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Intersection homology and Alexander modules of hypersurface
complements

Laurentiu Maxim

Abstract. Let y be a degree d, reduced hypersurface in CP"+1, n > 1, and fix a generic
hyperplane, H. Denote by U the (affine) hypersurface complement, CP" — V U H, and

let Ve be the infinite cyclic covering of U corresponding to the kernel of the total linking
number homomorphism. Using intersection homology theory, we give a new construction of
the Alexander modules Hi(Uc; Q) of the hypersurface complement and show that, if i < n,
these are torsion over the ring of rational Laurent polynomials. We also obtain obstructions
on the associated global polynomials: their zeros are roots of unity of order d and are entirely
determined by the local topological information encoded by the link pairs of singular strata of a

stratification of the pair (CP" V). As an application, we give obstructions on the eigenvalues
ofmonodromy operators associated to the Milnor fibre of a projective hypersurface arrangement.

Mathematics Subject Classification (2000). Primary 55N33, 32S60, 32S20, 32S25, 32S55;

Secondary 14J70, 14F17.

Keywords. Intersection homology, stratifications, hypersurface complement, non-isolated
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1. Introduction

Intersection homology is the correct theory to extend results from manifolds to
singular varieties: e.g., Morse theory, Lefschetz theorems, Hodge decompositions, but

especially Poincaré duality, which motivates the theory. It is therefore natural to use

it in order to describe topological invariants associated with algebraic varieties.

We will use intersection homology for the study of Alexander modules of
hypersurface complements. These are global invariants of the hypersurface, which were
introduced and studied by Libgober in a sequence of papers [24], [25], [26], [27] (see

also [9]) and can be defined as follows: Let y be a degree d, reduced, projective
hypersurface in CP"+1, n > 1; let H be a fixed hyperplane which we call 'the hy-
perplane at infinity'; set U := CP"+1 -VUH. (Alternatively, let X c C"+1 be

a reduced affine hypersurface and U := C"+1 — X.) Then H\{1L) If, where s
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is the number of components of V, and one proceeds as in classical knot theory to
define Alexander-type invariants of the hypersurface V. More precisely, the rational
homology groups of any infinite cyclic cover of U become, under the action of the

group of covering transformations, modules over the ring of rational Laurent
polynomials, F Q[t, t 1]. The modules Hi(Uc; Q) associated to the infinite cyclic
cover Uc of U, defined by the kernel of the total linking number homomorphism, are
called the Alexander modules of the hypersurface complement. Note that, since U
has the homotopy type of a finite CW complex of dimension < n + 1, the Alexander
modules Ht (Uc; Q) are trivial for i > n + 1 and Hn+\ (Uc; Q) is F-free. Thus, of a

particular interest are the Alexander modules Hi(Uc;Q) for i < n.

Libgober showed ([25], [26], [27], [28]) that if V has only isolated singularities

(including at infinity), there is essentially only one interesting global invariant
of the complement, and that it depends on the "local type and position" of
singularities. More precisely, Hi(Uc; Z) 0 for i < n, and Hn(Uc; Q) is a torsion
F-module. Moreover, if Sn(t) denotes the polynomial associated to the torsion module

Hn(Uc; Q), then 8n(t) divides (up to a power of t — 1) the product of the local
Alexander polynomials of the algebraic links around the isolated singular points. If
H is generic (hence V has no singularities at infinity), then the zeros of Sn (t) are roots
of unity of order d, and Hn(Uc; Q) is a semi-simple module annihilated by td — 1.

The aim of this paper is to provide generalizations of these results to the case of
hypersurfaces with non-isolated singularities. We will assume that H is generic, i.e.,
transversal to all strata of a Whitney stratification of V. Using intersection homology
theory, we will give a new description of the Alexander modules of the hypersurface
complement. These will be realized as intersection homology groups of CP"+1, with
a certain local coefficient system with stalk F := Q[t, f"1], defined on U. Therefore,
we will have at our disposal the apparatus of intersection homology and derived

categories to study the Alexander modules of the complement.
We now outline our results section by section.

In Section 2, we recall the definitions and main properties of the Alexander modules

of the hypersurface complement, Hi(Uc; Q). We also show that, if V is in
general position at infinity, has no codimension one singularities, and is a rational

homology manifold, then for i < n, the modules Hj(Uc;Q) are torsion and their
associated polynomials do not contain factors t — 1 (see Proposition 2.1).

In Section 3, we realize the Alexander modules of complements to hypersurfaces
in general position at infinity as intersection homology modules. Following [4], in
Section 3.1 we construct the intersection Alexander modules of the hypersurface V.
More precisely, by choosing a Whitney stratification S of V and a generic hyperplane,
H, we obtain a stratification of the pair (CP"+1 ,VUH). We define a local system
Xh onK, wifhstalkF := Q[t, f"1] and action by an element a e ttiCU) determined

by multiplication by tm(a'vu~dH\ Then, for any perversity p, the intersection
homology complex IC- := /CVCP"+1, Xh) is defined by using Deligne's axiomatic
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construction ([2], [15]). The intersection Alexander modules of the hypersurface V

are then defined as hypercohomology groups of the middle-perversity intersection
homology complex: /Hf1 (CP"+1 ; XH) := M-''(CP"+1; /Q).

In Section 3.2, we first prove the key technical lemma, which asserts that the

restriction to V U H of the intersection homology complex IC^ is quasi-isomorphic
to the zero complex (see Lemma 3.1). As a corollary, it follows that the intersection

Alexander modules of V coincide with the Alexander modules of the hypersurface

complement, i.e., there is an isomorphism of F-modules: IH™ (CP"+1 ; Xh)
H* Uc ; Q). From now on, we will study the intersection Alexander modules in order
to obtain results on the Alexander modules of the complement. Using the superduality
isomorphism for the local finite type codimension two embedding V U H c CP"+1,
and the peripheral complex associated with the embedding (see [4]), we show that the

F-modules IHP (CP"+1 ; Xh) are torsion if i < n (see Theorem 3.6). Therefore the

classical Alexander modules of the hypersurface complement are torsion in the range
i < n. We denote their associated polynomials by 8;(t) and call them the global
Alexander polynomials of the hypersurface.

Section 4 contains the main theorems of the paper, which provide obstructions

on the prime divisors of the polynomials <5, (t). Our results are extensions to the case

of hypersurfaces with general singularities of the results proven by A. Libgober for
hypersurfaces with only isolated singularities ([25], [26], [27]).

The first theorem gives a characterization of the zeros of the global polynomials
and generalizes Corollary 4.8 of [25].

Theorem (see Theorem 4.1). IfV is an n-dimensional reducedprojective hypersurface

of degree d, transversal to the hyperplane at infinity, then the zeros of the global
Alexander polynomials S; (t), i < n, are roots of unity of order d.

The underlying idea of this paper is to use local topological information associated

with a singularity to describe some global topological invariants of algebraic varieties.
We provide a general divisibility result which restricts the prime factors of the global
Alexander polynomial 8; (t) to those of the local Alexander polynomials of the link
pairs around the singular strata. More precisely, we prove the following result.

Theorem (see Theorem 4.2). Let V be a reduced hypersurface in CP"+1, which is

transversal to the hyperplane at infinity, H. Fix an arbitrary irreducible component
of V, say Vi. Let S be a stratification of the pair (CP"+\ V). Then for a fixed
integer i (1 < i < n), the prime factors of the global Alexander polynomial 8;(t)
ofV are among the prime factors of local polynomials i=?(t) associated to the local
Alexander modules Hr(S2n-2s+1 -K2n-2s~l; V) of link pairs (S2n-2s+1, K2n-2s~l)
of components ofstrata S & S such that S c V\, n — i < s dim S < n, and r is in
the range In — 2s — i < r < n — s.
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For hypersurfaces with only isolated singularities, the above theorem can be

strengthened to obtain a refinement of Theorem 4.3 of [25].

Theorem (see Theorem 4.5). Let V be a reduced hypersurface in CP"+1, which is

transversal to the hyperplane at infinity, H, and has only isolated singularities. Fix
an irreducible component ofV, say V\. Then Sn(t) divides (up to apower of(t — 1))
the product Ylpev^Smgiv) Ap(0 of the local Alexander polynomials of link pairs of
the singular points pofV which are contained in V\.

We end the section by relating the intersection Alexander modules of V to the

modules 'at infinity'. We prove the following extension of Theorem 4.5 of [25].

Theorem (see Theorem 4.7). Let V be a reduced hypersurface of degree d in CP"+1,
which is transversal to the hyperplane at infinity, H. Let S^ be a sphere ofsufficiently
large radius in C"+1 CP"+1 - H. Then for all i < n,

IHfl(C¥n+1; XH) ^ M-'-^S«,; 7C£) H^U^; Q)

and IH™(CWn+1; XH) is a quotient ofM-n-1(S00; 1C%) H^U^; Q), where

U^ is the infinite cyclic cover of 5M - (V n S^) corresponding to the linking
number with V n Sœ.

As suggested in [29], we note that the above theorem has as a corollary the semi-

simplicity of the Alexander modules of the hypersurface complement (see Proposition

4.9).
In Section 5, we apply the preceding results to the case of a hypersurface V c

CP"+1, which is the projective cone over a reduced hypersurface Y c CP". We
first note that Theorem 4.2 translates into divisibility results for the characteristic

polynomials of the monodromy operators acting on the Milnor fiber F of the projective
arrangement defined by Y in CP" (see Proposition 5.1), thus generalizing similar
results obtained by A. Dimca in the case of isolated singularities ([6], [7]). As a

consequence, we obtain obstructions on the eigenvalues of the monodromy operators
(see Corollary 5.3), similar to those obtained by Libgober in the case of hyperplane
arrangements ([30]), or Dimca in the case of curve arrangements ([7]).

Section 6 deals with examples. We show, by explicit calculations, how to apply
the above theorems in obtaining information on the global Alexander polynomials of
a hypersurface in general position at infinity.

Note. Our overall approach makes use of sheaf theory and the language of derived

categories ([2], [4], [15]) and we rely heavily on the material in these references. The

necessary background material is also reviewed in the author's thesis (see [32]).
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Note. After this paper was written, the Alexander invariants of the total linking
number infinite cyclic cover were further studied in [8], where it is shown that there
is a natural mixed Hodge structure on the Alexander modules of the complement.

2. Alexander modules of hypersurface complements

In this section we recall the definition and main known results on the Alexander
modules and polynomials of hypersurface complements. We also consider the special
case of hypersurfaces which are rational homology manifolds.

2.1. Definitions. Let X be a connected CW complex, and let jtx : x\ (X) -> Z be

an epimorphism. We denote by Xe the Z-cyclic covering associated to the kernel
of the morphism nx- The group of covering transformations of Xe is infinite cyclic
and acts on Xe by a covering homeomorphism h. Thus, all the groups H*{XC; A),
H*(XC; A) and nj(Xc) ® A for j > 1 become in the usual way F^ -modules, where
FA A[t, f"1], for any ring A. These are called the Alexander modules of the pair
(X,nx).

If A is a field, then Fa is a principal ideal domain. Hence any torsion Fa-module
M of finite type has a well-defined associated order (see [34]). This is called the

Alexander polynomial of the torsion FA-module M and denoted by &M(t)- We regard
the trivial module (0) as a torsion module whose associated polynomial is S(t) 1.

With these notations, we have the following simple fact: let / : M —>¦ JV be an

epimorphism of i?-modules, where R is a PID and M is torsion of finite type. Then
N is torsion of finite type and <5»(0 divides <5m(0-

2.2. Alexander modules of hypersurface complements. To fix notations for the

rest of the paper, let y be a reduced hypersurface in CP"+1, defined by a degree d

homogeneous equation / f\... fs 0, where f\ are the irreducible factors of /
and Vj {fi 0} the irreducible components of V. We will assume that V is in

general position at infinity, i.e., we choose a generic hyperplane H (transversal to all

singular strata in a stratification of V) which we call 'the hyperplane at infinity'. Let U
be the (affine) hypersurface complement: U C¥n+1-(VUH). ThenHi(U) If
([6], (4.1.3), (4.1.4)), generated by the meridian loops y\ about the non-singular part
of each irreducible component V\,i 1, s. If /oo denotes the meridian about
the hyperplane at infinity, then there is a relation in Hi(U): Yoo + J^diYi 0,

where d\ deg(Vf). We consider the infinite cyclic cover Uc of U defined by the
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kernel of the total linking number homomorphism Ik : tz\ (U) --* Z, which maps all
meridian generators to 1, and thus any loop a to its linking number lk(a, V U —dH)
with the divisor V U —dH in CP"+1. Note that Ik coincides with the homomorphism
ttiCU) —>¦ 7Ti(C*) induced by the polynomial map defining the affine hypersurface
yaff := V - V n H ([6], p. 76-77). The Alexander modules of the hypersurface
complement are defined as Hj(Uc; Q), i g Z.

Since U has the homotopy type of a finite CW complex of dimension < n + 1

([6], (1.6.7), (1.6.8)), it follows that all the associated Alexander modules are of finite
type over Fq, but in general not over Q. It also follows that the Alexander modules

Hi (Uc; Q) are trivial for i > n + 1 and Hn+\ (Uc; Q) is free over Fq ([9]).
Note that if V has no codimension one singularities (e.g. if V is normal), then the

fundamental group of U is infinite cyclic ([25], Lemma 1.5) and Uc is the universal

cover of U. Moreover, if this is the case, then ni(U) 0 for 1 < i < n — k, where
k is the complex dimension of the singular locus of V. In particular, for a smooth

projective hypersurface V, in general position at infinity, wehave that Hj(Uc; Q) 0

for i < n + 1.

The next case to consider is that of a hypersurface with only isolated singularities.
In this case Libgober showed ([25]) that Hi(Uc; Z) Oforf < n,mdHn(Uc; Q) is

a torsion FiQ-module. If we denote by 8n(t) the polynomial associated to the torsion
module Hn(Uc; Q), then Theorem 4.3 of [25] asserts that Sn(t) divides the product
]~[f=i Aiit) ¦ {t — 1Y of the Alexander polynomials of link pairs of the singular points
of V. The factor (t — l)r can be omitted if V and V n H are rational homology
manifolds. Moreover, the zeros of 8n(t) are roots of unity of order d deg( V) and

Hn(Uc; Q) is semi-simple ([25], Corollary 4.8).

Note. Libgober's divisibility theorem ([25], Theorem 4.3) holds for hypersurfaces
with isolated singularities, includingat infinity (and n > 1). However, for non-generic
H and for hypersurfaces with more general singularities, the Alexander modules

Hi(Uc; Q) (i < n) are not torsion in general. Their Fq rank is calculated in [9],
Theorem 2.10(v). We will show that if y is a reduced hypersurface, in general
position at infinity, then the modules Hj(Uc;Q) are torsion for i < n.

2.3. Rational homology manifolds. Recall that a n -dimensional complex variety
V is called a rational homology manifold if for all points x e V we have

*(v.vi:Q)a( :
10, i 7t 2«.

A rational homology manifold of dimension n has pure dimension n as a complex
variety. Rational homology manifolds may be thought of as nonsingular for the

purposes of rational homology. For example, Poincaré and Lefschetz duality hold for
them in rational homology. The Lefschetz hyperplane section theorem also holds.
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Examples of rational homology manifolds include complex varieties having rational

homology spheres as links of singular strata (see for example [32]).
Note that, if y is a projective hypersurface having rational homology spheres

as links of singular strata and H is a generic hyperplane, then V n H is a rational

homology manifold: indeed, by the transversality assumption, the link in V n H of
a stratum S n H (for S a stratum of V) is the same as the link in V of S.

As a first example when the Alexander modules H; {XIe; Q), i < n, are torsion,
we prove the following result (compare [25], Lemma 1.7, 1.12).

Proposition 2.1. Let V be a degree d projective hypersurface in CP"+1, and let H
be a generic hyperplane. Assume that V has no codimension one singularities and
is a rational homology manifold. Then for i < n, Hj(Uc; Q) is a torsion Fq-module
and Si (I) t^ 0, where S;(t) is the associated Alexander polynomial.

Proof. Recall that, under our assumptions, Uc is the infinite cyclic and universal

cover ofU CP"+1 -(VUH).We will use Milnor's exact sequence ([25], [9])

H;(UC; Q) -> H;(UC; Q) -> H;(U; Q) -> Hi-i{Uc; Q) -> ¦¦¦
where the first morphism is multiplication by f — 1. We claim that Hi(U;Q) =0 for
2 < i < n, hence the multiplication by f — 1 in Hi(%ic; Q) is surjective (2 < f < «).
Therefore its cyclic decomposition has neither free summands nor summands of the

form rV(f-l)TQ, with r e N. On the other hand, Hi{Uc; Q) tti(Wc)®Q 0.

Suppose that /: is the dimension of the singular locus of V. By our assumptions,
n — k > 2. Let L CP"~^ be a generic linear subspace. Then, by transversality,
L n V is a non-singular hypersurface in L, transversal to the hyperplane at infinity,
L n H. Therefore, by Corollary 1.2 of [25], Ln K is homotopy equivalent to
S1 v Sn~k v ¦ ¦ ¦ v Sn~k. Thus, by Lefschetz hyperplane section theorem (applied
k + 1 times) we obtain Hi(U; Q) Ht(L n W; Q) 0, 2 < f < n - k - 1.

Forn-yt < f < « wehave//f(W; Q) //;+i(CP"+1-//, CP"+1-(yu//); Q),
as follows from theexact sequence of the pair (CP"+1-#, CP"+1-(VU#)). Using
duality, one can identify this with H2n+1~'(V U H, H; Q). And by excision, this

group is isomorphic to H2n+1~' (V, V n H; Q). Let m and u denote the inclusion
of y - y n // and respectively V n H into V. Then the distinguished triangle

MiM!Q ->¦ Q -* v*v*Q —> (where we regard Q as a constant sheaf on V), upon
applying the hypercohomology with compact support functor, yields the isomorphism
#2n+1-<(V, V n H; Q) H2n+l-l{V -VnH;Q) (see [7], Remark 2.4.5.(iii)).
By Poincaré duality over Q, the latter is isomorphic to Hi-\{V — V n H;Q). The
Lefschetz theorem on generic hyperplane complements inhypersurfaces ([10], p. 476)
implies that V — V n H is homotopy equivalent to a wedge of spheres Sn. Therefore,

Hi_i(V - V n H; Q) 0 for 0 < i - 1 < n, i.e., for 2 < n - k < i < n. This
finishes the proof of the proposition.
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3. Intersection homology and Alexander modules

Using intersection homology theory, we will give a new construction of theAlexander
modules of complements of hypersurf aces in general position at infinity. The advantage

of the new approach is the use of the powerful language of sheaf theory and

derived categories ([15], [2]) in the study of the Alexander invariants associated with
singular hypersurf aces. This will alow us to obtain generalizations to classical results
known only in the case of hypersurfaces with only isolated singularities. For a quick
introduction to derived categories, the reader is advised to consult [31], §1. When dealing

with intersection homology, we will always use the indexing conventions of [15].

3.1. Intersection Alexander modules. (1) A codimension 2 sub-pseudomanifold
Kn of a sphere Sn+2 is said to be offinite (homological) type if the homology groups
H;(Sn+2 — K; F) with local coefficients in F := Q[t, f"1] are finite dimensional over
Q. Here F denotes the local system on Sn+1 — K, with stalk F, and it corresponds to
the representation a *--* tx^K'a\ a e n\(Sn+2 — K), where lk(/T, a) is the linking
number of a with K (see [4]).

A sub-pseudomanifold X of a manifold Y is said to be of finite local type if the

link of each component of a stratification of the pair (Y, X) is of finite type. It is easy
to see that the link pairs of components of strata of a sub-pseudomanifold of finite
local type also have finite local type ([4]). Algebraic knots are of finite type and of
finite local type ([4]).

(2) Let y be a reduced projective hypersurf ace of degree d in CP"+1 (n > 1).

Choose a Whitney stratification S of V. Recall that there is such a stratification where
strata are pure dimensional locally closed algebraic subsets with a finite number of
irreducible nonsingular components. Together with the hypersurface complement,
Cpn+i _ y^ mis yields a stratification of the pair (CP"+1, V), in which S is the set

of singular strata. All links of strata of the pair (CP"+1, V) are algebraic, hence of
finite type, so V c CP"+1 is of finite local type (see [4], Proposition 2.2). We choose

a generic hyperplane H in CP"+1 (i.e., transversal to all strata of V) and consider
the induced stratification on the pair (CP"+1, V U H), with (open) strata of the form
S-SnH,SnHmdH-VnH,forS e S. We call//'the hyperplane at infinity'and
say that ' V is transversal to the hyperplane at infinity'. Following [4], we define a local

system XH on CP"+1 -(VU H), with stalk F := Fq Q[t, t'1] and action by an
element a e it i(CWn+1-VU H) determined by multiplication by flk("-yu"'iff). Here

lk(a, yu-J//)isthehnkingnumberofawiththedivisoryu-J//ofCP"+1. Then,

(using a triangulation of the projective space) V U H is a (PL) sub-pseudomanifold
of CP"+1 and the intersection complex IC- := /C^(CP"+1, XH) is defined for any
perversity p. The middle-perversity intersection homology modules ([15])

; XH) ¦= M
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will be called the intersection Alexander modules of the hypersurface V. (Through
this paper, H* stands for the hypercohomology functor.) Note that these modules are

of finite type over F, since /C* is cohomologically constructible ([2], V.3.12) and

CPn+1 is compact (see [2], V.3.4.(a), V.10.13).
It will be useful to describe the links of the pair (CP"+1, V U H) in terms of those of

(CP"+1, V). Because of the transversality assumption, there are stratifications {Z,}
of (CP"+\ V) and {7;} of (CP"+\ V U H) with 7; Z, U (Zi+2 n H) (here the

indices indicate the real dimensions). The link pair of a point y e (F; —Yi-\)C\H
(Zi+2 - Zf+i) n H in (CP"+\ V U H) is (G, F) (S1 * Gx, (S1 * Fi) U Gi),
where (Gi, Fi) is the link pair of y e Zi+2 - Zi+1 in (CP"+\ V). (Here A * B is

the join of A and 5.) Points inV - V n H have the same link pairs in (CP"+1, V)
and (CP"+\ V U #). Finally, the link pair at any point in H - V n H is (51, 0).
(For details, see [4]).

By Lemma 2.3.1 of [4], VUflc CP"+1 is of finite local type. Hence, by
Theorem 3.3 of [4], we have the following superduality isomorphism:

IC% =£>ICfop[2n + 2],

where if A' is a complex of sheaves, £)A* denotes its Verdier dual. (Here Aop is

the F-module obtained from the F-module A by composing all module structures
with the involution t --* t~l.) Recall that the middle and logarithmic perversities are

defined as m(s) [(s - l)/2] and l(s) [(s + l)/2]. Note m(s) + l(s) s - 1,

i.e., m and / are superdual perversities.

(3) With the notations from §2, we have an isomorphism of F-modules:

where Xh is, as above, the local coefficient system on U CP"+1 - (V U H)
defined by the representation yu. : jt\{U) -> Aut(F) r*,/j.(a) tlk(a<vu-dH\

Indeed, XIe is the covering associated to the kernel of the linking number homo-

morphism Ik : tz\ (U) -^Z,aH- Ik (a, V U —dH), and note that [i factors through
Ik

Ik, i.e., fj. is the composition ttiCU) -y 7L -y F*, with the second homomorphism
mapping 1 to t. Thus Ker(lk) c Ker(/x). By definition, H*(U; <£#) is the

homology of the chain complex C*(U; £h) defined by the equivariant tensor product:
C+CU; Xh) '¦= C*(VLC) ®g F, where Z stands for the group of covering transformations

of Uc (see [7], p. 50). Since F Q[Z], the chain complex C*(UC) ®z T

is clearly isomorphic to the complex C*(UC) ® Q, and the claimed isomorphism
follows.

(4) This is also a convenient place to point out the following fact: as m (2) 0,

the allowable zero- and one-chains ([14]) are those which lie in CP"+1 -(VU H).
Therefore,

IHF (CP"+1; XH) H0(C¥n+1 -(VU H); XH) HO(UC; Q) F/(t - 1).
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3.2. Relation with the classical Alexander modules of the complement. We are

aiming to show that in our setting (i.e., V a degree d, reduced, n-dimensional projec-
tive hypersurface, transversal to the hyperplane at infinity), the intersection Alexander
modules of a hypersurface coincide with the classical Alexander modules of the

hypersurface complement. The key fact will be the following characterization of the

support of the intersection homology complex IC^.

Lemma 3.1. There is a quasi-isomorphism:

Proof. It suffices to show the vanishing of cohomology stalks of the complex IC^
at points in strata of V U H. We will do this in two steps.

Step I. /C*(Cr+1)OCfl)|ff^0.

The link pair of H - V n H is S1, 0) and this maps to t ~d under X H, therefore the

stalk of IC^ (CP"+1, XH) at a point in this stratum is zero. Indeed (cf. [2], V.3.15),
forx g H -VHH:

; 1 q < -In - I,

and note that IH^iS1 ; V) 0 unless j 0. Here, and in the sequel, F denotes the

stalks and the local systems obtained from XH by restricting to various subspaces

of U.
Next, consider the link pair (G, F) of a point x g S P\ H, S g S. Let the real

codimension of S in CP"+1 be 2k. Then the codimension of S n H is 2k + 2 and

dim(G) 2k + 1. The stalk at x g S n H of the intersection homology complex
IC% (CP"+1, £H) is given by the local calculation formula ([2], (3.15)):

°' q>k-2n-2,
[IH_q_(2n_2k+l)(&,\), q<k-2n-2.

We claim that

IHf(G;T)=0 fori>k + \.

Then, by setting i -q - {In - 2k+1), we obtain that IH™q_{2n_2k+V) {G; T) 0

for q < k — 2n — 2, and therefore

jf«(/c;(cr+1,ocff))I o.

In order to prove the claim, we use arguments similar to those used in [4],

p. 359-361. Recall that (G, F) is of the form {S1 * G\, {S1 * Fi) U G\), where
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(Gi, F\ is the link pair of x g S in (CP"+1, V) (or equivalently, the link of 5" n 77 in
(77, V n 77)). The restriction F of Xh to G — F is given by sending a e n\(G — F)
to fikC^fi-rfGi,«) G Aut(f). Let IC /Q(G, F). The link of the codimension

two stratum Gi — Gi n (S1 * Fi) of G is a circle that maps to t ~d under F ; hence by
the stalk cohomology formula ([2], (3.15)), for y e G\ - G\ n (S1 * Fi), we have

^ J777™._(dimGi+1)(5'1; F), f < -dimG,
[0, i > m(2) - dim G - dim G.

Since777™_(dimGi+1)(51; F) 77_f_(dîmG_1)(51; F) Ofor-f-(dimG-1) ^
0, i.e., for i À 1 — dim G, we obtain that

Moreover, Gi is a locally flat submanifold of G and intersects 51 * F\ transversally.
Hence the link pair in (G, F) of a stratum of G\ n (S1 * Fi) and the restriction of F

will have the same form as links of strata of V n H in (CP"+1, V U H). Thus, by
induction on dimension we obtain

— 0-

Therefore, 1C\g\ 0. Thus, denoting by f and j the inclusions of G — G\ and

respectively, the distinguished triangle

ie -+ xe -+ Rj*ie\Gl ->

upon applying the compactly supported hypercohomology functor, yields the isomorphisms

cIHf{G - G\\ T) IHf{G; T)

(here CIH* denotes intersection homology with compact supports). We have

(G - Gi, F - F n Gi) (c°Gi x S1,c°Fi x S1),

and the local system F is given on

(c°Gi - c°Fi) x 5"1 (Gi - Fi) x M x 5"1

by sending a e tti(Gi - Fi) to the multiplication by tXk{Fl>a), and a generator of
TZ\{Sl) tO t~d.

We denote by Z\ and ^2 the restrictions of F to c°G\ and S1 respectively, and

note that 777™ (S1 ; £2) 0 unless £> 0, in which case it is isomorphic to F/td — 1.

Therefore, by the Künneth formula ([17]), we have

clHf(c°Gi x S1; F) {clHf{c°Gx; £x) ® 1H§(S1; JL2)}

0 {clHf_x{c°Gx; ZX) * 1H§{S1; Z2)}.
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Lastly, the formula for the compactly supported intersection homology of a cone
yields ([2], [21], [11]) cIHf{c0G\; £x) 0 for i > dimGi - m(dimGi + 1)

k (as well as clHf{c°G\\ £\) IHJ"(Gi; £\), for i < k) and, consequently,

cIHf_x(c°Gx;£\) =Oforf > Jk + 1.

Altogether,

lHf(G;Y) =cIHf(G-G\\Y) clHf(c°Gi x Sl;Y) 0 forf >k + l,

as claimed.

Step 2. /C^(CPn+\a£#)|y =0.

It suffices to show the vanishing of stalks of the complex IC£ at points in strata of
the form S — S n H of the affine part, Vaff> of V. Note that, assuming S connected, the

link pair of S-SHH in (CP"+1, VUH) is the same as its linkpairin (C"+1, Vaff with
the induced stratification, or the link pair of S in (CP"+1, V). Let x g S - S n // be a

point in an affine stratum of complex dimension s. The stalk cohomology calculation

yields

n ,rASln-2s+l;Y), q < -n - s -2,
q > —n — s — 2,

where (S2n~2s+1, Kx) is the link pair of the component containing x.
To obtain the desired vanishing, it suffices to prove that IH^(S2n 2s+1; Y) 0

for j > n — s + 1. We will show this in the following

Lemma 3.2. If S is an s-dimensional stratum of Vaff and x is a point in S, then

the intersection homology groups of its link pair (S2n~2s+1, Kx) in (C"+1, Vaff) are
characterized by the following properties:

IHfl(S2n-2s+1;Y)=0, j>n-s + \

IHf(S2n-2s+1; Y) Hj(S2xn-2s+1 - Kx; Y), j <n-s.

(here Y denotes the local coefficient system on the link complement, with stalk Y

and action of an element a in the fundamental group of the complement given by
multiplication by flk(">K) ; this is the same as the induced local system from £H.)

Note. The same property holds for link pairs of strata S g S of a stratification of
the pair (CP"+1, V) since all of these are algebraic knots and have associated Milnor
fibrations.

Proof of the lemma. We will prove the above claim by induction down on the dimension

of singular strata of the pair (C"+1, Vaff)- To start the induction, note that the
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link pair of a component of the dense open subspace of Vaff (i.e., for s n) is a circle
(Sl, 0), that maps to t under Xh- Moreover, the (intersection) homology groups
IH™(Sl; V) Hi(Sl; V) are zero, except for i 0, hence the claim is trivially
satisfied in this case.

Let S be an s-dimensional stratum of Vaff and let x be a point in S. Its link pair
(S2n 2s+1, Kx) in (C"+1, Vaff) is a singular algebraic knot, with a topological
stratification induced by that of (C"+1, Vaff). The link pairs of strata of (S2n~2s+1, Kx)
are also link pairs of higher dimensional strata of (C"+1, Vaff) (see for example [11]).
Therefore, by the induction hypothesis, the claim holds for such link pairs.

Let IG IC^(S2n 2s+1, F) be the middle-perversity intersection cohomology
complex associated to the link pair of S at x. In order to prove the claim, it
suffices to show that its restriction to K is quasi-isomorphic to the zero complex, i.e.,

IG\k 0. Then the lemma will follow from the long exact sequence of compactly
supported hypercohomology and from the fact that the fiber Fx of the Milnor fibra-
tion associated with the algebraic knot {S2n 2s+l, Kx) has the homotopy type of an

(n — s)-dimensional complex ([33], Theorem 5.1) and is homotopy equivalent to

the infinite cyclic covering S2n~2s+1 — Kx of the knot complement, defined by the

kernel of the total linking number homomorphism. More precisely, we obtain the

isomorphisms of F-modules:

IHf(S2n-2s+1; F) Hj(S2n-2s+1 -KX;T)

Hj(S2n-2s+1 -KX;Q) Hj(Fx; Q).

Let K' d K" be two consecutive terms in the filtration of (S2n~2s+1, Kx). Say
dimR(^r/) In - 2r - 1, r > s. The stalk of IG at a point y e K' - K" is given
by the following formula:

\lHü n
AS2r

[0,

-2s+l;T), q <-2n + s+r-
q > -2n + s +r -

where (Sjr-2s+1, Ky) is the link pair in {Sln~2s+l, Kx) of the component of K'-K"
containing y. Since {S2r~2s+l, Ky) is also the link pair of a higher dimensional stratum

of (Cn+1, Vaff), the induction hypothesis yields lH™q_{2n_2r)(S2r-2s+l; V) 0

if q < -2n + s +r - 1.

Remark 3.3. The proof of Step 1 of the previous lemma provides a way of computing
the modules IHf(G; V), i < k, for G S2k+1 S1 * G\ the link of an (n - k)-
dimensional stratum S n H, S g S:

IHf(G; Y)^cIH£_x{c°Gi; £i)*IH§(Sl; X2) IU™_X(GX; £i)*IH™(Sl; X2)
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and, for i < k,

$(Sl; X2)}.

The above formulas, as well as the claim of the first step of the previous lemma,
can also be obtained from the formula for the intersection homology of a join ([17],
Proposition 3), applied to G G\ * S1.

If we denote by Iy.m(G) := order IH™(G; V) the intersection Alexander
polynomial of the link pair (G, F) (cf. [4], by noting that F c G is of finite type), then

we obtain

Iy? (G) gcd(/y™(G1), td - 1) x gcd(/y™1(G1), td - 1), i<k.
In particular, since Iyfî(Gi) ~ t -1 ([11], Corollary 5.3), we have Iy^(G) ~ t -1,
where ~ stands for equality up to multiplication by a unit of F.

Note that the superduality isomorphism ([4], Corollary 3.4) yields the isomorphism

IHlj(G; r) lHfk_](G; T)°p. Hence IHlj(G; F) 0 if j < k.

From the above considerations, the zeros of the polynomials Iy!"(G) and Iyl (G)
(in the non-trivial range) are all roots of unity of order d.

Corollary 3.4. IfV is an n-dimensional reduced projective hypersurface, transversal

to the hyperplane at infinity, then the intersection Alexander modules of V are
isomorphic to the classical Alexander modules of the hypersurface complement, i.e.,

1; XH) H*(CFn+1 -VUH;XH) H*(UC; Q).

Proof. The previous lemma and the hypercohomology spectral sequence yield

W(VUH;IC^) =0.

Let u and v be the inclusions of CP"+1 — (V U H) and respectively V U H into

CP"+1. The distinguished triangle u\u* ->¦ id -+ v*v* —>, upon applying the

hypercohomology functor, yields the following long exact sequence:

Therefore, we obtain the isomorphisms

1; XH) := M %

M;''(CP"+1 -(VU H); IC\)
c/#/"(CP"+1 -(VU H); Xh)
Hi(CFn+1 -(VUH);Xh)
Ht(Uc;Q).
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Our next goal is to show that, in our settings, the Alexander modules of the

hypersurface complement, Hi(Uc; Q), are torsion F-modules if i < n. Based on the

above corollary, it suffices to show this for the modules /H™ (CP"+1 ; Xh), i < n.
We will need the following result.ng

Lemma 3.5.

IHl;(C¥n+1; XH) 0 for i < n.

Proof. Let u and v be the inclusions of CP"+1 — VU H and respectively V U H into
CP"+1. Since v*IC^ 0, by superduality we obtain 0 v*DICf[2n + 2]op

£>vlICf[2n + 2]op, so vIC* 0. Hence the distinguished triangle

upon applying the hypercohomology functor, yields the isomorphism

1; XH) ////(CP"+1 -VUH;XH) //(ßM(CP"+1 -VUH;XH),
where H^M denotes the Borel-Moore homology. By Artin's vanishing theorem

([38], Example 6.0.6), the latter module is 0 for i < n + 1, since CP"+1 -VU His
a Stein space of dimension n + \.

Now we can prove the main theorem of this section.

Theorem 3.6. Let V c CP"+1 be a reduced, n-dimensional projective hypersurface,

transversal to the hyperplane at infinity. Then for any i < n, the module

I HP (CP"+1 ; XH) H (Uc; Q) is a finitely generated torsion T-module.

Proof. Recall that the peripheral complex 31', associated to the finite local type
embedding V U H c CP"+1, is defined by the distinguished triangle ([4])

1Crh -* 1Cf -* <* y ¦

Moreover, ft* is a self-dual (i.e., 31* D3i*op[2n + 3]), torsion sheaf on CP"+1

(i.e., the stalks of its cohomology sheaves are torsion modules).

By applying the hypercohomology functor to the above distinguished triangle,
and using the vanishing of Lemma 3.5, it follows that the natural maps

M_i_i(cpn+i. Rt) _^ /#»(CP"+1; XH)

are isomorphisms for all i < n — 1, and epimorphism for i n.
Now, since 3i* is a torsion sheaf (having finite dimensional rational vector spaces

as stalks), the spectral sequence for hypercohomology implies that the groups
IEP(CP"+1; 3i*), q g Z, are also finite dimensional rational vector spaces, thus

torsion F-modules. This finishes the proof of the theorem.
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Note. It follows from the proof of the previous theorem that for i < n, Hj(Uc; Q) is

actually a finite dimensional rational vector space, thus its order coincides with the

characteristic polynomial of the Q-linear map induced by a generator of the group of
covering transformations (see [34]).

Definition 3.7. For i < n, we denote by 8;(t) the polynomial associated to the

torsion module Hi(Uc;Q), and call it the z'-th global Alexander polynomial of the

hypersurface V. These polynomials will be well-defined up to multiplication by ctk,
c eQ.

As a consequence of Theorem 3.6, we may calculate the rank of the free F-module
Hn+\(VLC; Q) in terms of the Euler characteristic of the complement.

Corollary 3.8. LetV c CP"+1 be a reduced, n-dimensionalprojective hypersurface,
in general position at infinity. Then the Y-rank ofHn+\ (Uc; Q) is expressed in terms

of the Euler characteristic x (U) of the complement by the formula

(-\)n+lX(U) rankr Hn+1(Uc; Q).

Proof. The equality follows from the Theorem 3.6, from the fact that for q > n + 1

the Alexander modules Hq(Uc;Q) vanish, and from the formula 2.10(v) of [9]:

J](-1)* rankr Hq(Uc;Q).

4. The main theorems

We will now state and prove the main theorems of this paper. These results are

generalizations of the ones obtained by Libgober ([25], [26], [27]) in the case of
hypersurfaces with only isolated singularities, and will lead to results on the mon-
odromy of the Milnor fiber of a projective hypersurface arrangement, similar to those

obtained by Libgober ([30]), Dimca ([7], [5]) (see §5).

The first theorem provides a characterization of the zeros of global Alexander

polynomials. For hypersurfaces with only isolated singularities, it specializes to

Corollary 4.8 of [25]. It also gives a first obstruction on the prime divisors of the

global Alexander polynomials of hypersurfaces.

Theorem 4.1. If V is an n-dimensional reduced projective hypersurface of degree
d, transversal to the hyperplane at infinity, then for i < n, any root of the global
Alexander polynomial Si (t) is a root of unity of order d.
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Proof. Let k and / be the inclusions of C"+1 and respectively H into CP"+1. For
a fixed perversity p, we will denote the intersection complexes 7C|(CP"+1, JLh)
by ICp. We will also drop the letter R when using right derived functors. The

distinguished triangle Ij'-^id-^k^k* —>, upon applying the hypercohomology
functor, yields the following exact sequence:

; XH)

Note that the complex k* IC^ [—n — 1 ] is perverse with respect to the middle perversity
(since k is the open inclusion and the functor k* is t-exact; [1]). Therefore, by Artin's
vanishing theorem for perverse sheaves ([38], Corollary 6.0.4), we obtain

jj-f(Cn+i. k*IC^) 0 for f < « + 1.

Hence

M-'(CP"+1; IC%) 7#/"(CP"+1; XH) for i < n,

and ///™(CPn+1; =C//) is a quotient of M-"(CPn+1; 7Q).
The superduality isomorphism IC^ £)IC'op[2n + 2], and the fact that the

stalks over H of the complex IC' are torsion F-modules (recall that l*IC* l*M',
and 31' is a torsion sheaf by [4]), yield the isomorphisms

M-f(CP"+1; IC%) M-\H; ÜC^)
M.-i+2n+2(H; £)l*ICfop)

'22(//; l*ICfop); F)

2n-\H; /*/Cfop); T)

//; /*/Cfop); T)

Then, in order to finish the proof of the theorem, it suffices to study the order of the

module HP -2n~l (H; l*3ï'op), for i < n, and to show that the zeros of its associated

polynomial are roots of unity of order d. This follows by using the hypercohomology
spectral sequence, since the stalks of 3ï'op at points of H are torsion modules whose
associated polynomials have the desired property: their zeros are roots of unity of
order d (see Remark 3.3 concerning the local intersection Alexander polynomials
associated to link pairs of strata of V n H).
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Note. The above theorem is also a generalization of the following special case. If
V is the projective cone on a degree d reduced hypersurface Y {/ 0} c CP",
then there is a F-module isomorphism Hi (Uc; Q) H (F;Q), where F f~l (1)

is the fiber of the global Milnor fibration C"+1 - f~l{0) -> C* associated to the

homogeneous polynomial /, and the module structure on H {F; Q) is induced by the

monodromy action (see [6], p. 106-107). Therefore the zeros of the global Alexander

polynomials of V coincide with the eigenvalues of the monodromy operators acting
on the homology of F. Since the monodromy homeomorphism has finite order d, all
these eigenvalues are roots of unity of order d.

Next we show that the zeros of the global Alexander polynomials S; (t) (i < n)
are controlled by the local data, i.e., by the local Alexander polynomials of link pairs
of singular strata in a stratification of the pair (CP"+1, V). This is an extension to the

case of non-isolated singularities of a result due to A. Libgober ([25], Theorem 4.3;
[27], Theorem 4.1.a), which gives a similar fact for hypersurfaces with only isolated

singularities.

Theorem 4.2. Let V be a reduced hypersurface in CP"+1, which is transversal to
the hyperplane at infinity, H. Fix an arbitrary irreducible component of V, say V\.
Let S be a stratification of the pair (CP"+1, V). Then for a fixed integer 1 < i <
n, the prime factors of the global Alexander polynomial <5,- {t) of V are among the

prime factors of local polynomials §/X0 associated to the local Alexander modules
Hl(S2n-2s+l _ K2n-2s-l. p) of U^pairs ^2n-2S+l^ K2n-2s-\) of components of
strata S & S such that S c V\, n — i < s dim S < n, and I is in the range
2n — 2s — i < I < n — s.

Note. The 0-dimensional strata of V may only contribute to 8n(t), the 1-dimensional
strata may only contribute to Sn (t) and <5„_i (t) and so on. This observation will play
a key role in the proof of Proposition 5.1 of the next section.

Proof. We will use the Lefschetz hyperplane section theorem and induction down
on i. The beginning of the induction is the characterization of the 'top' Alexander

polynomial of V: the prime divisors of Sn(t) are among the prime factors of local
polynomials i=f(t) corresponding to strata S & S with S c V\, 0 < s dim S < n,
and n — 2s <l < n — s. This follows from the following more general fact.

Claim. For any 1 < i < n, the prime divisors of <5,(f) are among the prime factors

of the local polynomials i=f(t) corresponding to strata S & S such that S a V\,
0 < s dim S < n, and i —2s <l <n - s.

Proof of Claim. Since V\ is an irreducible component of V, it acquires the induced
stratification from that of V. By the transversality assumption, the stratification S of
the pair (CP"+\ V) induces a stratification of the pair (CP"+\ V U H).
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Let j and i be the inclusions of CP"+1 - V\ and respectively V\ into CP"+1.

For a fixed perversity p we will denote the intersection complexes IC*- (CP"+1, £h)

by IC*-. The distinguished triangle f*r —>¦ id —>¦ j*j* —>, upon applying the

hypercohomology functor, yields the following long exact sequence:

> H~'(CP"+1;7C^) -> 777/"(CP"+1; XH)

m V\ in

Note that the complex j*IC^[—n — 1] on CP"+1 — V\ is perverse with respect to
the middle perversity (since j is the open inclusion and the functor j* is t-exact; [1]).
Therefore, by Artin's vanishing theorem for perverse sheaves ([38], Corollary 6.0.4)
and noting that CP"+1 - Vx is affine ([6], (1.6.7)), we obtain

m-i (Cpn+l _ Vl. j*IC£) 0 for i < n + 1.

Therefore
M-f(CP"+1; IC*Ü) 777/"(CP"+1; £H) for i < n,

and 777™(CPn+1; <£h) is a quotient of M-"(CPn+1; 1C*Ü).

Now using the superduality isomorphism IC*^ <©7C-op[2n + 2] and the fact

that the stalks over V\ of the complex 7 C*op are torsion F -modules, and IC*ï\Vl =0,
we have the isomorphisms

; ICI)

yi; f*7C?op); F)

-^Vi; f*7C?op); F)

i; i*ICfop); F)

Therefore it suffices to study the order of the module H'-2"-^^; i*Ji'op), for
fixed i <n.

By the compactly supported hypercohomology long exact sequence and induction
on the strata of V\, the polynomial associated to H'"2""1^; f*<ft#op) will divide
the product of the polynomials associated with all the modules W~2n~l V ; M'op \ y
where V runs over the strata of V\ in the stratification of the pair (CP"+1, V U 77),

i.e., V is of the form S n 77 or S - S n 77, for S g S and 5" c V\.
Next, we will need the following lemma.
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Lemma 4.3. Let y be a j-(complex) dimensional stratum ofV\ (or V) in the

stratification of the pair (CP"+1, V U H). Then the prime factors of the polynomial
associated to W~2n~l(V'; M'op\y) must divide one of the polynomials §/(0
order{IH["(S2n-2J+1; T)}, in the range 0 < / < n - j and 0 < i - I < 2j,
where (S2n-2j+1, K2'1'2^1) is the linkpair of y in (CP"+\ V U H).

Once the lemma is proved, the Claim (and thus the beginning of the induction)
follows from Remark 3.3 which describes the polynomials of link pairs of strata SP\H

ofVnHin (CP"+1 VUH) in terms of the polynomials of link pairs of strata S g S

of V in (CP"+1, V), and Lemma 3.2 which relates the local intersection Alexander
polynomials of links of strata S g S to the classical local Alexander polynomials.

In order to finish the proof of the theorem we use the Lefschetz hyperplane theorem
and induction down on i. We denote the Alexander polynomials of V by SY (t) and

call 8%{t) the 'top' Alexander polynomial of V.
Let I < i n — k < nbe fixed. Consider L CFn~k+1 a generic codimension

k linear subspace of CP"+1, so that L is transversal to V U H. Then W L n V is a

(n — k)-dimensional, degree d, reduced hypersurface in L, which is transversal to the

hyperplane at infinity H n L of L. Moreover, by the transversality assumption, the

pair (L, W) has a Whitney stratification induced from that of the pair (CP"+1, V),
with strata of the form V S n L, for S g S. The local coefficient system Xh
defined on U CP"+1 -(VUH) restricts to a coefficient system onKflL defined

by the same representation (here we already use the Lefschetz theorem).

By applying the Lefchetz hyperplane section theorem ([6], (1.6.5)) to U
CP"+1 — (VUH) and its section by L, we obtain the isomorphisms

nj(U n L) -+ ni (U) for i <n-k,
and a surjection for i n — k + 1. Therefore the homotopy type of U is obtained
from that of VLH Lby adding cells of dimension > n — k + 1. Hence the same is

true for the infinite cyclic covers Uc and (UH L)c of U and WflL respectively.
Therefore,

Hi((U n L)c; Q) ^ Hi(Uc; Q) for i <n-k.
Since the maps above are induced by embeddings, these maps are isomorphisms of
r-modules. We conclude that 8™_k(t) 8v_k(t).

Next, note that 8^_k{t) is the 'top' Alexander polynomial of W as a hypersurface

in L CPn~k+1, therefore by the induction hypothesis, the prime factors of 8n-k(t)
are restricted to those of the local Alexander polynomials i=[(t) associated to link
pairs of strata V S n L c W\ V\ n L, with 0 < r dim(V) < n - k and

(n — k) — 2r < I < (n — k) — r. Now, using the fact that the link pair of a stratum

y SnLin(L, W) is the same as the link pair of S in (CP"+1, V the conclusion
follows by reindexing (replace r by s — k, where s dim(5')).
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Note. The Lefschetz argument in the above proof may be replaced by a similar
argument for intersection homology modules. More precisely, the Lefschetz hyper-
plane theorem for intersection homology ([13] or [38], Example 6.0.4(3)) yields the

following isomorphisms of F-modules:

lHf(L,£H\L) % IHfl(CW>n+1,£H), forf < n - k.

On the other hand, by Corollary 3.4, there are isomorphisms of F-modules:

Hi(Uc;Q) and mf{L, £H\L) Ht((U n L)c; Q).

Proof ofLemma 4.3. For simplicity, we letr i—2n—l. The module EC (V; !R*op\y)
is the abutment of a spectral sequence with £2 term given by

E%'q Hcp(V;Mq(JR'op\y)).

Since 3l'op is a constructible complex, Mq (3l'op\y) is a local coefficient system
on y. Therefore, by the orientabihty of V and the Poincaré duality isomorphism ([3],
V.9.3), E%'q is isomorphic to the module H2j-p(V; Mq(iï.'op\y)). As in Lemma 9.2
of [11], we can show that the latter is a finitely generated module. More precisely, by
deformation retracting V to a closed, hence finite, subcomplex of V\ (or CP"+1), we
can use simplicial homology with local coefficients to calculate the above £2 terms.

We will keep the cohomological indexing in the study of the above spectral
sequence (see, for example, [11]). By the above considerations, we may assume that
V is a finite simplicial complex.

E%'q is the p-th homology of a cochain complex C*(V; Mq{3i'°v\y)) whose p-th
cochain group is a subgroup of CP(V; Mq{JR'op\y)), which in turn is the direct sum
of modules of the form Hq (M'op)x(a), where x{o) is the barycenter of a /^-simplex
a of V c Vi. By the stalk calculation ([2], V.3.15), and by using IC^\Vl 0 and

the superduality isomorphism for link pairs ([4], Corollary 3.4), we obtain

(where Lx(a) S2n~2J+1 is the link of V in (CP"+1 ,VUH)). Given that E%'q is a

quotient of Cvc (V; Mq(3l'op\y)), we see that E^q is a torsion module, and a prime
element y e F divides the order of E1^ 'q only if it divides the order of one of the

torsion modules /#2^+i+a(^*O)' ^)- Denote by ^n+i+g^ me order of the latter
module, where j stands for the dimension of the stratum.

Each Ey'q is a quotient of a submodule of Ef'qv so by induction on r, each of
them is a torsion F-module whose associated polynomial has the same property as

that of E2. Since the spectral sequence converges in finitely many steps, the same

property is satisfied by £00 •
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By spectral sequence theory,

EPJ FpUpc+q(V; #rop\y)/Fp+1Upc+q(y; ^#oplv),

where the modules FPMP ?(V; Jl'op\y) form a descending bounded filtration of
+

Now set A* H*(V; M'op) as a graded module which is filtered by FPA* and

set££(A*) FpA*/Fp+1A*. Then, for some N, we have

0 C FNA* c FN~1A* c ¦ ¦ ¦ C FXA* C F°A* c F~xA* A*.

This yields the following series of short exact sequences:

00 —

0 —

0 —

— FNA* —

— FNA* —

— FkA* —

Let us see what happens at the rth grade of these graded modules. For clarity, we
will indicate the grade with a superscript following the argument. For any p,

Ep(A*y (FpA*/Fp+lAy
FpAr/Fp+1Ar

_ FP,r~P

We know that each of the prime factors of the polynomial of this module must be

a prime factor of some §2n+i+(r_p)(0- Further, by dimension considerations and

stalk calculation, we know that FP£~P can be non-trivial only if 0 < p < 2j and

—In — 1 <r — p < —n — j — 1. Hence, as p varies, the only prime factors under

consideration are those of è,3ln+\+{r-p) ^ in mis ran§e' i-e-' tney are me only possible

prime factors of the Eq (A*)r, collectively in p (but within the grade r).
By induction down the above list of short exact sequences, we conclude that

FNAr Eg(A*)r, and subsequently FN~1Ar, FN~2Ar, F°Ar, and Ar, have
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the property ofbeing torsion modules whose polynomials are products of polynomials
whose prime factors are all factors of one of the ^n+i+a (f )> where a must be chosen

in the range 0 < r-a < 2j and -2n - 1 < a < -n - j -1. Since WC(V; <ft#op|y)
is the submodule of A* corresponding to the rth grade, it too has this property.
Using the fact that r i — 2n — I and reindexing, we conclude that the prime
factors of the polynomial of W~2n~1 (V ; 31 'op | y must divide one of the polynomials

§/(0 =order{////'"(5'2"-2^+1;r)}, in the range 0 < / < n - j andO < i - I < 2j,
where S2n~2j+1 is the link of (a component of) V.

Remark 4.4 (Isolated singularities). In the case of hypersurfaces with only isolated

singularities, Theorem 4.2 can be strengthen as follows.
Assume that V is an n-dimensional reduced projective hypersurface, transversal to

the hyperplane at infinity, and having only isolated singularities. If n > 2 this assumption

implies that V is irreducible. If n 1, we fix an irreducible component, say V\.
The only interesting global Alexander module is IH™ (CP"+1; £H) Hn(Uc; Q).
As in the proof of the Theorem 4.2, the latter is a quotient of the torsion module

H""-1^; <ft#op). Let So Sing(V) nVi be the set of isolated singular points of
V which are contained in V\. Note that V\ has the stratification

induced from that of (CP"+1, V U H). The long exact sequence of the compactly
supported hypercohomology yields

and by the local calculation on stalks we obtain

(1) - J_1epeEo///„m(52"+1;r)

epeEo^«(^n+1 - ^n+1 n V; r),
where (52""1"1, S2n+l n y is the (smooth) link pair of the singular point p G So, and

Hn(S2n+1 - S2n+1 n V; r) is the local Alexander module of the algebraic link. (1)
follows from the superduality isomorphism for intersection Alexander polynomials
of links ([4], Corollary 3.4; [11], Theorem 5.1).

By Remark 3.3, Lemma 4.3 and the long exact sequences of compactly supported
hypercohomology, it can be shown that the modules Hc " ^Vi - So; <ft#op) and

H-"(Vi - So; <ft*op) are annihilated by powers oft-1.
Thus we obtain the following divisibility theorem (compare [25], Theorem 4.3;

[27], Theorem 4.1(1); [7], Corollary 6.4.16).
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Theorem 4.5. Let V be a projective hypersurface in CP"+1 (n > 1), which is

transversal to the hyperplane at infinity, H, and has only isolated singularities.
Fix an irreducible component of V, say V\, and let So Vi n Sing(V). Then

Hn(Uc; Q) is a torsion F-module, whose associated polynomial Sn(t) divides the

product FIpeEo Ap(0 ' (f ~~ l)r °/f^e local Alexander polynomials of link pairs of
the singular points pofV which are contained in V\.

An immediate consequence of the previous theorems is the triviality of the global
polynomials (5, (f), 1 < i < n, if none of the roots of the local Alexander polynomials
along some irreducible component of y is a root of unity of order d.

Example 4.6. Suppose that y is a degree d reduced projective hypersurface which
is also a rational homology manifold, has no codimension 1 singularities, and is

transversal to the hyperplane at infinity. Assume that the local monodromies of
link pairs of strata contained in some irreducible component V\ of V have orders

which are relatively prime to d (e.g., the transversal singularities along strata of V\

are Brieskorn-type singularities, having all exponents relatively prime to d). Then,
by Theorem 4.1, Theorem 4.2 and Proposition 2.1, it follows that <5,(f) ~ 1, for
1 < i < n.

Further obstructions on the global Alexander modules/polynomials are provided
by the relation with the 'modules/polynomials at infinity'. The following is an
extension of Theorem 4.5 of [25] or, in the case n 1, of Theorem 4.1(2) of [27].

Theorem 4.7. Let V be a degree d reduced hypersurface in CP"+1, which is transversal

to the hyperplane at infinity, H. Let Sqo be a sphere of sufficiently large radius
in Cn+1 CP"+1 — H (or equivalently, the boundary of a sufficiently small tubular
neighborhood of H mCP"+1). Then for alii < n,

7 ZjWl /d^Tn>^~l~l p \ ^^ TTTT—I —1 / C 7' f~** \ r^/ ZJ /<} / C (f\\\1 ll • \ *L^ir oL fj itli ^CO }-**—*"/ ~~ "Ï V ^-nn i >£./

and IH™(CWn+1; XH) is a quotient of B.-11'1 (Sqo; 1C%) ^(U^; Q), where

U1^ is the infinite cyclic cover of Sqo — (V n Sqo) corresponding to the linking
number with V n Sqo (cf. [25]).

Proof. Choose coordinates (zo '¦¦¦¦'¦ zn+\) m the projective space such that H
{Zn+l 0} and O (0 : ¦ ¦ ¦ : 0 : 1) is the origin in CP"+1 - H. Define

2
Zn+l

a : CP"+1 -> R+, a :=

Note that a is well-defined, it is real analytic and proper,
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Since a has only finitely many critical values, there is e sufficiently small such that
the interval (0, e] contains no critical values. Set UE a1([0,e)),a tubular
neighborhood of H in CP"+1 and note that CP"+1 - UE is a closed large ball of radius

R ^^l oo in Cn+1 CPn+1 - H.
Lemma 8.4.7(a) of [20] applied to a and IC\, together with IC£\H 0, yield

M*(UE; IC£) M*(H; IC\) 0,

and therefore, by the hypercohomology long exact sequence, we obtain the isomorphism

lj/-'* \ ~ TUT*

Note that, for i : CP"+1 -UE>-> CP"+1 the inclusion,

M^r+1_t7g(OPn+1; ICI) H*(CPn+1 - Ue; ilIC^) M*(CPn+1; UilIC^)

9É M*(CP"+1; hylCl) d= M*(CP"+1, Ue\ IC%)

M*(Cn+1,UE-H;IC}l),

where the last isomorphism is the excision of H (see for example [31], §1; [6],
Remark 2.4.2(ii)).

If k is the open inclusion of the affine space in CP"+ then k*IC^[—n — 1] is

perverse with respect to the middle perversity (since k is the open inclusion and the

functor k* is t-exact). Therefore, by Artin's vanishing theorem for perverse sheaves

([38], Corollary 6.0.4), we obtain

HTf(C"+1; Jt*/C£) 0 for i < n + 1.

The above vanishing and the long exact sequence of the pair (C"+1 ,UE — H) yield
the isomorphisms

;+_[/s ICI) H-'-^C/, - H; WA) iff < n,

and

M"""1 (UE - H; IC%) -> W^n+l_Ue(CPn+1 ; IC£) is an epimorphism.

Note that UE - H «^((O, e)) and by Lemma 8.4.7(c) of [20] we obtain the

isomorphism
M*(TT TJ• T f~** \ ^ TUT* C • T f~** \(UE - H, ICÜ) Ml (6oo, IC^),

where Sœ a 1(e/), 0 < e' < e.
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Next, using the fact that IC^ \ vuh 0, we obtain a sequence of isomorphisms
as follows: for i < n,

M-'-^S«,; ICI) H^-^Soo - (V n S,»); IC'J
mf-HSoo - (V n Sœ); X\Soo-V[2n + 2])

H-i+2n+1(Sœ-(VnSœ);X)
(i)
^^(Soo-CVnSoo);^)

where X is given on S^ — (V n S^) by the linking number with V n S^, (1) is

the Poincaré duality isomorphism ([3], Theorem V.9.3), and Ucœ is the infinite cyclic
cover of S^ — V n S1,^) corresponding to the linking number with V n S^ (cf. [25]).

D

Remark 4.8. Subsequently, A. Libgober has found a simpler proof of Theorem 4.7,
using a purely topological argument based on the Lefschetz theorem. As a corollary
to Theorem 4.7 it follows readily (cf. [29]) that the Alexander modules of the hy-
persurface complement are semi-simple, thus generalizing Libgober's result for the

case of hypersurfaces with only isolated singularities (see [25], Corollary 4.8). The
details will be given below.

Proposition 4.9. Let V c CP"+1 be a degree d reduced hypersurface which is

transversal to the hyperplane at infinity H. Then for each i < n, the Alexander
module Hi (Uc; C) is a semi-simple C[t, t~x\-moduley which is annihilated by td — 1.

Proof. By Theorem 4.7, it suffices to prove this fact for the modules 'at infinity'
Hi(Ucœ;C),i <n.

Note that since V is transversal to H, the space S^ — (V n S^) is a circle fibration
over H — V n H which is homotopy equivalent to the complement in C"+1 to the

affine cone over the projective hypersurface V n H. Let {h 0} be the polynomial
defining V n H in H. Then the infinite cyclic cover tf^ of S^ — (V P\ Soo) is

homotopy equivalent to the Milnor fiber {h 1} of the (homogeneous) hypersurface

singularity at the origin defined by h and, in particular, HfiW^; C) (i < n) is a

torsion finitely generated C[t, t ^-module. Since the monodromy on the Milnor
fiber {h 1} has finite order d (given by multiplication by roots of unity), it also

follows that the modules at infinity are semi-simple torsion modules, annihilated by
td - 1 (see [23]).

Note. Proposition 4.9 supplies alternative proofs to Theorem 3.6 and Theorem 4.1.
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5. On the Milnor fiber of a projective arrangement of hypersurfaces

In this section, we apply the preceding results to the case of a hypersurface V c
CP"+1, which is the projective cone over a reduced hypersurface Y c CP". As an

application to Theorem 4.2, we obtain restrictions on the eigenvalues of the mon-
odromy operators associated to the Milnor fiber of the hypersurface arrangement
defined by Fin CP".

Let /: C"+1 —>¦ C be a homogeneous polynomial of degree d > 1, and let
Y {/ 0} be the projective hypersurface in CP" defined by /. Assume that
the polynomial / is square-free and let / f\... fs be the decomposition of / as

a product of irreducible factors. Then 7, {fi 0} are precisely the irreducible

components of the hypersurface Y, and we refer to this situation by saying that we
have a hypersurface arrangement A (Yi)i=itS in CP".

The Milnor fiber of the arrangement A is defined as the fiber F f l(\) of
the global Milnor fibration / : U --* C* of the (homogeneous) polynomial /; here

U := C"+1 - f 1(0) is the complement of the central arrangement A f 1(0)

in C"+1, the cone on A F has as characteristic homeomorphism h : F --* F the

mapping given by h(x) r ¦ x with r exp(2iti/d). This formula shows that
hd id and hence the induced morphisms hq : Hq(F) --* Hq(F) at the homology
level are all diagonalizable over C, with eigenvalues among the d-th roots of unity.
Denote by Pq (t) the characteristic polynomial of the monodromy operator hq.

Note that the Milnor fiber F is homotopy equivalent to the infinite cyclic cover XIe

of U, corresponding to the homomorphism If H\{1L) --* Z sending a meridian

generator about a component of A to the positive generator of Z. With this
identification, the monodromy homeomorphism h corresponds precisely to a generator of
the group of covering transformations (see [6], p. 106-107).

It is easy to see that V c CP"+1, the projective cone on Y, is in general position at

infinity, where we identify the hyperplane at infinity, H, with the projective space on
which Y is defined as a hypersurface. Denote the irreducible components of V by V;,
i 1, s, each of which is the projective cone over the corresponding component
of Y. Theorem 4.2 when applied to F ~ Uc and to the hypersurface V, provides
obstructions on the eigenvalues of the monodromy operators associated to the Milnor
fiber F. More precisely, we obtain the following result concerning the prime divisors
of the polynomials Pq(t), for q <n — \ (compare [30], Theorem 3.1).

Proposition 5.1. Let Y (7,)i=lji, be a hypersurface arrangement in CP", and

fix an arbitrary component, say Y\. Let F be the Milnor fibre of the arrangement.
Fix a Whitney stratification of the pair (CP", Y) and denote by % the set of (open)

singular strata. Then for q < n — 1, a prime y £ F divides the characteristic

polynomial Pq{t) of the monodromy operator hq only if y divides one ofthe polynomials

%f(t) associatedto the local Alexander modules Hi{S2n~2s~l - K2n~2s~3; F)
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corresponding to link pairs (S2n~2s~l, x2n~2s~3) of components of strata V e %

of complex dimension s with V a Y\, such that n — q — 1 < s < n — 1 and

2(n - 1) - 2s - q < I < n - s - 1.

Proof. There is an identification Pq(t) ~ <5?(f), where <5?(f) is the global Alexander

polynomial of the hypersurface V, i.e., the order of the torsion module Hq(Uc;Q)
IH™ (CP"+1 ; <£#). We consider a topological stratification S on V induced by that

of Y, having the cone point as a zero-dimensional stratum. From Theorem 4.2 we
recall that, for q < n — 1, the local polynomials of the zero-dimensional strata of
V\ do not contribute to the prime factors of the global polynomial 8q(t). Notice that
link pairs of strata S of V\ in (CP"+1, V) (with dim(S') > 1) are the same as the link
pairs of strata of 7i Vi n # in (H CP", V n H Y). The desired conclusion
follows from Theorem 4.2 by reindexing.

Note. The polynomials Pi(t), i 0, n, are related by the formula (see [6],
(4.1.21) or [7], (6.1.10))

n

I I L a \ I —— \ 1 — /
1 1 'w v '
q=0

where / (F) is the Euler characteristic of the Milnor fiber. Therefore, it suffices to

compute only the polynomials Po(t), Pn-i(t) and the Euler characteristic of F.
If Y c CP" has only isolated singularities, the proof of the previous proposition

can be strengthened to obtain the following result, similar to [6], (6.3.29) or [7],
Corollary 6.4.16.

Proposition 5.2. With the above notations, if Y has only isolated singularities, then

the polynomial Pn-i divides (up to apower oft —I) the product of the local Alexander

polynomials associated to the singular points of Y which are contained in Y\.

A direct consequence of Proposition 5.1 is the next result.

Corollary 5.3. If X ^ 1 is a d-th root of unity such that X is not an eigenvalue of
any of the local monodromies corresponding to link pairs ofsingular strata ofY\ in

a stratification of the pair (CP", Y), then X is not an eigenvalue of the monodromy

operators acting on Hq(F) for q < n — 1.

Using the fact that normal crossing divisor germs have trivial monodromy
operators ([6], (5.2.21.Ü); [7], (6.1.8.i)), we also obtain the following (compare [5],
Corollary 16):

Corollary 5.4. Let A (7,),=!^ be a hypersurface arrangement in CP" andfix one

irreducible component, say Y\. Assume that U?=i,,y ^ *'* a normal crossing divisor at

any point x e Y\. Then the monodromy action on Hq(F; Q) is trivial for q < n — 1.
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6. Examples

We will now show, by explicit calculations on examples, how to combine Theorems

4.1 and 4.2 in order to obtain information on the Alexander modules of a hyper-
surface.

Example 6.1 (One-dimensional singular locus). Let V be the trifold in CP4

{{x : y : z : t : v)}, defined by the polynomial y2z + x3 + tx2 + v3 =0. The

singular locus of V is the projective line Sing(V) {(0 : 0 : z : t : 0); z, t e C}.
We let {t 0} be the hyperplane H at infinity. Then V n H is the surface in
CP3 {(x : y : z : v)} defined by the equation y2z + x3 + v3 =0, having the

point (0 : 0 : 1 : 0) as its singular set. Thus, Sing(V n H) Sing(V) n H. Let
X be the affine part of V, i.e., defined by the polynomial y2z + x3 + x2 + v3 =0.
Then Sing(X) {(0, 0, z, 0)} {(0 : 0 : z : 1 : 0)} Sing(V) n X is the z-axis of
C4 {(x,y,z,v)}, and it is clear that the origin (0,0, 0,0) (0:0:0:1 : 0) looks
different than any other point on the z-axis: the tangent cone at the point (0, 0, A., 0)
is represented by two planes for X ^ 0 and degenerates to a double plane for X 0.

Therefore we give the pair (CP4, V) the following Whitney stratification:

CP4 D V d Sing(V) D (0 : 0 : 0 : 1 : 0)

and note that V is transversal to the hyperplane at infinity.
In our example (n 3, k 1) we are interested in describing the prime factors of

the global Alexander polynomials &2(t) and $3 (t) (note that b\ (t) ~ 1, as n — k > 2;

cf. [25]). In order to describe the local Alexander polynomials of link pairs of singular
strata of V, we will use the results of [35] and [37].

The link pair of the top stratum of V is (S1, 0), and the only prime factor that may
contribute to the global Alexander polynomials is t — 1, the order of HoiS1, F).

Next, the link of the stratum Sing(V) -{(0 : 0 : 0 : 1 : 0)} is the algebraic knot in
a 5-sphere S5 c C3 given by the intersection of the affine variety {y2 + x3 + v3 =0}
in C3 {{x,y,v)} (where t 0, z 1) with a small sphere about the origin
(0, 0, 0). (To see this, choose the hyperplane V(t) {(x : y : z : 0 : v)} which
is transversal to the singular setV(x,y,v), and consider an affine neighborhood of
their intersection (0 : 0 : 1 : 0) in V(t) CP3.) The polynomial y2 + x3 + v3 is

weighted homogeneous of Brieskorn type, hence ([33], [35]) the associated Milnor
fibre is simply-connected, homotopy equivalent to {2 points} * {3 points} * {3 points},
and the characteristic polynomial of the monodromy operator acting on H2(F; Q) is

(t + l)2(t2-t + l).
Finally, the link pair of the zero-dimensional stratum, {(0 : 0 : 0 : 1 : 0)}, (the

origin in the affine space {t 1}), is the algebraic knot in a 7-sphere, obtained by
intersecting the affine variety y2z + x3 + x2 + v3 0 in C4 {(x, y, z, v)} with a

small sphere about the origin. Since we work in a neighborhood of the origin, by an
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analytic change of coordinates, this is the same as the link pair of the origin in the

variety y2z+x2+v3 0. Therefore the Milnor fiber of the associated Milnorfibration
is the join of {x2 1}, {y2z 1} and {v3 1}, i.e., it is homotopy equivalent to
S2*{3 points}, that is, S3vS3 ([33], [35]). Moreover, denoting by 8/ the characteristic

polynomials of monodromy of the weighted homogeneous polynomial /, we obtain
([35], Theorem 6): 8x2+v3+y2z{t) 8x2+v3+yz{t) 8X2+V3{t) t2 - t + 1.

Note that the above links, K3 c S5 and K5 c S1, are rational homology spheres

since none of the characteristic polynomials of their associated Milnor fibers has the

trivial eigenvalue 1 (see [37], Proposition 3.6). Therefore V, and hence V n H, are
rational homology manifolds (see the discussion preceding Proposition 2.1). Then,

by Proposition 2.1, t — 1 cannot be a prime factor of the global Alexander polynomials
of V. Also note that the local Alexander polynomials of links of the singular strata of
V have prime divisors none of which divides t3 — 1, thus, by Theorem 4.1 and 4.2,
they cannot appear among the prime divisors of &2(t) and 8^{t).

Altogether, we conclude that 8ç,{t) ~ t — 1, 8\{t) ~ 1, Ô2(t) ~ 1 and 83(1) ~ 1.

Note. The above example can be easily generalized to provide hypersurfaces of
any dimension, with a one-dimensional singular locus and trivial global Alexander

polynomials. This can be done by adding cubes of new variables to the polynomial
y2z + x3 +tx2 + v3.

Example 6.2 {Manifold singularity). Consider the hypersurface V in CP"+1 defined

by the zeros of the polynomial f(zo, ¦ ¦ ¦, zn) (zo)2+(zi)2+- ¦ ¦ + {zn-k)2- Assume
that n — k > 2 is even. The singular set S V(zo, ¦ ¦ ¦, zn-k) CP^ is non-singular.
Choose a generic hyperplane, H, for example H {zn 0}. The link of S is the

algebraic knot in a {In -2k + l)-sphere S2n~2k+1 given by the intersection of the

affine variety (zo)2 + (zi)2 + ¦ ¦ ¦ + {zn-k)2 0 in cn~k+1 with a small sphere about
the origin. As n — k is even, the link of the singularity (in the sense of [33]) is a rational

homology sphere and the associate Alexander polynomial of the knot complement
is t — {—\)n~k+l t + 1. Hence the prime factors of the intersection Alexander

polynomials of the hypersurface are either t + lort — 1. However, since the links of
singular strata are rational homology spheres, we conclude (by using Proposition 2.1

and [25], Corollary 4.9) that 8n_k{t) ~ t + 1 and all the 8j{t), n- k < j < n, are

multiples oft + 1. Also note that in this case, 8j{t) ~ 1 for 1 < j < n — k — 1.

Sometimes it is possible to calculate explicitly the global Alexander polynomials,
as we will see in the next example.

Example 6.3. Let V be the surface in CP defined by the following homogeneous
polynomial of degree d: f{x, y, z, t) xd~lz + xtd~l + yd + xytd~2, d > 3.

The singular locus of y is a point: Sing(V) {(0:0:1 : 0)}. We fix a generic
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hyperplane, H. Then the (intersection) Alexander modules of V are defined and

the only 'non-trivial' Alexander polynomial of the hypersurface is <?2(0- Note that,
by Corollary 4.9 of [25], there is an isomorphism of F-modules: H2(CP3 — VU
H;F) H2(Mf, Q), where Mf is the Milnor fiber at the origin, as a non-isolated
hypersurface singularity in C4, of the polynomial /: C4 -> C, fix, y, z, t)
xd~1z + xtd~1 + yd + xytd~2, and where the module structure on H2(Mf, Q) is

given by the action on the monodromy operator. Moreover, by [6], Example 4.1.26,
the characteristic polynomial of the latter is td~1 + td~2 + ¦ ¦ ¦ + 1. Therefore,
S2(t) td~l +td~2^ hi.
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