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Applications of Hofer’s geometry to Hamiltonian dynamics

Felix Schlenk*

Abstract. We prove that for every subset A of a tame symplectic manifold (W, ) meeting a
semi-positivity condition, the 7r1-sensitive Hofer—Zehnder capacity of A is not greater than four
times the stable displacement energy of A,

iy (A, W) < de(A x S, W x T*S1.

This estimate yields almost existence of periodic orbits near stably displaceable energy levels
of time-independent Hamiltonian systems. Our main applications are:

e The Weinstein conjecture holds true for every stably displaceable hypersurface of contact
type in (W, o).

e The flow describing the motion of a charge on a closed Riemannian manifold subject to a
non-vanishing magnetic field and a conservative force field has contractible periodic orbits
at almost all sufficiently small energies.

The proof of the above energy-capacity inequality combines a curve shortening procedure in
Hofer geometry with the following detection mechanism for periodic orbits: If the ray {¢}},
t > 0, of Hamiltonian diffeomorphisms generated by a compactly supported time-independent
Hamiltonian stops to be a minimal geodesic in its homotopy class, then a non-constant con-
tractible periodic orbit must appear.

Mathematics Subject Classification (2000). 37105, 37J45, 58F05.

Keywords. Hofer—Zehnder capacity, displacement energy, Weinstein conjecture, periodic or-
bits.

1. Introduction and results

On their search for periodic orbits of autonomous Hamiltonian systems, Hofer and
Zehnder ([27], [28]) associated to every open subset A of a symplectic manifold
(V, @) a number, the Hofer—Zehnder capacity cpz(A) € [0, co], in such a way that
cyz(A) < oo implies almost existence of periodic orbits near any compact regular
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energy level of an autonomous Hamiltonian system on A. Showing that cpyz(A) is
finite is, however, often a difficult problem. Our main result is that if a subset A
of a tame symplectic manifold meeting a suitable semi-positivity condition can be
displaced from itself by a Hamiltonian isotopy in a stabilized sense, then the Hofer—
Zehnder capacity of A is indeed finite.

In order to set notations, we abbreviate I = [0, 1] and consider an arbitrary
smooth symplectic manifold (V, ) without boundary. Denote by #.(I x V) the
set of smooth functions / x V — R with compact support. The Hamiltonian vector
field of H € #.(I x V), defined by

o(Xpg,, ) =—dH(-),
generates a flow /;. The time-1-maps % form the group
Ham (V,w) :={h | H € #.(I x V)}

of compactly supported Hamiltonian diffeomorphisms of (V, w). The set of functions
in #.(I x V) which do not depend on ¢ € I is denoted by F#.(V). We shall denote
functions in #.({ x V) by H or K and functions in #.(V) by F or G, and their
flows by h; or k; and f; or g;.

The Hofer—Zehnder capacity we shall study is defined as follows. We say that
F e #.(V) is slow if all non-constant contractible periodic orbits of f; have period
greater than 1. Following [27], [28] and [38], [53], [17] we define for each subset A
of (V, w) the m1-sensitive Hofer—Zehnder capacity

crz(A, V,w) = sup{max F —min F | F € J.(Int(A)) is slow}. 8]

We shall often suppress o from the notation, and we shall write cj}, (V) instead
of ¢ji(V, V). The Hofer-Zehnder capacity cuz(A) mentioned above is obtained by
taking the supremum over the smaller class of functions F' € #. (Int(A)) for which all
non-constant periodic orbits of f; have period > 1. Therefore, cnz(A) < cfjz (A, V).
We shall compare the Hofer—Zehnder capacity cpy, (A, V) with the displacement
energy defined in [21], [32]. The norm ||H|| of H € J#.(I x V) is defined as

1
H| = H(t,x) —min H(t, x))dt,
1] /0(%‘ (1) — min Hit, )

and the displacement energy e(A, V) = e(A, V, w) € [0, oco] of a subset A of V is
defined as

e(A, V) =inf {||H| | H € #.(I x V), h(A)N A =}
if A is compact and as

e(A, V) =sup{e(K, V)| K C A is compact}
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for a general subset A of V. In fact, we shall compare ¢}y, (A, V) with the stable
displacement energy defined as

es(A, V) = e(A x SL,V x T*S!, 0 ® ap)

where wy = dp A dg is the standard symplectic form on T*S!. We are able to do
this for the following class of symplectic manifolds.

Definition ([20], [56], [2]). A symplectic manifold (W, w) is fame if W admits an
almost complex structure J and a complete Riemannian metric g such that

e J is uniformly tame, i.e., there are positive constant Cq and C, such that
(X, JX)>C1|X|II* and o X, V)| < CIX[Y]

forall X, Y e TW.

e The sectional curvature of (W, g) is bounded from above and the injectivity
radius of (W, g) is bounded away from zero.

Examples of tame symplectic manifolds are closed symplectic manifolds, standard
cotangent bundles (7*M, wo) as well as twisted cotangent bundles (T*M, w,) over
a closed base M, and symplectic manifolds which at infinity are isomorphic to the
symplectization of a closed contact manifold. The class of tame symplectic manifolds
is closed under taking products or coverings.

For technical reasons we also impose a semi-positivity condition on (W, w). The
first Chern class ¢; € H*(W; Z) is defined as the first Chern class of the complex
vector bundle (TW, J), where J is any almost complex structure such that w( -, J-)
is a Riemannian metric. Recall from [43], [23], [54], [44] that a 2n-dimensional
symplectic manifold (W, w) is strongly semi-positive if for all A € mp(W),

w(A) >0, c1(A)>2—n = c1(A) >0.

Definition. A 2n-dimensional symplectic manifold (W, ) is stably strongly semi-
positive if for all A € mp (W),

w(A) >0, c;(A) >1—n = c1(4) >0.
Equivalently, (W, w) satisfies one of the following conditions.
(1) w(A) = ic1(A) forevery A € m(W) and some A > 0;
(1) c1(A) =0 forevery A € my(W);

(iii) The minimal Chern number N > 0 defined by ¢ (r2(W)) = NZ is at least n.



108 F. Schlenk CMH

Since (T*S!, w) is exact and has vanishing first Chern class, (W, o) is stably
strongly semi-positive if and only if (W x T*S!, w @ wp) is strongly semi-positive.
This assumption guarantees that the evaluation map used in the definition of the
Gromov—Witten invariants relevant for our arguments is a pseudo-cycle. If one is
willing to use Liu—Tian’s construction of the S!-invariant virtual moduli cycle, this
assumption can be dropped throughout the paper.

Our main result is the following energy-capacity inequality.

Theorem 1.1. Assume that A is a subset of a tame and stably strongly semi-positive
symplectic manifold (W, w). Then

cpy (A, W) <deg(A, W).

We shall derive Theorem 1.1 from the following result by capitalizing on the fact
that the definition of cpy, involves only contractible periodic orbits and by using a
stabilization trick found in Macarini’s work [41].

Theorem 1.2. Assume that A is a subset of a tame and strongly semi-positive sym-
plectic manifold (W, w). Then

iz (A, W) < 4e(A, W).

Up to its slightly more restrictive hypothesis, Theorem 1.1 is stronger than The-
orem 1.2. Indeed, it is elementary to see that es(A, V) < e(A, V) in general, and in
the dynamically relevant Example 1.5 below we have eg(A, V) < e(A, V) = oo.

The energy-capacity inequality

oz (A, V) <e(A, V) 2)

is known for every subset A of a weakly exact symplectic manifold (V, w) which is
closed or convex ([22], [53], [12], [16], [11]). For the open ball B2 (r) of radius r in
(R?", wg) it holds that

iz (B (), R?") = e (B (r), RY") = 772,

see [28], and so (2) is sharp. It is conceivable that the factor 4 in Theorems 1.1 and
1.2 can be omitted.

Following Polterovich [50] we shall obtain Theorem 1.2 by combining an ele-
mentary curve shortening technique in Hofer’s geometry with the following detection
mechanism for periodic orbits.

Theorem 1.3. Assume that (W, w) is a tame and strongly semi-positive symplectic
manifold, and that the autonomous Hamiltonian F € #H.(W) is slow. Then the path
S1, t €10, 1], is length minimizing in its homotopy class.
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Here, the length of f; is defined as || F||. This result was discovered by Hofer [22]
for (R?", wp) and has been proved in [34] for weakly exact tame symplectic manifolds;
it removes an additional assumption on F in [9], [44] and verifies Conjecture 1.2 in
[44] for tame strongly semi-positive symplectic manifolds.

Theorems 1.1 and 1.2 show that if eg(A, W) or e(A, W) is finite, then so is
criz (A, W), and the finiteness of ¢, (A, W) implies existence of contractible peri-
odic orbits on almost every compact regular energy level of an autonomous Hamil-
tonian system on A. We thus want to understand which compact subsets of a sym-
plectic manifold V have finite (stable) displacement energy. Every compact subset
of a symplectic manifold of the form (V x R?, w @ wo) has finite displacement
energy. Less obvious sufficient assumptions on A alone are collected in the fol-
lowing proposition essentially due to Laudenbach [35] and to Polterovich [49] and
Laudenbach—Sikorav [36]. Recall that a middle-dimensional submanifold L of a
symplectic manifold (V, w) is called Lagrangian if w vanishes on L.

Proposition 1.4. Let A be a compact subset of a 2n-dimensional symplectic manifold
(V, w).
(1) If A is contained in an embedded finite CW-complex X of dimension < n, then
es(A, V) < 0.

(i) If A is contained in an n-dimensional closed submanifold M which is not
Lagrangian, then es(A, V) = 0.

(i) If A is strictly contained in a closed Lagrangian submanifold L, then
es(A, V) =0.

The example S - (T*S 1 o) shows that neither the dimension assumption in (i)
nor the assumption w|ps # 0 in (i1) nor the assumption A C L in (iii) can be omitted.
The following example will play an important role in our applications.

Example 1.5. Let ¢ be a non-vanishing closed 2-form on a closed manifold M
and let w, = wg + 7*0 be the twisted symplectic form on its cotangent bundle
7:T*M — M. Thenes(M, T*M, ws) = 0 by Proposition 1.4 (ii). Note that if the
Euler characteristic x (M) does not vanish, then e(M, T*M, wy) = 0.

Theorems 1.1 and 1.2 and Proposition 1.4, which are proved in the next sec-
tion, have various applications to the existence problem of periodic orbits of time-
independent Hamiltonian systems. Some of them are given in Section 3 below.
Further such applications as well as an application to Lagrangian intersections can
be found in [52].

Acknowledgements. The cornerstone to this work was laid by Leonid Polterovich,
who suggested to me to combine his approach to periodic orbits of a charge in a
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magnetic field in [50] with the approach in [12]. I cordially thank him for sharing his
insight with me. I also thank Urs Frauenfelder and Viktor Ginzburg for their generous
help, and Ely Kerman and Jean-Claude Sikorav for valuable discussions. Much of
this work has been written during my stay at Tel Aviv University in April 2003, and it
was finished at FIM of ETH Ziirich and at Leipzig University. I wish to thank these
institutions for their support, and I thank Hari and Harald and Matthias Schwarz for
their warm hospitality.

2. Proofs

2.1. Proof of Theorem 1.2. We follow Polterovich’s beautiful argument in [50,
Section 9.A]. The proof consists of two steps.

Step 1. Curve shortening in Hofer’s geometry

Curve shortening in Hofer’s geometry was invented by Sikorav in [55] and further de-
veloped in [33, Proposition 2.2]. Here, we closely follow the proof of Theorem 8.3.A
in [51], see also Theorem 3.3.A in [3].

We consider an arbitrary symplectic manifold (V, o). Two Hamiltonians H, K €
H.(I x V) are equivalent, H ~ K, if h = k and the paths {/}, {k;}, t € [0, 1],
are homotopic in Ham.(V, ») with fixed end points. In other words, there exists a
smooth family {H*}, s € [0, 1],in #.(I x V) such that h¥ = h, and h} = k for all ¢
and h* = h = k for all 5. The group of equivalence classes #.(/ x V)/ ~ form the
universal cover Ham.(V, @) of Ham.(V, ). We denote the lift of the Hofer norm to
Ham/(V, w) by

plhd = plH] :=inf {|K | K ~ H}.

Proposition 2.1. Consider a compact subset A of an arbitrary symplectic

manifold (V, w) such that e(A, V) < oo. If F:' V — R is supported in A and

|F|l > 4e(A, V), then p [F] < || F|l.

Proof. Choose a path {i;}, ¢ € [0, 1], in Ham.(V, ») such that h(A) N A = ¥ and
plhl < $IIFl. 3)

For t € [0, 1] we decompose the path f; as

fo=(fipohio fipohy")e (hio 5 ohit o fip) =bioar.
As we shall see below,

pla] < 3IIF| and plb] <i|F]. 4)



Vol. 81 (2006) Applications of Hofer’s geometry to Hamiltonian dynamics 111

Since {b; o a;}1is equivalent to the juxtaposition of {a; } and {b;ca; } and since p satisfies
the triangle inequality, the estimates (4) imply Proposition 2.1. In order to prove the
first estimate in (4), notice that the paths { ft721 oh;lof s2} and { fl_/% oh; Lo f 2}
are equivalent and that
plfinoht e fip]=p[h' 1 =pihd.
Together with the triangle inequality and the estimate (3) we can estimate
plas] = p[hs o f,721 ohyto fi2]

< plhd+p[fn o bt o fi2]

=2p[h]

< 3IF].
To prove the second estimate in (4), notice that the path {b;} = { Jippohio fipohy 1 }
is equivalent to the path { fi/2 o h o f;/2 o h~'} generated by the Hamiltonian

K(t,x)=3F(x)+ 3F(h™" f3x), 1 €0,1].

Since I is autonomous, F' = I o f;7, and since & displaces supp I’ C A, so does
k=1, Therefore,

IKill = 3| F + Foh™ o f5]
=Y|Fofip+ Forl
=1|F+Fon
=LIFI,

and so p [b¢] < % ||F]|. The proof of Proposition 2.1 is complete. O

Step 2. The cut point has a non-constant contractible periodic orbit

Consider an arbitrary symplectic manifold (V, w). We recall from the introduction
that F € #.(V) is slow if all non-constant contractible periodic orbits of f; have
period > 1. We say that ' € #.(V) is flat if all non-constant periodic orbits of the
linearized flow of F at its critical points have period > 1.

Lemma 2.2. Assume that (W, w) is a tame strongly semi-positive symplectic mani-
fold, and that the autonomous Hamiltonian F € #H.(W) is slow and flat. Then the
path fi, t € [0, 1], is length minimizing in its homotopy class.

Proof. If W is closed, this result is proved in [9], [44], see also [34]. If (W, w) is
not closed but tame, then the compactness theorems in [20], [56] hold, and so the
arguments in [44] establishing compactness of the relevant Floer moduli space go
through. O
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Following a suggestion by Viktor Ginzburg, we derive Theorem 1.3 from
Lemma 2.2 by elementary means:

Proof of Theorem 1.3. Let F € #.(W) be slow. Arguing by contradiction, we as-
sume that p[F] < || F||. Choose & > 0 so small that

olF1+2e < ||F|.

Since F is smooth and compactly supported and by Sard’s theorem, the set C of
critical values of F is compact and has zero Lebesgue measure. If F(W) = [a, b],
we thus find finitely many intervals [a;, b;] C [a, b] \ C such that ) ;(b; —a;) >
(b — a) — . Choose a smooth function r: [a, b] — R such that r(a) = a and such
that 0 < r/(r) < 1 for all ¢ and

ry=1ifte| Jlas, bl and () =0ifteC.

1

The function G = r o F belongs to #.(W) and is both slow and flat. Moreover,
maxG =r) >r(a)+ (b —a) —e =max F — &.

Sincethepath{gtoﬁ_l}is generatedby G — F =roF — F andsince ||[ro F — F|| =
max ' —max G < g, we have p[g; o f[l] < &. Therefore,

plGl = plerofitof]
< plaof ] +plF]
< e+plF]
< ||Fll—e
< lGl.

We have constructed a slow and flat G € #.(W) with p[G] < ||G]||, in contradiction
to Lemma 2.2. O

We would like to point out that the proof of Lemma 2.2 is the only place were we
use a semi-positivity assumption on (W, w). As explained in [44] the S'-invariant
virtual moduli cycle can be used to establish Lemma 2.2 for arbitrary tame symplectic
manifolds. The above argument then yields Theorem 1.3 and hence Conjecture 1.2
in [44] for all tame symplectic manifolds.

End of the proof of Theorem 1.2. We can assume that e(A, W) < oo, and in view of
the definitions of the capacity cj, and the displacement energy e we can assume that
A is compact. Let F' € #. (Int A) be such that max F —min F = ||[F|| > 4e(A, W).
According to Proposition 2.1 we have p [F] < || F|, and so Theorem 1.3 shows that
F is not slow. Therefore, cfj; (A, W) <4e(A, W). O
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2.2. Proof of Theorem 1.1. We shall derive Theorem 1.1 from Theorem 1.2 by
a stabilization argument. Let G(g, p) = % p? be the Hamiltonian generating the
geodesic flow on T*S!, and abbreviate G° = {(¢, p) | G(q, p) < ¢}.

Lemma 2.3. For any subset A of a symplectic manifold (V, @) and any & > 0,
iz (A, V) < ey (A x G°,V x T*S").

Proof. We can assume that Int A # ). Let F € # (Int A) be slow. We choose a
smooth function a: R — [0, 1] such that

a(ty=1ifr <ie and a(t)=0 ift > e.

The function Fg: V x T*S! — R given by (v, w) — F(v)a(G(w)) belongs to
H. (Int (A x G®)). In order to see that Fy is slow, assume that x(7) is a contractible
periodic orbitof its Hamiltonian flow. Thenx(#) = (x1(¢), x2(¢)) C VT *$1, where
both x7 () and x2(¢) are contractible periodic orbits. Denoting the Hamiltonian vector
fields of F and G by X and X¢, we find

21(t) = a(Glx(0)) X (x1(1)
(1) = F(x1(1)a' (G (x2(1)) X g (x2(1)) -

Therefore, the orbits x1(#) and x;(¢) are, up to reparametrization, orbits of X and
X¢. Since F and G are autonomous, we conclude that the functions a(G(xz(t)))
and F (x1(1))a’ (G (x2(1))) are constant. Since |a(G(x2))| € [0, 1] and F is slow, the
orbit x1(¢) is constant or has period > 1, and since all contractible periodic orbits
of the flow of G are constant, the orbit x,(¢) is constant. We have constructed for
every slow F' € #, (Int A) aslow Fs € #, (Int (A x G*)) with max F = max Fjs.
Lemma 2.3 thus follows. o

In order to prove Theorem 1.1 we need to show that for every compact subset A
of W,

iy (A, W) <4de (A x S, W x T*s1). (5)
HZ

We can assume that e(A x S, W x T*S!) is finite. Fix § > 0, and choose H €
He(I x W x T*S1) such that / displaces A x S' and

IHIl <e(A xS, WxT*s") +3.
We then find ¢ > 0 such that & displaces A x G°. It follows that

e(AxG* WxT*S") <[|H| <e(AdxS"WxT*s')+3s.



114 F. Schlenk CMH

Since both (W, @) and (T*S!, wg) are tame, so is their product, and since (W, w) is
stably strongly semi-positive, (W x T*S1, o@ay) is strongly semi-positive. Together
with Lemma 2.3 and Theorem 1.2 we can thus estimate

iz (A, W) < cfiz (A x G5, W x T*S')
<de(Ax G°, W x T*s")
<de (A xS', W xT*S') +45.

Since § > 0 was arbitrary, inequality (5) follows, and so Theorem 1.1 is proved. O

2.3. Proof of Proposition 1.4. (i) By assumption, the set A x S! is contained in
the finite CW-complex X x S! of dimension < n + 1 in the (2n + 2)-dimensional
symplectic manifold (V x T*S!, w @ wg). Since X x S' can be displaced from itself
in V x T*S! by a smooth isotopy, a result of Laudenbach [35] implies that X x S'
can be displaced from itself in (V x T*S', » @ wp) by a Hamiltonian isotopy. It
follows that eg(A, V) < es(X, V) < .

(ii) Consider the closed submanifold M x S' of V x T*S!. Since w|y # 0
we have o @ wglpy 51 # 0. Moreover, the Euler characteristic of M x S! van-
ishes. A result of Polterovich [49] and Laudenbach-Sikorav [36] thus implies that
e(M x S,V x T*S") =0, and so es(A, V) = 0.

(iii) The proof of the case n = 1 is elementary and omitted. So assume thatn > 2.
Since A is compact, L \ A is open. Using the Lagrangian Neighbourhood Theorem
we easily find a closed submanifold L’ of V which is not Lagrangian and such that
A C L'. By assertion (ii) we have es(L’, V) = 0, and so es(A, V) = 0. o

3. Applications

Throughout this section, (V, @) denotes an arbitrary symplectic manifold, while
(W, w) denotes a tame and stably strongly semi-positive symplectic manifold. We
say that a compact subset A of (V, w) is displaceable if there exists # € Ham.(V, w)
such that #(A) N A = , and we say that A is stably displaceable if A x S' is
displaceable in (V x T*S!, @ @ o). Thus A C V is (stably) displaceable if and only
if e(A, V) < oo (resp. es(A, V) < o0). Note that if A is (stably) displaceable, then
an entire neighbourhood of A is (stably) displaceable.

3.1. Almost existence of closed characteristics and the Weinstein conjecture.
A hypersurface S in a symplectic manifold (V, ») is a smooth compact connected
orientable codimension 1 submanifold of V without boundary. A closed characteristic
on S is an embedded circle in S all of whose tangent lines belong to the distinguished
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line bundle
Ls={(x,6ecTS|wE,n)=0forallnc T,S}.

Examples show that /£ ¢ might not carry any closed characteristic, see [15], [17]. We
therefore follow [26] and consider parametrized neighbourhoods of S. Since S is
orientable, there exists an open neighbourhood I of 0 and a smooth diffeomorphism

P:SxI—->UcCV

such that 9 (x,0) = x for x € S. We call ¥ a thickening of S, and we abbreviate
S. = U (S x {e}). Denote by #° (S, ) the set of closed characteristics on S, which are
contractible in V. The refinement of the Hofer—Zehnder argument [28, Sections 4.1
and 4.2] in [42] shows

Proposition 3.1. For any thickening 9: S x I — U C V of a hypersurface S in
(V, w) with ¢y, (U, V) < oo it holds that P° (Se) # ¥ for almost all & € 1.

Together with Theorem 1.2 we obtain

Corollary 3.2. Assume that S is a stably displaceable hypersurface in (W, w). Then
Sfor any stably displaceable thickening 0 : Sx 1 — U C W it holds that P° (S;) # ¥
foralmost all e € 1.

In [61], Zehnder constructed a symplectic form on the 4-torus T 4= (]R/Z)4
such that none of the hypersurfaces {x4 = const} carries a closed characteristic. The
assumption in Corollary 3.2 that S is stably displaceable thus cannot be omitted.

A hypersurface S in a symplectic manifold (V, w) is called of contact type if
there exists a Liouville vector field X (i.e., Lxw = dixw = w) which is defined in
a neighbourhood of S and is everywhere transverse to S. Weinstein conjectured in
[60] that every hypersurface S of contact type with H'(S;R) = 0 carries a closed
characteristic.

Corollary 3.3. Assume that S is a stably displaceable hypersurface of contact type
in (W, w). Then P°(S) # @. In particular, the Weinstein conjecture holds true for S.

The Weinstein conjecture has been proved for various classes of hypersurfaces
of contact type in various classes of symplectic manifolds ([57], [26], [24], [10],
[25], [29], [40], [58], [38], [591, [4], [37], [39], [46]). Corollary 3.3 generalizes or
complements the results in [57], [26], [10], [59], [37], where the ambient symplectic
manifold is of the form (V x R, 0 & wp). Under the additional assumption that
(W, w) is weakly exact and convex, Corollary 3.3 has been proved in [12].
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3.2. Periodic orbits of autonomous Hamiltonian systems. We consider a smooth
proper Hamiltonian ¥ on (V, @) which attains its minimum at 0. We abbreviate the
sublevel set F~1 ([0, r]) by F’, and define 41 (F) € [0, co] by

d1(F) = sup{r e R| F" is stably displaceable}.

Thus 41 (F) > 0if and only if F~1(0) is stably displaceable. Denote by #°(F~1(r))
the set of non-constant periodic orbits on F ~1(r) which are contractible in V. Since
the set of critical values of F is closed and, by Sard’s theorem, of Lebesgue measure
zero, Corollary 3.2 yields

Corollary 3.4. Consider a proper Hamiltonian F on (W, o) with minimum 0, and
assume that di (F) > 0. Then P°(F~(r)) # @ for almost all v € 10, d1(F)].

Discussion. 1. Recall that Corollary 3.4 becomes relevant in conjunction with Propo-
sition 1.4 applied to A = F~1(0).

2. According to [17], every symplectic manifold (V, w) of dimension 2n > 4
admits a proper C2-smooth Hamiltonian F with minimum 0 and 4, (F) > 0 such that
for a sequence r — 0O of regular values the levels F~!(r¢) carry no periodic orbit,
and if 2n > 6, then F' can be chosen C*-smooth.

3. Consider a tame symplectic manifold (W?", ») for which [w] and ¢; vanish
on > (W), and assume that the proper function F': W — R attains its minimum 0
along a closed symplectic submanifold M 2k of (W, w). It has been shown in [17,
Corollary 2.16] that PoF~Yr) # { for almost all » € 10, b(F)], where

b(F)=sup{r eR| F" C B(M, F)} €10, o] (6)

and B(M, F) is “the F-maximal symplectic ball neighbourhood of M in (W, »)”,
see [17, Section 4.1] for details. For k € {0, 1, ..., |n/2]}, this result is covered
by Proposition 1.4 and Corollary 3.4 with d1(F) > 0 instead of b(F). It would be
interesting to compare these two constants.

3.3. Closed trajectories of a charge in a magnetic field and a potential. Consider
a closed Riemannian manifold (M, g) of dimension at least 2, and endow the cotan-
gent bundle 7*M with the standard symplectic form wo = ), dp; A dg;. We fix a
closed 2-form o on M and define the twisted symplectic form w, onn: T*M — M
by w, = wg + 7*o. We also fix a function V on M with minimum 0. The flow of
the Hamiltonian system

Fy: (T*M,w,) > R, Fy(q.p) — 3 Ipl* + V().

describes (for example) the motion of a unit charge on (M, g) subject to the magnetic
field o and the potential V, cf. [45], [31], [14]. As before we denote by {P"(F;l(r))
the set of periodic orbits on the level Fy, 1(r) which are contractible in 7*M and
hence project to contractible closed trajectories on M.
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Corollary 3.5. Consider a closed Riemannian manifold (M, g) endowed with a
closed 2-form o which does not vanish identically, and let V be a potential on M with
minimum 0. Then d1(Fy) > 0 and e7"0(F‘71(r)) # ¥ for almost all r € 10, d1(Fv)].

Proof. 1t is shown in [5] that for any closed 2-form ¢ on a closed manifold M the
symplectic manifold (T*M, w,) is tame. Since the kernel of the differential of the
projection 7 : T*M — M defines a Lagrangian distribution in the tangent bundle
of (T*M, w,), the first Chern class vanishes, so that (T*M, w,) is stably strongly
semi-positive. Moreover, Fy is proper, has minimum 0, and £, L (0) C M; and since
o does not vanish, M is not Lagrangian. Proposition 1.4 (ii) thus yields d; (Fy) > 0,
and so Corollary 3.5 follows from Corollary 3.4. O

Specializing to the case V = 0, we set d1(g, o) = d1(Fp) and denote the sphere
bundle F; ' (r) by E;.

Corollary 3.6. Consider a closed Riemannian manifold (M, g) endowed with
a closed 2-form o which does not vanish identically. Then di(g,0) > 0 and
P°(E;) £ 0 for almost allr € 10,d1(g, 0)].

Discussion. 1. There has been much recent progress in the existence problem for
periodic orbits of a charge in a magnetic field ([45], [31], [11, [13], [24], [14], [38],
[501, [18], [301, [71, [19], [5], [17], [41], [8], [6], [12], [47]). Corollary 3.6 solves the
almost existence problem at small energies. Under additional assumptions on M, g
or o, stronger results are known. We refer to [14], [52], [47] for the state of the art.

2. If o isexact, di(g, 0) < %maxxeM |cc()c)]2 for all ¢ with de = o, see [12]. If
o is non-exact, di (g, o) can be infinite; examples with infinite d (g, o) are non-exact
closed 2-forms o on tori, see [18], [52].

3. One cannot expect that P° (E,) # ¢ for almost all » > 0 in general. Indeed,
let M be a closed oriented surface of genus 2, and let g and o either be a Riemannian
metric of constant curvature —1 and its area form or the Riemannian metric and
the exact 2-form constructed in [48]. Then £° (E,) = @ for all r > %, see [14,
Example 3.7] and [48].

4. Assume that M is neither a 2-sphere nor an orientable surface of genus > 2. If
o is non-exact, then none of the hypersurfaces E, in (T*M, w, ) is of contact type, see
e.g. [52]. Therefore, Corollary 3.6 does not follow from existence results of closed
characteristics on contact type hypersurfaces.
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