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On right-angled reflection groups in hyperbolic spaces

Leonid Potyagailo and Ernest Vinberg*

Abstract. We show that the right-angled hyperbolic polyhedra of finite volume in the hyperbolic
space H" may only exist if n < 14. We also provide a family of such polyhedra of dimensions
n =3,4,...,8 We prove that for n = 3, 4 the members of this family have the minimal total
number of hyperfaces and cusps among all hyperbolic right-angled polyhedra of the correspond-
ing dimension. This fact is used in the proof of the main result.

Mathematics Subject Classification (2000). 20F55, 51F15, 57M07, 20F65, 57M50.
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1. Introduction

An abstract Coxeter group W is given by the following finite presentation:
W = (S| (sis;))" =1),

where m;; = 11fi = jand m;; € {2,3,...,00}if i # j. By convention m;; = 00
means that there is no relation between s; and s;. A Coxeter group W is called
right-angled if m;; € {1, 2, oo}.

Let P be a convex polyhedron in the hyperbolic space H" with dihedral angles of
the form % (m € N) at all its (ordinary) (n — 2)-dimensional faces. Then the group
generated by the reflections in the (n — 1)-dimensional faces (hyperfaces) of P is a
Coxeter group. Such a polyhedron P is called a Coxeter polyhedron.

A polyhedron is called right-angled if all its dihedral angles are 5. In this case the
corresponding reflection group is a right-angled Coxeter group. Note that any face
of a right-angled polyhedron is right-angled whereas a face of an arbitrary Coxeter
polyhedron is not necessarily a Coxeter polyhedron. The following is the main result
of the present paper:

Theorem. Right-angled Coxeter polyhedra of Buite volume may exist in H" only if
n<14.

*The work of the second author was partly supported by the RFBR grant 01-01-00756.
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Recall that E. Vinberg [Vi] proved that compact Coxeter polyhedra in H* may exist
only if n < 29. Examples are known only up to n = 8. M. Prokhorov [Pr] proved
that non-compact Coxeter polyhedra of finite volume may exist only if n < 995;
examples are known only up to n = 21 [Bor].

There are some strong restrictions on the combinatorial structure of Coxeter poly-
hedra arising from the property that all their dihedral angles do not exceed 7. Polyhe-
drahaving the latter property are called acute-angled. 1t is known (see, e.g., [AVS88])
that any k-dimensional face of an acute-angled polyhedron P C H" belongs only to
n —k hyperfaces. In particular, any (ordinary) vertex belongs only to n hyperfaces, so
the local combinatorial structure of P at any vertex is the same as that of a simplicial
cone. The local combinatorial structure of P at any vertex at infinity is the same as
that of a cone over a direct product of simplices; if P is right-angled, these simplices
must be one-dimensional (so their product is a (n — 1)-dimensional parallelepiped).

An n-dimensional combinatorial polytope is called simple if any of its vertices
belongs only to n hyperfaces, and simple at edges if any of its edges belongs only
to n — 1 hyperfaces. According to the above, any compact acute-angled polyhedron
m H" 1s simple, and any acute-angled polyhedron of finite volume (with vertices at
mfinity added) 1s simple at edges.

It 1s known that compact right-angled polyhedra do not exist if n > 4. This
follows from the Nikulin inequality [N] for the average number ai of [-dimensional
faces of a k-dimensional face of a simple polytope. Itimplies that in dimensionn > 4
any simple polyhedron P must have a quadrilateral or triangular 2-dimensional face,
which is impossible if P is right-angled (see the next section). The estimate n < 4 is
exact as there exist right-angled compact polyhedra in H*.

In the finite volume case some vertices can be at infinity so the above method
does not work. To prove the Theorem we will obtain a lower bound for the number of
4-dimensional faces of a 5-dimensional right-angled polyhedron. Then the theorem
will follow from Khovanskii’s result [Kh] which generalizes the Nikulin inequality
to polytopes that are simple at edges. Contrary to the compact case, our estimate
n < 14 may be not exact as examples of right-angled polyhedra of finite volume are
known only up to n = 8 (we provide some of them in Section 3). Note also that our
result cannot be much improved using the same method since the Nikulin—-Khovanskii
inequality is applied only for / < k < [5] and, on the other hand, our estimates for
the minimal number of hyperfaces of a low dimensional right-angled polyhedron are
optimal.

Note that recently T. Januszkiewicz and J. Swiatkowki [JS] proved that there exist
abstract word hyperbolic right-angled Coxeter groups of any virtual cohomological
dimension.

Right-angled Coxeter groups in the hyperbolic spaces are known to have some
strong group-theoretical properties. For a finitely generated abstract group G, let us
call a subgroup H C G closed if it is an intersection of subgroups of finite index or,
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equivalently, if it 1s closed in the topology defined by the subgroups of finite index.
P. Scott [Sc] proved that if G C Isom +H" is a discrete group commensurable with a
co-compact right-angled reflection group, then any geometrically finite subgroup of
G is closed. (In fact he considered only the case n = 2 but the idea of his proof works
for any n.) 1. Agol, D. Long and A. Reid [ALR] extended this theorem to groups
commensurable with co-finite right-angled reflection groups.

Acknowledgments. This work was mostly done during the stay of the second author
at the University of Lille 1 in June of 2002. He thanks this university for hospitality.
The first author is grateful to A. Vesnin for helpful remarks. We thank the referee for
pointing out some inaccuracies in the original version of the paper.

2. Compact right-angled polyhedra

For brevity, let us call k-dimensional faces of a polyhedron P simply k-faces. Denote
the number of k-faces by ax = ar(P). Following V. Nikulin [N], consider the average
number a,l{ of [-faces of a k-face:

1

G=— 3, alF),

K dim F=k
where F runs over all k-faces of P. One of the main ingredients for proving the
Theorem is the following Nikulin inequality [N]:

Cln Cl

a8 T Gy

A < Ly ck 1k
(21 72

forl <k <[3].

For the sake of completeness we provide the proof of the following known

Proposition ([Vi]). There are no compact right-angled polyhedra in H" for n > 4.

Proof. By the Nikulin inequality we obtain

1 {45/7__21) if n is even,

a, <
2 . .
fT”l if n is odd.

For a compact right-angled polyhedron, every 2-face being also right-angled has at
least 5 sides. Thus a21 > 5 and the above inequality implies n < 4. O

Remarks. a) The maximal dimension n = 4 given by the proposition is attained:
indeed, there exists a regular compact right-angled polyhedron in H* with 120 do-
decahedral hyperfaces [Cox], [D], [VS88].

b) There exist infinitely many compact right-angled polyhedra in H* [VS88].
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Question. Is it true that the least number of hyperfaces of a compact right-angled
polyhedron in H* is 120?

3. A series of non-compact right-angled polyhedra

Let us now describe one known series of right-angled hyperbolic polyhedra of finite
volume [D]. We list below (Figure 1) the Coxeter diagrams " of some non-compact
Coxeter simplices A" of finite volume in H” forn = 3, 4, 5, 6, 7, 8. These are some
of the so-called quasi-Lannér diagrams [VS88], pp. 206-207. The group generated
by the reflections in hyperfaces of A™ will be denoted by G".

Let us introduce the following notation:

F}': the hyperface of A" corresponding to the vertex k of the diagram,

Oy the vertex (or cusp) of A" opposite to F},

% the subdiagram of X" obtained by deleting the vertex k,

Gy the stabilizer of O, i.e. the group generated by the reflections in all the
hyperfaces of A" but F'; its Coxeter diagram is .

y s pAAS

1 2 4 1 2 4 5 6 7

o—a— o o mm—)
j3 3

X p

1 2 4 5 1 2 4 5 6 7 8
3 3

y o PR

1 2 4 5 6 1 2 4 5 6 7 8§ 9
3 3

Figure 1

All the diagrams X} but X{ are elliptic, while X is parabolic. (See, e.g., [VS88]
for the lists of elliptic and parabolic Coxeter diagrams.) Recall that elliptic (resp.
parabolic) diagrams correspond to finite (resp. affine) Coxeter groups. Thus, Of is
the only cusp of A",

One can note that the hyperface F)' ; of A" forms only angles 7 and 7 with the
other hyperfaces and the group G}, | , is finite. Thus the translates of A" under G, fit
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together at O 4 to give aright-angled polyhedron P" of finite volume. Its boundary
is composed of the translates of F 41 (some of them lying in one hyperplane).

Let us describe the polyhedron P3. Applying to A3 the group of order 6 generated
by the reflections in F 13 and F23 , we get a tetrahedron with 3 cusps whose faces passing
through the ordinary vertex are mutually perpendicular and form angles 7 with the
remaining face (which contains all the cusps). Applying to this tetrahedron the group
of order 2 generated by the reflection in 3, we get P> (see Figure 2, where the cusps
are marked by small circles).

Figure 2

Any face of P? is composed of two copies of F 3 and is a triangle with two cusps and
an angle 7 at the ordinary vertex. Hence, F’ 2 is a triangle with one cusp and angles
7 and 7 at the ordinary vertices.

Proposition 3.1. Forn = 4,5,6,7, 8, all the hyperfaces of the polyhedron P" are
polyhedra P*~. The numbers of hyperfaces and cusps of the polyhedra P" are given
in the following table:

Number of hyperfaces Number of cusps
p3 6 5
i 10 5
pP? 16 10
P 27 27
P7 56 126
P8 240 2160

Proof. In addition to the above notation, let us introduce the following one:
Foy=F!'NF",
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%7;: the subdiagram of " obtained by deleting the vertices k and /,

Gy, = G N G} this is a reflection group whose Coxeter diagram is X7,
All the diagrams X}, are elliptic and the groups G}, are finite.

The hyperface I of P" containing F,', ; is composed of the translates of F’,
under the subgroup H" of G} | generated by the reflections in hyperfaces £}’ per—
pendicular to F' ;. All the hyperfaces of P" are the translates of F under G} ,,
hence

n |GZ+1|
#(hyperfaces of P") = ,

|H"|
Forn > 3, all the faces F}',k = 1,...,n — 1, are perpendicular to F,' , so H" =
Gﬁ,n+1’ whence

Gl
#(hyperfaces of P") = — 3
|Gn,n+l|
The orders of the finite Coxeter groups being known, this allows us to calculate the
numbers of hyperfaces of the polyhedra P".
In a similar way, one can calculate the number of cusps of P". They constitute

just the orbit of Of under G} . The stabilizer is GT , , |, hence

Gy
#(cusps of P") = ——.
1GT g1

Let us now prove that for n > 3 the face F), | of the simplex A" is the simplex
A™1 which will imply that the face F of the polyhedron P" is the polyhedron P"~!.

Obv1ously, if F{! and F" are perpendicular to F,', ;, then the angle between the
corresponding faces Fk’n , and Fl’n 41 of the simplex F' ; is equal to the angle
between F,f and F}'.

If F' is perpendlcular to F',;, while the angle between F;" and F,', is %, then,
as one can observe in Figure 1, the angle between F}' and ' is & = % or 5. Letus
find the angle B between F,?n 41 and Fl 141 Considering a 3-dimensional orthogonal
section, we reduce the problem to the followmg one: given a tetrahedral angle w1th
dihedral angles 7, % and o, find its plane angle $ opposite to «. Clearly, if « = 7.
then B = 7. If « = 5. then our tetrahedral angle is just the angle at the vertex 033
of the tetrahedron A3 and, as we proved above, 8 = o

Thus, F}',, is again a Coxeter simplex and its diagram is obtained from %" by
deleting the vertex n + 1 and replacing all simple edges joining the vertex n with other
vertices by double edges. (For n = 4, there are two such edges; in all the other cases,
there is only one.) One can observe that in such a way we get just the diagram X"~

Now the hyperface F' of P" is obtained by fitting together the translates of F,’,
under H". As F | is the simplex A"~ Vand H" = G"~!, F (and, hence, each
hyperface of P") is the polyhedron P"~1. O
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4. Proof of the theorem

In this section, the word “polyhedron™ always means “polyhedron of finite volume™,
1.e. a convex hull of finitely many ordinary points and points at infinity. The latter
ones are called cusps of the polyhedron. We tacitly add them to the polyhedron and
to its faces, so the expression “the faces Fi, ..., Fy intersect” means that the faces
Fy, ..., Frhave acommon ordinary point or their closures in the compactification of
H" have a common point at infinity. For a hyperface I of a polyhedron, we denote
by H(F) the closure of the hyperplane containing F in the compactification of H".

Recall that two hyperplanes of H" are called parallel if they do not intersect but
their closures have a (single) point at infinity in common. We shall call two hyperfaces
Fy and F, of a polyhedron parallel if the hyperplanes containing them are parallel.
It follows from the local combinatorial structure of right-angled polyhedra (see the
mtroduction) that for any hyperface of such a polyhedron passing through a cusp p
there is a unique parallel hyperface passing through p.

The following properties will be used in the subsequent proof.

Proposition 4.1. Let I, F», ... be hyperfaces of a right-angled polyhedron. Then

(a) if H(Fy) and H(F) intersect, then Iy and F, intersect; in particular, if Fi and
FE, are parallel, then they meet at a cusp;

(b) if F1, F,, F3 are pairwise mutually adjacent, then they meet at an (n — 3)-dimen-
sional face;

(¢) if F1 and F, are parallel and F3 is adjacent to them, then F1, Fy, F3 meet at a
cusp;

(d) if F1 and F; are parallel and F3 and F4 are adjacent to them, then F1, F2, F3, F4
meet at a cusp.

Proof. It is proved in [A70] (see also [AVS88]) that, for any hyperfaces Fi, ..., Fi
of an acute-angled polyhedron

dm FiN---NF=dmH(F)N---NH(F), (%)

where the dimension of a point at infinity is assumed to be —1, while the dimension
of the empty set is —o0. This proves (a).

To show (c) note that the hyperfaces H (F;) (i = 1, 2, 3) must meet in a cusp, for
otherwise in a 2-dimensional orthogonal plane there would exist a triangle with two
right angles and one zero angle which i1s impossible. Thus (c) follows now from the
dimension identity.

To prove (b) note similarly that three mutually perpendicular hyperplanes must
mtersectin a (n —3)-dimensional plane. Indeed, if there were no common intersection
between them, in the orthogonal 2-dimensional plane one would obtain aright-angled
triangle which is not possible. The dimension identity implies now (b).
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To prove (d), note that by (c) both Fy, F>, F5 and Fy, F,, F4 meet at a cusp. But

these two cusps must coincide, because I and F; have only one cusp in common. O

Let us now obtain lower bounds for some combinations of the numbers of hyper-
faces and cusps of a right-angled polyhedron P < H”" for small n.

Recall that ay = ax(P) denotes the number of k-faces of P. In particular, ag =
ao(P) is the total number of ordinary vertices and cusps of P. The number of cusps
will be denoted by ¢ = ¢(P).

Case n = 2. Since the sum of exterior angles of a hyperbolic polygon is greater than
27, for a right-angled polygon P we get

ay+c>5. (D
The difference a1 + ¢ — 5 will be called the excess of P and denoted by ¢ = ex(P).
Case n = 3. For each face F of a right-angled polyhedron P  H? we have
al(F)+c(F) =5+ ex(F).

Summing over all F and taking into account that each edge of P belongs to 2 faces
and each cusp belongs to 4 faces, we get

2a; +4c = 5a; + Zex(F)‘ 2)
F

On the other hand, eliminating ag from the Euler equation ¢y — a; + a; = 2 and
the obvious equation 2a; = 3ag + ¢ gives

ar+c¢ =3az — 6. 3)

Substituting this into (2), we finally obtain

ay +2c = 12+Zex(F) > 12. 4)
F
At the same time
a3 > 6. (3)

Indeed, if P has no cusps, this follows from (4); if P has at least one cusp and a3 < 6,
then P is a quadrilateral pyramid (whose apex is at infinity), which is obviously
impossible.

It follows from (4) and (5) that

ay+c>9. (6)

Note that all the estimates (4)—(6) are attained for P> (see Figure 2).
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Case n = 4. Let P be aright-angled polyhedron in H*. Take any hyperface F of it.
There are a;(F) hyperfaces adjacent to F' and, for each cusp of F, there is an extra
hyperface having only this cusp in common with F. Together with F, this gives at
least 1 + az(F) + ¢(F) hyperfaces. So (6) implies

az > 10. (7
We need, however, a more subtle inequality:
az+c > 15. (8)

To prove it, take again any hyperface F of P. There are at least 1 + a3 (F) + c(F)
hyperfaces meeting F and at least ¢(F) cusps, so a3 + ¢ > 1 + ap(F) + 2¢(F). If
ay(F) + 2¢(F) > 14, then (8) follows.

By (4) we have ap(F) + 2¢(F) > 12.

Let a(F) + 2¢(F) = 13. Then (4) implies that all but one 2-faces of F have
zero excess. Let f be a 2-face of I with zero excess, 1.e. a1 (f) + ¢(f) = 3. Since
c(f) <2, wehave

I +ai(f)+2e(f) <8. 9)

Let F’ be the hyperface of P adjacent to F along f. By (6) we have that
azy(F) 4+ ¢(F") = 9. Comparing this with (9), we see that F’ must have cither a
2-face f/ not intersecting F, or a cusp beyond F. In the first case the hyperface
adjacent to F’ along f” does not intersect F by Proposition 4.1 (b), (¢c). So in both
cases (8) holds.

Letay(F)+2c¢(F) = 12. Then (4) implies that all 2-faces of F have zero excess.
Let f be any of them. Then f is a triangle with two cusps, or a quadrilateral with
one cusp, or else a pentagon without cusps. If f is not a triangle, then

L+ar(f)+2c(f) <7 (10

As above, consider the hyperface F’ of P adjacent to F along f. Then (10) implies
that F’ has at least two 2-faces not intersecting F or cusps beyond F, whence again
(8) follows.

Let finally all 2-faces of F be triangles with two cusps. Take any parallel 2-faces
f1and f> of F, and let F and F; be the hyperfaces of P adjacent to F along f; and
J2 respectively. By the above each of them must have either a 2-face not intersecting
F or acusp beyond F. If these are two 2-faces, then the hyperfaces of P adjacent to
Fy and F;, along them, cannot coincide by Proposition 4.1(d). If these are two cusps,
then they cannot coincide as I} and I, are parallel at a cusp of F. So in all the cases
(8) holds.

Note that both the estimates (7) and (8) are attained for the polyhedron P* con-
structed in Section 3.
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Case n = 5. Let P be aright-angled polyhedron in H>. Take any hyperface F of it.
There are a3(F) hyperfaces adjacent to F' and, for each cusp of F, there is an extra
hyperface having only this cusp in common with F. Together with F, this gives at
least 1 + a3(F) + c¢(F) hyperfaces. So (8) implies

as > 16. (7
This estimate is attained for the polyhedron P> constructed in Section 3.

Proof of the theorem. Let P C H" be a right-angled Coxeter polyhedron. The
Nikulin—Khovanskii inequality [N], [Kh] gives for the average number ag‘ of 4-faces
of a 5-face of P:

10— if 5 is even,
4 n—=_8
% =1 100-3
% if n is odd.

On the other hand, it follows from the above that ag‘ > 16. In both cases this means
that n < 14. O

We finish this section with some questions and remarks.

Questions. 1) Is it true that the least number of hyperfaces of a right-angled 6-
dimensional polyhedron is 27 (which is attained for P®)?

2) Do there exist right-angled polyhedra in H” forn = 9, 10, 11, 12, 13, 14?

Remark. By asimilar argument, a positive answer to the first question would exclude
the dimensions 13 and 14.
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