\.
Notons I;(F) := {x g X,-, dim7rf *(x) > £2 + Z - £?}. C'est un sous-ensemble

analytique de codimension au moins 2 de X,. On dira que I\ (F) (resp. h(F)) est le

premier (resp. deuxième) ensemble d'indétermination.
Définissons les opérateurs F* et F*. Soit T un courant de bidegré (r, r) sur X2,

k2 + l-h <r <k2. On définit F*(T) := (7ri)*(7r2*(:T) A [F]). C'est un courant de

bidimension (£2 + Z - r, £2 + Z - r) porté par F"1 (supp(T)). Cet opérateur est défini

pour les formes lisses et pour l'espace engendré par les courants [H] où H est un
sous-ensemble analytique de dimension pure £2 - r de X2 vérifiant dim^r) ~l (H n
h(F)) < &2 + Z — r — 1. Lorsque T est lisse, F*(T) est une forme à coefficients dans

L!(X). Pour X2 G X2 \ h(F), F*(SX2) est un courant d'intégration sur une Z-chaîne

holomorphe portée par F"102). L'opérateur F^ est défini de la même manière.
Pour tout s, k2 — ki +1 < s < k2, on appelle degré intermédiaire d'ordre s de F

le nombre

ks(F) := f F*(cos2)Aco\2+l-s f cos2aFA.co\

k2+l-s, A

Par continuité, la masse du courant F*(<5X2), qui se calcule cohomologiquement, ne

dépend pas de X2, pour X2 générique dans X2. On en déduit que cette masse est égale
au dernier degré intermédiaire Xt2(F) de F.

Finalement, on dira qu'un point (xi, X2) G F est générique si la restriction de

7Tf|r à un voisinage de (xi, X2) est une submersion pour i 1,2. Notons Gen(F)
l'ensemble de ces points. C'est un ouvert de Zariski dense de F.

3.2. Composition de TM. Soit F' : X2 -> X3 une autre TM, de codimension V,

associée à une (£3 + /^-chaîne holomorphe F' J] F' de I2 x I3. Supposons que
Z + V < ki. Considérons d'abord le cas où F et F' sont irréductibles. Définissons la

composée F' o F des graphes. Notons ni, 712 les projections de Xi x X2 sur Xi et
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X2 et n2, n^ les projections de X2 x X3 sur X2 et X$. Soient (x\, xi) g Gen(F)
et (x2, X3) g Gen(r'). Soient U c Gen(F) et C/' c Gen(F') des petits voisinages
de (xi, X2) dans Gen(F) et de (x2, X3) dans Gen(r'). Par définition de Gen(F) et

Gen( F' on peut supposer que U et U' admettent des structures produit U ~ W\ x V2

et U' ~ V2 x W3 où V2 désigne un voisinage de X2 dans X2. Les projections 712, n2
de C/ et C/' sur X2 coïncident avec les projections des produits sur le facteur V2. Les

projections de U sur X\ et de U' sur X3 correspondent à des applications holomorphes

r: £/-? Xietr': t/'-? X3.

Le modèle local de F' o F est l'image de Wi x V2 x W3 dans Xi XI3 par
l'application {x\, X2, xj) i-> (r(xi, X2), r;(x2, X3)). Cette image est de dimension
< k^+l+V. On suppose qu'elle est de dimension £3+/+/'. On dira alors que F et F' se

composent correctement. Le graphe F'oF de F'oF est alors l'adhérence de l'ensemble
des (jci, X3) G X\ x X3 pour lesquels il existe X2 G X2 avec (xi,X2) G Gen(F)
et (X2,X3) g Gen(F/) tel qu'aux voisinages de ces points F et F' se composent
correctement. Le point (x\, X3) est compté avec la multiplicité m si m est le nombre
des points X2 pour lesquels x\, X2, X3 vérifient la propriété ci-dessus. Puisque F et F'
se composent correctement, m est fini.

Dans le cas où F et F' ne sont pas irréductibles, on pose F' o F := J2 Tj ° H
en supposant que F, et Fj se composent correctement pour tout i, j. Observons

que F' o F est une (£3 + / + /0-chaîne holomorphe et qu'on a codim(i?/ o F)
codim(.F) + codim(i?/) =1 + 1'. Les TM de codimension 0 entre variétés de même
dimension (c.-à-d. les correspondances) se composent toujours correctement.

La composition F' o F peut se définir de la manière suivante. Si {x\, X2, x'2,x?,)

désigne les coordonnées de X\ x I2 x I2 x X3, on note F l'adhérence de

Gen(F) x Gen(F/) n (x2 x'2). On obtient F' o F comme la projection de F sur

X\ XI3. L'hypothèse qu'on a posée dit que cette projection est de dimension pure
£2 + l + l'¦ Sans cette hypothèse on peut aussi définir la composition en supprimant
les composantes de mauvaise dimension.

Proposition 3.1. Il existe une constante c > 0, qui ne dépend que de {X2, «2), telle

que pour tout s, £3 — k\ + l + V < s < les, on ait

^s(Fr o F) < cXh_h+s_r(F)Xs(F').

Démonstration. Observons que dans (3.1) les formes étant lisses ou à coefficients
dans L1, les intégrales peuvent ne porter que sur des ouverts de mesure totale. Posons

S := (F')*(coj). C'est un courant positif fermé à coefficients dans \}(X2) debidegré
(r, r)surX2oùr := k2 -k3 +s -V. On a ||5"|| ks(F'). D'après [7], il existe c > 0

et des courants Sm positifs fermés lisses cohomologiquement dominés par cHSHû^
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qui convergent vers un courant S' vérifiant S' > S. On a

xs(F' o F) f (7n)*(«i
JGen(T)

*(«3+/+/'~*) a (tt2)*(S)

Gen(T)

lim

f
Jr

A

La première égalité résulte de la description locale de F' o r, la linéarité permet
ensuite d'utiliser des partitions de l'unité. Pour la deuxième inégalité, on utilise une
suite exhaustive de compacts de Gen( F On peut aussi démontrer cette proposition
en utilisant l'idée de la proposition 3.2 qui suit.

3.3. Produit et intersection de TM. Considérons deux TM F,; : X --* X\ de codi-
mensions l;,i 1, 2. On suppose que h + l2 > k et qu'il existe un ouvert, Zariski
dense, Œ c X\ x X2 tel que Fj 1(jci) n F2~1(x2) soit de dimension pure l\ +h —k

pour tout {x\,X2) e ß. On suppose aussi pour simplifier que cette intersection est

transverse en tout point générique mais cette hypothèse n'est pas indispensable.
Définissons le produit F\ • F2. C'est une TM de X dans X\ x X2 de codimension

h+h — k dont nous allons décrire le graphe. Notons F1 J2 T,1 et F2 J2 ^j les

graphes de F\ et F2. Considérons d'abord le cas où F1 et F2 sont irréductibles. Le
graphe F1 • F2 de Fi • F2 est alors l'adhérence de l'ensemble des {x,x\,x2) g Xxfl
avec x g Fj"1 (x\) n F2-1 (x2). Dans le cas général, on pose F1 • F2 := Yl ^} • T2.

On peut construire F1 • F2 autrement. Soient (x, x\,x', x2) les coordonnées de

X x X\ x X x X2. On note Q := {(x, x\, x', x2), (x\, x2) g Q} et F l'adhérence de

(F1 x F2) n (x x') n S. Alors F1 • F2 est la projection de f sur X x X\ x X2.
On munit X\ x X2 de la forme de Kahler «12 := c\2{Tt*{cù\) + n^im)) où m

est la projection canonique sur Xi et c^1"^2 := (^^2). Le choix de en implique

Proposition 3.2. Il existe une constante c > 0 #mï ne dépend que de {X, œ) telle que

pour tout s vérifiant k\ + k2 — 2k + l\+l2 < s <k\ + k2 on ait

^(Fi .F2) < ccsn

avec k\ —k + l\ <s\ < k\, k2 — k + l2 < s2 < k2 et s\ + s2 s.
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Démonstration. Soient n, Fli, FI', n2 les projections de X x X\ x X x X2 sur les

facteurs et* := (n, IT). Soit r := k\ +k2 + h +h-k-s. Alors cX2sks(F\ • F2) est
la masse de la mesure [F] a U*(cor) a (Tl*(a>i) + (U2)*(o)2))s¦ Soit A la diagonale
de X x X. Par hypothèse, * restreinte à F1 x F2 est une submersion en un point
générique de (F1 x F2)n*~1(A). On peut trouver un ouvert de Zariski F de F1 x F2

sur lequel la mesure considérée est de masse totale et ^,-p est une submersion. On a

[F] [F] A **[A]. D'après [7], il existe des courants lisses Am cohomologiquement
dominés par cx{a>{x) + a>(x'))k, ex > 0, qui tendent vers un courant A' > [À].
Comme dans la proposition 3.1, on montre que la masse de la mesure considérée est

majorée par

ex Ar1 x r2] a (n"» + n'V))* a n*(cor) a (irf(u>i) + (n2)*(«2))"-

La dernière intégrale est une combinaison d'au plus k termes du type

[F1] att"»*i+/i-« AttjW') (jir2] Ait%

qui est égal à XSï (F\)XS1(F2). La proposition en découle.

Soient G, : X-t -> X, f 1,2, deux TM. On définit l'intersection G\ n G2 de

Gi et G2 comme l'adjoint G\ • G2 du produit G\ • G2 lorsque ce produit est bien
défini. C'est une TM de X\ x X2 dans X. Pour (xi, x2) générique, (Gi n G2) (x\, x2)
est l'intersection de G\{x\) et G2(x2).

3.4. Familles de sous-ensembles analytiques. Soit F' une TM de codimension /' de

X2 dans X3 dont le graphe est irréductible. La réunion de ses fibres ,HXi := F'~l (x?)
est égale à X2. On dira que K (Mx?>) est une famille (méromorphe) adaptée
d'ensembles analytiques de dimension V. Si X3 n'appartient pas à h(F'), Hx^ est de

dimension /'. Pour X3 générique, les composantes de KX1> sont de multiplicité 1 et on
a[J£X3] (F>r(8X3).

Soiti7uneTMdecodimension/deXidansX2.Supposonsque/+// < £1. On dira

que K est F -régulière si dim F~l (Mx?> n h(F)) < l + V pour X3 g X3 générique.
Pour un tel X3, F*F'*(8X3) est bien défini. C'est un courant d'intégration sur une
chaîne holomorphe de dimension / + /'. La famille K est dite régulière, si elle est

.F-régulière pour toute TM F d'une variété X\ dans X2. Les familles de sous-variétés
associées aux TM *i, *I>2, ^3 et F^n que nous allons décrire au paragraphe 3.6 sont

régulières. Les intersections de familles adaptées de sous-ensembles analytiques sont
définies comme étant associées aux produits de TM.

3.5. Correspondances. Supposons que X\ et X2 ont la même dimension k. Une

correspondance (méromorphe) de X\ dans X2 est une TM / de codimension 0 de
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X\ dans X2. Notons F J] F, le graphe de /. La correspondance /de X2 dans X\
associée à F est appelée correspondance adjointe de /. Lorsque la restriction de n\ à

F est injective hors d'un sous-ensemble analytique, on dira que / est une application
méromorphe dominante. On dit que / est biméromorphe si / et son adjoint / sont
des applications méromorphes dominantes. Posons

A(/) := sup j \fx M<p)û>%\, cp g Q(Xi, û)i), j<pa>\ oj. (3.2)

D'après les résultats du paragraphe 2, A(/) est finie. Il mesure combien /* perturbe
la normalisation f cpco\ 0.

Considérons le cas où X\ X2 X. On notera /" la correspondance / o - - - o /
(n fois). Pour tout 0 < s < k, on définit le degré dynamique d'ordre s de f par la
formule suivante :

ds(f) := lim [ks(fn)]1/n. (3.3)

D'après la proposition 3.1, la suite [ks(fn)]1/n converge vers sa borne inférieure
infn>i[Ài.(/")]1/". Le dernier degré dynamique dt(f) := d^if) est égal au nombre
d'éléments de la fibre f~l{z) pour z générique (ce nombre ne dépend pas de z). C'est
le degré topologique de /. On a aussi do(f) dt{f

3.6. Exemples, (a) Notons G(k — l + 1, k + 1 la grassmannienne qui paramètre les

sous-espaces projectifs de dimension k — l de ¥k. Pour s g G(k — l + l,k + l), soit

Pj~' le sous-espace projectif de dimension k — l correspondant. Posons

Pi := {(z, s) e F* x G(Jk - / + 1, Jk + 1), z g Pf"'}.

La TM *i de P^ dans G{k — l + \,k+\) associée à la variété T\ est de codimension

Jt-Zetona^f1^) =¥>kfl.
Donnons une autre manière de voir cette TM. Soit Pfe := G(k, k+l)le dual de

P^ et soit G*(I,k + 1) la grassmannienne qui paramètre les sous-espaces projectifs
de dimension / — 1 de P^*. Elle est biholomorphe äG(k — l + l,k + 1). Pour tout

s g G*(l,k+1) notons Pj le sous-espace projectif de P^* associé à s. On choisit

/ points si,..., si de P?~1}* qui engendrent P? 1}*. Notons P^"1 l'hyperplan de P^

associé à si et Pj~' := P^"1 n ¦ ¦ ¦ n P^"1. Le sous-espace projectif Pj~' de P^ est

indépendant du choix des s;. Posons

F2 := {(z, s'JéF'x G*(/, k + 1), z G Fkf1}.

La TM *2 de P^ dans G*(l,k+ 1) associée à F2 est de codimension k — l et on a
1 '
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(b) Considérons l'espace multiprojectif Pk'u := P^* x - - - x P^* (/ fois). Posons

T3 := {(s,s)eFkJ*xG*(l,k+l),s (si, si), PH c P^"1 pour i 1, ...,/}.

Notons 11/ la TM de P^1'* dans G*(l,k + 1) associée à r$. C'est une application

méromorphe dominante. Soit 11/ son adjoint. La composée ^3 := 11/ o *I>2 est une
TM de P^ dans Fk'1*. Pour s (si, st) générique dans Fk'1*, la fibre *3"1 (s) est

le sous-espace projectif P^:"' := P^"1 n ¦¦¦ n P^"1 de ¥k.

(c) Nous allons étendre la définition des TM de (a) et (b) avec, pour espace
d'arrivée, un espace projectif de sections holomorphes. La construction permettra
de calculer facilement les degrés intermédiaires (voir lemme 7.1). Considérons une
variété projective X et soit L un fibre en droites ample sur X. Notons H°(X, L")
l'espace des sections holomorphes de L" := L ® ¦ ¦ ¦ ® L (n fois), PH°(X, L")
l'espace projectif associé et kn sa dimension. Pour tout s* g PH°(X, L")* notons
Hs* l'hyperplan projectif de PH°(X, L") associé à s*. Rappelons que PH°(X, L")
est aussi le dual de PH°(X, L")*. Pour tout s g PH°(X, L"), notons H* l'hyperplan
de PH°(X, L")* associé à s.

Pour x g X, notons s* g PH°(X, L")* le point tel que l'hyperplan Hs* soit
l'ensemble des sections s'annulant en x. Considérons l'application holomorphe <£>„

de X dans PH°(X, L")* définie par ih-$„ (x) := s*. Puisque L est ample, pour n

assez grand, 4>n définit un plongement de X dans PH°(X, L")*, c'est le plongement
de Kodaira. Observons que <&n1(H* n ®n(X)) est l'ensemble des zéros de s. C'est

une hypersurface lisse de X et l'intersection H* n <&n(X) est transverse pour tout s

hors d'un sous-ensemble analytique de PH°(X, L").
Soit Gfn la grassmannienne des sous-espaces projectifs de dimension / - 1 de

PH°(X, Ln). On construit comme dans (a) une TM */,„ de PH°(X, L")* dans G,xn.

Pour tout point s g Gfn, ^ \ (s) est un sous-espace projectif de dimension kn — l de

PH°(X, L")*. Posons Ä/,„ := */,„ o $„. C'est une TM de codimension k - l de X
dans G;Xn. Précisons cela.

Notons si,..., si des points qui engendrent le sous-espace Pi"1 de dimension

/ — 1 de PH°(X, L"), pour s g Gfn. Alors xl>l l (s) est égal au sous-espace projectif

H*tn---n H* de dimension kn - l de PH°(X, L")*. Donc Rf„(s) est l'ensemble

Zj des zéros communs des sections si, si. Il ne dépend pas du choix des st. Pour
s G Gfn hors d'un sous-ensemble analytique, l'intersection *; ^(s) n $„(X) est

transverse et Zj est lisse.

Soit n,,n l'application méromorphe de Wfn := FU°(X, Ln) x --- x PH°(X, L")
(/ fois) dans G^n définie comme dans (b). Soit Fl/« sont adjoint. Posons Fi%n :=

Hin o Ri>n. C'est une TM de X dans Pfn. Pour tout s (si,..., si) g Pfn, la

fibre Ff^(s) est l'ensemble des zéros communs de si, si. Pour un s générique,
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cette fibre est égale à Zj avec s := Yli>n(s). En particulier, c'est un sous-ensemble

analytique lisse de dimension k — l, sans multiplicité.

(d) Soit / une application méromorphe de P^ dans Pfe. Pour étudier les images

réciproques par /" des sous-espaces de dimension k — l, nous introduisons les TM
Fn := *2 ° /" avec ^2 définie dans (a). On se ramène à l'étude des images réciproques
des points de G*{l,k+ 1) par Fn.

4. Distribution des préimages de sous-variétés

Soit an une mesure de probabilité PB sur Xn. On munit X := \\n>\ %n de la mesure de

probabilité a, égale au produit des an. Considérons une suite de TM Fn : X -> Xn de

même codimension 1,0 <I < k. Soit x (x\, X2, ¦ ¦ ¦) G X. Si xn n'appartient pas à

h(Fn), T* := (Fn)*(SXn) est bien défini. C'estuncourantd'intégrationsurunechaîne
holomorphe de dimension / de X. Posons Tn := (Fn)*(an), Rin := R;(Xn, con, an)
et An(t) := A(Xn, a>n,an,t). Soient Sn et dn les degrés intermédiaires d'ordre kn — \
et d'ordre^n de Fn.

Théorème 4.1. Supposons que la suite (Ri,nSnd~1)n>i tend vers 0 et que l'une des

deux propriétés suivantes soit satisfaite :

(1) La série J2n>i R2,nM„ x
converge.

(2) La série J2n>i ^¦n(Sn1dnt) converge pour tout t > 0.

Alors pour a-presque tout x g X, la suite (d~l(T* — Tn), ir) tendvers 0 uniformément

sur les ensembles bornés, en norme G2, de (/, ï)-formes test f sur X.

Nous allons montrer les estimations utiles en nous limitant à une TM F : X --*
X' de codimension l, 0 < l < k — 1. Soient a' une mesure de probabilité PB

sur X', 8 et d les degrés intermédiaires d'ordre k' — 1 et d'ordre k' de F. Posons

f := F*(co'k>), T := F*{a') et Tx> := F*(8X>) pour x' g X' \ h(F). Posons aussi

R; :=Ri(X', co',a'),A(t) := A(X', co', a', t) et pour tout e > 0

£(£):= (J

Soit 51 := F*(V+1). C'est un courant de bidegré (1,1) et de masse <5 sur X'. D'après
la proposition 2.2, il existe une fonction quasi-psh ç vérifiant

/ çda' 0 et âdc<p - S > -r{X', co')8co'. (4.1)
Jx'
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Par définition de R,, on a

et (pco <<5R3.

Lemme 4.2. Soit x/r une (/, l)-forme test de classe G2 sur X avec \\\jr ||e2 1. Alors

I \(TX' -T,f}\da'(x')<2SR2.
Jx'

on a

(a)

(b) \{TX' -T,f
(c) \{T -f,f)
(d) cr'(E(e)) <

-cp{x').

ld - 3Ri).

Démonstration. Nous devons estimer {Tx' — T, f) et (T — T, f). Ecrivons ddc^
— Q~ avec des (1 + 1,1 +1)-formes Q^1 positives fermées telles que co l+1p q

Posons (f> := F*(&) et 5'± := F^Q^). On a ddc(f> S+- S~ et (Tx', f) (f>(x')

pour x' g h(F). On a aussi 5r± < S et donc ||S^1 \\ < S. D'après la proposition 2.2,

il existe des fonctions quasi-psh ç^ vérifiant fx, ç^da' 0 telles que

- r(X', a>')ba>' < ddV+ - S+ ddc(p~ - S~ < r(X', œ')6œ'. (4.2)

(pour être exact, il faut remplacer r{X', m') parr(X', œ')+e' ,e' > 0, mais notre abus

ne change pas les résultats car on peut ensuite faire tendre e' vers 0). Par définition
des R; on a

z\\V(a')<SR2 et /± /k<
< (4.3)

La fonction 4>-{cp+ -cp est constante car elle est pluriharmonique. De plus, comme

/ ç^da' 0, on obtient pour x' <£ h(F)

(a) On en déduit que

\{TX' - T, f)\da'(x') < ||^+||Li(ff0 + \\<p-\\Li(o>) < 25R2.

(b) Posons h := <p - <p+. Comme S^1 < S, d'après (4.1) et (4.2), on a

ddch > -2r{X',co')8co'.

D'autre part, on a fx, hda' 0. Par définition de Ri, max^' h < 28R\. Ceci et (4.3)
entraînent que

(p(x — ZoRi < (p (x ¦_



240 T.-C. Dinh et N. Sibony

Avec une estimation analogue pour <p~, on obtient

\{TX' -T, x/r)\ \cp+(x') - y'(x')\ < 3«5Ri - cp(x').

(c) D'après (4.3), on a

{1 — 1 ,ys) \{<j — co ç — <p )\ {co ç — ç

< {co ,cp+) + {co ,q> )| < 25R3.

(d) D'après (b), E(e) est contenu dans

E'(s) := {x' G X', (p(x') < -sd + 35Ri}.

Par définition de A(f), les relations (4.1) entraînent que

-^-3Ri).

CMH

D

Démonstration du théorème 4.1. Posons Sn := (Fn)*(col+1). On a \\Sn\\ 8n.

D'après la proposition 2.2, il existe çn quasi-psh vérifiant

Jx
(pndan =0 et ddV„ - Sn > -r(Xn, con)Sncon.

Par définition de R;,„, on a ft < <5„Rijn et H^nllL1^) <

(1) Considérons la fonction réelle positive $ sur Z

n>\

On a

/,
n>\ n>\

Par hypothèse, la dernière série converge, donc <£>(x) est finie et dn lcpn{xn) tend

vers 0 pour a -presque tout x g X. Fixons x (xn) g X tel que xn g h{Fn) et tel

que d~lcpn{xn) tende vers 0. Soit f une (/, /)-forme de classe G2 sur X. D'après le
lemme 4.2(b), on a

\{T* -Tn,f}\ < WnelQSnRi^-VniXn)).

On déduit de l'hypothèse la convergence souhaitée.

(2) Posons pour tout e > 0

En(e):= {xneXn,\(d-\TZ-Tn),f)\>e}.
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Par hypothèse, Ri>n o(8~1dn). D'après le lemme 4.2(d), on obtient pour n assez

grand que

Cn(En(e)) < AnieS-Un - 3Ri,n) < An(e&-ldn/2). (4.4)

La série J2 A(eS~1dn/2) étant convergeante, J2 an(En{e)) converge aussi pour tout
e > 0. Ceci implique la convergence annoncée.

La proposition suivante permet de comparer les courants obtenus en prenant les

images réciproques de an et de la forme volume conn.

Proposition 4.3. Supposons que la suite R3,n&nd~l tend vers 0. Alors (d~l(Tn —

F%(conn)), i/r) tend vers 0 uniformément sur les ensembles bornés, en norme G2, de

(l, l)-formes ijr sur X.

Démonstration. Il suffit d'appliquer le lemme 4.2(c) avec les estimations comme
dans la démonstration du théorème 4.1.

Posons R* := R|(X„, con, 2). Soient vn hncon" et v'n h'ncon" des mesures de

probabilité sur Xn où hn et h'n sont des fonctions dans L2(Xn).

Théorème 4.4. Supposons que \\hn — h'n\\L2(Xn) o(8~1dnR*~1). Alors

d-l{(Fnf(vn) - (Fnf(v'n), f)
tend vers 0 uniformément sur les ensembles bornés, en norme G2, de (l, l)-formes
test f sur X.

Démonstration. Utilisons les notations du théorème 4.1. Posons <fin := (i7„)*(Vf )• II
existe des constantes an et des fonctions quasi-psh q>f telles que 4>n </?+ — ç~ + an

et ||</?jf Hl2(x„) - II^Alle2Rn^n- En utilisant l'inégalité de Cauchy-Schwarz et le fait
que vn et v'n ont la même masse, on obtient

d-l\{(Fnf(vn) - (Fn)*K), f)\ d-l\{(hn-tin)œkn«,4>n-an)\

<d~l\\hn - h'J^çxJ^n -an\\L2{Xn

Par hypothèse, la dernière expression tend vers 0.

Remarque 4.5. Si les (Xn, con,an) appartiennent à une famille lisse (Xt) de variétés

kàhlériennes compactes, d'après Kodaira-Spencer [16, p. 73], àm\Hll{Xt, C) est

localement constante et les r{Xt, a>t) sont localement majorées. Il en résulte que
les Ri,„ et R* sont uniformément bornées. Les hypothèses des théorèmes 4.1 et
4.4 ne font alors intervenir que les degrés intermédiaires de Fn qui sont calculés

cohomologiquement.
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Dans la suite, nous considérons des TM Fn de X dans une même variété X', c.-à-d.

qu'on suppose que (Xn, a>n) (X1', a>') pour tout n > 1.

Théorème 4.6. Soif a' une mesure de probabilité PB sur X'. Supposons que
', co'', a', tSn1dn) converge pour tout t > 0. Alors pour a'-presque tout

x' g X', {d-l((Fnf(8xi) - (Fnf(œ'k')), f) tend vers 0 uniformément sur les

ensembles bornés, en norme G2, de (/, l)-formes test tp sur X.

Démonstration. Posons r := r{X',œ'). Pour tout e > 0, posons

En(e) := U {x' € X', \[d-\F*{bxl) - F*{œfk')), f)\ > e},
IIVie2<l

et Ri := Ri(X', «', ct'), A(f) := A(X', «', ct', f)- Le lemme 4.2(d) entraîne que
a'(En(e)) < A(e8~1dn — 3Ri). On déduit de l'hypothèse que lim^"1^ +oo
et que la série J]n>1 A(e<5~1<i„ - 3Ri) converge. Donc la série J]n>1 ct/(£1„(e))

converge pour tout e > 0. Le théorème en découle.

Démonstration du théorème 1.1.(1) Posons Rjf := R^X', «0,R| := R|(X', «', 1),
5n := (Fn)*(col+1).Ona \\Sn\\ 8n. D'après la proposition 2.2, il existe çn quasi-psh
vérifiant

/JX'
(pnco/k =0 et ddc^„ - Sn > -rSnco'.

IX'
Par définition de R*, ona% < Rj<5„ et \\<pn HlI(x') - R2^«- O11 en déduit que la série

n>\

converge ponctuellement vers une fonction quasi-psh. Posons

S := U h(Fn) U (<D -oo).

D'après la proposition A. 1, g estpluripolaire. Pour x' g X'\g, on a lim d~lcpn{x') Û

Le lemme 4.2(b) appliqué à la mesure ct' := û)/fe implique que (û?~1((i7n)*(<5x/) -
(Fn)*(co' i/r) tend vers 0 uniformément sur les ensembles bornés, en norme G2,

de (/, /)-formes test i>.

(2) La mesure a' étant (c, a)-modérée, la proposition 2.4 entraîne que

Par conséquent, la série J2 A(f<5~1<in) converge pour tout t > 0. Il suffit d'appliquer
le théorème 4.6.
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Soit H (J€y)yeY une famille adaptée de sous-ensembles analytiques de

dimension m de X' associée à une TM G : X' --* Y. Supposons que l + m < k et

que H soit .F«-régulière pour tout n. On a vu au paragraphe 2.4 que pour y e Y

générique, les courants [X^_m(Fn)]~l(Fn)*[J€y] sont bien définis et de masse bornée

indépendemment de n.

Corollaire 4.7. Supposons que la série J2n>i ^-V-m-x (Fn)[^k'-m (^n)]"1 converge.
Alors la suite de courants

tend faiblement vers 0 pour y et y' hors d'un ensemble pluripolaire 8 c Y.

Démonstration. Il suffit d'appliquer le théorème 4.6 et la proposition 3.1 pour les

TM G o Fn, puisque les Hy sont les fibres de G.

Remarque 4.8. Lorsque les Fn sont des applications rationnelles entre les espaces

projectifs et K est une famille de sous-espaces projectifs, ce résultat a été prouvé par
Sodin, Russakovkii et Shiffman [21], [20].

5. Mesures d'équilibre de correspondances

Dans ce paragraphe, on suppose que les Xn ont la même dimension k. Nous étudions
l'itération aléatoire d'une suite de correspondances /„ : Xn-\ --* Xn. Notons dn le

degré topologique de /„, 8n le degré intermédiaire d'ordre k — 1 de /„ o - - -o fx, R* :=
R|(X„, con, 2) et An := A(/„). Soient hn des fonctions positives dans L2(Xn) telles

qw fXnhnco* 1. Posons vn :=hna>ketßn ¦= dx
l .dn l{fn o-.-o f\)*{vn). Les

mesures de probabilité vn et /x„ sont absolument continues par rapport aux mesures
de Lebesgue.

Théorème 5.1. Supposons que <5„R*||/z„||L2(Xn) o(dx ...dn) et que de plus la série

J2n>2dx1 ¦ ¦ -d~l8n-\An converge. Alors ßn tend faiblement vers une mesure de

probabilité PC [i sur Xq. De plus, [i est indépendante de la suite (hn) et pour toute

fonction quasi-psh <p on a {\.in, q>) --* (ß,<p).

Remarque 5.2. Si les (Xn, a>n, fn) appartiennent à une famille compacte lisse (par
exemple une famille finie), les R* et An sont uniformément bornées (voir remarque
4.5). Dans ce cas, il suffit de supposer que Sn \\hn ||L2(X) o(dx ...dn) et que la série

J2 dxl d~18n_x converge. Si les /„ sont des applications rationnelles dominantes
de degré algébrique sn de P^ dans ¥k, on peut majorer 8n par (sx... sn)k~l.
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Démonstration. Soit <p une fonction quasi-psh sur Xq, ddc(p > —coq. Montrons

que (pn, <p) converge vers une constante c(p indépendante de (hn) (on posera alors

(fj., cp) := Cip pour <p lisse).
Posons Fn := fn ° •••° fi,T0 := a>o et ro+ := ddc</9 + cùq. Le courant To+ est

positif fermé et cohomologue à coq. On définit par récurrence les nombres bn et les

fonctions <pn. Posons

b0 := / çcoq et ç0 := ç - b0.
J Xq

D'après les propositions 2.5 et 2.6, on peut poser

bn ¦= / (fn)*(<Pn-l)(0n et <Pn '¦= (fn)*(<Pn-l) ~ bn.
JXn

On a

ddc(pn Tn+ — T~ avec Tn (Fn)*(TQ

De plus

d(T±) d((Fn)*(co0)) et / çncok=0.
Jxn

On en déduit que \\T^\\ \\(Fn)*(coo)\\ Sn.

D'après la proposition 2.2, il existe q>f quasi-psh vérifiant fx <p^co^ 0 et

ddc(p+ - Tn+ ddc(p~ - T~ > -r(Xn, û)n)8ncon-

On obtient que ddc</9„ ddc(^9+ — <pn). Comme fx (pno)k fx ^<w* 0, on a

(Pn V>t — (Pn ¦ Par définition de A„ et R*, on a

L: <8n-iK et Wpt\\i2(Xn)<8nK- (5-1)

Donc bn < 2Sn-iAn et par hypothèse la série ^d^1 .d~lbn converge. Notons c(p

sa somme. Elle dépend continûment de cp.

Dans la suite, on intègre seulement sur des ouverts de Zariski convenables car les

mesures sont absolument continues par rapport aux mesures de Lebesgue. On a

<Mn, V) (dï1 • • • dnXf{ f*(vn), b0 + ço)

bo + (dx .d~l /2* fn(vn), (fl)*(<Po))

bo + dxXb\ + {d11 ..d~lf2 fn(vn), <Pl)-
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Par récurrence, on obtient

{pn, <P) =bO + dxxb\ + ¦ ¦ ¦ + df1 dnlbn + dx
l dn1{vn, <pn). (5.2)

Vérifions que (yu.„, cp) tend vers c(p. L'inégalité de Cauchy-Schwarz et les relations

(5.1) impliquent que

\(Vn,<Pn)\ \{hn0)kn, (Pn)\ < \\K IIl2(X„) \\Vn IIl2(X„)

La dernière expression est d'ordre ç>{d\ dn). Donc lim(/x„, cp) c^.
Définissons la mesure ß pour cp lisse par (p, cp) := c(p. On a montré que /x„ tend

faiblement vers [i. Si <p est une fonction quasi-psh quelconque, par semi-continuité

supérieure, on a (/x, cp) > lim sup(/x„, ^9> c^. D'autre part, comme on peut
approcher cp par une suite décroissante de fonctions quasi-psh lisses et comme cv
dépend continûment de cp, on a (/x, cp) c^ et par suite ß est PC. De plus, on a

(ßn,<P) "> <M, ^>- D

Démonstration du théorème 1.3. On montre l'inégalité plus forte suivante

\In(<P,t)\ < c(dk-i +e)H"

Puisque cp s'écrit comme différence de deux fonctions quasi-psh de norme comparable,

on peut supposer que cp est quasi-psh avec ddc</9 > —a>. Du fait que/„(</?, f)
—In(<P, — i/), il suffit de majorer In(cp, if). Comme In(cp, if + A) In(cp, if) pour
toute constante A, on peut supposer que i> est positive. On peut également supposer

que \\ir ||l°°(^) 1- Comme yu. est invariante, on a

In(<P, i>) f (drn{fn)*{<p) ~ c^ifdp < \\d-n(fnU(cp) - C(p\\LHfÀ).

On reprend les calculs déjà faits au théorème 5.1. On a

d;n(,rU,V) -c(p= d~ncp+ - d;ncp~ -

Comme au théorème 5.1, il existe c\ > 0 tel que

La mesure/x étant PB, d'après la proposition 2.3, il existe C2 > Otelque \\cp^\

c2\\(pt\\h2(X)- On en déduit que \\d^n(fn)*(cp) — C(p\\Li(fÀ^ < c(dk-i+e)ndj~n,c > 0.

Ceci termine la preuve du théorème.
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6. Distribution des intersections de variétés

Considérons des TM Fi)n : X -> X, de codimensions /,-, i 1, 2. On suppose que

'i + ^2 > k et que les produits <£>„ := i%„ • i<2,« de /%„ et i<2,« sont bien définis. Ce

sontdesTMdecodimension/i+/2-£deXdansXi xX2. Posons <5in := A^-iC-F?,«)

Théorème 6.1. Supposons que les séries ^8i,nd~l soient convergentes pour
i 1,2. A/ors «7 exwre m« sous-ensemble pluripolaire 8 de X\ x X2 reZ g«<? po«r
foMf (xi, X2) g (X\ x X2) \ 8, la suite de courants

—L-(Fln(Sxl) A FZM - F{n{J?) A F2*n(^))
«l,n«2,n

tend faiblement vers 0.

Démonstration. Soit <5n le degré intermédiaire d'ordre £1 + £2 — 1 de <£>„. D'après,
la proposition 3.2, il existe une constante c > 0 telle que

Le degré intermédiaire d'ordre ^1 +^2 de <£>„ est d'ordre d\>nd2,n- H suffit d'appliquer
le théorème 1.1 à $„.

Soient f : X -> X une application biméromorphe et /-1 son inverse. Considérons

deux familles adaptées régulières K^- de sous-ensembles analytiques de dimensions

respectives k — l^ avec l+ + l~ < k. Notons P^ : X —>¦ F1*1 les TM associées

et (ijf (resp. <5^) le degré intermédiaire d'ordre l^ (resp. d'ordre Z1*1 — 1) de f±n.

Corollaire 6.2. Supposons que les séries J2 ^t^t] l soient convergentes. Alors il
existe un sous-ensemble pluripolaire 8 de Y+ x Y~ tel que pour (a\, b\) et (02, ^2)
dans {Y+ x Y~)\8, la suite de courants

tend faiblement vers 0.

Démonstration. Posons i7^1 := P^ o f±n. Ce sont des TM de codimension k — l^ de

X dans F1*1. D'après la proposition 3.1, ces deux suites de TM vérifient l'hypothèse
du théorème 6.1. Il suffit d'appliquer ce théorème.

Nous allons expliciter ce résultat dans le cadre des automorphismes réguliers de
C^ introduits par le second auteur [23]. Soit / un automorphisme polynomial de
Ck. On note aussi / son prolongement comme application birationnelle de P^ dans
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¥k. Soit /+ (resp. / l'ensemble d'indétermination de / (resp. de f~1). Ce sont
des sous-ensembles analytiques de l'hyperplan à l'infini. L'automorphisme / est dit
régulier si/+n/~ =0. (En dimension 2, les automorphismes réguliers sont ceux
du type Hénon). On a alors dim/+ + dim/~ k — 2. Posons s := dim/~ + 1.

Notons d+ et <i_ les degrés algébriques de / et f l. Ils sont liés par la relation

(d+y (d_)k~s.
On peut construire deux courants T^ positifs fermés de bidegré (1,1) de masse 1

de P^ à potentiel continu dans C^ tels que f*(T+) d+T+, /*(T_) =d-T~. Pour

0<l <setO<l' <k-s,le courant Tuv := (T+)1 A (T~)1' est bien défini. Quand
/ s, V k — s, on obtient une mesure de probabilité invariante à support compact
dans Ck. On a également le théorème de convergence suivant :

+rnl(d_rnl\m4s) a (/n)*(4s) tu>. (6.i>

Soient G; et G// les grassmanniennes qui paramétrent les sous-espaces projectifs
de dimension k — l et k — V de Fk. Notons Fk~l et Fkx7l les sous-espaces projectifs
associés aux points x g G; et x' G G//.

Théorème 6.3. Soit f un automorphisme régulier de Ck comme ci-dessus. Alors,
il existe un sous-ensemble pluripolaire 8 de G/ x G// tel que pour tout {x, x') g

(G; x G//) \ 8 la suite de courants

(d+)-nl{d-)-nl'[f-n(Wk-1) n fn(Fk71')]

tend faiblement vers le courant invariant T\y.

Démonstration. On prend pour P^1 les TM construites dans l'exemple 3.6(a). Avec les

notations du corollaire 6.2, on a <i+ dl+ <5+ û?^~1)n et des relations semblables

pour les inverses. Il suffit d'appliquer le corollaire 6.2 après avoir intégré par rapport
aux variables ci2, £>2- On utilise ensuite la relation (6.1).

7. Zéros des sections de fibres en droites

Soit X une variété projective de dimension k et soit L un fibre en droites ample sur
X. On munit L d'une métrique hermitienne h. Pour toute section holomorphe locale

6l de L, on définit la norme de e^ en chaque point par \\ei \\h := h{e^, e^)x^. Soit

Cl(/0:=-ddclog||eL|U

la forme de courbure de (L, A). Elle représente dans la cohomologie de de Rham la
classe de Chern c\(L) g H2(X, Z) de L. Puisque L est ample, on peut choisir h
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de sorte que c\(h) soit une (1, l)-forme strictement positive. La variété X est donc
munie de la forme de Kahler co := c\(h) et fx cok c\(L)k e Z+. Cette intégrale
n'est pas égale à 1 en général mais ceci ne changera pas les résultats qui suivent.

Le fibre L" est également muni d'une métrique hermitienne hn, induite par la

métrique h sur L. Plus précisément, hn est définie localement par ||^"|U„ lk||^.
L'espace H°(X, L") des sections holomorphes de L" est muni du produit hermitien
naturel

(Sl,s2) := —^-r f hn(Sl,s2)a>k (Sl, s2 e H°(M, L")).
c\(Lf Jx

Notons «fs la métrique de Fubini-Study de PH°(X, L"). Le lecteur trouvera d'autres
notations dans l'exemple 3.6(c). Rappelons que la dimension kn de PH°(X, L") est

donnée par le polynôme de Hubert dont le terme dominant est égal à c\(L)knk /k\
[15, p. 386].

Lemme 7.1. Soient <5/jn et d^n les degrés intermédiaires d'ordre lkn — 1 et d'ordre
lkn de Fin. On adin nlci(L)k et bUn 11

Démonstration. L'invariance des métriques par l'action du groupe unitaire implique
que

*uniyi) ai1»4 et */*„n/*„(4"p-1) A,»4s1 ai)
où <x>mp est la forme kahlérienne naturelle associée à Wfn (voir appendice A.3) et «/,„,
ßln sont des constantes positives. On calcule ces constantes cohomologiquement.

Pour calculer «/„, on remplace «Mp dans (7.1) par une masse de Dirac Ss. Son

image ty*nTl*n(8s) sera le courant d'intégration sur un sous-espace projectif de co-

dimension / de PH(X, L")* qui est cohomologue à «FS. Ceci implique que «/,„ 1.

Soit Tie courant d'intégration sur une droite £> x{^}x ¦ ¦ ¦ x{^/}dePfn.Ilestde
masse c^j (voir appendice A.3). Son image ty*nTlfn(T) est le courant d'intégration
sur un sous-espace de codimension / - 1 de PH(X, L")*. La masse de ce dernier
courant est égale à 1. On en déduit que ßi>n c^1^ En particulier, il est majoré par
une constante qui ne dépend que de /.

Puisque la classe de $*(<x>fs) est égale à nc\{L), on a

dUn f <b*n*tnln(J*S,)Aa>k-1 f ^n(œlvs)Aœk-l=nlCl(L)k
Jx Jx

et

Ol,n= / *„W„n,(u)M^ )ACû ^ / ßin®n{covs Aü)
Jx Jx
ßl,nnl-1cl(L)k. O
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On voit que la série Yl <5/,«4 l ne converge pas. C'est donc le théorème 4.1(2) que
nous appliquerons. Le théorème suivant, dû à Zelditch [26], est une amélioration d'un
théorème de Tian [24]. Il donne la convergence en moyenne des courants n~l[ZsJ
avec sn g Wfn.

Théorème 7.2 ([26]). Pour tout r >0,ona

S oient on des mesures de probabilité PB surWfn. Posons R,, „ : R, (Ffn, «mp <yn

etA„(0 := A(P/xn,«MP,or„,0-OnmunitPf := ]~[„>i ^fn de la mesure a, produit
des an. Faisons des hypothèses sur les mesures an.

Théorème 7.3. Supposons que la série J2n>i An(raî) converge pour tout t > 0.

Supposons aussi que Ri,n o(«) et R3>n o{n). Alors pour a-presque tout s

(«„) g Pf, /a suite de courants n~l[ZSn] tend faiblement vers cJ.

Démonstration. Les relations (7.1) et le théorème 7.2 entraînent que n lF*n (col^v)

tend vers cJ dans C pour toutr > 0. D'après Iaproposition4.3, n lF*n(an) tend

faiblement vers ft)' car n ~' 5/ „ R3 „ tend vers 0 par hypothèse. D ' après le théorème 4.1(2),

pour a -presque tout s G Pf, n '([ZSJ - F*n{an)) tend faiblement vers 0. Le théorème

en découle.

Posons Gf := Y\n>i ^fn- S°it &i,n la mesure de probabilité invariante sur Gfn.
Notons Qi la mesure de probabilité sur Gf, produit des ^;>n. Fixons des sous-espaces
réels MPH0(X, Ln) de PH°(X, Ln) invariants par l'action du groupe orthogonal
associé. Soit ïï&Gfn la sous-gras smannienne totalement réelle de Gfn correspondante.

Soit m/„ la mesure invariante de masse 1 sur ^Gfn. Notons m/ le produit des m/„
qui est une mesure de probabilité sur Gf.

Corollaire 7.4. Soient ßi>n := £!/,„ et m := Qi (oußi>n := mi>n et m := mi). Alors

pour m-presque tout s (sn) g Gf, la suite de courants n~l[ï-sJ tend faiblement
vers cJ. Déplus, si on pose

Ei,n(e) := (J [sn G Gfn, \(n.-l[Zin] - al, f)\>e)

on a

< cnmkexp(-aen)

où m > 0, a > 0 et c > 0 sont des constantes indépendantes de s.
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Démonstration. NotonsMFfn := WPH°(X, L") x ¦ ¦ ¦ xMPH°(X, Ln) (l fois). Soient

Oi>n (resp. m/„) la mesure de probabilité invariante naturelle sur P^ (resp. surlRP^)
(voir appendice A.3) et Qi (resp. m/ la mesure de probabilité sur P*, produit des £!/,„

(resp. des m/,n). L'invariance des mesures considérées implique que U* n(O.^n)

Ql>n etnlJm^n) =mi>n.
Soient /z/,„ ^;,„ ou m;>n et Jli Oi ou m/. Il suffit de montrer que pour

/ï-presque tout s (si, «2, • • •) £ Pf on a n~l[ZSn] --* cJ et

Cela résulte des théorèmes 7.2, 7.3, la proposition 4.2(c) et la première inégalité
dans (4.4). Les estimations sur Rin et An sont fournies par la proposition A.9. La
dimension de Wfn est de l'ordre nk.

Remarques7.5. Soit(cn)unesuitedenombreréelspositifsvérifiante« o(n/logn).
On peut montrer que cn (n l [Zj] — cJ tend vers 0 pour m -presque tout s. Ceci montre

que n '[Zj] - cJ tend vers 0 à vitesse ~ log«/«. Obsevons que la multiplication
par cn revient à diviser e par cn. On obtient aussi des convergences avec estimation

lorsqu'on teste les formes holdériennes (voir remarque 1.4). Dans le cas où / 1,

Shiffman et Zelditch [22] ont démontré la convergence n 1[ZSn] --* co pour Qi-
presque toute suite s (sn), sn G PH°(X, L"). Ils ont prouvé que la vitesse de

convergence est majorée par nE~1^2 pour les observables G2.

A. Estimations des constantes

A.l. Ensembles pluripolaires, capacités, mesures modérées. Josefson [11] a montré

qu'un sous-ensemble localement pluripolaire dans C^ est pluripolaire. Alexander
a étendu ce résultat à P^ [1]. Il en résulte que pour toute variété projective X de

dimension k, un ensemble E localement pluripolaire l'est globalement : il suffit
d'utiliser une application holomorphe finie n : X ->¦ Fk. Si <p est quasi-psh telle que
n(E) c (<p — oo), on a E c (n*(p — oo). Il serait utile de montrer ce résultat

pour toute variété complexe compacte. On utilise à plusieurs reprises le résultat
suivant.

Proposition A. 1. Soit (X, co) une variété kahlérienne compacte de dimension k. Tout

sous-ensemble analytique propre Y c X est pluripolaire.

Démonstration. Si F est une hypersurface de X, il existe <p quasi-psh telle que ddc</9

[Y] — a avec a lisse. Il est clair que Y (<p —oo) et <p est lisse sur X \ Y. Si

dim Y < k — 1, on construit une variété kahlérienne X par des éclatements successifs
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le long Y ou ses singularités. Si n désigne la projection de X sur X, n 1(Y) est

une hypersurface de X. Soit tp quasi-psh sur X, lisse sur X \ n 1(Y) telle que
n 1{Y) {f — oo). Puisque ddc^ s'écrit comme différence de deux courants

positifs fermés, lisses sur X \ n~1 (Y), on a n^tf/ u\ — 112 avec m,- quasi-psh lisses

sur X \ Y. Puisque n^fix) tend vers — oo quand x tend vers F, on a F c (mi —oo)

car M2 est bornée supérieurement.

Introduisons une capacité dont les ensembles de capacité nulle sont les ensembles

pluripolaires. Cela a été fait par Alexander pour Fk. Notons n : Ck+1 \ {0} -> P^ la

projection canonique. Soient S2k+1 la sphère unité de Ck+1 et o^t+i la mesure de

probabilité invariante sur $2k+l. Alexander a posé pour un sous-ensemble K deFk :

cap'(K):=M sup |/|1/n (A.l)
f jr-1(K)nS2k+1

où / parcourt les polynômes homogènes de degré n de Ck+1 vérifiant

(log|/|1/n-log|zi|)dCT2jt+i=0.

Etant donné un sous-ensemble K d'une variété kàhlérienne compacte (X, co) nous
définissons la capacité de K par

cap(/O := inf { exp (sup^), <p quasi-psh, ddc</9 > —co, max^9 0}.

Dans P^ toute fonction quasi-psh cp, vérifiant ddc</9 > -<x>fs est limite de fonctions
sur P^ de la forme log I/I1/" — log ||z|| où / est homogène de degré n. En utilisant
la proposition A.3 ci-dessous on peut montrer que

cap'(Ä") < cap(/O < V^ëcap'(A').

Dans la suite nous utilisons la capacité cap qui a un sens pour toute variété
kàhlérienne compacte. Avec notre normalisation, on a toujours cap(X) 1. On vérifie

que cap(/O 0 si et seulement si K est pluripolaire.

Proposition A.2. Soit a la mesure associée à la forme volume cok. Alors, il existe

c > 0 et a > 0 tels que o soit (c, a)-modérée. En particulier, on a A(X, œ, o, t) <
c exp(-ar~1f) pour tout t g R, où r := r{X, m).

Démonstration. Notons B(a, r) (resp. Br) la boule de C^ de rayon r centrée en a

(resp. centrée en 0). Posons «o := ddc||z||2 la forme euclidienne sur C^ et cto := coq.

Soit *!>„ : B4 --* X une famille finie d'applications holomorphes injectives telles que
les ouverts *„ (B1 recouvrent X. Soit A1 > 0 tel que pour tout «,**(«) < A1 «0 et
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Soit <p telle que ddc</9 > -co et fx çcok 0. Posons çn := <p o *!>„. Il suffit de

montrer que /Bj exp(-aVn)«o - c' Pour c' > 0, a' > 0 indépendants de <p. D'après
la proposition 2.1, il existe Ä2 > 0 tel que <p < A2 et/ l^ldcr < A2. Ceci implique que
a(<p < -M) < A2M-1 pour tout M > 0. SoitM > OtelqueAiM"1 < ct(

pour tout n. La dernière relation implique que {<p < —M) ne peut contenir
On peut donc choisir un point an e Bi tel que <pn{an) <p{®n{an)) > —M.

Posons i>n := </9« + Ai(||z||2-16). C'estunefonctionpshdans B3 vérifiant i>n <
<pn. Montrons que fB( 2\ exp(—a'^n)œ^ < c' pour c' > 0 et a' > 0 convenables.

On a ddcfn > 0, fn(an) > -M - \6A\ et i/rn < A2 sur B(an, 2) c B4. Il suffit
d'appliquer un théorème de Hörmander [14, p. 97] qui affirme que /Bj exp(-0)«Q <
c' pour toute fonction psh <fi sur B2 avec 0(0) 0 et 0 < 1. On peut prendre
a'= (A2 + I6A1 +M)-\ a

A.2. Estimation des constantes pour Fk. Notons Sk (resp. S2k+l la sphère unité de
-^k+i (reSp (je ck+1)et <7k (resp. <J2k+\) la mesure invariante de masse 1 sur Sk (resp.
S2k+1). Soit n : C^+1 \ {0} -> P^ la projection canonique. Soient z (zo, ¦ ¦ ¦, Zk)

les coordonnées de Ck+1. On dira qu'une fonction <î> sur Ck+1 est log-homogène si

z) log |A.| + $>(z) pour tout À g C*. La fonction log ||z|| est psh log-homogène
ddclog||z||.

Notons ^fs la mesure sur P^ associée à la forme volume co^s. C'est la mesure
invariante de masse 1 sur Fk. Soit <p une fonction quasi-psh vérifiant ddc</9 > -<x>fs-
Posons 4> := ç on + log ||z|| et 4>(0) := — 00. C'est une fonction psh log-homogène
sur Ck+1 vérifiant max^2t+i <ï> maxP* <p et j^k+i ^à^k+i fpk ^«ps- ^°^ ^*
l'image de Rk+1 par tt. C'est un sous-espace projectif réel de dimension k de Fk.

Posons mFs := tt^(ct^). On a aussi max^/t 4> maxRpt ^9 et J^k Qdak f
Proposition A.3. On a

Rl(Fk, œps) < -(1 + log*:) et R|(P^, «FS, 1) < 1 + log*:.

Démonstration. Rappelons que r(P*\ft>Fs) 1. Soit m := maxp/t ^9. D'après Alexander

[1, Theorem 2.2], on a

/ $>da2k+i > m + log |zi|dor2jfc+1
J^k+l JS2k+lS2k+1

.t—'n -'" 2'
«=1

1À1 1

On en déduit que m < |(l+log)t)si/p^û)pS 0.D'oùR^(P^, û>fs) < ^

D'après la proposition 2.4, on a R|(Pfe, «fs, 1) < 1 + log*:.
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La proposition suivante permet d'estimer les intégrales sur Sk en fonction d'intégrales

sur des sous-espaces linéaires. Sa démonstration résulte du théorème du Fubini
en écrivant les mesures am en coordonnées polaires.

Proposition A.4. Soit h une fonction mesurable positive sur la sphère unité Sk de
Rk+1 (resp. S2k+l de C^+1). Soit F un sous-espace réel (resp. complexe) de dimension

m de R^+1 (resp. de C^+1), 1 < m < k. Supposons que pour tout sous-espace
réel {resp. complexe) E de dimension m + 1 contenant F on ait fSknE hdom < A
(resp. f^2k+i nE hda2m+i < A) où A > 0 est une constante. Alors il existe une

constante c > 0 indépendante de k, A et h telle que f^k hda^ < cAkm^2 (resp.

j hda2k+i < cAkm).

Dans le corollaire suivant, on prend m 1 et la droite F associée à un point z

avec <p(z) 0.

Corollaire A.5. // existe c > 0 et a > 0 indépendants de k, tels que pour toute ç
quasi-psh vérifiant ddc</9 > —«fs et maxp/t q> 0 on a J^k exp(—aç)co^s < ck. En

particulier, on flA(PJ, «fs, ^fs, 0 < c^exp(-af) pour tout t G R.

La proposition suivante explique pourquoi les estimations pour WPk

essentiellement les mêmes. Rappelons que dans P^ on a cap(P^) 1.

et P^ sont

Proposition A.6. Soit cap(RP^) la capacité de WPk dans ¥>k. Alors pour tout k>2
et toute fonction <p quasi-psh sur ¥k vérifiant ddc(p > —«fs et maxFt <p 0, on a

maxRP/t q> > log cap(MP2). En particulier, cap(MP^) cap(MP2) pour tout k > 2.

Démonstration. Soient a g P et b G RP tels que <p(a) 0 et <p(b) maxRpt <p.

Observons que Ck+1 est réunion des sous-espaces complexes E de dimension 3 contenant

une droite réelle fixée de M.k+1 et vérifiant dimR(£1 n Rk+1) 3. Donc P^ est

réunion des plans projectifs P de P^ passant par b et vérifiant dimR(P n WPk) 2.

Soit P un tel plan contenant a. Par définition de la capacité sur P ~ P2 pour
P n R¥k ~ RP2, on a <p(b) > logcap(RP2). Donc cap(RP^) > cap(RP2). On
obtient l'autre inégalité en observant que toute fonction quasi-psh ^ sur un plan
P ~ P2 de P^ avec ddc</9 > —«fs se prolonge en fonction quasi-psh <p sur P^ avec

ddc^ > — «FS et maxPt ç maxP2 <p (ceci se voit aisément sur le relevé de <p à Ck+1

D

Proposition A.7. II existe des constantes c > 0 et a > 0 indépendantes de k telles

qu'on ait fpk exp(—a^)dmFs < c+Jkpour ç comme ci-dessus, R; (¥k, «ps» »îfs) <

c(l+logk)pouri 1, 2, 3 et A(Fk, «ps, »îfs» 0 < cVk exp(-at) pour tout t g R.
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Démonstration. On peut reprendre la démonstration de Hörmander [14, p. 98] pour
les fonctions tp sous-harmoniques sur le disque unité de C qui vérifient tp (0) =0 et

f < 1. On remplace la mesure de Lebesgue par la mesure m sur le cercle \z\ 1/2.
On trouve /exp(—^jr/2)dm < c\ avec c\ > 0 indépendant de tp. En utilisant un
recouvrement comme dans la proposition A.2, on montre qu'il existe c' > 0 et a > 0

tels que / exp(—t/i/Odrnps < c' pour tf/ quasi-sh sur P1 vérifiant ddc^ > — &>fs et

maxpi tf/ 0. Le passage à P^ avec l'estimation J^k exp(—a^dm^s < c\fk est une

simpleapplicationdespropositionsA^etA.ô. On en déduit que À (P*\ «ps» mvs, 0 <

Montrons que Ri(P*\ «ps» w^/t) < c(l + log/:). D'après (2.4), il suffit de vérifier

que — / çâmps < c(l + log k). On peut supposer que k > 2. D'après l'estimation

/pt exp(—cf^)dmFs < cV^ ci-dessus on a pour tout to > 0

¦+OO |"+OO
///¦+OO^dmFs <to+l mvsW < —t)dt < to

fo + cVÂxf"1

Pour fo 2~1cf~1 log /:, on obtient l'inégalité voulue.

D'après les propositions 2.4 et A.3, on a Rf(Pfe, <wfs, »îfs) < c(l + logfc) pour
; 2, 3 avec c > 0 convenable.

A.3. Espaces produits et espaces multiprojectifs. On associe à la variété X :=
X\ x X2 la forme de Kahler

où les ni sont les projections canoniques de X sur X\ et où eu > 0 est tel que

fx wkl+kl 1. La constante eu est calculée par la formule

C12 ={ h )¦
Considérons deux mesures de probabilité m sur X\ et /x le produit de /xi et ß2- C'est

une mesure de probabilité sur X. Posons r := r{X, m).

Proposition A.8. Soit R une constante vérifiant R > Ri(X,-, co-,, yu.,) po«r i 1,2.
Supposons qu'il existe c > 0 et a > 0 fefe ^«e A(X;, «,-, m, t) < c exp(-at) pour
t çReti 1,2. Alors on a

Ri (X, m, ii) < 2rR + 2ra~l log c + 4a~lr

et pour tout t g R

A(X,a>, fj.,t) < 2cexp(cfR)exp(-cfr~1f/2).
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Démonstration. Fixons une fonction tf/ sur X X\ x X2 telle que max^ ^ 0 et

dd0^ > —rco. Soit (a\ C12) £ X tel que \jr{a\, ai) 0. On veut estimer la [i mesure
de E := {f < —t) pour t > 0. Posons

F:={x2€X2, f(ai,x2)<-t/2}
et

EX2 := {xi g X\, f{x\,X2) < -t}.
Définissons

E':= U (£X2x{x2}).
x2eX2\F

Ona£ C7T2"1(JF)UJB/.

Estimons la mesure de n^iF). Si ^îfe) := ^{a\,X2), on a maxx2 i>\
0. Posons i>2 ¦= fi — j f\aß2- On a / V^2d/X2 0, 1/^2 > V^i et

cV^2 > —ra>2- Par définition de Ri (X2, «2, M2), on a

— /

car r(X2, «2) > 1- D'où

< rR - t/2) ß2{r~l<p2 < R - r~1
1 < cexp(cfR-cfr"1f/2)

cexp(cfR)exp(-cfr~1f/2).

Donc yu.(^ 1(F)) < cexp(aR) exp(-or~1f/2).
Estimons la mesure de E'. Pour x2 G X2 \ F, posons iA3(xi) :=

On a i/o < 0, max^i Vo > if(ai,x2) > —f/2 et ddc^3 > —rwi. Posons

// < max i>4 + f/2 < rRi (X2, «2, M2) + fß < rR + f /2.
J X2

et

Ml(^x2) <Ml(V^4<rR-f/2) <cexp(aR-ar-1f/2)
cexp(aR) exp(—ar~1t/2).

D'après le théorème de Fubini, on a ß(E') < cexp(aR) exp(—ar~1t/2).
On déduit des estimations précédentes que pour tout t > 0

—t) < 2cexp(cfR)exp(-cfr~1f/2).
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C'est aussi vrai pour tout (el car tf/ < 0. Si ç est quasi-psh sur X telle que ddc(p >
—co et / çd/j, 0, on peut appliquer l'estimation précédente à tp := ç — maxx ç.
Comme ty < q> on a

/j,((p < —t) < 2cexp(cfR)exp(-cfr~1f/2).

Donc A(X, co, t) < 2cexp(aR) exp(-or~1f/2).
Estimons Ri (X, co, n). Soit tp comme ci-dessus, il faut montrer que

/ < 2rR + Ira 1logc+4a lr.

On a pour tout to > 0

ß(\fr < —t)dtf r/ M
Jo

/¦to p+oo
I ix(\js < —t)dt + / m(^A < —t)dt

Jo Jto

"to

ix(\jf < —t)dt +
i to

Mo r+oo
< dt+ 2cexp(aR)exp(-ar~1t/2)dt

Jo Jto

to + Acexp(cfR)cf 1rexp(-or lto/2).

En prenant to 2rR + 2ra~l log c, on obtient

/ < 2rR + 2ra~l log c + 4«"^.

Considérons l'espace multiprojectif Fk'1 := P^ x --- x P^ (/ fois). Notons tt,- la

projection de P^1' sur le f-ème facteur. Posons «mp := cic,i 12 n*(C0Fs) et soit ^mp
la mesure associée à la forme volume «^p- ^a constante c^j > 0 est choisie de sorte

que ^mp soit une mesure de probabilité. On a

[kl - k
;

Observons que c^j < 1 et que si / est fixé, c^j est minorée par une constante

positive indépendante de k. Pour cela, il suffit d'utiliser la formule d'équivalence
de Stirling n\ ~ \j2nnnn exp(—n). Notons hîmp la mesure produit des mps sur
MFk'1 := MFk x ¦ ¦ ¦ x IRP^ (/ fois).

Proposition A.9. II existe des constantes c > 0, a > 0 et m > 0, #mï ne dépendent
quedel, telles que pour tout k > 1 onaitRi(Fk'1, «mp» m) < c(l+log£)> ' 1» 2, 3,

^/
» M» 0 < ckm exp(—at) pour tout t > 0 etpour ß Qm? ou ß mm?-

Démonstration. Observons que la constante r(P^-/, «mp) est majorée par /. Il suffit
d'appliquer les propositions 2.4, A.3, A.5, A.7 et A.8.
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