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Reidemeister torsion, twisted Alexander polynomial and fibered
knots

Hiroshi Goda, Teruaki Kitano* and Takayuki Morifuji*

Abstract. As a generalization of a classical result on the Alexander polynomial for fibered
knots, we show in this paper that the Reidemeister torsion associated to a certain representation
detects fiberedness of knots in the three sphere.
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1. Introduction

Asis well-known, the Alexander polynomial of a fibered knot is monic (see [13], [14],
[16]). That is, the coefficient of the highest degree term of the normalized Alexander
polynomialis aunit 1 € Z. By the symmetry (or duality) of the Alexander polynomial,
its lowest degree term is also one. This criterion is sufficient for alternating knots
[12] and prime knots up to 10 crossings [4] for instance. However, in general, the
converse is not true. In fact, there are infinitely many non-fibered knots having monic
Alexander polynomials. If we remember here Milnor’s result [9], we have to remark
that these claims on the Alexander polynomial can be restated by the Reidemeister
torsion.

The purpose of this paper is to give a necessary condition that a knotin S is fibered
by virtue of the Reidemeister torsion associated to a certain linear representation.
More precisely, we show that the Reidemeister torsion of a fibered knot defined for a
certain tensor representation is expressed as a rational function of monic polynomials.
This Reidemeister torsion is nothing but Wada’s twisted Alexander polynomial (see
[7] for details), so that our result can be regarded as a natural generalization of the
property on the classical Alexander polynomial mentioned above.

This paper is organized as follows. In the next section, we review the definition of
Reidemeister torsion over a field F. Further we describe how to compute it in the case

*The second and third author are supported in part by Grand-in-Aid for Scientific Research (No.14740037
and No.14740036 respectively), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
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of knot exteriors. The point of our method here is that the notion of monic makes sense
for the Reidemeister torsion associated to a tensor representation of a unimodular
representation over [F and the abelianization homomorphism. In Section 3, we state
and prove the main theorem of this paper. The final section 1s devoted to compute
some examples.

We should note here that there is a similar work by Cha [1]. The notion of
Alexander polynomials twisted by a representation and its applications have appeared
in several papers (see [2], [6], [8], [18]).

2. Reidemeister torsion

In this section, we review the definition of Reidemeister torsion over a field IF (see
[3] and [10] for details).

Let V be an n-dimensional vector space over F, and let b = (by,...,b,) and
¢ = (c1,...,cy) be two bases for V. If we put ¢; = Z’;:l ajjb;, we have a
nonsingular matrix A = (a;;) with coefficients in IF. Further let [b/c] denote the
determinant of A.

Now let us consider an acyclic chain complex of finite dimensional vector spaces
over IF:

" EY
C*:O—>Cma—>Cm_1—>1~~—>C1$C0—>0.

We assume that a preferred basis ¢, for C,(C,) is given for any g. Choose any basis

b, of B,(C.,) and take its lift in C,11(Cs), which we denote by &,.
Since the natural inclusion map

Bq(c*) e Zq(C*>
is an isomorphism, the basis b, can serve as abasisfor Z,, (C,.). Similarly the sequence
0 —> Z;(Cy) —> C4(Cy) —> By_1(Cy) — 0

is exact and the vectors (b, b,_;) form a basis for C,(C,). It is easily shown that

[bg. l~7q_1 /¢4] 1s independent of the choices of l~7q_1. Hence we may simply denote
itby [by, by_1/¢q4].

Definition 2.1. The torsion of the chain complex C, is defined by the alternating
product

- +1
H[bq, bq—l/cq](_l)q

qg=0
and we denote it by 7(C).
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Remark 2.2. The torsion t(C,) depends only on the bases ¢y, . .., ¢.

Now let us apply the above torsion to the following geometric situations. Let X
be a finite cell complex and X the universal covering of X with the right action of
m1X as deck transformations. Then the chain complex Cy (X, Z) has a structure of
right free Z[7r1 X]-modules. Let

p:mX — GL&,F)

be alinear representation. We may regard V' as a 11 X-module by using p and denote
it by V,. Define the chain complex Cy (X, V,) by Cy(X, Z) ®7[x,x] Vo and choose
a preferred basis

{01®el,01®ez,‘..,01®en,...,okq®el,...,okq®en}

of Cy(X, V,), where {e1, ..., e} is abasis of V and oy, ..., oy, are g-cells giving
the preferred basis of C, (X,7Z).

Now we assume that C.(X, V,,) is acyclic, in other words, all homology groups
H.(X, V,) vanish. In this case, we call p an acyclic representation.

Definition 2.3. Let p: m; X — GL(n, F) be an acyclic representation. Then Rei-
demeister torsion of X with V,-coefficients is defined by the torsion of the chain
complex C,(X, V,). We denote it by 7,(X).

Remark 2.4. It is known that 7,(X) is well-defined as a PL-invariant, for an acyclic
representation p : 71X — GL(n, [F), up to a factor =d where d € Im(det o p) C F*.
As a reference, see [10], Section 8. We can easily make a refinement of the above
argument for our situation.

Here let us consider a knot K in S3 and its exterior E. For the knot group
7 K = m E we choose and fix a Wirtinger presentation

PrK)={(x1,....,x4|71,...,u—1).

Then we can construct a 2-dimensional cell complex X from P (7 K) such that E
collapses to X. The abelianization homomorphism

a:nK - H\(E,7Z) =7 = (1)

is given by
alx)) = =alxy) =t.

Furthermore, we always suppose that the image of a representation p: 7K —
GL(n, IF) is included in SL(n, IF).
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These maps naturally induce the ring homomorphisms p and @ from Z[7 K] to
M (n, F) and Z[1*'] respectively, where M (n, F) denotes the matrix algebra of degree
n over IF. Then p ® & defines a ring homomorphism

ZnK]1— M (n,F[r*]).
Let F,, denote the free group with generators xy, . .., x, and denote by
®: Z[F,] — M (n, F[r*1))

the composite of the surjection Z[F, ] — Z[x K ] induced by the presentation and the
map Z[n K] — M(n, F[t*']) given by 5 ® &.
Let us consider the (# — 1) x u matrix M whose (i, j)th component is the n x n

matrix 5
ri
@ (a ) e M (n, F[r+1),

Xj

where % denotes the free differential calculus. This matrix M is called the Alexander
matrix of the presentation P (;r K) associated to the representation p.

For1 < j < u, let us denote by M; the (u — 1) x (u — 1) matrix obtained from
M by removing the jth column. We regard M; as a (u — 1)n x (4 — 1)n matrix with
coefficients in F[r*!].

Now let us recall that the tensor representation

p®a: 7K — GL(n, F(1))

is defined by (p ® «@)(x) = p(x)a(x) for x € 7K. Here F(¢) denotes the rational
function field over IF and let V be the n-dimensional vector space over F(¢). Hereafter,
we denote the Reidemeister torsion 7ogq(E) by Tog« K.

Theorem 2.5. All homology groups H,(E, V,gq) vanish (namely, p®a is an acyclic
representation) if and only if det M; # 0 for some j. In this case, we have

det Mj

K=—%
PO = et d(x; — 1)

Jorany j (1 < j <u). Moreover, 1,g is well-deBned up to a factor +1"% (k € Z)
if n is odd and up 1o only " if n is even.

Proof. The firsttwo assertions are nothing but [7], Proposition 3.1. The independence
on j follows from [7], Lemma 1.2.

Next, if we consider well-definedness up to 1% (k € Z), we only have to recall
Remark 2.4. The image of

deto (p @a): 7K — GL(n,F(1)) — F()*
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is just {{"’|k e Z}, because Im p is included in SL(n,F). Therefore the claim
immediately follows. Here if we take an even dimensional unimodular representation,
Toee 1S well-defined up to "k (see also [3] for details). O

Remark 2.6. This theorem asserts that the twisted Alexander polynomial [18] of a
knot is the Reidemeister torsion of its knot exterior (see [7] for details). This is a
generalization of Milnor’s theorem in [9]. Recently this framework extended to more
general situations by Kirk—Livingston in [6].

Remark 2.7. Assume that p is a homomorphism to SL(n, R) over a unique factor-
ization domain R and the knot group 7 K has a presentation which is strongly Tietze
equivalent to a Wirtinger presentation of the knot. Then Wada shows in [18] that
the twisted Alexander polynomial of the knot associated to p 1s well-defined up to a
factor £1"% (k € Z) if n is odd and up to only ¥ if n is even.

Remark 2.8. If there is an element y of the commutator subgroup of 7w K such that 1
is not an eigenvalue of p (y), then 7,9« becomes a “polynomial” (see [18]). Namely
det M is divided by det & (x; — 1).

3. Main theorem

In this section, we give a necessary condition that a knot K in S3 is fibered. A
polynomial a,,t™ + - - - 4+ ajt + ag € F[¢] is called monic if the coefficient a,, is one.
We then see from Theorem 2.5 that the notion of monic polynomial makes sense for
the Reidemeister torsion.

Theorem 3.1. For anbered knot K in S* and a unimodular representationp: K —
SL(2n,TF), the Reidemeister torsion T,g, K is expressed as a rational function of
monic polynomials.

Proof. By using the fiber bundle structure, we can take the following presentation of
7K:
PK) = (x1,....x0g, h | ri = hxih 7l ()1, 1 <i < 2g),

where x1, .. ., x4 is a generating system of the fundamental group of the fiber surface
of genus g, & is a generator for S!-direction corresponding to the meridian of K and
¢, denotes the automorphism of the surface group induced by the monodromy map
@. Here the abelianization homomorphism «: 7 K — Z = (t) is given by

a(xp) = =dxg) =1 and «(h) =1

This presentation of 77 K allows us to define another 2-dimensional cell complex
Y instead of a cell complex X constructed from a Wirtinger presentation of 7w K.
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Namely, it has only one vertex, 2g + 1 edges, and 2g 2-cells attached by the relations
of P(7K). It is easy to see that there exists a homotopy equivalence f: E — Y.
From the result of Waldhausen [19], the Whitehead group Wh(z K) is trivial for a
knot group in general. Thus the Whitehead torsion of f is also the trivial element
i Wh(z K). This implies that the homotopy equivalence map f induces a simple
homotopy equivalence from E to Y. Since the Reidemeister torsion is a simple
homotopy invariant, we can compute the Reidemeister torsion of E as the one of ¥
as follows. That is, we may use the previous presentation P (7 K') to compute 7,9« K
by means of Theorem 2.5.

Let us consider the “big” 2g x 2g matrix M whose (i, j)th component is the
2n X 2n matrix

@ (g” ) e M(2n, F[r*1]).

X

We then see that the diagonal component of M is

& (%) _® <h 3 aw*(m)
0x; 0x;

99y (x;
:rp<h>—ﬁ<%>

and the coefficient of the highest degree term of det ®(dr; /9x;) 1s just det p(h) = 1.
Further other components ® (3r; /9x;) (i # j) do not contain ¢, so that the coefficient
of the highest degree term of det M 1s also one.

On the other hand, the denominator is given by

det d(h — 1) = det(tp(h) — I)
= (det p(h)1*" — (tr p(h)" 14 41
=24,

where I denotes the identity matrix. Moreover, p is an even dimensional representa-
tion, so we see that 7, K 1s well-defined up to a factor 12" (k € 7). This completes
the proof. O

Remark 3.2. If we can show directly that the presentation P (7 K) in Theorem 3.1 1s
strongly Tietze equivalent to a Wirtinger presentation of K , then Theorem 3.1 follows
without using the result of Waldhausen (see Remark 2.7).

Remark 3.3. IfF is a subfield of the real number field, then the Reidemeister torsion
Toee K for any knot K and any representation p: 7K — SL(2,F) is symmetric.
Namely, 7,00 K is invariant under the transformation ¢ +> =1 up to a factor ¥
(k € Z). Such a duality theorem appears originally in [9]. See also [6], [7] and [11]
for related works.
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4. Examples

Example 4.1. Let K be the figure eight knot 4. This is one of the well-known genus
one fibered knots in S3. The fundamental group of the exterior has a presentation

nK = (x,y|zxz7ly7h),

Ix~1. Let p: K — SL(2, C) be a noncommutative represen-

p(X)=<(l) i) and p(y)=<_lw (1)>

where o is a complex number satisfying w? + @ + 1 = 0. As pointed out by Wada
in [18], it 1s convenient to use relations instead of relators for the computation of
the Alexander matrix. Thereby applying free differential calculus to the relation
r: zx = yz, we obtain

where z = x " lyxy~
tation defined by

1 1,.-1

ar -1 -1 - -1 -1 -1,.—
=—Xx " +Xx y+yx T —yx "y+yx "yxy ‘x .

o =
Thus we have the matrix
ar —(w+Dt+ow+2—11 t+w—2+4¢"1
M2 = q) —_— = =1 K
dx (0 —Dt —w+1 —(w+Dt+3—1
Then the numerator of 7,g is given by

det My = 172(t* — 683 + 0*1? + 0?2 + 1112 — 61 + 1)
=172t — D22 — 4t + 1).

On the other hand, the denominator of 7, is given by
det &(y — 1) =det(to(y) — I)
_ det <t -1 0 )
—wt -1
= —D%
Therefore the Reidemeister torsion of the figure eight knot K is
ToouK =12 —41 41,

and this is in fact a monic polynomial.
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Example 4.2. Let KT be the Kinoshita—Terasaka knot [5]. It is well-known that
KT is one of the classical examples of knots with the trivial Alexander polynomial.
The knot group 7w KT has a presentation with four generators x1, ..., x4 and three
relations [18]:

8 -1 —-1.-1
F1i X1X2X] = X4X2X4X, Xy o,

. R -1 -1 -1 -1_-1
T2 X4X2Xy = X, X3X1X3 X2X1X, X3X[ X3 X2,

r3: x1X3x1_1 = X4X3)C4X3_1X4_1.

Applying free differential calculus, we have

ary or or
—1 1 -1 1
— =1—xpx;, —— =x1 —x4+xax2x4x, , — =0,
0x1 axy dx3
orp
-1 -1 -1 -1 -1 -1 -1
I = —Xy X3 — Xy X3X[X3 X2+ X, X3X[Xy X2X]Xy X3X) O,
1
8r2
-1 -1 -1 -1 -1 -1
T = X4 Xy — Xy X3X[X3 Xy X3X[X3 X2X[X,
0x2
-1 -1 -1 -1_-1
— Xy X3X1X3 X2X[X, X3X| X3,
ary
-1 -1 -1 -1 -1 -1
T =X +x2 X3X1X3 ~ — X5 X3X]X3 X2X1X,
0x3
-1 -1 -1 -1_-1
+ Xy XXX XXXy TX3Xy X3,
or3 ar ar
=1 3 3 -1
— =1l—-xix3x]", — =0, — =2x1—x4+x4x304%5 .
8)61 3)(2 8)63

Let p: KT — SL(2,Fs) be a noncommutative representation over the finite
field IF's defined as follows:

4 4
p(m):(g }) p(Xz)z(? i') p(X3)=<g }) and p(X4)=<3 2>‘

Then we obtain

3t+1 t t 242 0 0

2t t+1 412 4+ ¢ 4¢ 0 0
Mo | 1 43 424170 4t Br43 44070 3+ 407!
YT 4 241 r+144 3r4+4 244410 A1
1 4t 0 0 312+t 212 + 2t

¢ 4t +1 0 0 412 4+ ¢ 312 + 4t
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Therefore the Reidemeister torsion of KT is given by

det My
det d(xq4 — 1)

AT AP 3 A P 1+ 4)
- 2 4+4r+1
=4 + 2 + 3 + 217 + 4.

Tp@aKT =

This is well-defined up to a factor t2* (k € Z), so that we may conclude that the
Kinoshita—Terasaka knot KT is not fibered.

Example 4.3. Let K be the knot illustrated in Figure 1. The normalized Alexander
polynomial of K is equal to the monic polynomial t* — > + > — ¢t 4+ 1. The knot
group 7w K has a presentation with seven generators x1, . .., x7 and six relations:

. —-1.-1
Fli o X2X] = X3X2X1X2X] Xy

-1 -1 -1 -1 -1 -1_-1
ro. X6X5Xg = X4X3X{ X3X| X3X1X3 X1X3 X1X3 X, ,

. =1 -1 -1 -1 -1 -1
F31 XeX7Xg = X4X3X{ X3X{ X3X1X3 X1X3 X, o,

2 =1 =1
Y4l X5XeX5 = X7X2X4 o,

g =1 " =1_=1_-1 =1_~=1_=1_=1
r5. X2XeXy = X3X2X1X2X{ Xy X3 X7X3X2X1Xy Xq X5 X3 o,

re: X x4x_IX7 = X7X3x2x1x2x_1x_1x_1‘
5444 1 2 3

s
/\//\/ X3 = F

e Noooed)

X4

P

Figure 1

Letp: 7K — SL(2, Fs) be a noncommutative representation over IF5 defined as
follows:

p(m)z((l) }) /O(Xz):(}t ?) p()«a)z(i (1)> p()«4>=<i (1)>
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o= (7 ). eo=( 4) ma pen=(g 7).

By the same method as in previous examples, we have the following Reidemeister
torsion of K:
_ det M7
o detd(x7 — 1)
2@t 483 412 441+ 3)
24+3r+1
=312 +3.

ToQu

Hence this knot K 1s not fibered.

We use Kodama’s program “KNOT” and Wada’s program to compute these ex-
amples. The former is to obtain N-data (see [17]) from a knot projection, which serve
as necessary input data for Wada’s program. The latter one is to compute unimod-
ular representations over finite fields of knot groups from N-data. Here we should
remark that Kodama’s program works on Linux while the program of Wada works
on Macintosh.
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