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Applications of Hofer's geometry to Hamiltonian dynamics

Felix Schlenk*

Abstract. We prove that for every subset A of a tame symplectic manifold (W, a>) meeting a

semi-positivity condition, the it\ -sensitive Hofer-Zehnder capacity of A is not greater than four
times the stable displacement energy of A,

4z(A, W) < 4e(A x S1, W x T^S1).

This estimate yields almost existence of periodic orbits near stably displaceable energy levels
of time-independent Hamiltonian systems. Our main applications are:

• The Weinstein conjecture holds true for every stably displaceable hypersurface of contact

type in (W,co).

• The flow describing the motion of a charge on a closed Riemannian manifold subject to a

non-vanishing magnetic field and a conservative force field has contractible periodic orbits
at almost all sufficiently small energies.

The proof of the above energy-capacity inequality combines a curve shortening procedure in
Hofer geometry with the following detection mechanism for periodic orbits: If the ray {ip'F},
t > 0, of Hamiltonian diffeomorphisms generated by a compactly supported time-independent
Hamiltonian stops to be a minimal geodesic in its homotopy class, then a non-constant
contractible periodic orbit must appear.

Mathematics Subject Classification (2000). 37J05, 37J45, 58F05.

Keywords. Hofer-Zehnder capacity, displacement energy, Weinstein conjecture, periodic
orbits.

1. Introduction and results

On their search for periodic orbits of autonomous Hamiltonian systems, Hofer and

Zehnder ([27], [28]) associated to every open subset A of a symplectic manifold
V, a>) a number, the Hofer-Zehnder capacity cjjz(A) £ [0, oo], in such a way that

< oo implies almost existence of periodic orbits near any compact regular
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energy level of an autonomous Hamiltonian system on A. Showing that cjjz(A) is

finite is, however, often a difficult problem. Our main result is that if a subset A
of a tame symplectic manifold meeting a suitable semi-positivity condition can be

displaced from itself by a Hamiltonian isotopy in a stabilized sense, then the Hofer-
Zehnder capacity of A is indeed finite.

In order to set notations, we abbreviate / [0, 1] and consider an arbitrary
smooth symplectic manifold (V, a>) without boundary. Denote by HC{1 x V) the

set of smooth functions /xV->I with compact support. The Hamiltonian vector
field of H g MC{1 x V), defined by

co(XHt,) -dHt{),
generates a flow ht. The time-1-maps h form the group

Hamc(V, co) :={h \ H g MC{1 x V)}

of compactly supported Hamiltonian diffeomorphisms of(V,a>). The set of functions
in MC{I x V) which do not depend on t g / is denoted by J€C(V). We shall denote
functions in HC{1 x V) by H or K and functions in HC{V) by F or G, and their
flows by ht or kt and ft or gt.

The Hofer-Zehnder capacity we shall study is defined as follows. We say that

F g 3ÎC{V) is slow if all non-constant contractible periodic orbits of ft have period
greater than 1. Following [27], [28] and [38], [53], [17] we define for each subset A
of V, où) the Tt\ -sensitive Hofer-Zehnder capacity

4Z(A, V, co) suplmax^F - min F \ F g J£c(Int(A)) is slow}. (1)

We shall often suppress co from the notation, and we shall write c^z(V) instead

of c^z(V, V). The Hofer-Zehnder capacity cuz(A) mentioned above is obtained by
taking the supremum over the smaller class of functions/7 G Hc (Int A) )for which aZZ

non-constant periodic orbits of ft have period > 1. Therefore, chz( A) < c^z(A, V).
We shall compare the Hofer-Zehnder capacity c^z(A, V) with the displacement

energy defined in [21], [32]. The norm \\H\\ of H g Mc(I x V) is defined as

r1
\\H\\= (maxH(t,x) -min H (t,x))dt,

Jo yxeV xeV

and the displacement energy e(A, V) e(A, V, co) g [0, oo] of a subset A of y is

defined as

e(A,V) =M{\\H\\ | H G HC{1 x V), h(A) n A 0}

if A is compact and as

e(A, V) sup {e(K, V) \ K c A is compact}
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for a general subset A of V. In fact, we shall compare c^z(A, V) with the stable

displacement energy defined as

es(A,V) :=e(A xS'.Vx T*S1,û>@cûq)

where cdq dp A dq is the standard symplectic form on T*Sl. We are able to do
this for the following class of symplectic manifolds.

Definition ([20], [56], [2]). A symplectic manifold (W, co) is tame if W admits an
almost complex structure / and a complete Riemannian metric g such that

• / is uniformly tame, i.e., there are positive constant C\ and C2 such that

co(X,JX)>C1\\X\\2 and \co (X, Y)\ < C2 \\X\\ \\Y\\

for all X, Y &TW.

• The sectional curvature of (W, g) is bounded from above and the injectivity
radius of (W, g) is bounded away from zero.

Examples of tame symplectic manifolds are closed symplectic manifolds, standard

cotangent bundles (T*M,coo) as well as twisted cotangent bundles (T*M,coa) over
a closed base M, and symplectic manifolds which at infinity are isomorphic to the

symplectization of a closed contact manifold. The class of tame symplectic manifolds
is closed under taking products or coverings.

For technical reasons we also impose a semi-positivity condition on (W,co). The
first Chern class c\ g H2( W; Z) is defined as the first Chern class of the complex
vector bundle (TW, /), where / is any almost complex structure such that «(-,/-)
is a Riemannian metric. Recall from [43], [23], [54], [44] that a 2n-dimensional
symplectic manifold (W, co) is strongly semi-positive if for all A e n2(W),

co (A) > 0, ci(A) > 2-n =>• ci(A)>0.

Definition. A In -dimensional symplectic manifold (W, co) is stably strongly semi-

positive if for all A e n2(W),

co (A) > 0, ci(A) > 1 -n =>• ci(A)>0.

Equivalently, (W, co) satisfies one of the following conditions.

(i) co (A) Xc\(A) for every A e n2(W) and some X > 0;

(ii) c\{A) 0 for every A e 7T2(W);

(iii) The minimal Chern number N >0 defined by c\ (tt2(W)) NZ, is at least n.
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Since (T*S1, coq) is exact and has vanishing first Chern class, (W, co) is stably
strongly semi-positive if and only if (W x T*S1, co © coo) is strongly semi-positive.
This assumption guarantees that the evaluation map used in the definition of the

Gromov-Witten invariants relevant for our arguments is a pseudo-cycle. If one is

willing to use Liu-Tian's construction of the S1 -invariant virtual moduli cycle, this

assumption can be dropped throughout the paper.
Our main result is the following energy-capacity inequality.

Theorem 1.1. Assume that A is a subset of a tame and stably strongly semi-positive
symplectic manifold (W, a>). Then

coRZ(A,W)<4es(A,W).

We shall derive Theorem 1.1 from the following result by capitalizing on the fact
that the definition of c^z involves only contractible periodic orbits and by using a

stabilization trick found in Macarini's work [41].

Theorem 1.2. Assume that A is a subset of a tame and strongly semi-positive
symplectic manifold (W, co). Then

cnz{A, W) <4e(A, W).

Up to its slightly more restrictive hypothesis, Theorem 1.1 is stronger than
Theorem 1.2. Indeed, it is elementary to see that es{A,V) <e{A, V) in general, and in
the dynamically relevant Example 1.5 below we have es(A, V) < e(A, V) oo.

The energy-capacity inequality

c°uz(A,V)<e(A,V) (2)

is known for every subset A of a weakly exact symplectic manifold (V, co) which is

closed or convex ([22], [53], [12], [16], [11]). For the open ball B2n(r) of radius r in
QBL2n,co0) it holds that

4z (B2n(r), M2n) e (B2n(r), M2n) nr2,

see [28], and so (2) is sharp. It is conceivable that the factor 4 in Theorems 1.1 and

1.2 can be omitted.

Following Polterovich [50] we shall obtain Theorem 1.2 by combining an

elementary curve shortening technique in Hofer's geometry with the following detection
mechanism for periodic orbits.

Theorem 1.3. Assume that (W, co) is a tame and strongly semi-positive symplectic
manifold, and that the autonomous Hamiltonian F e Hc{ W) is slow. Then the path
ft, t g [0,1], is length minimizing in its homotopy class.
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Here, the length of ft is defined as \\F\\. This result was discovered by Hofer [22]
for (M211, coo and has been proved in [34] for weakly exact tame symplectic manifolds ;

it removes an additional assumption on F in [9], [44] and verifies Conjecture 1.2 in
[44] for tame strongly semi-positive symplectic manifolds.

Theorems 1.1 and 1.2 show that if es(A, W) or e(A, W) is finite, then so is

CftZ(A, W), and the finiteness of c^z(A, W) implies existence of contractible periodic

orbits on almost every compact regular energy level of an autonomous Hamil-
tonian system on A. We thus want to understand which compact subsets of a

symplectic manifold V have finite (stable) displacement energy. Every compact subset

of a symplectic manifold of the form (V x R2, to © coo) has finite displacement

energy. Less obvious sufficient assumptions on A alone are collected in the

following proposition essentially due to Laudenbach [35] and to Polterovich [49] and

Laudenbach-Sikorav [36]. Recall that a middle-dimensional submanifold L of a

symplectic manifold (V, a>) is called Lagrangian if to vanishes on L.

Proposition 1.4. Let A be a compact subset ofa In-dimensional symplectic manifold
(V,co).

(i) If A is contained in an embedded finite CW-complex X of dimension < n, then

es(A, V) < oo.

(ii) If A is contained in an n-dimensional closed submanifold M which is not

Lagrangian, then es (A, V) 0.

(iii) If A is strictly contained in a closed Lagrangian submanifold L, then

es(A, V) =0.

The example S1 c (T*S1, coo) shows that neither the dimension assumption in (i)
nor the assumption co\m ^ 0 in (ii) nor the assumption A C L in (iii) can be omitted.
The following example will play an important role in our applications.

Example 1.5. Let a be a non-vanishing closed 2-form on a closed manifold M
and let coa wo + n*o be the twisted symplectic form on its cotangent bundle

it : T*M -> M. Then es(M, T*M, coa) 0 by Proposition 1.4 (ii). Note that if the

Euler characteristic /(M) does not vanish, then e(M, T*M,coa) oo.

Theorems 1.1 and 1.2 and Proposition 1.4, which are proved in the next
section, have various applications to the existence problem of periodic orbits of time-
independent Hamiltonian systems. Some of them are given in Section 3 below.
Further such applications as well as an application to Lagrangian intersections can
be found in [52].

Acknowledgements. The cornerstone to this work was laid by Leonid Polterovich,
who suggested to me to combine his approach to periodic orbits of a charge in a
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magnetic field in [50] with the approach in [12]. I cordially thank him for sharing his

insight with me. I also thank Urs Frauenfelder and Viktor Ginzburg for their generous
help, and Ely Kerman and Jean-Claude Sikorav for valuable discussions. Much of
this work has been written during my stay at Tel Aviv University in April 2003, and it
was finished at FIM of ETH Zürich and at Leipzig University. I wish to thank these

institutions for their support, and I thank Hari and Harald and Matthias Schwarz for
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2. Proofs

2.1. Proof of Theorem 1.2. We follow Polterovich's beautiful argument in [50,
Section 9.A]. The proof consists of two steps.

Step 1. Curve shortening in Hofer's geometry

Curve shortening in Hofer's geometry was invented by Sikorav in [55] and further
developed in [33, Proposition 2.2]. Here, we closely follow the proof of Theorem 8.3.A
in [51], see also Theorem 3.3.A in [3].

We consider an arbitrary symplectic manifold (V, co). Two Hamiltonians H, K e

HC{1 x V) are equivalent, H ~ K, if h k and the paths {ht}, {kt}, t e [0, 1],

are homotopic in Hamc(V, co) with fixed end points. In other words, there exists a

smooth family {Hs}, s e [0, 1], in ,KC{I x V) such that h°t ht and h] kt for all t
and hs h k for all s. The group of equivalence classes MC{I x V)/ ~ form the

universal cover Hamc(V, co) of Hamc(V,co). We denote the lift of the Hofer norm to
Hamc(V, co) by

K~H}.

Proposition 2.1. Consider a compact subset A of an arbitrary symplectic
manifold (V, co) such that e(A, V) < oo. If F: V --* R is supported in A and
\\F\\ >4e(A,V),thenp[F] < \\F\\.

Proof. Choose a path {ht}, t e [0,1], in Hamc( V, co) such that h(A) n A 0 and

P\ht\ < \\\F\\. (3)

For t g [0,1] we decompose the path ft as

ft (ft/2 ° ht o ft/2 o ht o [ht o f~2 o ht o ft/2) bt o at.

As we shall see below,

p[at\<\\\F\\ and p[fct]<i||F||. (4)
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Since {bt o at} is equivalent to the juxtaposition of {at} and {bt oa\} and since p satisfies

the triangle inequality, the estimates (4) imply Proposition 2.1. In order to prove the

first estimate in (4), notice that the paths {ft/\ ° ht l o ft/2] and {fy\ ° ht l o /1/2}
are equivalent and that

p[/f/2 ° V1 ° /1/2] P [Kl] P Ik] •

Together with the triangle inequality and the estimate (3) we can estimate

P [at] p[ht o f-\ o htl

<pM + p[/(72°

2p[ht]

<\
To prove the second estimate in (4), notice that the path {bt} {ftß °hto ft/2 °htl]
is equivalent to the path [ft/2 ° h o /(/2 o Z?"1} generated by the Hamiltonian

^(f, x) \F{x) + \F(h-lf-\x), t G [0,1].

Since F is autonomous, F F o /(/2, and since A displaces suppi7 c A, so does

h~l. Therefore,

11**11=2
1- 2

1
~~ 2

F +

F-\-

2 11^11

F oh'1

-F oh~l

The proof of Proposition 2.

> ft,2

lis completeand so p [bt] < \ || F ||. The proof of Proposition 2.1 is complete.

Step 2. The cut point has a non-constant contractible periodic orbit
Consider an arbitrary symplectic manifold (V,a>). We recall from the introduction
that F g MC{V) is slow if all non-constant contractible periodic orbits of ft have

period > 1. We say that F g Hc{V) is flat if all non-constant periodic orbits of the

linearized flow of F at its critical points have period > 1.

Lemma 2.2. Assume that (W, co) is a tame strongly semi-positive symplectic manifold,

and that the autonomous Hamiltonian F g Mc(W) is slow and flat. Then the

path ft, t g [0,1], is length minimizing in its homotopy class.

Proof. If W is closed, this result is proved in [9], [44], see also [34]. If (W, a>) is

not closed but tame, then the compactness theorems in [20], [56] hold, and so the

arguments in [44] establishing compactness of the relevant Floer moduli space go
through.
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Following a suggestion by Viktor Ginzburg, we derive Theorem 1.3 from
Lemma 2.2 by elementary means:

Proof of Theorem 1.3. Let F e HC{W) be slow. Arguing by contradiction, we
assume that p[F] < \\F\\. Choose e > 0 so small that

Since F is smooth and compactly supported and by Sard's theorem, the set C of
critical values of F is compact and has zero Lebesgue measure. If F(W) [a, b],
we thus find finitely many intervals [a;, b;] c [a,b]\C such that J2i(^i ~ ai) >
(b — a) — e. Choose a smooth function r : [a, b] --* R such that r(a) a and such

that 0 < r'(t) < 1 for all t and

r\t) 1 iff e |J[af,èf] and r\t) =0 if t e C.

i

The function G r o F belongs to Hc{ W) and is both slow and flat. Moreover,

max G r(b) > r(a) + (b — a) — s max F — s.

Since the path {gt o/,"1} is generated by G — F r oF — F and since \\r oF — F\\
max F — max G < e, we have p[gt o f^1] < e. Therefore,

p[G] p[gt o f~l o ft]
< p [gt ° /r1] + p m
< e + p[F]
< \\F\\-s
< \\G\\.

We have constructed a slow and flat G e HC{W) with p[G] < \\G\\, in contradiction
to Lemma 2.2.

We would like to point out that the proof of Lemma 2.2 is the only place were we
use a semi-positivity assumption on (W,a>). As explained in [44] the S1 -invariant
virtual moduli cycle can be used to establish Lemma 2.2 for arbitrary tame symplectic
manifolds. The above argument then yields Theorem 1.3 and hence Conjecture 1.2

in [44] for all tame symplectic manifolds.

Endofthe proofofTheorem 1.2. We can assume that e{ A, W) < oo, and in view of
the definitions of the capacity c^z and the displacement energy e we can assume that
A is compact. Let F e Hc (Int A) be such that max F - min F \\F\\ > 4e(A, W).
According to Proposition 2.1 we have p [F] < \\F\\, and so Theorem 1.3 shows that
F is not slow. Therefore, c^z(A, W) < 4e(A, W).
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2.2. Proof of Theorem 1.1. We shall derive Theorem 1.1 from Theorem 1.2 by
a stabilization argument. Let G(q, p) jp2 be the Hamiltonian generating the

geodesic flow on T^S1, and abbreviate G8 {{q, p) \ G{q, p) < e}.

Lemma 2.3. For any subset A of a symplectic manifold (V, m) and any e > 0,

c°uz(A, V) < c°uz (A x GE, V x r*^1).

Proof. We can assume that Int A /0. Let F e Kc (Int A) be slow. We choose a

smooth function a : R —>¦ [0, 1] such that

a(t) 1 if t < |e and a(t) =0 if t > |e.

The function i7^: y x T^^1 -^ R given by (v, w) *--* F(v)a(G(w)) belongs to
Mc (Int (A x GE)). In order to see that Fs is slow, assume that x(t is a contractible

periodic orbit of its Hamiltonian flow. Thenx(f) (x\(t), X2{t)) C V xT*S1, where
both xi (t) and X2 (f are contractible periodic orbits. Denoting the Hamiltonian vector
fields of F and G by XF and XG, we find

x1(t)=a(G(x2(t)))XF(x1(t)),
x2(t) F(x1(t))a'(G(x2(t)))XG (x2(0) ¦

Therefore, the orbits x\{t) and x2{t) are, up to reparametrization, orbits of XF and

Xg- Since i7 and G are autonomous, we conclude that the functions a(G{x2{t)))
and F\x\(t))a''(G(x2(t))) are constant. Since |a(G(x2))| G [0, 1] and F is slow, the

orbit x\{t) is constant or has period > 1, and since all contractible periodic orbits
of the flow of G are constant, the orbit x2{t) is constant. We have constructed for
every slow F e Hc (Int A) a slow Fs G Hc (Int (A x G8)) with max F max Fs.
Lemma 2.3 thus follows.

In order to prove Theorem 1.1 we need to show that for every compact subset A
of W,

c°uz(A, W) <4e(A x S1, W xH1). (5)

We can assume that e(A x 51, V7 x T^^1) is finite. Fix S > 0, and choose // G

x W x r*^1) such that ä displaces A x 5"1 and

<e(A xS1,WxT*S1)+S.

We then find e > 0 such that h displaces A x GE. It follows that

e (A x GE, W x r*^1) < \\H\\ < e (A x S1, W x T^1) + «5.
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Since both (W, co) and (T*S1, coq) are tame, so is their product, and since (W, co) is

stably strongly semi-positive, W x T*S1, co®coo) is strongly semi-positive. Together
with Lemma 2.3 and Theorem 1.2 we can thus estimate

chz (A,W) < 4Z (A x G8, W x r*^1)

<4e(A xGE,W xrt1)
<4e(A x51,ffxH1)+4i.

Since S > 0 was arbitrary, inequality (5) follows, and so Theorem 1.1 is proved.

2.3. Proof of Proposition 1.4. (i) By assumption, the set A x S1 is contained in
the finite CW-complex X x S1 of dimension < « + 1 in the (2n + 2)-dimensional
symplectic manifold (V x T*S1, co®coq). Since X x S1 can be displaced from itself
in y x T^S1 by a smooth isotopy, a result of Laudenbach [35] implies that X x S1

can be displaced from itself in (V x T*S1, co © coq) by a Hamiltonian isotopy. It
follows that es(A, V) < es(X, V) < co.

(ii) Consider the closed submanifold M x S1 of V x T*^1. Since «|m t^ 0

we have co © «oImxS1 7^ 0- Moreover, the Euler characteristic of M x S1

vanishes. A result of Polterovich [49] and Laudenbach-Sikorav [36] thus implies that

e(M xS'.Vx r*^1) 0, andsoes(A, V) 0.

(iii) The proof of the case n 1 is elementary and omitted. So assume that« > 2.

Since A is compact, L \ A is open. Using the Lagrangian Neighbourhood Theorem

we easily find a closed submanifold V of V which is not Lagrangian and such that
A c L'. By assertion (ii) we have e$(JJ, V) 0, and so es(A, V) 0.

3. Applications

Throughout this section, (V, co) denotes an arbitrary symplectic manifold, while
(W, où) denotes a tame and stably strongly semi-positive symplectic manifold. We

say that a compact subset A of (V, co) is displaceable if there exists h e Hamc( V, co)

such that h(A) n A 0, and we say that A is stably displaceable if A x S1 is

displaceable in (V x r*^1, co © coq). Thus A c V is (stably) displaceable if and only
if e(A, V) < oo (resp. es(A, V) < oo). Note that if A is (stably) displaceable, then

an entire neighbourhood of A is (stably) displaceable.

3.1. Almost existence of closed characteristics and the Weinstein conjecture.
A hypersurface S in a symplectic manifold (V, co) is a smooth compact connected
orientable codimension 1 submanifold of V without boundary. A closed characteristic

on S is an embedded circle in S all of whose tangent lines belong to the distinguished
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line bundle

£s {(x,Ç) g TS \co(Ç,î)) =0 for all/? G TXS}.

Examples show that Xs might not carry any closed characteristic, see [15], [17]. We
therefore follow [26] and consider parametrized neighbourhoods of S. Since S is

orientable, there exists an open neighbourhood / of 0 and a smooth diffeomorphism

â: S x / -> U cV

such that u(x,0) x for x g S. We call ¦& a thickening of S, and we abbreviate
SE ¦& (S x {e}). Denote by 330 (SE) the set of closed characteristics onSE which are
contractible in V. The refinement of the Hofer-Zehnder argument [28, Sections 4.1

and 4.2] in [42] shows

Proposition 3.1. For any thickening û: SxI—*UcVofa hypersurface S in

(V, co) with 4Z(C/, V) < co it holds that ,9° (Ss) £ 0for almost all eel.

Together with Theorem 1.2 we obtain

Corollary 3.2. Assume that S is a stably displaceable hypersurface in (W, co). Then

for any stably displaceable thickening û : Sx I --* U c W it holds that P° (Ss) ^ 0

for almost all eel.

In [61], Zehnder constructed a symplectic form on the 4-torus T4 (IR/Z)4
such that none of the hypersurfaces {x4 const} carries a closed characteristic. The

assumption in Corollary 3.2 that S is stably displaceable thus cannot be omitted.

A hypersurface S in a symplectic manifold (V, co) is called of contact type if
there exists a Liouville vector field X (i.e., £x&> dixco co) which is defined in
a neighbourhood of S and is everywhere transverse to S. Weinstein conjectured in
[60] that every hypersurface S of contact type with H1(S; R) 0 carries a closed
characteristic.

Corollary 3.3. Assume that S is a stably displaceable hypersurface of contact type
in (W, co). Then P°(S) ^ 0. In particular, the Weinstein conjecture holds true for S.

The Weinstein conjecture has been proved for various classes of hypersurfaces
of contact type in various classes of symplectic manifolds ([57], [26], [24], [10],
[25], [29], [40], [58], [38], [59], [4], [37], [39], [46]). Corollary 3.3 generalizes or
complements the results in [57], [26], [10], [59], [37], where the ambient symplectic
manifold is of the form (V xR2,m ® mo). Under the additional assumption that

(W, co) is weakly exact and convex, Corollary 3.3 has been proved in [12].
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3.2. Periodic orbits of autonomous Hamiltonian systems. We consider a smooth

proper Hamiltonian F on (V, co) which attains its minimum at 0. We abbreviate the

sublevel set F~l ([0, r]) by Fr, and define d\{F) g [0, oo] by

d\{F) sup{r g R | Fr is stably displaceable}.

Thusdi(F) > 0 if and only if F-^O) is stably displaceable. Denote by ,9°(F-l(r))
the set of non-constant periodic orbits on F~l (r which are contractible in V. Since
the set of critical values of F is closed and, by Sard's theorem, of Lebesgue measure

zero, Corollary 3.2 yields

Corollary 3.4. Consider a proper Hamiltonian F on (W, co) with minimum 0, and

assume thatdx{F) > 0. Then 3>°(F-l(r)) £ 0 for almost all r e]0,di(F)].

Discussion. 1. Recall that Corollary 3.4 becomes relevant in conjunction with Proposition

1.4 applied to A F 1(0).

2. According to [17], every symplectic manifold (V, co) of dimension 2n > 4
admits a proper C2-smooth Hamiltonian F with minimum 0 and d\ (F) > 0 such that
for a sequence n -> 0 of regular values the levels F~l (a*) carry no periodic orbit,
and if In > 6, then F can be chosen C00-smooth.

3. Consider a tame symplectic manifold (W2n, co) for which [co] and c\ vanish

on 7T2( W), and assume that the proper function F : W --* R attains its minimum 0

along a closed symplectic submanifold M2k of (W,co). It has been shown in [17,

Corollary 2.16] that ,9°{F-l{r)) £ 0 for almost all r e ]0, b(F)], where

b(F) sup {r g M I Fr c 5(M, F)} g ]0, cx>] (6)

and B(M, F) is "the F-maximal symplectic ball neighbourhood of M in (W, co)",

see [17, Section 4.1] for details. For k g {0, 1, \_n/2\}, this result is covered

by Proposition 1.4 and Corollary 3.4 with d\{F) > 0 instead of b{F). It would be

interesting to compare these two constants.

3.3. Closed trajectories of a charge in a magnetic field and a potential. Consider
a closed Riemannian manifold (M, g) of dimension at least 2, and endow the cotangent

bundle T*M with the standard symplectic form coo J2i dpi A dq\. We fix a

closed 2-form a on M and define the twisted symplectic form coa on n : T*M —>¦ M
by ft>ff «o + n*a. We also fix a function y on M with minimum 0. The flow of
the Hamiltonian system

Fv : (T*M, coa) -> R, Fv(q, p) ^ \ \p\2

describes (for example) the motion of a unit charge on (M, g) subject to the magnetic
field a and the potential V, cf. [45], [31], [14]. As before we denote by ^{F'1^))
the set of periodic orbits on the level Fy l{r) which are contractible in T*M and

hence project to contractible closed trajectories on M.
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Corollary 3.5. Consider a closed Riemannian manifold (M, g) endowed with a
closed 2-form a which does not vanish identically, and let V be a potential on M with

-—Iminimum 0. Thend\{Fy) > 0 and P°{F~l{r)) ^ 0 for almost all r e ]0,di(Fv)].

Proof. It is shown in [5] that for any closed 2-form a on a closed manifold M the

symplectic manifold (T*M, coa) is tame. Since the kernel of the differential of the

projection n : T*M --* M defines a Lagrangian distribution in the tangent bundle
of (T*M, cùa), the first Chern class vanishes, so that (T*M, wa) is stably strongly
semi-positive. Moreover, Fy is proper, has minimum 0, and Fy1 (0) c M; and since

a does not vanish, M is not Lagrangian. Proposition 1.4 (ii) thus yields d\(Fy) > 0,

and so Corollary 3.5 follows from Corollary 3.4.

Specializing to the case V 0, we set d\{g, a) d\{Fo) and denote the sphere
bundle F^V) by Er.

Corollary 3.6. Consider a closed Riemannian manifold (M, g) endowed with
a closed 2-form a which does not vanish identically. Then d\{g,a) > 0 and

,9°{Er) £ 0 for almost all r e ]

Discussion. 1. There has been much recent progress in the existence problem for
periodic orbits of a charge in a magnetic field ([45], [31], [1], [13], [24], [14], [38],
[50], [18], [30], [7], [19], [5], [17], [41], [8], [6], [12], [47]). Corollary 3.6 solves the

almost existence problem at small energies. Under additional assumptions on M, g
or o, stronger results are known. We refer to [14], [52], [47] for the state of the art.

2. If a is exact, d\(g, a) < ^ maxxeM |a(x)|2 for all a with da a, see [12]. If
a is non-exact, d\ (g, a can be infinite; examples with infinite d\ (g, a are non-exact
closed 2-forms a on tori, see [18], [52].

3. One cannot expect that !P° (Er) ^ 0 for almost all r > 0 in general. Indeed,
let M be a closed oriented surface of genus 2, and let g and a either be a Riemannian
metric of constant curvature —1 and its area form or the Riemannian metric and

the exact 2-form constructed in [48]. Then P° (Er) 0 for all r > \, see [14,

Example 3.7] and [48].
4. Assume that M is neither a 2-sphere nor an orientable surface of genus > 2. If

a is non-exact, then none of the hypersurfaces Er in(T*M, coa) is of contact type, see

e.g. [52]. Therefore, Corollary 3.6 does not follow from existence results of closed
characteristics on contact type hypersurf aces.
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