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The cone of curves associated to a plane configuration

C. Galindo* and F. Monserrat**

1. Introduction

In the last decades, cones associated to varieties have been a basic tool to approach the
theory of minimal models. Although this theory works in the case of smooth surfaces
by using Castelnuovo criterion to contract (—1)-curves, the higher dimensional case
is much more difficult. For treating it, there exists a minimal model program, where
Kawamata’s Theorem [5] on the cone of curves associated to a variety X plays an
important role. This theorem generalizes a result by Mori [9] and guarantees that the
cone NE(X) is rational polyhedral if the anticanonical bundle of X is ample.

On the other hand, the characteristic cone P(Z/X), introduced by Hironaka, is
considered in [3] to study projective birational morphisms 77 : Z — X which are an
isomorphism outside 7 1 (), for a closed point O € X, where X and Z are normal
algebraic varieties over an algebraically closed field. Set A;1(Z/X) the R-vector
space N1(Z/X) ®z R, Ni(Z/X) being the commutative group of 1-dimensional
cycles on Z which are mapped to O by 7 modulo numerical equivalence and R (Z)
the set of real (integer) numbers. Consider NE(Z / X) the (convex) conein A1(Z/X)
spanned by the cosets of effective curves in Z which are mapped to O by 7. Denote
by A'(Z/X) the dual vector space of A;(Z/X) and by P(Z/X) the dual cone of
NE(Z/X).

A topological cell of a cone C is defined to be a cone D such that either it is
equal to C or it is a maximal cone contained in E — interior( E), where E is some
larger cell of C and interior(E) denotes the relative interior of E. It is proved in
[6] that a one to one correspondence can be given between sandwiched varieties of
7 Z — X and topological cells of P(Z/X). The relation between topological cells
of P(Z/X) and of P(Z/X) shows that if the cone NE(Z/X) is polyhedral, then
the set of sandwiched varieties associated to 7 is finite [1]. Recall that sandwiched
varieties are those normal schemes through which 7 factorizes by birational projective
maps.

Now, assume that dim X = 3. Suppose also that 77 is given by a constellation of
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mfinitely near points over X, that is, it is given by a configuration of infinitely near
points over the variety X — see the Section 2 for the definition — with a unique point
at X. Denote by B; the exceptional divisor which appears after blowing-up each
infinitely near point of the constellation and by E; its strict transform in Z. Then, it
can be proved [1] that the number of sandwiched varieties associated to = is finite
provided that every cone NE(E;) is polyhedral, NE(E;) being the cone spanned by
the images in A (E;) of the cosets in Ny (E;) of effective curves on E;, where N1 (E;)
denotes the commutative group of 1-cycles on E; modulo numerical equivalence and
A1(E;) the R-vector space N1 (E;) ®z R.

This paper follows the above outlined way, started by Campillo and Gonzalez-
Sprinberg in [1] and recently continued in [2], which consists on studying projective
birational morphisms by means of cones. It motivates the study of the following
problem. Set X = P? the bidimensional projective space over an algebraically closed
field of characteristic zero and K a configuration of infinitely near points over X which
gives a projective birational morphism 7 : Z — X, usually called a modification of
X . We are interested in the polyhedrality of the cone NE(Z), also called the cone of
curves associated to K. Notice that, in most cases, the anticanonical bundle of the
variety Z is not ample.

There exist other reasons which make interesting the study of the polyhedrality
of NE(Z) as Nikulin says in [10]. Those are that surfaces whose cone of curves is
polyhedral can be considered as Algebraic Geometry analogue of arithmetic groups
generated by reflections in hyperbolic spaces and that it is expected that quantum
cohomology of varieties fibrated by surfaces Z with polyhedral cone of curves have
good applications, since the set of exceptional curves of Z can be considered as the
analogue of a system of simple real roots.

The main goal of this paper is to prove that, roughly speaking, if 7 corresponds
to a case singular enough, then the cone NE(Z) is polyhedral.

In the course of this paper, we shall prove that NE(Z) is a polyhedral cone if,
and only if, the set of its extremal rays and possibly other ones of NE(Z) with null
self-intersection has no limit points. These limit points (if they exist) are given by
points which are in the intersection between a half-space associated to the canonical
divisor class on Z and the unit sphere in an ambient space of dimension equal to the
cardinality of the configuration K. Moreover, we deduce that the cone of curves of a
configuration of cardinal eight or less 1s always polyhedral (see [8, Theorem 26.2],
for the case when all the blown-up points are in P?).

To decide the polyhedrality of the cone NE(Z) for configurations of higher cardi-
nality, we give a geometrical condition in Theorem 1 and an explicit one in Theorem 2.
The statement of the second referred theorem is simple: The cone of curves is poly-
hedral whenever xGx! > 0 for all vector x € R™ \ {0} of nonnegative coordinates,
where G 1s an explicit and easy to compute n-dimensional square matrix, which de-
pends on the singularity of the configuration (of cardinality n) K. From the study



Vol. 80 (2005) The cone of curves associated to a plane configuration 77

of the entries of the matrix G, we can conclude that if the singularity of K is large
enough, measured in terms of proximity chains among the points in K (see Defini-
tion 4), then the cone NE(Z) is polyhedral. The condition established in Theorem 2
can be strengthened when the configuration is a chain (Proposition 6) and so, we
can guarantee that the cone NE(Z) is polyhedral only by inspecting the sign of the
entry (n, n) in the matrix G. Notice that this fact provides a wide range of examples
whose associated cone of curves is polyhedral. Finally, we derive a consequence to
ensure polyhedrality in the case when K is the configuration associated to a germ of
analytically irreducible plane curve.

2. Preliminaries

Let X be a smooth variety of dimension d > 2, we shall consider varieties obtained
from X as follows: Take finitely many closed points in X: Q1, 03, ..., Q7. Blow-
up X at Q% and the obtained variety at Q% and so on. Denote by B{ 1=<i=<r)
the exceptional divisor associated to the blowing-up at Q’i. The closed points of B{
(1 <i < r) are called points in the first infinitesimal neighborhood of Qil. Now,
pick finitely many closed points at each divisor Bi and blow-up the last obtained
variety at each new point. We can iterate this method finitely many times. For j > 0,
define inductively the points in the jth infinitesimal neighborhood of Q’i as the points
i the first infinitesimal neighborhood of some point in its (j — 1)th infinitesimal
neighborhood. The points @ which are in the jth infinitesimal neighborhood of
some point P appearing in the above described process for some j > 0 are also
called infinitely near points to P (this will be denoted P < Q). A family of closed
points as we have described is called to be a configuration K (of infinitely near points
over X) and the obtained variety after the last blowing-up will be called the sky of the
configuration and usually denoted by Z. Notice that the relation < is a strict partial
ordering in K. The points Q"1 will be said points of level 0, those at B{ of level 1
and so on. Due to the local character of the blowing-up, we do not need to take into
account the order in which the points are blown-up.

We usually denote a configuration by K = {Q1, Q», ..., Oy}, bearing in mind
that if Q; < Q; theni < j. K provides a finite sequence of point blowing-ups,
called a modification of X:

Z=Xnt1 -2 Xy —> - —> Xo =5 X1 = X,

7; being the blowing-up at Q;. Clearly, apoint Q ; is infinitely nearto Q; if 7;;(Q;) =
Q;, where m;; is the composition of the maps associated to =, 7;;: X; — X;.
Furthermore, denote by B; the exceptional divisor that we get after blowing-up X; at
Q; and by E; (resp., E}) the strict (resp., total) transform of B; in Z. We shall say
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that Q ; is proximate to Q; (denoted by j — i or @; — ;) whenever Q; belongs
to the strict transform of B; in the variety which contains Q ;.

Set E = @1<i<xZE;, the group of divisors of Z with exceptional support. It is
no difficult to see that £; = E — Zj_”- E;‘ As a consequence, the set {E}1<i<x
is also a basis of E and the matrix relative to the bases {E;} and {E£]}, called the
proximity matrix of the configuration K, is given by (pij)i<i,j<n, Where p;; = 1,
pij = —1 wheni — j and p;; = 0, otherwise.

We can associate to each point of a configuration K a nonnegative integer, called
its weight or its virtual multiplicity, giving rise to a weighted configuration. Note that
weighted configurations are usually called clusters.

Assume that d = 2, X = (K, {vp}gek) is a weighted configuration and C a
curve on X. Then we can define the virtual transform of C on X; relative to K as

i—1
CH = (mom om)"C) =Y vo, E},
j=1

whenever 2 < i < n, éf{ = C. The virtual multiplicity of C at Q; relative to K is
defined to be the multiplicity of Cv’l‘7< at ;. We shall say that the curve goes virtually
(resp., effectively) through the weighted configuration K when the virtual transform
of C on Z is an effective divisor (resp., it coincides with its strict transform on Z).
We usually say that C goes through J when it goes virtually through K.

3. Polyhedrality of the cone of curves

As we have mentioned in the introduction, set X = P? := ]P’%, where F is an
algebraically closed field of characteristic zero. Consider a configuration K =
{Q1, Q2, ..., Ou} of mfinitely near points of X and the associated modification
7w : Z — X. Denote by N1(Z) the commutative group Pic(Z)/ =, where = denotes
numerical equivalence and set A1 (Z) = N1(Z)®zR. Notice that, in our case, N1 (Z)
is isomorphic to the group of 1 cycles on Z modulo numerical equivalence and that
on it, we can consider the intersection form which gives on A;(Z) a bilinear form
also denoted by -

Definition 1. We shall define the cone of curves associated to a configuration of
mfinitely near points of X, K, denoted by NE(Z), as the convex cone of A{(Z)
spanned by the images in A;(Z) of the cosets in N1(Z) of effective curves on Z
modulo numerical equivalence.

Throughout this paper, the numerical equivalence coset in Ni(Z) of a divisor
D on Z will be denoted by [D] and by an abuse of notation, we usually identify
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an element in Pic(Z) with its numerical equivalence coset, and also elements (and
their intersection form) in N;(Z) with their natural image (and their bilinear form)
in A (7).

Next, we supply two bases of the R-vector space A1(Z), which we shall use to
handle NE(Z). Let L be a projective line on X and let L (resp. L*) be its strict (resp.
total) transform on Z. Then, it is not difficult to show that B := {[L1, [E1], ..., [E.]}
and B* := {[L*], [E{], ..., [E;]} are bases of N1(Z) as Z-module and, therefore,
they are bases of A1(Z) as R-vector space.

We are interested in the polyhedrality of the cone NE(Z). First at all, we study its
extremal rays. In what follows, we shall denote by K either the canonical divisor class
associated to the variety Z or, by an abuse of notation, its coset modulo numerical
equivalence (or, even, its image in A;(Z)). Moreover, we say that an element in
N1(Z) generates a ray of NE(Z) when its image in A;(Z) does so. The following
result is an easy consequence of the Riemann—Roch Theorem.

Proposition 1. Let [D] be the coset in N1(Z) of an integral curve D on Z that
generates an extremal ray of the cone NE(Z). Then:

1) The intersection number D - D = D? sarisnes D? < 0.

11) It holds that either D? < 0or K -[D] > 0, whenever D is the strict transform
on Z of an integral curve C on X and some point in K does not belong to the strict
transform of C on the variety X; containing it.

Remark. An interesting, but obvious, fact is that if A is an effective curve on Z, then
there exists finitely many integral curves C on Z such that A - C < 0.

Next, we state some straightforward consequences of the above remark:

Remark. Let C be an integral curve on Z such that C% < 0. Then:

1) C 1s the unique integral curve on Z whose coset in N (Z) generates the ray that
it does.

11) If, in addition, D is an integral curve on Z different from C, then the inequality
C - D > 0 holds.

ii1) [C] generates an extremal ray of the cone NE(Z).

Furthermore, if 7 is an extremal ray of the closure of NE(Z), NE(Z), such that
72 < 0, then z must also be an extremal ray of NE(Z).

The family = {[E;]1}}_, is a lincarly independent set of the Z-module N1 (Z).
So, each [E;] gives rise to an extremal ray of the cone NE(Z) because if [E;] were
equal to a linear combination (with nonnegative coefficients) of cosets of irreducible
curves on Z, this combination would involve only elements in .

Since Kawamata’s Cone Theorem (see [5]) asserts that the set of extremal rays
of the cone NE(Z) in the region given by K - z < 0 is discrete, we are interested
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in studying the region of NE(Z) given by K - z > 0. It is straightforward, from the
remark after Proposition 1, that if there is a curve of degree 3/ which goes (virtually)
through the configuration K with multiplicities equal to /, then there are finitely many
mmages of irreducible curves of Z in the region given by K - z > 0.

From now on, fix an ample divisor H on Z and assume that n > 2 (note that when
n = 1, the cone NE(Z) is polyhedral). For any divisor D on Z, set D(1) := {z €
A1(Z) | [D]-z = 1} and consider the function

¢p: {z € Ai(£) | [D]-z > 0} — D(1),

which maps z to the intersection point between the hyperplane D(1) and the line
joining 0 and z. Finally, denote by NE(Z)y the set NE(Z) N Y, whenever Y be a
subset of A;(Z).

The following definition gives three sets which will be broadly used along this

paper.

Definition 2. We shall denote by R (R, resp.) the set of extremal rays of NE(Z)
(NE(Z), resp.). Also set

Ro:={ReR|r*=0forallr € R}.

Remark. Since NE(Z) is a subset of R**!, we can identify each ray of NE(Z) to
a point in the unit sphere S” in R**!. A limit point of R, R or Ry will be the ray
generated by a limit point (in S™) of the set of points in S™ that generate rays of the
above cited sets. As a consequence of the compactness of S”, whichever of the sets
R, R and R has a no limit point if, and only if, it is finite.

The following result relates the topology of extremal rays to the polyhedrality of
the cone NE(Z).

Proposition 2. NE(Z) is a polyhedral cone if, and only if, the sets R and Ro are
onite. Furthermore, if this is the case, then R is empty.

Proof It suffices to assume that R and R are finite. Associated to the ample divisor
H , we consider the nonnegative half-cone

V={zeA(Z)]| [H] z>0andz* > 0},

which is contained in NE(Z) (see [4], V.1.8). By Kleiman ampleness criterion NE(Z)
is a strongly convex cone and, thus, a system of representatives which generate the
rays in R constitutes a minimal set of generators of NE(Z). NE(Z) is spanned by the
elements of V and the rays in (R, and therefore R € R U V. However, RNV = Ry
because those elements that generate rays in R have nonpositive self-intersection.
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Hence, above representatives in R form a finite minimal system of generators of
NE(Z).

Finally, by Hodge Index Theorem, V is a half-cone over an Euclidean ball of
dimension 7, which is strictly convex. Therefore, 7> < 0 for all generators r of
elements of R, since V is a subset of NE(Z). Then, R < R and NE(Z) is a
polyhedral cone. O

As we have seen, limit points of rays in R and R help to decide whether the
cone of curves is polyhedral. Therefore we shall give two conditions which must be
satisfied by the generators of these limit points. Set Z the positive integers.

Proposition 3. Let r € A(Z) be an element which generates a limit point R of
whichever of the sets R or Rg. Thenr* =0 and K - r > 0.

Proof. The inequality K - r > 0 follows from the Kawamata’s Cone Theorem, since
there is no generator of a limit point of the sets R or R in the region of A1(Z) given
by the inequality K - z < 0.

It only remains to prove that 7> = 0 when R is a limit point of rays in R. Let
{Ci}1ez, be asequence of integral curves in IP2, such that the cosets in N1 (Z) of their

strict transforms on Z, [C;], are distinct and whose corresponding rays belong to R
and converge to R. Taking coordinates of the [C;]’s in the basis B*, we obtain the
sequence

{[EZ] - (dly €1, —€12, ..., _el,ﬂ)}l€Z+ .

After normalizing by the first coordinate, we obtain that the ray » will be given by
the direction (1, —1lim;_ o i’i—’ll, ey, —limy s eglz_,n)

Now, since for each fixed degree there are finitely many classes in Nq(Z) of strict
transforms of integral curves in P2, it is clear that the sequence {d; Ji2, diverges.
Finally, the adjunction formula for the strict transforms of the curves C; proves that

1 n n
1+ E(dﬁ ~3 & 34, —I—Zel,,) > 0.
i=1

i=1

Dividing by d12 and taking the limit at the infinite, we conclude 2 > 0. Since
Proposition 1 proves that [C;]? < 0, it is clear that r? = 0. O

Remark. With notations as in the above proof, it is clear that the coordinates
(e11,€12, ..., e ) are the effective multiplicities at the points of the configuration
K of the curves C; and so, they satisfy the proximity inequalities ¢; ; > j>i €, j>
i = 1,2,...,n (see [7]). Dividing by d;, taking limit at the infinite and setting
ri = limy_ o Z—f, we get that the r;’s also satisfy the proximity inequalities, that is

Ty ZZ]—nrJ
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Our next result concerns the case when the cardinality of the configuration is
small.

Corollary 1. Assume that the cardinality of a connguration K which dennes the
modincationw: Z — Xisn <9.

1) If n < 8, then NE(Z) is polyhedral.

i) If n = 9, then either NE(Z) is polyhedral or there is a unique limit point of
extremal rays of NE(Z) which is given by —K, K being the canonical divisor class
on the variety Z. Furthermore, if K has, at least, two points proximate to another
third one in K, then the cone NE(Z) is polyhedral.

Proof. Set B := {z eNE(Z)\ {0} | 22 = 0}. 1) is a consequence of Propositions 2
and 3 and the fact that, in this case, B is contained in the half-space of A;(Z) given
by K - z < 0 (see the proof of Lemma 1 in [1]).

To prove i1), assume that NE(Z) is not a polyhedral cone. Taking into account that
B C{ze€ Ai(Z)| [L*]-z > 0}, we can consider the image of B by ¢+ and so Rg
has, at most, one point. This follows from Kawamata’s Cone Theorem and the fact
that, in R?, the hyperplane ";_, x; = 3 is tangent to the sphere 3 ;_, x? = 1 at that
point with all its coordinates equal to 1/3. We finish the proof of the first statement
by observing that Propositions 2 and 3 show that [R has a unique limit point given by
the anticanonical divisor.

Finally, if K has two, or more, points proximate to another third one in K, then
the cone NE(Z) is polyhedral since, otherwise, the coordinates of the unique limit
point of R must satisfy the proximity inequalities, which is false. a

For any subset S € A1(Z), Co(S) stands for the convex cone generated by S.
The following result gives another condition for the cone NE(Z) to be polyhedral.

Theorem 1. The cone NE(Z) is polyhedral if the following condition
{zeNE(Z) | K 22 0}N{z e NE(Z) | 2* = 0} \ {0}

c U Gea@la-z<0
aeNE(Z)

holds.

Proof. Proposition 3 and the remark after Proposition 1 show that the set R has no
limit points. We only need to prove that the set R given at Definition 2 has no limit
points.

Suppose that R has a limit point and look for a contradiction. Let » be a generator
of this limit point. Itis clear, by Proposition 3, that K -» > 0 and, from the hypothesis,
[A] - r < O for some coset [A] of an effective divisor A on Z.
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Let[A] < 0 ([A] = 0, resp.) denote the half-space of A1(Z) givenby [A]-z < 0
([A]-z = 0, resp.). Let T be the set of cosets of integral curves in [A] < 0. T is
finite by the above mentioned remark.

NE(Z) € Co(T UNE(Z)[a}>0), because T' contains the images in A;(Z) of the
integral curves in the half-space [A] < 0 and N_E(Z)[ A]>0 contains the remaining
generators. However, Co(T' U NE(Z )[A1=0) 18 a closed convex cone (it is generated
by a compact set on the hyperplane H(1)). Then, NE(Z) = Co(T U NE(Z)[4}>0)-
This implies that the extremal rays of NE(Z) in the half-space [A] < 0 must be
generated by elements of 7 and so we are led to a contradiction to the existence
of r. O

Remark. Next, we state an equivalent condition to that given in the above theorem.
It uses the so-called nef cone associated to Z, P(Z). This is the dual cone of NE(Z)
with respect to the bilinear form induced by intersection theory. The condition is the
following

P(Z)N{ze A1(Z) | 2 =0} \ {0} C {z € A\(Z) | K -2 < 0},

and the equivalence to the condition in Theorem 1 is an straightforward consequence
of the above mentioned fact that the half-cone V' given in Proposition 2 is a subset of
NE(Z).

Corollary 2. The cone NE(Z) associated to a conBguration which contains only
points on the strict transforms of a conic is polyhedral.

Proof. Tt suffices to apply Theorem 1 after considering the coset associated with the
divisor of the strict transform of the given conic on Z. O

The next result gives a numerical condition for ensuring that NE(Z) is polyhedral.
The proof only considers the virtual transform on Z of a curve C on X relative to a
weighted configuration K and it uses Lagrange multipliers.

Corollary 3. Assume that the cardinality of a conbguration K is n larger than 9,
and that a curve C on P? of degree d goes through a weighted conbguration X =
(K, {vg, := v;}), such that not all the v;’s are equal. DeBne

2
o1 Vi +md Yo vi
dZ?:l v; —|—nd2uj ’
where ju; (j = 1, 2) are the roots of the quadratic equation

d2(9 - n)nxz +2d4(9 — n)Xn:U,’X —|—9Xn:ui2 _ (Xn:vi)Z i,
i=1 i=1

i=1

5; =3 jed{l,2},

Then NE(Z) is polyhedral, whenever min{d;, 65} > 1.
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Example. Let us take homogencous coordinates (X, Y, Z) on P2, the point
O = (0,0,1) and the standard affine chart of A% given by Z # 0. We write
x = X/Z,y = Y/Z and consider a configuration K of ten points such that each
of these points belongs to the last created divisor and it contains the base points of
the ideal (x*, Y)Op2 o. The quartic ¥ 4 = 0 goes virtually through the weighted
configuration (K, {2,2,2,2,2,2,1,1,1, 1}). Applying Corollary 3, we obtain that
the cone of curves associated to K is polyhedral, since min{é;, 6} ~ 1.07 > 1.

We desire to give conditions casier to apply which guarantee that the cone of
curves associated to a plane configuration NE(Z) is polyhedral. To this purpose, we
consider the image of P(Z)N{z € A1(Z) | z2 = 0} \ {0} by certain map with values
in R" and an explicit cone on R” that contains it. This fact, jointly the inclusion given
in the remark under Theorem 1, will provide the condition asked for.

Let G be a hyperplane in R” defined by the equation g(x) = 0, x € R", we shall
stand G for the half-space in R” given by g(x) > 0.

Definition 3. Let K = {Q1, Q2, ..., Ox} and 7 be as above. The convex cone in
R" given by the intersection of the half-spaces ();_, Hi+, where H; = {x e R* |
X; — Zj_”. xF = O}, x = (x1, X2, .. ., x,), 1s called proximity cone associated to K,
PC(Z).

Next, we obtain explicitly the extremal rays of PC(Z). Denote I, := {1, 2, ..., n}.

Proposition 4. The extremal rays of the proximity cone PC(Z) associated to a mod-
bcation w: Z — X given by a connguration K are generated by the vectors
er = (e1k, @ks - -+ enk) (1 < k < n) such that e;; = 0, wheneveri >k, ¢;; = 1 and
e = Zjlk—)j;jzi eijifi <k i, jkel,.

Proof. Foreachk € I,,, denote by Ly the lineon R”, L; = ﬂj#k H;. Itis clear that
the extremal rays of the cone PC(Z) are generated by vectors with positive coordinates
determined by the lines L. Consider the (n — 1) x n matrices Ax = (a;;) where
i€ Iy\{k}and j € I, givenby a;; = 1, a;;j = —1 when j - i and a;; = 0
otherwise. Ly is the solution of the linear system of equations

Apx! =0, (1)

x = (x1,x2,...,x,) being a variable vector in R*. Set A,? the submatrix of Ay
gotten by deleting the kth column a* in A. Denote by b* the column vector obtained
by deleting the kth coordinate to the vector —a*. Thus, the linear system of equations
(1) can be written

AP (xPy = xibF, 2)
where x ,? is the variable vector in R"~! obtained after deleting to x the kth coordinate.
Clearly A,? is a regular matrix. Set (A,?)_1 = (8i})i, jel,\{k}> then the linear system
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of equations (2) can be expressed (ka)’ = xk[(A,?)_lbk]. Whence the vector x is a
solution of (1) if and only if for i € I, \ {k}, x; = (Zj|k—>j sij)xk. Therefore, the
equalities ¢jp = Y itk Sij if i # k and ex; = 1 give the coordinates of a generator
of the extremal ray relative to Ly.

It is clear that ¢;z = 0 whenever i > k. On the other hand, it is straightforward
that the entries of the matrix (A,? )~ ! satisfy the following relations: s;; = 1, s; =20
ifi > j,and 5;; = Zz|j—>15il otherwise. So, for i < k, ¢ = Zjlk—)j 87 =
D itk j 211j—1 Sit- Since the last sum of the righthand of the second equality equals
ejj and e;; = 0, whenever j < i, we conclude the proof. O

The above given generators of the extremal rays of PC(Z) will be useful to know
when NE(Z) is polyhedral. Therefore, we give an easy way of computing the data
e;; which depends on a concept given in the following

Definition 4. Let K be a configuration and P and R points in K such that P < R.
A proximity chain from R until P is a finite sequence of points in K, {Pi}izo such
that

R:PZ—>PZ_1—>~~»—>P0:P.

To understand easily the meaning of each coordinate ¢;; of the vector e, we can
consider the chain of points in the configuration K of the form

Q,':P()<P1<'~~<P12Qk. (3)

It is clear that the number of proximity chains in K from Qy until Q; can be computed
as the sum of the number of proximity chains until Q; from those points P in the
chain such that Q3 — P. Then, proceeding by induction on the length / of the chain
(3) and taking into account the formula for ¢;; given in Proposition 4, we can state
the following

Proposition 5. Let K = {Q1, O3, ..., On}beaconnguration. Then, the coordinate
eir of the generator ey of an extremal ray of the proximity cone PC(Z) counts the
number of proximity chains in K from Qy until Q;.

Finally, we state our announced result which gives a condition for the cone NE(Z)
to be polyhedral.

Theorem 2. Let K be a connguration of inBnitely near points over X, which gives a
modiBcation . Z — X. Let G = (gi5) be the n x n matrix deaned by

n n n
gis =9 eieis — (Zeiz>(zeis>,
i=1

i=1 i=1



86 C. Galindo and F. Monserrat CMH

where e = (eik, e, - .., enk) (1 < k < n) are the coordinate vectors that span the
extremal rays of the cone PC(Z) given in Proposition 4. Then, the cone NE(Z) is
polyhedral if xGx' > 0 for all vector x € R" \ {0}, such that all its coordinates are
nonnegative.

Proof. Consider the sets Uy = {z € A1(Z) | [L*] -z > 0} and
Y={zeA(Z)|[Ei] 220, 1<i<n},

the homeomorphism /: L*(1) — R"* given by (1, x1, ..., x4) — (—x1, ..., —Xn),
and the composition map pu = h o ¢+, where ¢+ is the function defined after
Proposition 1.

Then, it is clear that ¥ N Uy contains P(Z) \ {0} and p(Y N Uy) = PC(Z) (the
proximity cone associated to the configuration K). As a consequence, the following
inclusion

1 (P(Z)N{z e Ai(Z) | 22 = 0} \ {0}) S PC(Z) N s™!

holds, S”~! being the unit sphere in R*. The complement in R" of the set u({z €
A(Z)| K -z <0}NUp)istheset KT = {(x1,...,x,) e R* | 37, x; >3}. So,
applying the condition given in the remark under Theorem 1, it suffices to check that
the set PC(Z) N S~ N K+ is empty to prove that the cone NE(Z) is polyhedral.
Now, each vector « = («;)}_; in R" of nonnegative coordinates provides an

=

element in PC(Z), Y j_; akex, denoted by ry. So, the elements in S"~1NPC(Z) are

of the form ry / || 7o ||, where || - || denotes the norm || - ||z in R”®. Then NE(Z) is
polyhedral if
n
ral ll 7o ll€ {x e RY | 32 <3}, )
i=1

for all « € R" \ {0} of nonnegative coordinates. To end the proof, we shall show that
the hypothesis of the theorem guarantees the property (4). In fact, G 1s a symmetric
matrix and it defines a quadratic form g which can be expressed by

g(x) =xGx' = 92”: (i&m)z - ( Xn: 6;‘ka>
i=1

k=1 ik=1

2

and the condition g(«) > 0 for all vector « # 0 of nonnegative coordinates proves
(4) by taking positive square root, which concludes the proof. O

Example. In Figure 1, we depict the proximity graph of a configuration K that
satisfies Theorem 2 (see the matrix G below) and so its associated cone NE(Z) is
polyhedral. The vertices of the graph represent the points of K. Edges join proximate
points. An edge joining P and R (P > R) is a continuous straight line whenever P
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Figure 1. The proximity graph of K

is in the first infinitesimal neighborhood of R, otherwise it is a dotted curved line.

8 7 14 13 12 11 10 9 9 12 11
7 14 19 17 15 13 11 9 9 15 13
14 19 38 34 30 26 22 18 18 30 26
13 17 34 38 33 28 23 18 18 33 28
12 15 30 33 36 30 24 18 18 27 21
G = 11 13 26 28 30 32 25 18 18 21 14
10 11 22 23 24 25 26 18 18 15 7
9 9 18 18 18 18 18 18 9 9 0O
9 o9 18 18 18 18 18 9 18 9 0O
12 15 30 33 27 21 15 9 9 36 30
11 13 26 28 21 14 7 O 0O 30 32

Remark. Theorem 2 gives a condition, depending on proximity, that ensures the
polyhedrality of the cone of curves associated with a configuration K, and this also
happens when the cardinality of K is smaller than 9. So, it would be interesting
to give an answer, improving that of Theorem 2, to the following question: Given
r < 8 and proximity graphs I'1, I'z, . . ., I'; of local configurations, when is it true that
NE(Z) 1s polyhedral for any configuration K with points of level 0, Py, Py, ..., P,
and proximity graphs I'y, ', ..., I, respectively at Py, P, ..., P?
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Next, we shall assume that the configuration K is a chain conBguration, that
is, each point Q; n K belongs to the divisor created after blowing-up Q;_; for all
indices i. In this case, we shall show that Theorem 2 provides an easy condition
to decide whether the cone NE(Z) is polyhedral. Firstly, we state two supporting
results. The first one does not need the configuration to be a chain.

Lemma 1. With notations as in Theorem 2, the elements of the matrix G = (g;5) are
related by the following equalities,

n
8ls = Z gjs'i‘gels_zeix'
jli=j i=1

Proof. If follows from the following chain of equalities

8ls = 9%@,»1% + e — (Zeil + 1)(2":%)
i=1

i=1 i=1

9% Z eijeis—( Z @ij)(Xn:eis>+9els_Zeis

i=1 jli>j i=1 jli—j i=1 i=1
-1 - n n
= Z [9261';% - ( 6ij>< eis)] + 9eys — Zeis
jli>j =l i=1 i=1 i=1
n
= Z gjs +e1s — Zeis,
jli=j i=1

where the second equality holds by applying Proposition 4 and the last one is true
since [ — j implies j < [. O

Lemma 2. Let K be a chain conbguration and G = (g;5) the matrix associated to
K given in Theorem 2. If gnn > 0, then all the entries of the matrix G are positive.

Proof. We shall reason by contradiction. For each index s (1 < s < n), define
Ay = {i e{l,...,n}| gis <0} and assume that A; # @ for some fixed index s.
Consider i the minimum element in A;. In the proof, we shall use the following
two properties which are easily deduced from the formula that Lemma 1 gives for the

element g;,; (which, we know that it is not positive).
+ Property 1. If the point Q;, is proximate to Q then,

n

8ks + 961'0& — Zeis < 0.
i=1
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« Property 2. 9ejs — > i eis <0 forall j > i.

Notice that Property 2 holds since it is true for j = igp by Lemma 1 and morcover
ejs < éjs lf] > 1.

Now, we shall prove that gj; < 0 for all j > ip. It shows that g,s < 0 and this
will conclude the proof since if s = n we are led to a contradiction and otherwise
gsn < 0 because G is a symmetric matrix and thus the same procedure for n instead
s proves gnn < 0 which is a contradiction.

We can assume that ig < »n and, for proving the above inequalitics, we shall
use the following inductive procedure: First, we shall prove the basic step, that is
Qio+1.s < 0, and after the inductive step, where we shall show g4 ¢ < 0 whenever
g1,s < 0 for all positive integer j such thatip +1 < j <.

To do the basic step, we distinguish two cases: Case 1 which occurs when there
exists anindex k (1 < k < iy < n) such that the point Q;, 4 is proximate to @ (and
obviously, Q;, is also proximate to Q) and the complementary of Case 1, which we
shall refer as Case 2.

In Case 1 we get,

n n

Qio+1,s = 8ks + Gips + Yeig+1,s — Z eis < 8ks + gips + Yeigs — Z eis < 0.

i=1 i=1

And in Case 2,
n
Sio+1,s = 8igs T eigt1,s — Z eis < 0.
i=1

In both cases the equality is given by Lemma 1. In Case 1, the first inequality holds
since K is a chain configuration. Finally, the fact g;,; < 0 and the above given
Property 1 (resp., 2) for the Case 1 (resp., 2) conclude the proof of the basic step.

Finally, we show the inductive step. Suppose gj; < Oforip < j <[ < n, we
shall see that g;+1,¢ < 0. Here, we need to distinguish three cases:

1) There exists an index k (1 < k < igp < n) such that the point ;4 is proximate
to O (in such case the point Q;, is also proximate to Q). Then,

n

n
8l+l,s = 8ks + 81s + 9el+1,s - Zeis <8+ &s t+ 961'0& - Zeis <0.
i=1 i=1

11) There exists an index k (1 < igp < k < [) such that the point Q; is proximate
to Q. Then,

n

8l+1,s = 8ks + 8I1s + 96’l+l,s - Z eis < 0.
i=1
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ii1) The point Q41 1s only proximate to Q;. Then,

n

8l+1,s = &8s + 9el—l—l,s - Zeis <0.

i=1

This ends the proof by noticing that we have applied Lemma 1 in all cases,
Property 1 in case 1) and Property 2 in cases 11) and ii1), and the inductive hypothesis
i all cases which asserts that g;; < 0 in cases 1) and 1i1), and that gz; < O and g;; <0
in case ii). O

We have obtained an interesting consequence for the associated matrix to chain
configurations K: The condition xGx! > 0 for all vector x € R" \ {0}, with non-
negative coordinates, is equivalent to the fact g,, > 0. Thus, we have proved the
following

Proposition 6. Let K be a chain connguration whose associated date g,, given in
Theorem 2 is strictly positive. Then, the cone of curves NE(Z) relative to K is
polyhedral.

Finally, we state some consequences of Proposition 6, which allow to conclude
that the statement on this proposition is not trivial.

Corollary 4. Let K = {Q1, ..., Qu} be a chain connguration and let B be a germ
of analytically irreducible plane curve which goes through the points in K with effec-
tive multiplicities m1, . .., my satisfying the proximity equalities and 9 :_, ml2 -

(Z?:l m,-)z > 0. Then, the cone of curves associated to K is polyhedral.

Proof. Tt follows from the fact that the vector of effective multiplicities of B is a
multiple of the vector ¢, in Theorem 2, because it determines the only direction
satisfying the proximity equalities. So, the condition given in the statement of the
corollary on the multiplicities m; implies g, > 0 and the result. O

Corollary 5. Let O be a closed point of P?, {x,y} local coordinates at O and
K = {01 = O, Qs,..., Qn} the chain connguration corresponding to the mini-
mal embedded resolution of an analytically irreducible germ of plane curve at O
with a unique characteristic pair (Bo, B1). Then, the cone of curves associated to
the connguration K is polyhedral if the pair (B9, B1) satisbes one of the following
conditions:

(1) p1 =1 (mod Bo), Po < 8 and p1 < 8Po.
(2) pr =1 (mod Bo), o =9 and p1 < 7Po.

(3) B1 £ 1 (mod Bo) and By < 1+ Lo + 3,/4B + 342
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ky times ko times ks times
Proof. Let(wy, ..., wi,wa, ..., wy, ..., ws, ..., ws) be the sequence of multiplic-
ities of the germ at the points of the configuration K. Then,
b1 B1
w1 = Po, klZ{— , wy=p1— | —— [P0, ws=1, )
Bo Bo

where |-| means the floor (or the integer part) function, and clearly one gets the
following recurrence relations:

Ws—1 = ks, wi=kiywip1+wiya (1 <i<s-—2). (6)

By Corollary 4, for the cone of curves associated to K to be polyhedral, we only need

to check when ) .
2
9Zkiwf—<2kiwi) = 0. 7
i=1 i=1

To do it, we distinguish two cases:
1) 1 = 1 (mod By). Here, s = 2, k = Py and, then, the condition (7) is
equivalent to the following one:

1 |? {ﬂlJ
— — 7 — 9 — 0,
Bo LBOJ + 780 2o + Bo >

which is true if, and only if, By and S satisfy the formulae in 1 or 2 of the statement.
1) 1 # 1 (mod Bo). By using the conditions (6), one gets that (7) is equivalent
to the following inequality:

INwiwy + klw%) — (w1 +wy + kyw; — 1)2 > 0,
and by means of the equalities (5), this inequality is true if, and only if|
9B0B1 — (Bo+ P1 —1)* > 0,

which happens only when the formula in 3 of the statement holds. O

Corollary 6. Let K = {Qy, ..., Q,} a chain conaguration whose proximity graph
is that of the following Bgure with ¢ > 1 dotted curved lines (its Dynkin diagram has
g stars). Then, the cone of curves associated to K is polyhedral.

Proof. 1t follows from Proposition 6 since the vector (e1y, . .., eyn) corresponding
to this configuration is (28,281,281, ..., 2,2, 1,1), where g = (n —1)/2. O

Acknowledgment. The authors express their appreciation for a very careful and
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Figure 2. Proximity graph of Corollary 6
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