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Distribution des valeurs de transformations méromorphes
et applications

Tien-Cuong Dinh et Nessim Sibony

Abstract. A meromorphic transform (MT) between compact Kiahler manifolds is a surjective
multivalued map with an analytic graph. Let F,,: X — X, be a sequence of MT. Let o, be an
appropriate probability measure on X, and o the product measure of o, on X := [],-; X.
We give conditions which imply that N

L[(F ) (8x,) = (Fn)* (3xy)] = 0

4 ( Fn) n Xn n %5

for o-almost every x = (x1, x2,...) and ¥’ = (x|, x5,...) in X. Here §,_is the Dirac mass at
x5 and d(Fy) the intermediate degree of maximal order of F;,.

We introduce a calculus on MT: intermediate degrees of composition and of product of MT.
Using this formalism and what we call the dd°-method, we obtain results on the distribution of
common Zeros, for random / holomorphic sections of high powers L" of a positive holomorphic
line bundle L over a projective manifold.

We also construct the equilibrium measure for random iteration of correspondences. In
particular, when f: X — X is a meromorphic correspondence of large topological degree d;,
we show that d, " (f™)*»* converges to a measure u, satisfying f*u = dy . Moreover, quasi-
psh functions are p-integrable. Every projective manifold admits such correspondences. When
f is a meromorphic map, w is exponentially mixing with a precise speed depending on the
regularity of the observables.

Mathematics Subject Classification (2000). 32H, 37D, 37A25, 81Q50.

Keywords. Meromorphic correspondences, dynamical degrees, speed of mixing, random poly-
nomials.

Notations. Dans tout 'article (X, w), (X', ®') et (X,, w,) désignent des varié-
tés kiihlériennes compactes de dimensions respectives k, k” et k,. On suppose que
e =1, [ o =1et Ix, wi" = 1 sauf mention contraire. Les constantes géo-
métriques (X, w), RI(X,w), R}(X,w, p) sont définies au paragraphe 2.1,
Ri(X,w,0), A(X, w, o, t) au paragraphe 2.2, les degrés intermédiaires A;(F), les
degrés dynamiques d;( f), le degré topologique 4;( f) et 1a constante A( f) sont défi-
nis au paragraphe 3. I’ espace projectif complexe PX est muni de la forme de Fubini-
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Study wps normalisée par f w’ﬁs = 1, de la mesure de probabilité invariante Qps et
d’une autre mFs sur sa partie réelle RPX. I’ espace multiprojectif P6! = P x ... x Pk
(! fois) est muni de la forme de Kihler wymp, de la mesure de probabilité invariante
naturelle Qymp et d’une autre myp sur sa partie réelle (voir ’appendice).

1. Introduction

Une variété projective de type général admet au plus un nombre fini d’endomor-
phismes méromorphes dominants [15]. C’est dire que la dynamique de ces applica-
tions est tres pauvre. I1n’en est plus de méme dés qu’on considere les correspondances.
En effet, si X est une variété projective de dimension k et si g et i désignent deux
projections holomorphes surjectives de X sur P¥, le sous-ensemble analytique

M= {(x,y) e X xX, gx) =h(y}

définit une correspondance sur X, ¢.-a-d. une application multivaluée f :=h~! o g.
On peut aussi considérer =1 o u o g, ol u est un endomorphisme holomorphe de P¥.
On obtient ainsi des correspondances dont la dynamique est trés riche.

Dans un cadre plus large : celui des transformations méromorphes (TM), bon
nombre de questions dynamiques, ou de comportements asymptotiques de préimages,
se ramenent a I’étude du probléme suivant.

On considere une suite F,: X — X, d’applications méromorphes, de correspon-
dances ou plus généralement de TM. On se pose la question de donner des critéres
vérifiables sur les F, et les X, assurant que les préimages F,~ Y(x,) par Fy des points
xn € X, sont équidistribuées dans X.

Précisons les problemes. Une TM de codimension / de X dans X, est la donnée
d’un sous-ensemble analytique '™ de dimension purek, +1de X x X, 1 <[ <
k — 1. On suppose que les projections m et i, restreintes a chaque composante
irréductible de I', sur X et X,,, sont surjectives. Pour x, € X, générique, la fibre
Fn_l(xn) = n(nn|r(n))_l(xn) est de dimension [. Si 8y, désigne la masse de Dirac
en x,, on pose

(Fn)*(8x,) 1= 704(70 pm) B, -

C’est un courant de bidimension (I, [) porté par F,~ L.

Les graphes '™ des F, étant holomorphes, on peut espérer que dans les cas
“intéressants”, génériquement F*(8y,) et Ff (8x: ), convenablement normalisés, aient
la m&me répartition asymptotique.
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Probléme d’équidistribution. Trouver des conditions vérifiables, pour que généri-
quement sur les suites (x;) et (x],)

au sens des courants. Ici d(F,,) désigne la masse d’une fibre générique de F;,, celle-ci
est indépendante de la fibre.

Probléme de convergence. Dans certains cas, trouver lalimite de la suite de courants

1
d(Fy)

Fr(3y,).

Un cas particulier du probléme de convergence est celui ot on se donne une suite
Jn: Xn—1 — X, de correspondances, i.e. une suite de TM de codimension O entre
variétés de méme dimension. On veut trouver la limite de la suite de mesures

1

* 0 kp
dlmdn(anmOfl) (")

et en donner les propriétés. On est dans le cas ou Fy, := f, o --- o f1, le nombre de
points d’une fibre générique de f;, est égal a d,.

Du point de vue physique, on compose des applications voisines, et un théoréme
dans ce cadre est signe de la robustesse du résultat. Une seconde raison de considérer
des suites d’applications est que pour I’itération d’applications birationnelles f, on
est amené a considérer le comportement de la suite (f", f~"). Nous appliquons ainsi
cette approche au probleme de la distribution des zéros des sections holomorphes
des puissances L" d’un fibré en droites positif L — X. On prend alors pour X, la
projectivisé de I’espace des sections de L". Ce probleme est 1i€ au chaos quantique.
Voir Nonnenmacher-Voros [19] et Shiffman-Zelditch [22].

Dans le cas général, notre critere d’équidistribution utilise deux notions : I'une liée
a la croissance des Iy et ’autre a la géométrie des X ;. Siles (X, wy) appartiennent
a une famille compacte, seule la croissance des F), intervient.

Les indicateurs de croissance sont les degrés intermédiaires d’ordres k,, et k,, — 1,
classiques en théorie de distribution des valeurs, associés aux F, :

d(F,) ::/XF;(w’,jn)Aa)l et 8(F,) ::/XF;(w’,;n—lmwl“.

C’est le comportement de la suite 8 (£, )d (Iy,) =1 qui joue un role. Le calcul de d(Fy)
et §(Fy) est cohomologique, d(F,) est la masse d’une fibre générique de Fj, et si
X, est un espace projectif, 5(F;) est la masse de I'image réciproque d’une droite
générique.



224 T.-C. Dinh et N. Sibony CMH

La géométrie des variétés intervient par I’intermédiaire des meilleures constantes
pour résoudre dd° dans une classe de cohomologie donnée. Pour la distribution des
zéros des sections aléatoires, la propriété suivante est cruciale : pour ¢ quasi-psh sur
Pk avec dd°¢p > —cwrs et Jpe pdm =0 ona

max ¢ < c(1+logk).
Pk

Ici m est la mesure invariante sur P ou sur sa partie réelle RPX et ¢ est une constante
indépendante de k. Les estimations des constantes géométriques pour les variétés
multiprojectives permettent de déduire la convergence pour les zéros communs de
plusieurs sections holomorphes.

Notre approche du probleme d’équidistribution général reprend celle que nous
avons utilisée pour I’étude des applications a allure polynomiale dans une variété de
Stein [5]. Ici, apres avoir défini convenablement les images réciproques F," et les
images directes (F,), des courants, il faut évaluer

1
d(Fn)

pour une forme test lisse r de bidegré (I, [).

L’idée est de remplacer (F,,).y par une autre solution v, de I’équation dd®y,, =
dd®(Fy)«yr, c.-a-d. de retrancher a (Fy).y une constante convenable. C’est ce que
nous appelons la méthode dd®. Les mesures 8y, et w’ﬁ” étant de méme masse, le membre
a droite de (1.1) ne change pas lorsqu’on remplace (F,,) . par ¢r,. On estime v, en
fonction de dd®(Fy)+y, d’ou 'introduction de §(F;) qui essentiellement mesure la
masse de dd°(Fy) ..

La vitesse de convergence de §(F,)[d (F)17 ! vers 0 a pour conséquence des
propriétés de convergence de (1.1) vers 0 sauf sur des ensembles de (x,) dont nous
pouvons majorer la mesure et préciser la nature. Cette méthode dd° permet d’obtenir
la vitesse de mélange dans le théoréme 1.3 ci-dessous ou encore des estimées des
volumes de I’ensemble des “mauvaises sections” dans 1’étude des zéros de sections
aléatoires.

Larticle est organisé de la manicre suivante. Au paragraphe 2, nous donnons
quelques propriétés des fonctions quasi-psh sur une variété kithlérienne compacte.
On utilise ces fonctions pour tester la convergence. Leurs propriéiés de compacité
jouent un rdle clé dans les estimations. Nous définissons les opérations image directe
et image réciproque des courants que nous utilisons.

Le paragraphe 3 introduit les opérations de composition, de produit et d’inter-
section, sur les TM. Nous donnons les estimations fondamentales des degrés inter-
médiaires d'une composée ou d’un produit de TM. C’est un formalisme qui nous
I’espérons sera utile dans d’autres questions.

Auparagraphe 4 nous démontrons nos résultats de convergence abstraits sur I’ équi-
distribution, pour des TM générales. Nous les appliquons dans les paragraphes 5, 6,

(F(8y,) — F} (k) ¢) = (82, — @, (F)ip) (1.1)

d(Fn)
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7 aux diverses situations. Dans un appendice, nous rassemblons les estimations des
constantes géométriques qui nous sont nécessaires. Une notion de capacité dans les
variétés compactes est également introduite.

Nous précisons maintenant quelques cas simples de nos résultats. Ils seront dé-
monirés aux paragraphes 4 et 5.

Théoreme 1.1. Soient F,,: X — X' des TM de codimension . Soient 8, d, leurs
degrés intermédiaires d’ordre k' — 1 et k'. Notons & I’ensemble (exceptionnel) des
x" € X tels que

1 /
d—[(Fn)*((Sx/) — (Fn)*(a)’k )] ne tend pas faiblement vers 0.
n

1 Siy Sndn_l < 400 alors & est pluripolaire.

2) Siy exp(—én—ldnt) < 400 pour fout t > O alors & est de o mesure nulle pour
toute mesure modérée o.

Les mesures de Lebesgue sur X ou sur une sous-variété analytique totalement
réelle de dimension maximale sont des exemples de mesures modérées (voir para-
graphe 2.2). Lorsque les F, sont des applications rationnelles de P* dans PX des
résultats analogues ont été obtenus par Sodin, Russakovskii et Shiffman [21], [20].
Pour les itérés d une application holomorphe de Pk yoir [10], [23], [2], [S]. Lorsque les
F, sont les itérés f" d’une correspondance f: X — X, le théoréme suivant fournit
une solution au probleme de convergence. C’est un corollaire du théoréme 5.1.

Théoréme 1.2. Soit f: X — X une correspondance méromorphe de degré topolo-
gique d;. Supposons que son degré dynamique d’ordre k — 1

1/n
dr—1: = lim (f (f”)*a)k_l/\a))
n—oo X

Vérifie dx—1 < d;. Soient h, des fonctions positives vérifiant f hpof = 1 et
lim sup ”hﬂHlL/Z'(lX) < dk__lldt. Alors p, = df”(f”)*(hnwk) converge vers une nie-

sure de probabilité p indépendante de (hy). De plus, on a f*u = dij. Si @ est une
Jonction quasi-psh elle est p-intégrable (u est PB) et (jn, ) — (1, @).

Pour montrer que les points périodiques répulsifs sont denses dans le support de 1
et que ’ensemble exceptionnel & est une réunion finie ou dénombrable d’ensembles
analytiques, il suffit d’appliquer directement une méthode géométrique développée
par Lyubich [17], Briend-Duval [2] et les auteurs [5], [4]. Rappelons que & est 1’en-
semble des points x tels que d; " ( f™)*8, ne converge pas vers w. Pour toute variété
projective X il existe des grandes familles de correspondances vérifiant dy_; < dj.
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On montrera que p vérifie une propriété de régularité plus forte que PB (u est
PC). Lanotion de mesure PB a été introduite dans [5] et les résultats précédents y sont
démontrés dans le cadre des applications d’allure polynomiale. Pour les applications
rationnelles sur les variétés projectives, Guedj a, dans un travail récent [12], construit
et montré qu’elle est PB. 11 a étendu certaines propriétés ci-dessus en utilisant la
méme méthode géométrique. Dans [6], [7], nous avons montré que p est d’entropie
maximale log d;.

Théoréme 1.3. Soit f: X — X une application méromorphe dominante vérifiant
dy > dy_1. Alors sa mesure d’équilibre . est mélangeante avec une vitesse d’ordre
d7 " (dr—1 + &)" pour tout € > 0. Plus précisément, si ¢ est une fonction de classe
C? et est une fonction bornée, posons

L(p, ¥) :=/X<ﬂ(thof”)du— (/}(W) (/deu>.

1l existe ¢ > O indépendant de ¢ et de + tel que
(@, ¥)| < cdi ™ (di—1 + )" @l 2 1Y Loy -

Ce théoreme est en fait valable pour ¢ quasi-psh (voir paragraphe 5). Pour le cas
des endomorphismes de P¥ voir [10] et pour les applications d’allure polynomiale voir
[5]. Si f: X — X estune application birationnelle on a d; = 1 donc les hypotheses
des théoremes 1.2 et 1.3 ne sont pas vérifiées. Nous obtenons cependant au para-
graphe 6 un résultat d’équidistribution en considérant simultanément f" et f~". On
construit A partir de ces applications des TM naturelles et on applique le théoréme 1.1.

Remarques 1.4. Ce texte est une version abrégée d’une prépublication de juin 2003
disponible sur arXiv.org. Certains résultats énoncés alors dans le cas projectif sont
étendus ici au cas kihlérien grace au théoréme d’approximation des courants démon-
tré par les auteurs dans [7]. Les observables utilisées ici sont les fonctions dsh ou
les formes G2. Nous avons noté que les estimations obtenues pour ces observables
entrainent des estimations analogues pour les formes ou les fonctions holdériennes
(voir aussi [8]). Pour le théoreme 1.3, I’interpolation entre les espaces eOet €% [25]
implique pour tout &, 0 < o < 2, que

- 2.
Lu(p, )] S a7 (di—1 + )" (| pll o 19 [150 ) -

2. Préliminaires

Si S est un courant réel fermé de bidegré (r, r) de X, notons cl(S) sa classe dans le
groupe de cohomologie

H"(X,R):= H"(X,C)Nn H* (X, R).
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On dira que cI(S) < cl(S") si cl(S" — S) peut étre représentée par un courant positif
fermé. Si S, S’ sont positifs fermés et si cl(S) < cl(S), leurs masses vérifient || S]] <
[IS7]l, ot on a posé ||S] := fx S A o*=". Lorsque S est positif fermé, sa masse ne
dépend que de cl(S). Les espaces L” ( X) sont définis par rapport  la forme volume «*.
2.1. Fonctions quasi-psh et dsh. Une fonction ¢: X — R U {—o0} est quasi-
plurisousharmonique (quasi-psh) sielle estintégrable, semi-continue supéricurement
et vérifie dd°¢ > —cw, ¢ > 0, au sens des courants. Une telle fonction appartient
a L?(X) pour tout p > 1. En effet, localement elle difféere d’une fonction psh par
une fonction lisse. Pour toute suite (¢,) de fonctions quasi-psh négatives vérifiant
dd¢, > —w, on peut extraire une sous-suite qui, ou bien, converge dans tout L7 (X),
p > 1, vers une fonction quasi-psh ¢ vérifiant dd°¢ > —w, ou bien, converge
uniformément vers —oo, [13, p. 94] (voir aussi [3]). La proposition suivante s’en
déduit (voir aussi la proposition 2.3).

Proposition 2.1. La famille des fonctions quasi-psh ¢ vérifiant dd°p > —w et l'une
des conditions de normalisation

max ¢ =0, /(pa)k:O ou /|<p|a)k§A
X X X

est compacte dans 1P (X) pour tout p > 1 out A > O est une constante. De plus, ces
fonctions sont bornées supérieurement par une méme constante.

Le résultat de compacité précédent est lié a la proposition suivante.

Proposition 2.2. 1] existe une constante r > 0 telle que, pour tout courant positif
fermé T de bidegré (1, 1) et de masse 1, il existe une (1, 1)-forme lisse «, qui ne
dépend que de cl(T), et une fonction quasi-psh ¢, vérifiant —row < o« < rw et
dd9 — T = «.

On dit qu'un sous-ensemble de X est pluripolaire s’il est contenudans (¢ = —o0)
ou ¢ est une fonction quasi-psh. On appelle fonction dsh toute fonction, définie hors
d’un sous-ensemble pluripolaire, qui s’écrit comme différence de deux fonctions
quasi-psh. Deux fonctions dsh sur X sont égales si elles sont égales hors d un ensemble
pluripolaire. Notons DSH(X) I’espace des fonctions dsh sur X . On vérifie facilement
que si ¢ est dsh sur X , il existe deux courants 7'+ positifs fermés de bidegré (1, 1) tels
que dd®y =T+ —T-.Onacl(TH) =cl(T™) et |TF|| = ||T~|. Réciproquement,
d’aprés la proposition 2.2, si T'* vérifient cl(7+) = cl(T ), alors TT — T~ = ddyr
ou ¥ est une fonction dsh (on peut choisir ¢ telle que f x Yok = 0). Posons

I llpst := ¥l +inf {ITF], dd®y =T+ - T~}
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On dit que v, converge dans DSH(X) vers ¢ si ¥, — 1 au sens des distributions
et si (||Y, Ipsm) est bornée.

Deux fonctions /1, ¥» dans L1 (X) different par une constante si et seulement si
dd®yr; = dd®yr. Nous définissons deux constantes positives liées a la résolution de
dd® sur (X, w) pour des solutions normalisées. Soit r(X, w) la borne inférieure des
constantes r qui vérifient la proposition 2.2. Posons

Q(X, w) := {¢ quasi-psh sur X, dd°p > —r (X, ®)o} (2.1)

et pour tout p > 1

* - k _
RI(X, ) = sgp{m)?)up, 0 eQX.0), [po _0]

) (2.2)
= sgp{ —/WO » ¢ € QX w), max ¢ 20},
R3(X,w, p) = SUP{H‘P”LP(X), ¢ € QX, ), /ww" = 0}- (2.3)
4

On verra a la proposition 2.4, que R} (X, @, 1) < 2R} (X, w).

2.2. Mesures PB, PC et mesures modérées. Soit ¢ une mesure positive sur X.
On dira que p est PB si les fonctions quasi-psh sont p-intégrables. Dans le cas de
dimension 1, & est PB si et seulement si elle admet localement un potentiel borné
[5]. Une mesure PB est dite PC si I’application ¢ +— (u, ¥) est continue pour la
topologie considérée sur DSH(X). Soient ¢ > Oet« > 0. Nous dirons qu’une mesure
PB u est (¢, «)-modérée si

/ exp(—ap)dp < c
X

pour toute ¢ quasi-psh vérifiant dd°¢ > —w et maxy ¢ = 0. On déduit d’un résultat
classique [14, p. 105] que la mesure ok est (¢, o)-modérée pour ¢ et « convenables
(voir proposition A.2). On verra aussi que les mesures invariantes sur les sous-espaces
projectifs réels RIPF de P* sont modérées (voir proposition A.7).

Proposition 2.3. Soit  une mesure PB sur X. La famille des fonctions quasi-psh ¢,
vérifiant dd°p > —w, et l'une des conditions de normalisation

maxg = 0, /q)dMZO ou /wmsA,
X X X

est bornée dans LY () et est bornée supérieurement. En particuliet, il existe ¢ > 0
indépendant de ¢ tel que ju(p < —t) < et~ pourt > 0.
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Démonstration. Soit (¢,) une suite de fonctions quasi-psh vérifiant dd®¢, > —w.
Supposons que maxy ¢, = 0. Montrons que (¢,) est bornée dans LY(w). Sinon,
quitte  extraire une sous-suite, on peut supposer que [ g dpu < —n?. Posons & :=
3" n~2¢,. D aprés la proposition 2.1, & est une fonction quasi-psh vérifiant dd°® >
—2w.Ona [, ®dp = —o0. Cela contredit que P soit p-intégrable.

Supposons maintenant que f @ndp = 0. Posons a, := maxy ¢, et @, := @n —ay.
On a maxy @, = 0. D’aprés la partie précédente, (¢,) est bornée dans LY(w). Or
a, = — f Pndue, donc (a,) est bornée et par suite (¢,) est bornée dans LY (). Onen
déduit aussi que (¢,) est bornée supériecurement. Le troisieme cas se traite de fagon
similaire. Si c est tel que [|@ |11,y < c,onap(p < —1) <ct™', 0

Soit © une mesure de probabilité PB. Il résulte de 1a proposition 2.3 qu’on peut
définir les meilleures constantes pour la résolution de dd®, avec une normalisation
associée a p. Posons

Ri(X, ®, 1) = su p{maw, v € QX o), [pdu =0}
2.4)
=sup | = [pdp 9 € QX ), max g =0},
Ry(X, 0, 1) 1= su p{nwnLl(m, peQX.0), [pdu=0}, @5
Ry(X, 0, 1) =5 p{ L9 €QX, ), [pdu =0}
(2.6)
=sp[ L9 €QX, ), [pak =0,

etpourtouts € R
AX,w, p, t) 1= sup {u(w < —1), 9 € QX, w), /(ﬂdu = 0}. 2.7
'Y

Proposition 2.4. On a
Ro(X, w, n) <2R1(X, 0, u) et R3(X,w,p) <Ri(X, o, n) +Ri(X, w).
Si ju est (¢, a)-modérée alors A(X, w, i, t) < cexp(—ar~t) oitr 1= r(X, o).

Démonstration. Soit ¢ une fonction quasi-psh telle que ddp > —rw et f edp = 0.
Posons m := maxy ¢. On a maxx (¢ — m) = 0, donc

/ledusflw—rnIdu+mZ/(m—w)du+m=2m§2R1(X,w,u)-
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D’ouRy(X, w, n) < 2R (X, w, ). D’apres (2.2), on a
oot

Ceci implique que R3(X, w, 1) < R1(X, @, ) + R{ (X, w).

La fonction ¢ := r~!(p — m) vérifie dd®y > —w et maxy v = 0. Si p est
(¢, @)-modérée, on a [ exp(—ay)du < c. D’autre part, comme [ ¢dp = 0, on a
m > 0, donc ¢ < r‘lgu. On en déduit que

s/|¢—m|w"+m=/<m—¢>w"+m
< RI(X, ») + R (X, o, ).

nlp < —t) < u(y < —r_lt) < cexp(—otr_lt).
Ceci implique que A(X, @, . 1) < cexp(—ar~1). O

2.3. Image directe d’un courant. Soit 7: X — X’ une application holomorphe
surjective. Si S est un courant de bidimension (r, r) de X, avec 0 < r < min(k, k'),
le courant 7, (S) est défini par

(e (S), ) == (S, 7 (¥))

pour toute (r, r)-forme lisse v sur X’. Si S est une forme a coefficients dans LY, 7.(S)
I’est aussi. Les coefficients de . (S) sont obtenus par intégration sur les fibres qui
sont presque partout de méme dimension.

Proposition 2.5. Si les fibres génériques de m sont finies, [’application
7. DSH(X) — DSH(X') estbiendéfinie, bornée et continue. Enparticulier, I’image
de {(p quasi-psh sur X, dd°¢ > —o, | X Pk = 0} par 1. est relativement compacte
dans L¥(X') pour tout p > 1.

Démonstration. Notons I () I’ensemble des x’ € X’ tels que 7 ~!(x) ne soit pas
finie. La fonction 7, (v) est définie hors de ’ensemble [ (;r) qui est fermé et pluri-
polaire (voir proposition A.1). Pourx’ € X'\ I () ona

) = Y gl

7 (xi)=x'

Soient 7% des courants positifs fermés tels que dd°y = T+ — T~. Ona ddm, ¢ =
74 (TH) — (T ™) (voir aussi [18]). Puisque les courants 7. (T*) sont positifs fer-
més, () est dsh. Observons que I’opérateur 7. : LY(X) — LYX’) est borné
et que ||m(TH)|| < ¢|T*| avec ¢ > 0 indépendant de T*. On en déduit que
7. DSH(X) — DSH(X’) est borné et continu pour la topologie considérée sur les
fonctions dsh. O
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2.4. Image réciproque d’un courant. Soit 7: X — X’ une application holo-
morphe surjective. I’ image réciproque 7 * () d’un courant « sur X’ est définie lorsque
7 est une submersion. En général, on peut définir 77 * dans les cas suivants. Lorsque
y estune (p, g)-forme & coefficients dans L>°(X’), la forme 7 *(y) est a coefficients
dans L™ (X). Lorsque v est une fonction dsh sur X', ¢ o7 est aussi une fonction dsh
sur X. On peut définir 7*(¢ry) := (¢ o w)*(y). On vérifie facilement le résultat
suivant.

Proposition 2.6. L’opérateur =*: DSH(X’) — DSH(X) est borné. En particulier,
Iimage de {¢ quasi-psh sur X', dd°¢p > —o’, fx/ <pa)‘k = 0} par =* est relative-
ment compacte dans LP (X) pour tout p > 1.

Rappelons la définition de 7 * sur les courants positifs fermés de bidegré (1, 1).
Soit T un tel courant sur X’. Il existe une fonction quasi-psh ¢ sur X’ et une forme
lisse« telles que dd°y = T'—«. Onpose ¢ := romwetx*(T) := dd°¢p+m*(x). Cest
un courant positif fermé de masse finie. Cette opération est continue et indépendante
du choix de « et de ¢ [18]. Ona cl(z*(T")) = cl(zw*(«)). Si ¢ est une fonction dsh
sur X’ avecdd®y =T+ — T, onadd’z*(¢) = x*(TH) —x*(T7).

Notons I I’ensemble des x' € X’ tels que dim7~'(x") > k — k’. C’est un
sous-ensemble analytique de codimension au moins 2 de X’ car dimz ~!(I) est au
plus égale a k — 1. Soit H un sous-ensemble analytique de dimension pure [ de X’.
Supposons que dimz ~'(H N I) < [ 4+ k — k’. On définit 7z *[ H] comme un courant
d’intégration sur A (H), il est alors de méme bidegré que [H ].

Si T estun courant positif fermé de bidegré (r, r) sur X', on peut définir “la partie
principale” de I’'image réciproque de T. Soit 2 C X I'ouvert, Zariski dense, ou 7
est une submersion locale. Le courant (7)) * (1) est bien défini, positif, fermé sur Q.

Notons (ﬂmT) son prolongement trivial.

Proposition 2.7 ([6], [7]). Le courant (mo)*(T') est de masse finie et le courant

S~

(m)*(T) est fermé. Si T, — T, tout courant adhérent a la suite (mQ)*T, est
supérieur ou égal a (mo)*T.

3. Transformations méromorphes

Dans ce paragraphe, nous définissons les opérations : composition, produit, intersec-
tion, sur les TM et les correspondances méromorphes. Nous étudions I’effet de ces
opérations sur les degrés intermédiaires.

3.1. Définitions. Notons 7; : X1 x X2 — X; la projection canonique de X1 x X
sur X;. On appelle m-chaine holomorphe (positive) de X1 x X, toute combinaison



232 T.-C. Dinh et N. Sibony CMH

finie I' := ) I'; ot les I'; sont des sous-ensembles analytiques irréductibles de
dimension m de X1 x X5. Les I'; ne sont pas nécessairement distincts. L’intégration
sur la partie lisse de I' définit un courant positif fermé [I"] de bidimension (m, m).
Notons I' € X, x X1 I'image de I' par I’application (x1, x2) > (x2, x1).

Soit [ un entier naturel, k1 —ky <1 < ky. On appelle transformation méromorphe
(TM) F de X dans X toute (k2 +1)-chaine holomorphe I' = " T'; de X x X telle
que la restriction de 7; a chaque composante irréductible I'; soit surjective, i =1, 2.
On dira que I' est le graphe de F et que codim(F) := [ est la codimension de F.
La TM F de X, dans X associée a " est appelée TM adjointe de F, elle est de
codimension ky — k1 + . Posons I := 73 o (7T1|r‘)_1 et F~1 .= 7T © (71’2|1“)_1. Ces
“applications” sont définies sur les sous-ensembles de X1 et Xo. La fibre F~'(x2)
de x; € X» est génériquement un sous-ensemble analytique de dimension / de X;.
Notons [;(F) = {x € X;, dimzri_l(x) > ko + 1 — k;}. C’est un sous-ensemble
analytique de codimension au moins 2 de X;. On dira que 11 (F) (resp. [o(F)) est le
premier (tesp. deuxieme) ensemble d’indétermination.

Définissons les opérateurs F'* et Fy. Soit T un courant de bidegré (r, r) sur X2,
ky+1—ki <r < kz. Ondéfinit F*(T') := (71)4(7y (T) A[I']). C’est un courant de
bidimension (ky +1 —r, ko +1 —r) porté par F =il (supp(T)). Cet opérateur est défini
pour les formes lisses et pour 1’espace engendré par les courants [H] ot H est un
sous-ensemble analytique de dimension pure k, —r de X vérifiant dim(mo 1) “1(HN
L(F)) <ky+1—r—1.Lorsque T estlisse, F*(T') est une forme a coefficients dans
LY(X). Pour x € X, \ IL(F), F*(8y,) estun courant d’intégration sur une /-chaine
holomorphe portée par F~!(x2). I opérateur F, est défini de la méme manidre.

Pour tout s, ky — k1 + 1 < s < kp, on appelle degré intermédiaire d’ordre s de F
le nombre

As(F) ::/ F*(wi)/\a)lfz-l—l—s :/ a)i/\F*(a)llq_H_S)
; Xz 3.1)

Par continuité, la masse du courant F*(8y,), qui se calcule cohomologiquement, ne
dépend pas de x3, pour x2 générique dans X»2. On en déduit que cette masse est égale
au dernier degré intermédiaire Ag, (F) de F.

Finalement, on dira qu'un point (x1,x2) € I" est générigue si la restriction de
;|- & un voisinage de (x1, x2) est une submersion pour i = 1, 2. Notons Gen(I")
I’ensemble de ces points. C’est un ouvert de Zariski dense de I".

3.2. Composition de TM. Soit F’: X, — X3 une autre TM, de codimension [,
associ€e a une (k3 +1')-chaine holomorphe I = 3 I'} de X5 x X3. Supposons que
I +1" < k. Considérons d’abord le cas ou I" et I'” sont irréductibles. Définissons la
composée IV o I" des graphes. Notons 71, 7 les projections de X1 x X, sur X7 et
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X, et my, 5 les projections de X»> x X3 sur X, et X3. Soient (x1,x2) € Gen(I")
et (x2, x3) € Gen(I'"). Soient U < Gen(I") et U’ € Gen(I'") des petits voisinages
de (x1, x2) dans Gen(I') et de (x2, x3) dans Gen(I'). Par définition de Gen(I") et
Gen(I'), on peut supposer que U et U’ admettent des structures produit U >~ Wy x V;
et U’ >~ V, x W3 ot V, désigne un voisinage de x; dans X;. Les projections 77, né
de U et U’ sur X, coincident avec les projections des produits sur le facteur V,. Les
projections de U sur X etde U’ sur X3 correspondent a des applications holomorphes
:U— Xjett: U — Xs.

Le modele local de IV o T" est I'image de W x V5 x W3 dans X; x X3 par
Iapplication (x1, x2, x3) +> (t(x1, x2), T’(x2, x3)). Cette image est de dimension
< ka+I+1". Onsuppose qu’elle est de dimension k3+I+1". On dira alors que I' et I' se
composent correctement. Le graphe I'/oI" de F’o F estalors1’adhérence de 1’ensemble
des (x1,x3) € X1 x X3 pour lesquels il existe xp € Xp avec (x1,x2) € Gen(I')
et (x2,x3) € Gen(I') tel qu’aux voisinages de ces points I" et [V se composent
correctement. Le point (x1, x3) est compté avec la multiplicité m si m est le nombre
des points x; pour lesquels x1, x2, x3 vérifient la propriété ci-dessus. Puisque I" et I’
se composent correctement, m est fini.

Dans le cas ou I et I'” ne sont pas irréductibles, on pose IV o I := 3 I‘]’. oI}
en supposant que I'; et F} se composent correctement pour tout i, j. Observons
que I'" o T est une (k3 + 7 + {’)-chaine holomorphe et qu’on a codim(F’ o F) =
codim(F) + codim(F’") =1 +1’. Les TM de codimension 0 entre variétés de méme
dimension (c.-a-d. les correspondances) se composent toujours correctement.

La composition I o I" peut se définir de la maniére suivante. Si (xq, x2, X%, X3)
désigne les coordonnées de X; x X3 x Xy x X3, on note I' l’adhérencNe de
Gen(I") x Gen(I'") N (x = x3). On obtient I o I" comme la projection de I" sur
X1 x X3. L’hypothese qu’on a posée dit que cette projection est de dimension pure
kz + 1+ 1. Sans cette hypothése on peut aussi définir la composition en supprimant

les composantes de mauvaise dimension.

Proposition 3.1. 1] existe une constante ¢ > 0, qui ne dépend que de (X7, w»), telle
que pour tout s, ks —ky +1+1' <s < ks, on ait

As(F' o F) < chigpy st (F)hs(F').

Démonstration. Observons que dans (3.1) les formes étant lisses ou a coefficients
dans L!, les intégrales peuvent ne porter que sur des ouverts de mesure totale. Posons
S := (F')*(w}). C’est un courant positif fermé a coefficients dans L!(X3) de bidegré
(r,rysur Xo or :=ky —k3+s—1'.Ona ||S|| = As(F"). D’apres [7], il existe ¢ > 0
et des courants S, positifs fermés lisses cohomologiquement dominés par c||S ||}



234 T.-C. Dinh et N. Sibony CMH

qui convergent vers un courant S’ vérifiant S’ > S. On a
As(F' o F) = f () (@) A (1) (S)
Gen(T")
<[t A )
Gen(I")
< lim. (m) (@8 A (12 (S)

< chs(F') / (e @ THH ) A () (o)
= chig—ts4s—t/ (F)As (F').

La premiére égalité résulte de la description locale de I'” o I, la linéarité permet
ensuite d’utiliser des partitions de 1'unité. Pour la deuxi¢éme inégalité, on utilise une
suite exhaustive de compacts de Gen(I"). On peut aussi démontrer cette proposition
en utilisant 1’idée de la proposition 3.2 qui suit. o

3.3. Produit et intersection de TM. Considérons deux TM F;: X — X; de codi-
mensions /;, i = 1,2. On suppose que /1 + Iy > k et qu’il existe un ouvert, Zariski
dense, 2 C X1 x X tel que Fl“l(xl) N F[l(xz) soit de dimension pure 1 + 1, — k
pour tout (x1, xp) € 2. On suppose aussi pour simplifier que cette intersection est
transverse en tout point générique mais cette hypothse n’est pas indispensable.
Définissons le produit I e I;. C’estune TM de X dans X; x X» de codimension
Iy + I — k dont nous allons décrire le graphe. Notons I'' = 3° Fl et =% F2 les
graphes de Fy et F. Considérons d’abord le cas ot I'! et I'? sont 1rreduct1bles. Le
graphe I'' o I'? de F; o F, est alors I’adhérence de I’ensemble des (x, x1, x2) € X xQ
avec x € F; ' (x1) N Fy ' (xy). Dans le cas général, on pose ' ¢ 2 := 3" I'le F2
On peut construire I'le I‘2 autrement. Soient (x, x1, x’, x2) les coordonnées de
X x X1 xX x X». OnnoteQ = {(x, x1,x",x2), (x1,x2) € Q}etF I’adhérence de
(T x T2 N (x =x/) N Q2. Alors T'! o I'2 est 1a projection de ' sur X x X1 x X3.
On munit X1 x X7 de la forme de Kihler w1y := c12(7r1 (1) + nz*(a)z)) ou 7;

o ‘ —ky—k : S
est la projection canonique sur X; et ¢, 2 = (1 ,;'; %2) Le choix de c1 implique

T+
que lexXz(wlz) 8 = [,

Proposition 3.2. 1] existe une constante ¢ > 0 qui ne dépend que de (X, w) telle que
pour tout s vérifiantky +ky —2k+ 11 + 12 <s < ki1 + k2 on ait

hs(Fi o Fy) < ccfy Y by (F)hsy (F)

avecky —k+1l <s1 <k, kp —k+1) <sy <kpets;i+s, =s.
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Démonstration. Soient I, Iy, TT’, T1; les projections de X x X; x X x X; surles
facteurs et W := (I1, IT)). Soit r := k1 +kz+11 +12 —k —s. Alors c1s As(F1e o) est
la masse de la mesure [I'] A IT* (") A (ITj (1) + (T12)*(@2))*. Soit A la diagonale
de X x X. Par hypothése, ¥ restreinte 2 I'! x I'? est une submersion en un point
générique de (I' x I'2)NW~1(A). On peut trouver un ouvert de Zariski I' de I'! x I'?
sur lequel la mesure considérée est de masse totale et W est une submersion. On a
= [/F\] AWF[A]. D’apres [7], il existe des courants lisses A, cohomologiquement
dominés par cx(w(x) + o(x' )k, cx > 0, qui tendent vers un courant A’ > [A].
Comme dans la proposition 3.1, on montre que la masse de la mesure considérée est
majorée par

cx /[Fl x T2 A (ITH () + T (@))% A TTH (7)) A (T (@1) + (TI2)*(w2))°.

La derniere intégrale est une combinaison d’au plus & termes du type

( f [T A 7 () Hh =1 A nf(wn“) ( / [T2] A ¥ ()2t A ﬂf(wz)sz)

qui est égal a A, (F1)As, (I2). La proposition en découle. a

Soient G;: X; — X,i = 1,2, deux TM. On définit [’intersection G1 N G, de

G1 et G, comme I’adjoint G1 G, du produit G e G, lorsque ce produit est bien
défini. C’estune TM de X1 x X dans X. Pour (x1, x2) générique, (G1 N G2)(x1, x2)
est I’intersection de G1(x1) et Gy(x2).

3.4. Familles de sous-ensembles analytiques. Soit ' une TM de codimension !’ de
X, dans X3 dont le graphe est irréductible. La réunion de ses fibres Hy, := F’ =l (x3)
est égale a X». On dira que #H = (Hy,) est une famille (méromorphe) adaptée
d’ensembles analytiques de dimension I’. Si x3 n’appartient pas a Ip(F'), J,, est de
dimension I’. Pour x3 générique, les composantes de ., sont de multiplicité 1 et on
a [Hy] = (F))*(8s)-

Soit F une TM de codimension/ de X dans X». Supposons que !+ < ki.Ondira
que H est F-réguliere si dim F~!(#,, N L(F)) < I + 1’ pour x3 € X3 générique.
Pour un tel x3, F*F’ *(5x3) est bien défini. C’est un courant d’intégration sur une
chaine holomorphe de dimension / + I’. La famille ¢ est dite réguliére, si elle est
F-réguliere pour toute TM F d’une variété€ X dans X». Les familles de sous-variétés
associées aux TM Wy, Wy, W3 et F; , que nous allons décrire au paragraphe 3.6 sont
régulieres. Les intersections de familles adaptées de sous-ensembles analytiques sont
définies comme étant associées aux produits de TM.

3.5. Correspondances. Supposons que X et X» ont la méme dimension k. Une
correspondance (méromorphe) de X1 dans X; estune TM f de codimension O de
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X1 dans X;. Notons I' = > T le graphe de f. La correspondance f de X, dans X
associée 4 I' est appelée correspondance adjointe de f. Lorsque la restriction de 7 2
I" est injective hors d’un sous-ensemble analytique, on dira que f estune application
méromorphe dominante. On dit que f est biméromorphe si f et son adjoint f sont
des applications méromorphes dominantes. Posons

Ay =sup||[ fuw)ol] ¢ e Qi on, [eof =0} (2
(7 2
D’apres les résultats du paragraphe 2, A(f) est finie. Il mesure combien f, perturbe
la normalisation [ gpaf = 0.
Considérons le cas ou X1 = X3 = X. Onnotera f™ la correspondance fo---o f
(n fois). Pour tout 0 < s < k, on définit le degré dynamique d’ordre s de f par la
formule suivante :

dy(f) = lim [rs(fM]"". (33)

D’aprés la proposition 3.1, Ia suite [A;(f™)]'/" converge vers sa borne inférieure
inf,>1[As(f™)1V". Le dernier degré dynamique d; (f) := di(f) est égal au nombre
d’éléments de la fibre £~1(z) pour z générique (ce nombre ne dépend pas de z). C’est
le degré topologique de f.On a aussi do(f) = d,(f).

3.6. Exemples. (a) Notons G(k —!+ 1, k+ 1) la grassmannienne qui paramgtre les
sous-espaces projectifs de dimension k — I de P¥. Pour § € G(k — 1+ 1,k + 1), soit
]P”g_l le sous-espace projectif de dimension k — / correspondant. Posons

Iy ={z8§) eP*x Gk -1+ 1,k+1), ze Py}

LaTM W; de P* dans G(k —I 4 1, k+ 1) associée 2 la variété I'1 est de codimension
k—letona 1111_1(5) = ]P’lg_l.

Donnons une autre manidre de voir cette TM. Soit P¥* := G(k, k + 1) le dual de
P* et soit G*(I, k 4 1) la grassmannienne qui paramdtre les sous-espaces projectifs
de dimension [ — 1 de P**. Elle est biholomorphe a G(k — [ + 1, kK + 1). Pour tout
s € G*(l, k+1) notons ]P’g_l)’k le sous-espace projectif de P¥* associé a §. On choisit
[ points s1, ..., s; de ]P’gl_l)* qui engendrent Pivl_l)*. Notons P£=1 I’hyperplan de P
associ€ a s; et ]P’]g_l = ]P’];f In...n IP”;Z“l. Le sous-espace projectif P’g_l de P* est
indépendant du choix des s;. Posons

I i={(z.5) e P x G*(1,k+ 1), z e Pi}.

La TM W, de P dans G*(, k 4 1) associée a I'> est de codimension k — [ et on a
vyl =P
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(b) Considérons [’espace multiprojectif P51+ .= PK* x ... x PK* (] fois). Posons
3= {(s,5) e P** xG* (1, k+1), 5 = (51, ..., s). P c P&l pouri=1,...,1}.

Notons IT; Ia TM de P%/* dans G*(I, k + 1) associée a I'3. C’est une application
méromorphe dominante. Soit I1; son adjoint. La composée W3 := I1; o W, est une
TM de P¥ dans PA/*. Pour s = (sq, . .., 57) générique dans PX!*, Ta fibre W3 (s) est
le sous-espace projectif PA~" :=PE=1n ... nPE-! de PE,

(c) Nous allons étendre la définition des TM de (a) et (b) avec, pour espace
d’arrivée, un espace projectif de sections holomorphes. La construction permettra
de calculer facilement les degrés intermédiaires (voir lemme 7.1). Considérons une
variété projective X et soit L un fibré en droites ample sur X. Notons HY(X, L")
I’espace des sections holomorphes de L" := L ® --- ® L (n fois), PHY(X, L")
I’espace projectif associé et k, sa dimension. Pour tout s* € PH’(X, L")* notons
H+ I’hyperplan projectif de PHY(X, L") associé a s*. Rappelons que PH’(X, L")
est aussi le dual de PHO(X, L™)*. Pour tout s € PHO(X, L"), notons H{ I’hyperplan
de PHO(X, L™)* associé a s.

Pour x € X, notons s; € PH’(X, L™)* le point tel que I’hyperplan Hy; soit
I’ensemble des sections s’annulant en x. Considérons 1”application holomorphe &,
de X dans PHO(X, L™)* définie par x > ®, (x) := s¥. Puisque L est ample, pour n
assez grand, &, définit un plongement de X dans PH’(X, L™)*, ¢’est le plongement
de Kodaira. Observons que &, 1(HS* N &, (X)) est 'ensemble des zéros de s. C’est
une hypersurface lisse de X et I’intersection H; N &, (X) est transverse pour tout s
hors d’un sous-ensemble analytique de PH®(X, L™).

Soit Gl),(n la grassmannienne des sous-espaces projectifs de dimension / — 1 de
PH(X, L™). On construit comme dans (a) une TM v, , de PHY(X, L™)* dans Gl{(n.
Pour tout point § € Gl)fn, ‘I’zTnl (§) est un sous-espace projectif de dimension k,, — I de
]PHO(X, L™)y*. Posons Ry, := ¥ , o ®,. C’est une TM de codimension k — [ de X
dans Gz},(w Précisons cela.

Notons s, ..., s; des points qui engendrent le sous-espace IF’é_l de dimension
I —1de PH(X, L"), pour § € G, Alors \I/l_n1 (§) est égal au sous-espace projectif
H;ﬁ N---N H; de dimension k, — I de PH*(X, L™)*. Donc le ,} () est I’ensemble
Z; des zéros communs des sections s1, . . ., s7. Il ne dépend pas du choix des s;. Pour
s € Gl),(n hors d’un sous-ensemble analytique, I’intersection \IJl_nl () N Du(X) est
transverse et Z;y est lisse.

Soit T1; ,, I"application méromorphe de P¥, :=PH(X, L") x - -- x PH(X, L")
(I fois) dans Gl),(n définie comme dans (b). Soit I1;, sont adjoint. Posons F; , :=
), o Ry Cest une TM de X dans ]P’ffn. Pour tout s = (s1,...,s5) € }P’l{(n, la
fibre Fljnl (s) est ’ensemble des zéros communs de sy, . .., s;. Pour un s générique,
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cette fibre est égale a Zz avec s := IT; ,(s). En particulier, ¢’est un sous-ensemble
analytique lisse de dimension k — [/, sans multiplicité.

(d) Soit f une application méromorphe de P dans P*. Pour étudier les images
réciproques par f" des sous-espaces de dimension k — [, nous introduisons les TM
F, := W0 f" avec W, définie dans (a). On se rameéne a I’étude des images réciproques
des points de G*(/, k 4+ 1) par Fj,.

4. Distribution des préimages de sous-variétés

Soit oy, une mesure de probabilité PB sur X ,. On munit X := [, .; X, delamesure de
probabilité o, égale au produit des o,. Considérons une suite de TM F,,: X — X, de
méme codimension/, 0 <! < k. Soitx = (x1, x2,...) € X. Si x, n’appartient pas a
L(F), T := (Fn)*(8x,) estbiendéfini. C’est un courant d’intégration sur une chaine
holomorphe de dimension / de X. Posons 1, := (F,)*(04), Rin 1= Ri(Xp, @p, 07)
et A, (1) == A(X,, wy, 04, t). Soient §, et d, les degrés intermédiaires d’ordre k, — 1
et d’ordre k,, de F,,.

Théoreme 4.1. Supposons que la suite (R1 ,8,d,; 1Y,1 tend vers O et que 'une des
deux propriétés suivantes soit satisfaite :

(1) La série anl Rz’nSrLdn_l converge.
(2) La série anl An(S,jldnt) converge pour tout t > Q.

Alors pour o-presque tout x € X, la suite (d,; i (T;Y —T,), ) tend vers O uniformé-
ment sur les ensembles bornés, en norme C%, de (1,1 )-formes test r sur X.

Nous allons montrer les estimations utiles en nous limitant 3 une TM F: X —
X’ de codimension I, 0 < I < k — 1. Soient ¢’ une mesure de probabilité PB
sur X', & et d les degrés intermédiaires d’ordre &' — 1 et d’ordre k¥’ de F. Posons
T .= F*(a)’k/), T :=F*o)etT* := F*(5y) pour x’ € X'\ I(F). Posons aussi
R =R;(X', &/, 0"), A(t) := A(X', o, 67, 1) et pour tout & > 0

(d=NT* = T),9)] = e}.

Ee) = |J {¥ex,

Il g2 <1

Soit S := Fy(«'*1). C’est un courant de bidegré (1, 1) et de masse § sur X’. D’apres
la proposition 2.2, il existe une fonction quasi-psh ¢ vérifiant

/ pdo’ =0 et dd@ — S > —r (X', 0")sw'. “4.1)
X/
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Par définition de R;, on a

< 6R3.

k/
9 <8Ri, lgliiey <R et ‘/W

Lemme 4.2. Soit r une (1, [)-forme test de classe C2 sur X avec || |2 = 1. Alors
ona

(a) / |(Txl —T,)|do’(x") < 28R,.
X/

(b) [(T* =T, )| < 38Ry — p(x).
© [T —T,v)| <26Rs.
(d) o'(E(e)) < A(ed~'d — 3R)).

Démonstration. Nous devons estimer (T"/ —T,y)et (T — T, yr). Ecrivons dd®y¢ =
Qt —Q~ avecdes (I +1, 1+ 1)-formes Q* positives fermées telles que Q* < o't
Posons ¢ := F,(¢) et ST := F,(Q%). Onadd®¢ = St — S~ et (T¥, ¢) = p(x))
pour x” & I;(F). On a aussi S* < Setdonc ||SE| < 3. D’aprés la proposition 2.2,
il existe des fonctions quasi-psh ¢* vérifiant S X! ¢pFdo’ = 0 telles que

—r(X', )80 <dd@T — ST =dd®™ — ST < r(X’, &)da. 4.2)
(pour étre exact, il faut remplacer r (X', »’) par r (X', ') +¢’, ¢’ > 0, mais notre abus
ne change pas les résultats car on peut ensuite faire tendre &’ vers 0). Par définition
des R; ona

k/
9= <8R1, lotlLiey <Ry et ’ / pra’™ | < 8Rs. (4.3)

Lafonction ¢ — (p+ —¢™) est constante car elle est pluriharmonique. De plus, comme
[ ¢*do’ = 0, on obtient pour x’ ¢ I(F)

(T¥ —T,¢) = (8 —0', @) = (B — 0", 9t —97) = 9T (&) — 9~ ().
(a) On en déduit que
/x/ (T =T, 9)|do’ (") < T llLien + 97 Lo < 26Ro.
(b) Posons 4 := ¢ — ¢t. Comme S* < §, d’apres (4.1) et (4.2), 0ona
dd°h > —2r(X’, &)o' .

D’autre part, on a f X! hdo’ = 0. Par définition de Ry, maxyx/ & < 28R7. Ceci et (4.3)
entrainent que
p(x') — 28Ry < ¢t (x') < 8Ry.
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Avec une estimation analogue pour ¢ —, on obtient
(T =T, )] = [oF () — 9™ ()] < 38Ry — 9.
(c)D’apres (4.3), on a
(T =T, )| = o - o* —p7)| = (", ¢ =)
<[, oh)] + (", 97| < 26Ra.
(d) D’apres (b), E(e) est contenu dans
E'(e) :={x' € X', p(x') < —ed +38Ry}.
Par définition de A(z), les relations (4.1) entrainent que

o(E(e)) < o' (E'(g)) < A(e8™'d — 3Ry). m

Démonstration du théoréeme 4.1. Posons S, = (Fy).(«'*!). On a ||S,] = &,.
D’apres la proposition 2.2, il existe ¢, quasi-psh vérifiant

/ gpdoy, =0 et dd¢, — Sy, > —r(X,, w,)dpwy.
Xn

Par définition de R; ,, on a ¢, < §;R1, et ||<pn||L1(Un) < é4Rz 5.
(1) Considérons la fonction réelle positive ® sur X

O(x) =Y dy lpala)l.

n>1

/Xd>da = " di NenllLiey < D Rondudy .

n>1 n>1

Ona

Par hypothése, la derniere série converge, donc ®(x) est finie et d,; Lpu(xp) tend
vers O pour o-presque tout x € X. Fixons x = (x,) € X tel que x, ¢ [(F,) ettel
que d,; L (xn) tende vers 0. Soit ¢ une (I, I)-forme de classe G sur X. D’apres le
lemme 4.2(b), on a

T = T )] < 19 12 (38aR1n — @ ().

On déduit de I’hypothese la convergence souhaitée.
(2) Posons pour tout & > 0

Eue)= | {meX.

Il g2 =1

(@ (T = T), )] = e}
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Par hypothese, Ry , = o(é;; 1d,). D’apres le lemme 4.2(d), on obtient pour n assez
grand que

ou(En(£)) < An(ed;  dy — 3R1,) < An(e8;, dy/2). (4.4)

Lasérie Y A(es; ldn /2) étant convergeante, > o, (E, (¢)) converge aussi pour tout
¢ > 0. Ceci implique la convergence annoncée. o

La proposition suivante permet de comparer les courants obtenus en prenant les
. . k
images réciproques de o, et de la forme volume w,".

Proposition 4.3. Supposons que la suite R3 ,6,d, L tend vers 0. Alors (d; 1(Tn —

F;f(wl,?‘)), W) tend vers O uniformément sur les ensembles bornés, en norme G2, de
(I, D)-formes r sur X.

Démonstration. 11 suffit d’appliquer le lemme 4.2(c) avec les estimations comme
dans la démonstration du théoréme 4.1. O

Posons R} := R} (X,, w,, 2). Soient v, = hnwﬁ” ety, = h;wﬁ” des mesures de
probabilité sur X, ot i, et i), sont des fonctions dans L2(X,).

Théoréme 4.4. Supposons que ||h, — hZ”LZ(X,l) = 0(8;1an;§_1). Alors

A (F)*on) = (F)*(vp), )

tend vers O uniformément sur les ensembles bornés, en norme 62, de (1, 1)-formes
test r sur X.

Démonstration. Ultilisons les notations du théoréeme 4.1. Posons ¢, := (F,;).(¢). 11
existe des constantes a, et des fonctions quasi-psh (p;f telles que ¢, = ¢F — 97 +ay
et ||(pff||Lz( X)) = [l |@2R8,,. En utilisant I’inégalité¢ de Cauchy-Schwarz et le fait
que vy, et v}, ont la méme masse, on obtient

A ((F)* (vn) — (B o), )| = dy (O — Bk, ¢y — an)|
< d; N — Bllr2x, lldn — anllizex,
< 2|\ lle28ndy " REN By — B ll12x,)-

Par hypothese, la derniere expression tend vers 0. o

Remarque 4.5. Siles (X, @y, 0,,) appartiennent a une famille lisse (X;) de variétés
kihlériennes compactes, d’aprés Kodaira-Spencer [16, p. 73], dim H>1(X,, C) est
localement constante et les r(X;, w;) sont localement majorées. 1l en résulte que
les Ry, et R} sont uniformément bornées. Les hypotheses des théorémes 4.1 et
4.4 ne font alors intervenir que les degrés intermédiaires de F;, qui sont calculés
cohomologiquement,
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Dans la suite, nous considérons des TM F,, de X dans une méme variété X', c.-a-d.
qu’on suppose que (X, wy) = (X/, »’) pour tout n > 1.

Théoréeme 4.6. Soit o’ une mesure de probabilité PB sur X'. Supposons que
Y1 AX @0, t81d,) converge pour tout t > 0. Alors pour o’-presque tout

x e X, (dn‘l((Fn)*(Sx/) - (Fn)*(a)’k/)), ) tend vers O uniformément sur les en-
sembles bornés, en norme 62, de (I, I)-formes test r sur X.

Démonstration. Posons r := r(X’, @’). Pour tout & > 0, posons

Exe)= |J (v eX, |[d7 (Fi o) — Fr@™ ), v)| > e},
¥l g2 <1

et Ry = Ri(X, 0/, 0"), A(t) := AX', @', 0', ). Le lemme 4.2(d) entraine que
o'(E,(e)) < A(S(Sn‘ldn — 3Rj1). On déduit de I'hypothese que lim(Sn‘ldﬂ = 400
et que la série 3. A(e8;'d, — 3Ry) converge. Donc la sétie Y, o’ (En(e))
converge pour tout & > 0. Le théoréme en découle. - m]

Démonstrationdu théoréme 1.1. (1) Posons R} := R} (X’, '), R} =R} (X', o', 1),
Sy 1= (F)4(@'*1).Ona||S, | = 8,. D aprés la proposition 2.2, il existe ¢, quasi-psh
vérifiant
/ (pna)/k =0 et dd°p, — S, > —ré,o’.
X/
Par définition de R}, ona ¢, < R}8; et [[¢n |l xy < R38,. On en déduit que la série
D) = dy  on(x)
n>1
converge ponctuellement vers une fonction quasi-psh. Posons
&= JnE)u(@=—-x).
n>1

D’aprés la proposition A. 1, & est pluripolaire. Pour x’ € X'\ &, onalimd; !¢, (x") = Q
Le lemme 4.2(b) appliqué 2 la mesure o’ = o'*, implique que {d (F)*(8x) —

(F)* (o k/)), w) tend vers O uniformément sur les ensembles bornés, en norme G2,
de (I, l)-formes test r.

(2) La mesure o’ étant (c, o)-modérée, la proposition 2.4 entraine que
At87 dy) < cexp(—ar™lt871dy).

Par conséquent, la série Y A(18, 1d,) converge pour tout ¢ > 0. Il suffit d’appliquer
le théoreme 4.6. ]
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Soit # = (Hy)yey une famille adaptée de sous-ensembles analytiques de di-
mension m de X’ associée a une TM G: X’ — Y. Supposons que [ + m < k et
que J€ soit Fy,-réguli¢re pour tout n. On a vu au paragraphe 2.4 que pour y € Y gé-
nérique, les courants [)»k/_m(Fn)]_1 (Fy)*[Fy] sont bien définis et de masse bornée
indépendemment de .

Corollaire 4.7. Supposons que la série anl A —me1 (F) A —m (F)17! converge.
Alors la suite de courants

m((Fn) ()] — (F)*[#y1])

tend faiblement vers O pour y et y' hors d’un ensemble pluripolaire & C Y.

Démonstration. 11 suffit d’appliquer le théoréme 4.6 et la proposition 3.1 pour les
TM G o Fy, puisque les #, sont les fibres de G. o

Remarque 4.8. Lorsque les F}, sont des applications rationnelles entre les espaces
projectifs et # est une famille de sous-espaces projectifs, ce résultat a été prouvé par
Sodin, Russakovkii et Shiffman [21], [20].

5. Mesures d’équilibre de correspondances

Dans ce paragraphe, on suppose que les X, ont la méme dimension k. Nous étudions
I’itération aléatoire d’une suite de correspondances f;,: X,—1 — X,. Notons d, le
degré topologique de f, 8, le degré intermédiaire d’ordre k — 1 de fro-- -0 f1,R} :=
RI(X,, wu, 2) et A, 1= A(f,). Soient A, des fonctions positives dans L%(X,) telles
que [y, hpwk = 1. Posons vy, = hyf et py := a7t .. d7 N (fuo- -0 f1)*(vn). Les
mesures de probabilité v, et u, sont absolument continues par rapport aux mesures
de Lebesgue.

Théoréme 5.1. Supposons que 8, R} ||hy l12(x,) = 0(d1...dy) et que de plus la série
s dy L o 15n_1An converge. Alors ., tend faiblement vers une mesure de
probabilité PC p sur Xo. De plus, p est indépendante de la suite (hy,) et pour toute
Jonction quasi-psh ¢ on a (i, ) — {1, @).

Remarque 5.2. Siles (X,, w,, f;) appartiennent a une famille compacte lisse (par
exemple une famille finie), les R} et A, sont uniformément bornées (voir remarque
4.5). Dans ce cas, il suffit de supposer que &, || lly 2 x) = 0(d1 . . . dy) et que la série
> dr L .dy; 18, 1 converge. Si les f,, sont des applications rationnelles dominantes
de degré algébrique s, de P dans IPX, on peut majorer 8, par (sq ... s,)* 1.
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Démonstration. Soit ¢ une fonction quasi-psh sur Xg, dd°¢ > —wg. Montrons
que {1y, @) converge vers une constante ¢, indépendante de (%,) (on posera alors
(1, @) == cp pour g lisse).

Posons Fy, := fpo---0 f1, Ty = wp et TOJr := dd®p 4+ wyg. Le courant TO+ est
positif fermé et cohomologue a wg. On définit par récurrence les nombres b, et les
fonctions ¢, . Posons

bo ::/ (pwlé et ¢o:= ¢ — by.
Xo
D’apres les propositions 2.5 et 2.6, on peut poser

B = /X el et gn = (Fdr(@n1) — Ba.
Ona
dd°g, = T;F — T, avec TE = (F,).(T55).
De plus
A(TE) = cA((Fy)alwp) et f gnast = 0.
Xn

On en déduit que || 75| = || (Fy)«(wo) | = 8a.

D’apres la proposition 2.2, il existe wf quasi-psh vérifiant |’ X, (pffa)k =0et

n

ddcgoz' — Tn+ =dd%, — T, = —r(Xy, ©p)8nwy.

On obtient que dd°p, = dd°(¢p;” — ¢,"). Comme an gk = an pFwk =0,0na
¢n = @;F — ¢, . Par définition de A, et R}, ona
’ /X (fe(@f Dok < 8i1An et o7 lliacx,) < 8RS 5.1)

Donc b, < 28,_1A, et par hypothése la série ) d; L g 1bn converge. Notons ¢,
sa somme. Elle dépend contintiment de ¢.

Dans la suite, on integre seulement sur des ouverts de Zariski convenables car les
mesures sont absolument continues par rapport aux mesures de Lebesgue. On a

(tn, @) = (] A (o) bo + 9o)
=bo+(dit AT L), () (00))
=bo+{dit . dT SR, b1+ o)
=bo+d by a7 AT ), 01).
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Par récurrence, on obtient
(@) =bo+di b1+ +di AT by AT T e ). (52)

Vérifions que (un, @) tend vers c,. L'inégalité de Cauchy-Schwarz et les relations
(5.1) impliquent que

s )] = 1{hn@k, @) < lhalliocx, lenllizcx,)
= ||hn||L2(Xn)(||<ﬂ,T||L2(Xn) + ||(/),-1|_||L2(xﬂ))
< 2llhnllLax, )8Ry

La derniére expression est d’ordre o(dy . . . dy). Donc lim(u,, @) = cy.

Définissons la mesure p pour ¢ lisse par (i, ¢) 1= c,. On a montré que pi, tend
faiblement vers p. Si ¢ est une fonction quasi-psh quelconque, par semi-continuité
supérieure, on a (u, ¢) > limsup(u,, ¢) = c,. D’autre part, comme on peut ap-
procher ¢ par une suite décroissante de fonctions quasi-psh lisses et comme ¢,
dépend continiment de ¢, on a (i, ¢) = ¢, et par suite u est PC. De plus, on a

Démonstration du théoréme 1.3. On montre I’inégalité plus forte suivante

[n (@, ¥)| < cldi—1 +&)"d; " @llpsullP oo ) -

Puisque ¢ s’écrit comme différence de deux fonctions quasi-psh de norme compa-
rable, on peut supposer que ¢ est quasi-psh avec dd®¢ > —w. Dufaitque I,,(¢, ) =
—1, (¢, —r), il suffit de majorer I,,(¢, ¥). Comme I, (¢, v + A) = I,(p, ) pour
toute constante A, on peut supposer que yr est positive. On peut également supposer
que || |lLee(y) = 1. Comme g est invariante, on a

Lo ) = [ (4770 0t0) = ) irdie < W7D 0) = g,
X
On reprend les calculs déja faits au théoréme 5.1. On a

7M@) = cp = A7 —d" gy = Y d'h
izn+1

Comme au théoreme 5.1, il existe ¢; > O tel que
bi] < c1(de—r+8)' 7" et [lpF 2 < c1(di—1+8)".

Lamesure p étant PB, d’apres la proposition 2.3, il existe c; > Otel que ||<p,fE Lt <
CZ||(p;:1t||L2(X)~ On en déduit que lldf”(f”)*(ga)—c(p||L1(m < c(dgp—1+e)"d; ™", c > 0.
Ceci termine la preuve du théor¢me. O
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6. Distribution des intersections de variétés

Considérons des TM F; ,,: X — X; de codimensions /;, i = 1, 2. On suppose que
Iy + 1 > k et que les produits &, := F1 , e I, , de Fy , et I , sont bien définis. Ce
sontdes TM de codimension /1 41 —k de X dans X1 x X». Posons §; ,, 1= Ay, —1(Fi )
et di,n = Ak (Fi,n)~

Théoréeme 6.1. Supposons que les séries ZSi,ndi;} soient convergentes pour
i = 1,2. Alors il existe un sous-ensemble pluripolaire & de X1 x X3 tel que pour
tout (x1,x2) € (X1 x X2) \ &, la suite de courants

1

di(F{in(le) A FS,(82) — F (@) A Ff(@05))
l,ndZ,n

tend faiblement vers 0.

Démonstration. Soit 8, le degré intermédiaire d’ordre k1 + kp — 1 de &,,. D’apres,
la proposition 3.2, il existe une constante ¢ > 0 telle que

8y < C(Sl,ndZ,n + 82,nd1,n)-

Le degré intermédiaire d’ordre k1 + k2 de &, est d’ordre dy ,da . 11 suffit d’appliquer
le théoreme 1.1 2 &,,. O

Soient f: X — X une application biméromorphe et £~! son inverse. Considé-
rons deux familles adaptées régulieres #* de sous-ensembles analytiques de dimen-
sions respectives k — [ faveclt +1- < k. Notons PE: X — Y* les TM assocides
et d,f (resp. S,ﬂf) le degré intermédiaire d’ordre = (resp. d’ordre [ £ _1)de f*.

Corollaire 6.2. Supposons que les séries Y 8F[dF]~! soient convergentes. Alors il

existe un sous-ensemble pluripolaire & de Y+ x Y~ tel que pour (a1, b1) et (az, b?)
dans (YT x Y7)\ 8, la suite de courants

1 _ _ _ _

%([f M(HE) N I = LTI N (H)])

tend faiblement vers Q.

Démonstration. Posons FF := PEo f¥ Ce sont des TM de codimension k —[* de
X dans Y*. D’aprés la proposition 3.1, ces deux suites de TM vérifient I’hypothése
du théoreme 6.1. 11 suffit d’appliquer ce théoreme. O

Nous allons expliciter ce résultat dans le cadre des automorphismes réguliers de
CF¥ introduits par le second auteur [23]. Soit f un automorphisme polynomial de
C*. On note aussi f son prolongement comme application birationnelle de P* dans
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Pk, Soit I+ (resp. 17) ’ensemble d’indétermination de f (resp. de f —1). Ce sont
des sous-ensembles analytiques de I’hyperplan a ’infini. L.’ automorphisme f est dit
régulier si I™ N I~ = @. (En dimension 2, les automorphismes réguliers sont ceux
du type Hénon). On a alors dim /™ +dim I~ = k — 2. Posons s := dim I~ + 1.
Notons d et d_ les degrés algébriques de f et f~!. Ils sont liés par la relation
(dy)* = (d_)k=>.

On peut construire deux courants 7'+ positifs fermés de bidegré (1, 1) de masse 1
de PX 2 potentiel continu dans C* tels que f*(T*) =dy T, fo(T_) = d_T . Pour
0<l<setO<l <k—s,lecourant Ty := (TH)! A (T™) est bien défini. Quand
I =s,I"” = k — s, on obtient une mesure de probabilité invariante a support compact
dans C*. On a également le théoréme de convergence suivant :

Tim (dy) ™" (d2) T () (@) A (F)a(@hs) = Th ©6.1)

Soient G; et Gy les grassmanniennes qui parametrent les sous-espaces projectifs

. . et / . .
de dimension k — I et k — I’ de PX. Notons PX—/ et ]P’i/ " les sous-espaces projectifs
associés aux points x € Gy et x’ € Gy.

Théoreme 6.3. Soit f un automorphisme régulier de C* comme ci-dessus. Alors,
il existe un sous-ensemble pluripolaire & de G; x Gy tel que pour tout (x,x") €
(G x Gp) \ € la suite de courants

(dp) ™ d) ™ @ N )]

tend faiblement vers le courant invariant Ty jr.

Démonstration. Onprend pour P* les TM construites dans 1’exemple 3.6(a). Avec les
notations du corollaire 6.2, on a d;} = di”, & = dﬁ_l)" et des relations semblables
pour les inverses. I1 suffit d’appliquer le corollaire 6.2 apres avoir intégré par rapport
aux variables a2, b,. On utilise ensuite la relation (6.1). O

7. Zéros des sections de fibrés en droites

Soit X une variété projective de dimension k et soit L un fibré en droites ample sur
X. On munit L d’une métrique hermitienne £. Pour toute section holomorphe locale
ey, de L, on définit la norme de ey, en chaque point par |lez ||; := h(er, er)2. Soit

c1(h) := —ddlog |ler ||n

la forme de courbure de (L, /). Elle représente dans la cohomologie de de Rham la
classe de Chern c1(L) € H*(X,Z) de L. Puisque L est ample, on peut choisir £
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de sorte que c1(h) soit une (1, 1)-forme strictement positive. La variét¢ X est donc
munie de la forme de Kihler  := c1(h) et [y of = c1(L)* € Z*. Cetie intégrale
n’est pas égale a 1 en général mais ceci ne changera pas les résultats qui suivent.

Le fibré L™ est également muni d’une métrique hermitienne #,, induite par la
métrique k sur L. Plus précisément, £, est définie localement par ||s” |5, = [|s]|7.
L’espace HY(X, L") des sections holomorphes de L™ est muni du produit hermitien
naturel

1
(s1,52) i= W/th(sl,sz)wk (s1.52 € HOOM, L™).

Notons wgs la métrique de Fubini-Study de PH®(X, L™). Le lecteur trouvera d’autres
notations dans 1’exemple 3.6(c). Rappelons que la dimension k, de PH(X, L") est
donnée par le polyndme de Hilbert dont le terme dominant est égal a ¢ (L)*n*/k!
[15, p. 386].

Lemme 7.1. Soient 8, , et d; , les degrés intermédiaires d’ordre lk, — 1 et d’ordre
lky de Fi . Onady, = n'ep(L) et 8, = O(n!~1).

Démonstration. Linvariance des métriques par I’action du groupe unitaire implique
que

lkn lkn—1 -1

WL T () = dinalg et W TTF (s ) = Brawps (7.1)

ol wyp est la forme kihlérienne naturelle associée a ]P)l),(n (voir appendice A.3) et ¢y,
B1.» sont des constantes positives. On calcule ces constantes cohomologiquement.

Pour calculer «; ,, on remplace wf\fﬁ‘) dans (7.1) par une masse de Dirac §;. Son
image \Ill’fnl:lin (85) sera le courant d’intégration sur un sous-espace projectif de co-
dimension / de PH(X, L™)* qui est cohomologue a w{;s. Ceci implique que o7, = 1.

Soit T le courant d’intégration sur une droite D X {s2} x - - - x {s;} de ]P’ffn. Ilestde
masse cy,; (voir appendice A.3). Son image \Ill’f o _zn(T) est le courant d’intégration
sur un sous-espace de codimension [ — 1 de PH(X, L™)*. La masse de ce dernier
courant est égale a 1. On en déduit que f; , = Ck_nl ;- En particulier, il est majoré par
une constante qui ne dépend que de /.

Puisque la classe de & (wps) est égale a ncy(L), ona

di :/ IV}, (o) A oF ! :/ O (whg) A " = nley (L)
X X
et

= lkp—1 k—I14+1 -1 k=141
sl,n:/ DIV (opfp ) Aw + :/ﬂl,ncbz(wFS ) A @I
X X

= Bran' ey (D)K. O
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On voit que la série > Sl,na’l_nl ne converge pas. C’est donc le théoréme 4.1(2) que
nous appliquerons. Le théordme suivant, di a Zelditch [26], est une amélioration d’un
théoreme de Tian [24]. 11 donne la convergence en moyenne des courants n~[Zs, |
avec s, € Pffn.

Théoreme 7.2 ([26]). Pour toutr >0, ona
In &k (whg) — @ ler = O ™).

Soient o, des mesures de probabilité PB surIF’an. PosonsR; , :=R; (IPan, WMP, Opn)
et Ay (1) := APY,, wmp, 0y, 1). On munit PX =[], PX, dela mesure o, produit
des o,,. Faisons des hypothéses sur les mesures o,.

Théoréme 7.3. Supposons que la série anl A, (nt) converge pour tout t > Q.

Supposons aussi que Ry, = o(n) et R3 , = o(n). Alors pour o-presque tout s =

(sn) € PX la suite de courants n~! [Zs,] tend faiblement vers o'

Démonsiration. Les relations (7.1) et le théoréme 7.2 entrainent que n ' F}*, (a)ﬁ’}‘))
tend vers o' dans € pour tout 7 > 0. D’aprés la proposition4.3, n ' F; ;- (o) tend fai-

blement vers o' car n~'5; nR3 , tend vers O par hypothese. D’aprés le théoréme 4.1(2),
pour o -presque tout s € PX, n! ([Zs,] — Fl*n (o)) tend faiblement vers 0. Le théo-
réme en découle. O

Posons G := [, G,. Soit € , la mesure de probabilité invariante sur G/¥,.
Notons €2; la mesure de probabilité sur GZX , produit des €2; 5. Fixons des sous-espaces
réels RPH(X, L") de PH(X, L") invariants par ’action du groupe orthogonal as-
socié. Soit RGl)fn la sous-grassmannienne totalement réelle de Gl),(n correspondante.
Soit m; , la mesure invariante de masse 1 sur Rfon. Notons m; le produit des m; ,
qui est une mesure de probabilité sur GZX .

Corollaire 7.4. Soient pu; » = Q5 et g := Q (0u py p 2= my et p := my). Alors
pour p-presque tout § = (§,) € GZX, la suite de courants n_l[Zgﬂ] tend faiblement
vers o'. De plus, si on pose

Ene)= |J {faeGl,. 1n71Zs,1— o )| > ¢}
Il g2 =<1

onda
1 (Epa(e)) < cn™ exp(—aen)

oum >0, a > 0etc > 0sont des constantes indépendantes de .
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Démonstration. Notons RPY, = RPHO(X, L") x- - -xRPH?(X, L") (I fois). Soient
Q 1. (resp. i ,) la mesure de probabilité invariante naturelle sur IP’,{ ; (resp. sur ]R]P’ZX )
(voir appendice A.3) et Q 1 (resp. ni;) la mesure de probabilité sur IP’ZX , produit des Q In
(resp. des mi; ). L'invariance des mesures considérées implique que ﬁ;"n(ﬁz’n) =
Q. et ﬁzn(ﬁl,n) =mjy.

Soient /iy, = SNZM ou iy, et f = Q; ou . 11 suffit de montrer que pour
fi-presque tout s = (s1, 52, ...) € PX onan'[Z;,] — o' et

ljl)n(nlj,i(El,n(g))) < en"* exp(—aen).

Cela résulte des théoremes 7.2, 7.3, la proposition 4.2(c) et la premicre inégalité
dans (4.4). Les estimations sur R; , et A, sont fournies par la proposition A.9. La
dimension de IP’ZXn est de I’ordre n*. O

Remarques7.5. Soit (¢,) une suite de nombre réels positifs vérifiantc, = o(n/logn).
On peut montrer que ¢, (n ' [Z;] — ') tend vers 0 pour p;-presque tout §. Ceci montre
que n~'[Z;] — ' tend vers 0 2 vitesse ~ log n/n. Obsevons que la multiplication
par ¢, revient a diviser & par c,. On obtient aussi des convergences avec estimation
lorsqu’on teste les formes holdériennes (voir remarque 1.4). Dans le cas oul = 1,
Shiffman et Zelditch [22] ont démontré la convergence n_l[ZS”] — w pour Q21-
presque toute suite s = (s,), s, € PHY(X, L™). Ils ont prouvé que la vitesse de
convergence est majorée par n°~1/% pour les observables C2.

A. Estimations des constantes

A.1. Ensembles pluripolaires, capacités, mesures modérées. Josefson[11]amon-
tré qu’un sous-ensemble localement pluripolaire dans C¥ est pluripolaire. Alexander
a étendu ce résultat 2 P* [1]. 11 en résulte que pour toute variété projective X de
dimension k, un ensemble E localement pluripolaire 1’est globalement : il suffit
d’utiliser une application holomorphe finie 7 : X — P*. Si ¢ est quasi-psh telle que
7(E) C (¢ = —o0),ona E C (w*p = —o0). 1l serait utile de montrer ce résul-
tat pour toute variété complexe compacte. On utilise a plusieurs reprises le résultat
suivant.

Proposition A.1. Soir (X, w) une variété kihlérienne compacte de dimension k. Tout
sous-ensemble analytique propre Y C X est pluripolaire.

Démonstration. SiY estune hypersurface de X, il existe ¢ quasi-psh telle que dd®p =
[Y] — « avec « lisse. 1l est clair que ¥ = (¢ = —/go) et ¢ est lisse sur X \ Y. Si
dim Y < k — 1, on construit une variété kihlérienne X par des éclatements successifs
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le long Y ou ses singularités. Si 7 désigne la projection de 2(\ sur X, 771(Y) est
une hypersurface de X. Soit ¢ quasi-psh sur X, lisse sur X \ 7~1(Y) telle que
a7 1Y) = (y = —o0). Puisque dd®y¢r s’écrit comme différence de deux courants
positifs fermés, lisses sur X \ 71 (Y),onamy = u1 — uz avec u; quasi-psh lisses
sur X \ Y. Puisque . (x) tend vers —oo quand x tend vers Y,onaY C (7 = —o0)
car uy est bornée supérieurement. o

Introduisons une capacité dont les ensembles de capacité nulle sont les ensembles
pluripolaires. Cela a été fait par Alexander pour PX. Notons 77 : CA*1\ {0} — P¥ 1a
projection canonique. Soient £%+1 1a sphere unité de C**1 et 09441 la mesure de
probabilité invariante sur $2¥*1. Alexander a posé pour un sous-ensemble K de P* :

cap/(K) :=inf  sup |f|V/" (A.1)
n*](K)ﬂng‘l

oul f parcourt les polyndmes homogenes de degré n de CK+! vérifiant

/ (log | f1"" —log |z1)doaks1 = 0.
£2k+1

Etant donné un sous-ensemble K d’une variété kihlérienne compacte (X, @) nous
définissons la capacité de K par

cap(K) 1= iI([l)f {exp (sup @), ¢ quasi-psh, dd°p > —w, max g = 0}.
K

Dans P* toute fonction quasi-psh ¢, vérifiantdd¢ > —wrs, estlimite de fonctions
sur P¥ de la forme log| f [ log ||z]] ot f est homogene de degré n. En utilisant
la proposition A.3 ci-dessous on peut montrer que

cap'(K) < cap(K) < ~/ke cap'(K).

Dans la suite nous utilisons la capacité cap qui a un sens pour toute variété kith-
Iérienne compacte. Avec notre normalisation, on a toujours cap(X) = 1. On vérifie
que cap(K) = 0 si et seulement si K est pluripolaire.

Proposition A.2. Soit o la mesure associée & la forme volume o*. Alors, il existe
¢ > 0eta > 0tels que o soit (c, «)-modérée. En particulier, on a A(X, w, 0,t) <
cexp(—ocr‘lt) pour toutt € R, otir 1= r(X, w).

Démonstration. Notons B(a, r) (resp. B;) la boule de Ck de rayon r centrée en a
(resp. centrée en 0). Posons wq := dd® z||? 1a forme euclidienne sur C¥ et o := a)’g.
Soit ¥, : B4 — X une famille finie d’applications holomorphes injectives telles que
les ouverts W, (B1) recouvrent X. Soit A1 > 0 tel que pour tout n, ¥ (w) < Ajwg et
\IJ;)[(O‘) < Ajop sur Bs.
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Soit ¢ telle que dd°¢ > —w et fX @k = 0. Posons ¢, := ¢ o V,. Il suffit de
montrer que fBl exp(—a/pp)wh < ¢/ pour ¢’ > 0, > 0 indépendants de ¢. D’apres
laproposition 2.1, il existe A2 > Otelquep < Az et f lpldo < Aj.Ceciimplique que
o(p < —M) < ApM~! pour tout M > 0. Soit M > Otel que A, M~ < (W, (By))
pour tout n. La derniere relation implique que (¢ < —M) ne peut contenir W, (B1).
On peut donc choisir un point a, € By tel que ¢,(a,) = (P, (ay)) = —M.

Posons ¢, := ¢, + A1(||z]|* — 16). C’est une fonction psh dans Bj vérifiant ¢, <
¢n. Montrons que fB(aﬂ,z) exp(—o/ w,,)w’g < ¢ pour ¢’ > Oeta’ > 0 convenables.
On a dd®y, > 0, ¥, (a,) > —M — 16A1 et ¢, < Ay sur B(a,,2) C By. Il suffit
d’appliquer un théoreme de Hormander [14, p. 97] qui affirme que fBl exp(—¢)a)](§ <
¢’ pour toute fonction psh ¢ sur By avec ¢(0) = 0 et ¢ < 1. On peut prendre
o = (Ay+ 16A1 + M)~1, o

A.2. Estimation des constantes pour PX. Notons $* (resp. $2*1)1la sphere unité de
Rk+1 (resp. de (Ck“) et oy (resp. o2x+1) la mesure invariante de masse 1 sur 4§ k (resp.
241y Soit 77+ CH+L\ {0} — P¥ la projection canonique. Soient z = (zo, . . . , zx)
les coordonnées de C¥*1. On dira qu'une fonction & sur CK+1 est log-homogene si
®(rz) = log|A| 4+ ®(z) pour tout » € C*. La fonction log ||z|| est psh log-homogéne
et r*(wps) = dd® log ||z]].

Notons Qs la mesure sur P associée 2 la forme volume w'lés. C’est la mesure
invariante de masse 1 sur P¥, Soit ¢ une fonction quasi-psh vérifiant dd°¢ > —wps.
Posons & := g o +1og|z]l et $(0) := —oo. C’est une fonction psh log-homogeéne
sur C*+1 vérifiant max g1 & = maxpr ¢ et [ Pdor1 = [ paf. Soit RPF
I'image de R¥*! par 7. C’est un sous-espace projectif réel de dimension k de P*.
Posons mps := 74 (ok). On a aussi max gc & = maxppr ¢ et [ Pdox = [ pdmrs.

Proposition A.3. Ona
* 1 * ok
R} (PF, wrs) < S +logh) et R3(P, cops, 1) < 1+ logk.

Démonstration. Rappelons que r(IP¥, wps) = 1.Soitm := maxp ¢. D apres Alexan-
der [1, Theorem 2.2], on a

/ ddorg1 = m +/ log |z11do2k41
§2%+1 §2+1
k
1 1 1
=m— 5;_1; >m— 5(1 + logk).

Onendéduitquem < +(1+logk)si fpr pwks = 0.D’0a R (PX, wps) < 1 (1+logk).
D’aprés la proposition 2.4, on a R} (P, wps, 1) < 1+ logk. O
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La proposition suivante permet d’estimer les intégrales sur 8¢ en fonction d’inté-
grales sur des sous-espaces linéaires. Sa démonstration résulte du théoréme du Fubini
en écrivant les mesures o, en coordonnées polaires.

Proposition A.4. Soit h une fonction mesurable positive sur la sphere unité 8% de
R (resp. 82K+1 de CH1Y. Soit F un sous-espace réel (resp. complexe) de dimen-
sion m de R¥*1 (resp. de C¥*1), 1 < m < k. Supposons que pour tout sous-espace
réel (resp. complexe) E de dimension m + 1 contenant F on ait f SEAE hdo,, < A
(resp. fgzkaE hdoymy1 < A) oi A > O est une constante. Alors il existe une
constante ¢ > 0 indépendante de k, A et h telle que [ gk hdoy < cAK™? (resp.
[ hdogiy1 < cAK™).

Dans le corollaire suivant, on prend m = 1 et la droite F associée a un point z
avec ¢(z) = 0.

Corollaire A.5. Il existe ¢ > 0 et « > 0 indépendants de k, tels que pour toute ¢
quasi-psh vérifiant dd¢ > —wps et maxpe ¢ = 0 on a fpk exp(—cup)w{%s < ck. En
particulier, on a A(]P’k, wFs, QFs, 1) < ckexp(—at) pour tout t € R.

La proposition suivante explique pourquoi les estimations pour RP* et P* sont
essentiellement les mémes. Rappelons que dans P on a cap(P¥) = 1.

Proposition A.6. Soit cap(RPY) [a capacité de RPX dans PX. Alors pour tout k > 2
et toute fonction ¢ quasi-psh sur P* vérifiant dd°p > —wrs et maxpe ¢ =0, ona
maxppe ¢ > log cap(R]P’z). En particulier, cap(]RIPk) = cap(R]P’2) pour tout k > 2.

Démonstration. Soient a € PX et b € RPF tels que ¢(a) = 0 et p(b) = maxppk ¢@.
Observons que C**1 est réunion des sous-espaces complexes E de dimension 3 conte-
nant une droite réelle fixée de R*! et vérifiant dimp (E N RFT!) = 3. Donc P est
réunion des plans projectifs P de P¥ passant par b et vérifiant dimp (P NRPY) = 2.
Soit P un tel plan contenant a. Par définition de la capacité sur P ~ P? pour
P NRP* ~ RP?, on a ¢(b) > logcap(RP?). Donc cap(RP¥) > cap(RP?). On
obtient I’autre inégalité en observant que toute fonction quasi-psh ¢ sur un plan
P ~ P? de P* avec dd°p > —wps se prolonge en fonction quasi-psh ¢ sur PX avec
dd®g > —cwps etmaxpr @ = maxp: ¢ (ceci se voit aisément sur le relevé de @ a CF+1),

O

Proposition A.7. 1] existe des constantes ¢ > 0 et « > 0 indépendantes de k telles
qu’on ait ka exp(—ap)dmps < cv/k pour ¢ comme ci-dessus, R; (P*, wpg, mpg) <
c(1+logk) pouri =1,2,3 etA(Pk, WFS, MES, 1) < c\/%exp(—at)pour tourt € R
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Démonstration. On peut reprendre la démonstration de Hormander [14, p. 98] pour
les fonctions i sous-harmoniques sur le disque unité de C qui vérifient ¢ (0) = 0 et
¥ < 1. On remplace la mesure de Lebesgue par la mesure m sur le cercle |z| = 1/2.
On trouve f exp(—¢/2)dm < ¢1 avec ¢1 > 0 indépendant de . En utilisant un
recouvrement comme dans la proposition A.2, on montre qu’il existe ¢’ > Oeta > 0
tels que [ exp(—a’¢)dmps < ¢’ pour ¢ quasi-sh sur P! vérifiant dd°¢ > —wpg et
maxp: ¢ = 0. Le passage & P¥ avec I’estimation [p, exp(—ag)dmps < cv/k est une
simple application des propositions A.4 et A.6. On en déduit que A (P¥, wps, mys, 1) <
cv/kexp(—at).

Montrons que R (P*, wps, my) < c(1+ log k). D’apres (2.4), il suffit de vérifier
que — [ @dmps < c(1 + logk). On peut supposer que k > 2. D’apres I’estimation
Jpe exp(—a@)dmps < e+/k ci-dessus on a pour tout 7y > 0

+00 +o0
—/(pdmps <t +/ mps(p < —0)dt <1y +/ cx/%exp(—at)dt
fg

Io

= 19+ cvVka ! exp(—aty).

Pour fp = 2~ '~ !log k, on obtient 1’inégalité voulue.
D’aprés les propositions 2.4 et A.3, on a R; (PX, wgs, mps) < (1 4 log k) pour
i = 2,3 avec ¢ > () convenable. o

A.3. Espaces produits et espaces multiprojectifs. On associe a la variété X =
X1 x X7 laforme de Kiihler

= cpp(nfw) + 7iwy)

ou les 7; sont les projections canoniques de X sur X; et ou c1p > 0 est tel que
[ @"1*% = 1. La constante ¢y, est calculée par la formule

—ki—ky _ ki+ ko
C12 = kl .

Considérons deux mesures de probabilité p; sur X; et o le produit de e et po. Clest
une mesure de probabilité sur X. Posons r := r(X, w).

Proposition A.8. Soit R une constante vérifiant R > R{(X;, w;, ;) pouri = 1,2.
Supposons qu’il existe ¢ > 0 et « > 0 tels que A(X;, w;, pi, t) < cexp(—at) pour
teReti=1,2 Alorsona

Ri(X,w, u) <2rR + 2ra! logc + 4o~y
et pour toutt € R

AX, w, p, 1) < 2cexp(aR) exp(—ar ~11/2).
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Démonstration. Fixons une fonction ¢ sur X = X1 x X7 telle que maxy v = 0 et
dd°yr > —rw. Soit (a1, az) € X tel que ¢ (a1, az) = 0. On veut estimer la ; mesure
de E := (¢ < —t) pour ¢t > (. Posons

F:={x; € Xa, ¥(a1,x2) < —1/2}
et
Exz = {xl e X1, ¥(x1,x) < —t}.

Définissons

E= |J (Byx{n).

x2€XO\F

OnaE Cm; '(F)UE'
Estimons la mesure de nz_l(F). Si Yri(x2) = ¥(ar, x2), on a maxy, ¢ =

Yi(az) = 0. Posons vy = ] — flﬁ]duz. On a f@ﬁzduz = 0,92 > ¢ et
dd®yr, > —rwy. Par définition de Ry (X2, w, p2), on a

—/ Yidps = max Yo <rRy(Xo, w2, ptp) <rR
2
car r(Xy, wp) > 1.D’ou

p2(F) < po(dy <rR —1/2) = pa(r ' <R —r7'1/2)
< A(X2, w2, 2, R —r~11/2) < cexp(aR — ar™'1/2)
= cexp(@R) exp(—ar‘lt/2).

Donc 1y {(F)) < cexp(aR) exp(—ar~'1/2).

Estimons la mesure de E’. Pour xp € X, \ F, posons ¢3(x1) := ¥ (x1, x2).
Ona y3 < 0, maxy, ¥3 > (a1, x2) > —t/2 et ddYr3 > —rwi. Posons ¢y =
Y3 — [x, ¥3du1. Ona

—/@/f3d/11 51’1}1{3)(104—}-[/2SrRl(Xz,a)z,/Lz)—l—t/ZSrR—i—t/Z.
>
et

11(Ex,) < p1(f4 7R —1/2) < cexp(aR — ar™'1/2)
= cexp(aR) exp(—ar~'1/2).

D’aprés le théoreme de Fubini, on a (E’) < cexp(«R) exp(—ar~—11/2).
On déduit des estimations précédentes que pour tout ¢ > 0

u(y < —t) < 2cexp(aR) exp(—ar~'1/2).
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C’est aussi vrai pour tout ¢ € R car ¢ < 0. Si ¢ est quasi-psh sur X telle que dd¢ >
—w et [ pdp = 0, on peut appliquer I’estimation précédente & ¢ := ¢ — maxyx ¢.
Comme v < ¢pona

ulp < —1) < 2cexp(aR) exp(—ar11/2).
Donc A(X, w, 1) < 2cexp(aR) exp(—ar~11/2).
Estimons R (X, @, p). Soit ¥ comme ci-dessus, il faut montrer que

- / du < 2rR + 2ra Mloge + 4o

On a pour tout 1o > 0
+00
—llﬁdM:/O n( < —t)de
ty 4+
:/ pu(yr < —t)de +/ u(y < —nyde
0 fy

o 40

< / dr + / 2¢ exp(aR) exp(—ar~'1/2)ds
0 )

= 19 + 4cexp(@R)a " r exp(—ar~l19/2).

En prenant 79 = 2rR + 2re~! log ¢, on obtient
— / ydp < 2rR + 2ra™! loge + 4o~ 1y, O

Considérons 1’espace multiprojectif P&/ := P* x ... x P* ({ fois). Notons 7; la
projection de PX! sur le i-me facteur. Posons wyp = iy 7 (wrs) et soit Qyvp
la mesure associée a la forme volume a){i,llp. La constante cx; > 0 est choisie de sorte
que Qpmp soit une mesure de probabilité. On a

u (kD (Kl —k 2%k
= () (7). (%) a2

Observons que cx; < 1 et que si ! est fixé, cx; est minorée par une constante
positive indépendante de k. Pour cela, il suffit d’utiliser la formule d’équivalence
de Stirling n! >~ /2mnn™ exp(—n). Notons myp la mesure produit des mps sur
RP*! .= RPF x - .. x RP (/ fois).

Proposition A.9. 1 existe des constantes ¢ > 0, « > 0 et m > 0, qui ne dépendent
que del, telles que pour toutk > 1 onaitR; (PRE opp, 1) < c(l+logk),i =1,2,3
A(PY! wonp, pu, 1) < ck™ exp(—at) pour tout t > 0 et pour i = Qvp 0u 1 = myp.

Démonstration. Observons que la constante r (P4, wyp) est majorée par /. 11 suffit
d’appliquer les propositions 2.4, A.3, A.5, A7 et A.8. O
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