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Two theorems on harmonic manifolds

Y. Nikolayevsky*

Abstract. A Riemannian manifold is called harmonic, if for any point x it admits a nonconstant
harmonic function depending only on the distance to x. A.Lichnerowicz conjectured that any
harmonic manifold is two-point homogeneous. This conjecture is proved in dimension n < 4
and also for some classes of manifolds, but disproved in general, with the first counterexample
of dimension 7. We prove the Lichnerowicz Conjecture in dimension 5: a five-dimensional
harmonic manifold has constant sectional curvature. We also obtain a functional equation for
the volume density function 6 (r) of a harmonic manifold and show that 6(r) is an exponential
polynomial, a finite linear combination of the terms of the form Re (ce® ™y, with ¢, A complex
constants.

Mathematics Subject Classification (2000). 53C25.

Keywords. Harmonic manifold, volume density.

1. Introduction

A Riemannian manifold M is called harmonic if for any point x € M there exists
a nonconstant harmonic function defined on a punctured neighbourhood of x and
depending only on the distance to x. Equivalently, for any point x € M the volume
density function 6, = ,/det g;; (in normal coordinates centered at x) is radial, that is,
depends only on the distance to x; the mean (the scalar) curvature of a small geodesic
sphere depends only on its radius (see [2, Ch. 6; 1], [Ch. 2.6; 12] for other equivalent
definitions).

Two-point homogeneous spaces are harmonic. In 1944, Lichnerowicz conjec-
tured that the converse is true: any harmonic space is two-point homogeneous. This
conjecture is proved in dimension < 4 [15], for compact simply connected manifolds
and for Ricci-flat manifolds [13], [14], for negatively curved compact manifolds [3],
and also for some other classes of manifolds. However, in 1992, Damek and Ricci
discovered a class of harmonic non-compact spaces, which are, in general, not sym-
metric, hence disproving the Lichnerowicz Conjecture [4]. For an account of results
on harmonic spaces and Damek—Ricci spaces we refer to [1], [14], [17].

*Work supported by the ARC grant S6005288.
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The lowest dimension of anon-symmetric Damek—Ricci space is 7, and one might
wonder if the Lichnerowicz Conjecture is true in dimensionn = 5, 6. A partial answer
is given by the following theorem:

Theorem 1. A mve-dimensional harmonic space has constant curvature.

A similar result, under an assumption of pinched curvature, was obtained in [16].

On a harmonic manifold, the infinite sequence of algebraic conditions, the Ledger
formulae, on the curvature tensor and its covariant derivatives must hold [2, Ch. 6
§C]. The first two of them are

Ric(X, X) =Tr Ry = C|IX|%, Tr(Rx)* = H | X|*, (0

where Ry is the Jacobi operator defined by Ry Y = R(X, Y)X, and the functions C
and H are constant on the manifold. A Riemannian manifold satisfying (1) is called
2-stein (see, e.g. [6]).

Theorem 1 follows from Proposition 1 below and the fact that harmonic symmetric
spaces are two-point homogencous [3], [9].

Proposition 1. A nve-dimensional 2-stein Riemannian manifold is either of constant
curvature or is locally homothetic to the symmetric space SU(3)/SO(3) or to its
noncompact dual SL(3)/ SO(3).

One of the main ingredients of the proof of the Lichnerowich conjecture in the
compact simply-connected case [13] is the fact that the volume density function is
a trigonometric polynomial of a special structure. Moreover, the volume densities
of Damek—Ricci spaces (including non-compact ROSS’s) are polynomials of cosh r
and sinh ». We prove the following theorem.

Theorem 2. The volume density function of a harmonic manifold is an exponential
polynomial: a Bnite linear combination of the terms of the form Re(c;e*" r™), with
ci, Aj complex constants.

This gives a partial answer to the question asked in [14]: what functions may occur
as volume densities of harmonic spaces? Note that, in general, nonisometric harmonic
spaces may have the same volume density function. However, in many cases, the
volume density function determines a harmonic space uniquely: a harmonic space
having the same volume density as that of one of the spaces H", CH", HH", 1s
isometric to it, provided it is Kédhler or quaternionic Kéhler in the last two cases,
respectively ([10]; the same is true under weaker assumptions: a manifold is Einstein
and has the same volume growth of geodesic balls as that of the corresponding model
space [7, Sec.8, 9]). A harmonic space with a polynomial volume growth is flat [12].
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Note that Theorem 2 combined with the approach of [11] gives an alternative proof
of the Lichnerowich conjecture in the compact case.

Theorem 2 will follow from the functional equation (2) below.

Let y (¢) be a parameterized geodesic on a Riemannian manifold M, and denote
x =y(0), T =y(0), L =T+ c T, M. Forvectors X,Y € L, let Jx y(t) be the
Jacobi field along y such that Jx y(0) = X and VrJxy = Y. Define the operator
Q(t): L — L by the formula Jo g x(t) = Jxo(t) for t € (0, t1), where #1 is
the distance to the first conjugate point on y. The operator Q(¢) is symmetric, with
the asymptotic expansion 7~ !idy —%IRT +o(t)att = 0, where Ry: L — L is
the Jacobi operator. Extending the density function 6(¢) to negative values of ¢ (by
setting 6(—t) = (—1)*~10(z) for r > 0) we have the following proposition.

Proposition 2. On a harmonic manifold, for t, s € (0, t1),

ot — s)

det(Q(s) — Q) = g -

(2)

The restrictions imposed on the function 6(¢) by (2) are quite strong, though
mmplicit. For imnstance, if for a given exponential polynomial 6(¢) the equation (2)
has a unique solution Q(¢), then the harmonic space with the density function 6(z)
is two-point homogeneous (if it exists):

Proposition 3. Let M™ be a harmonic manifold with the volume density function
6(t). Suppose that the equation (2) for a symmetric operator function Q(t): R*~1 —
R*~ with an asymptotic expansion t~'id,_; +O(t) at 0 has a unique solution up
to a conjugation by a constant orthogonal transformation. Then M" is two-point
homogeneous.

The paper is organized as follows. In Section 2 we give the proof of Proposition 1
using technical Proposition 4 (moved to Section 4) on the structure of algebraic
curvature tensors satisfying (1). The proof of Theorem 2 and Propositions 2 and 3
are contained in Section 3.

The author 1s thankful to Prof. L. Vanhecke and to Prof. A. Ranjan for many useful
comments and references.

2. Five-dimensional harmonic spaces. Proof of Proposition 1

We start with an algebraic description of the curvature tensor of a Riemannian mani-
fold M? satisfying the first two Ledger formulae (1).

An algebraic curvature tensor in a Euclidean space 1s a (3,1) tensor having the
same symmetries as the curvature tensor of a Riemannian manifold. Given an or-
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thonormal basis {¢; }, denote R;;i; = (R(e;, ¢;)ey, ) the components of the algebraic
curvature tensor R, and let «;; = R;ji;.

Proposition 4. Let R be an algebraic curvature tensor in R> satisfying (1). Then
there exists an orthonormal basis {e; } such that

K12 = K13 = K23 = K24 = K34 = A — ¥,
ks = K35 =« — 3y, Kis=k45 =0, kig=oa—4y,
Rizs=v. Ris=+3y. Riza=—v. Rizs=+3y,
Rz = =2y, Rops =3y, Raps = —/3y,

3

and all the other components of R vanish.

The proof of Proposition 4 (which is somewhat technically involved) is moved to
Section 4. In this section, we prove Proposition 1 assuming Proposition 4.

Let M? be a Riemannian manifold with the curvature tensor given by (3). Then
C =4a—6y, H = (5)?+9y%, and so @ and y must be constant on M. If y = 0,
then the sectional curvature of M? is constant as follows from (3).

Assume that ¥ # 0. We want to show that M> is locally homothetic to
SU(3)/SO(3) or to SL(3)/SO(3). To do that, we first prove that M° is locally
symmetric using the second Bianchi identity, and then compare its curvature tensor
with that of SL(3)/ SO(3).

Letw' be the 1-forms dual to ¢; ,and let g//ij , Ql] be the connection and the curvature
forms, respectively:

do' = =i ned, Ay =~y AYE+QF,

1//5 + wiJ = O, QlJ = _Ql] = %Rijkla)k /\Cl)l.
Introduce the 2-forms
®=—-w' Ao+ Ao+ V30 A,
U=o?rAo*+0' Ao — V30?2 A, @
=40 Ao* +20? /\0)3,

and let E‘] = %(Q‘] —aw A ). Since o and y are constant, the second Bianchi
identity dQ; = Q}( A w;‘ — Q’; A L//]i implies
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The 2-forms E’J can be found from (3):

Bil=ad, El=-0, & =-39,
Bl=-v, Bl=-v, EI=43y, (5)
gi=-I, El=-Ir, Bl=8!=0.

Differentiating E; =&
get, respectively:

DA W2 HVBYD) — WA WS +B30) —T Ay =0, (©6)
AWV +VAWE+VBYH+T AYl =0, )

O AP+ WAL+ BT A wE -yl =0, (8)
—DAYL U AYE+ BT AW+ 9D =0, ©9)

WA (63 =30} + 53y +T A G2 =3yl + Ly =0, (10)
From (4) we obtain by a straightforward computation:
Lemmal. f P Ax+ WV Ay+T Az=0for1-formsx,y, z, then
x =230 — 240 + (221 — »)o® — 200" — 24/300°,
y = 270" + yyo? + 240° + 2530 — 24/3730°,
7= z10! 4+ 200% + 730° + z40*.

Equations (6, 7) and Lemma 1 imply that the »>-components of 1/f51 and lﬁg‘ vanish.

Applying this and Lemma 1 to (8, 9) we find:
1//51 —aw? —ba’, 1#;‘ =bw® +aw’,
(11)
Vi—3 = Ko’ —boh), Yy +yi=Tbo! taot).

Substituting 1ﬁ51 and wg‘ to (6, 7) and using Lemma 1 again we obtain
W24+ V393 = 2a0! + 10’ + 2bw* + 24/3b’,
1,&53 + \/§I/f21 = 2bot + cla)z +2a0* — Zx/gaa)s,
1,053 — \/gl/fz = 2bo' + cy0° — 2aw* — 24/ 3a0’,
2+ V3¢2 =2a0" — o — 2bw* 4 24/3ba’.

Subtracting the third equation from the second one and substituting the expression
for wzl + 1,02 from (11) we find thata = b = ¢; = ¢; = 0, and so

Yl =yd = yf —yd =) +¥3 =vI+ V3¢ =3+ 3y =0.
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It now follows from (10) that 2%2 — 1,/@}. Thus there exist 1-forms z, , o such that
the connection forms are
‘ﬁ31 — 11!,4% =71, 11!,52 = _ﬁf’ WZI = —-n, Wg =1, 1/’53 =i \/§777
V=0, Yy=20 yi=yi=0.
Then wehave 0 = d(Yd +v3) = —yl Ak + QL —yd Ayl + Q3 =@l +QF =

y(E% + Ei) + a(w! A w? + o3 A w*), and so @ = 0 by (5).
Then by (3) the nonzero components of the curvature tensor are

(12)

Rz =—y, Risa=vy, Rins=+3y, Rau=-y, Rpn=-v,
Rizas = V3y, Riaia = 4y, Riags = —2y, Ryzos = —y,  Rampa = —y, (13)
Raazs = /3y, Rasas = =3y, Raza = —y, Raazs = —/3y, Ryszs = —3y.

Using (12, 13) we find that the covariant derivative of R given by
Rijine" = dRiji — Rijes¥i — Rijsrdi — Risa ¥l — Rsjua s

vanishes, and so the Riemannian space M? is locally symmetric.

Consulting the list of symmetric spaces [8] we find that the only possible candi-
dates for M> are SU(3)/ SO(3), or its noncompact dual SL(3)/ SO(3). This is indeed
the case: the tangent space m to SL(3)/ SO(3) at the origin can be identified with a
Lie triple system of 3 x 3 real traceless symmetric matrices. The inner product and
the curvature tensor are given by

(X,Y)=Tr(XY), RX,Y)Z=-[[X,Y].Z], X,Y,Zem.

Then, with respect to the orthonormal basis

1 01 0 1 0 0 1 1 0 0 0
e1r=——=1|1 0 0 ea=—=10 0 0 e3=—10 0 1
V2\0 0 0 V2\1 0 0 V2\o 1 0
1 -1 0 0 1 1 0 0
es=—|10 1 0 es=—10 1 0
V2 0 0 0 V6 0 0 -2
the components of the curvature tensor of SL(3)/SO(3) are proportional to those
given by (13). ]

3. The volume density function and the matrix equation

In this section, we prove Theorem 2 and Propositions 2 and 3.
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Let y = y () be a geodesic on a Riemannian manifold M", with ¢ an arclength
parameter, v(0) = x, y(0) = T € TyM". Let y(11), f1 > 0 be the first point
conjugate to x along y.

For every t € (0,11) we define the operator Q(r): L — L, L = T putting
ONX = Z,if Jy 7(t) = Jxo(t), where Jx y is the Jacobi field along y such that
Jxy(0)=X,J }/( y(0) =Y, prime stands for the covariant derivative along y.

The operator Q(¢) is symmetric. Indeed, for tp € (0,7;) and X, Y € L, let
J1 = Jo,000x- 2 = Ix0, 3 = Jo,0@)y> J4 = Jy,0 be the corresponding Jacobi
fields. Denote U = Ji(t9) = J2(t9), V = J3(tg) = J4(tp). Since for any two Jacobi
fields I and J along a geodesic, the function (I’, J) — (I, J') is constant, we obtain
at the point #:

(1. V)= (5. U) =, V) = (JL. U) =0,
(1, V) = (I, U) = (@)X, Y), (3, V)= (5, U) =—(Q)Y, X),

and the claim follows.

Fix an orientation on aneighbourhood of |0 1,). Choose orthonormal vector fields
{e1, ..., en_1, ey = y(t)} parallel along y and forming a positively oriented basis.
Denote R(t) = (R;;()),i,j =1,...,n — 1 the matrix of the Jacobi operator with
respect to the basis {e1, ..., en—1}. Let Ag() be an (n — 1) x (n — 1)-matrix satisfying
the Jacobi equation Ag(1) + R(1)As(t) = 0 along y, with the initial conditions
Ag(s) = 0, Ag(s) = I,_1, the identity matrix, and " = d/dt. Denote 6s(t) =
det As(1),s,t € R.

If the space M" is harmonic, then for any choice of y and s, 6,(t) = 6(t — s)
[2, Ch. 6]. The volume density function @ () is analytic and 6(—t) = (—1)*~10(z).

Proof of Proposition 2. Let A(t), B(t) be two matrix solutions of the Jacobi equation
such that A(0) = B(0) = 0, A(0) = B(0) = I,. Then the matrix of the operator Q(¢)
is Q(1) = A=Y (1) B(t),and wehave A (1) = A(1)(Q(s)—Q(t)) M (s), where M (s) =
(A(s)A7Y(s)B(s) — B(s))~', for s,t € (0,11). Indeed, the matrix A()(Q(s) —
QU))M(s) = A(t)(Q(s)M(s)) — B(t) M (s) satisfies the Jacobi equation %As(t) +
R(1)As(1) = 0, it vanishes at 1 = s, and % (A(1)(Q(s) — Q)M (s))ji=s = L—1.
We have det(MA™Y) = det(A’AA™'B — A'B)™! = 1, since A’A — A'A = 0
and A'B — A'B = —1I,. Hence det M(s) = 6(s), and so 6(s — 1) = det As(1) =
0(1)0(s)det(Q(s) — Q(1)). d

Remark 1. We can give another interpretation to (2). Denote Pyo: T, () M" —
T.M" the parallel translation along y, and for every ¢t € R define a linear map
Fit):L&eL — Lby F(t)(X,Y) = PyJx,y(t). Denote w(t) a volume form on
F*(r)(L*). Thenw(t)is acurve on the Grassmannian G (n—1, 2n—2) C A"(L®L)*,
and (2) has the form:

w(s)ANw(t) =0 —s)*1 (14)
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for all 7, s € R. The proof follows from the fact that

det (ﬁiti %) — det A(s) det A(1) det(Q(s) — Q1)) = 6t — ),

by (2), with A and B as in the proof of Proposition 2.

One might compare (14) to the fact that for a Nice Embedding ® of a harmonic
manifold [2], [13], [14], the equation (D (y (1)), P(y(s))) = O — s) holds, with
some function ©®, along every geodesic y .

Proof of Theorem 2. Let t,s € (0, t1). Multiplying (2) by ()0 (s) and expanding
the determinant on the left hand side, we obtain 0(t — s) = Y, fu(1)gu(s), with
functions f,, g, being linear combinations of minors of the matrix Q multiplied by
6. Taking appropriate linear combinations, we can assume that both sets of functions
{f«} and {gy} are lincarly independent over R. Let N = rk{f,} = rk{g,}. We have
0 = (0/3t + 03/9s)0(t — s) = Za(fa(t)ga(s) 4+ fou(1)&4(s)). So there exists an
N x N constant matrix C such that f = Cf, ¢ = —C'g, where f = (f1, ..., fn)..

g = (g1,...,gn)". Thus f(1) = ¢ u, g(s) = (e~*)"v for some constant vectors
u,v € RY. Then 6(r — 5) = (f(1), g(s)) = (e, (e~ C%) v) = (CU=y, v), that
is, 0(x) = (¢“*u, v), with some constant matrix C and constant vectors u, v. O

Remark 2. Asitfollows from the proof, the number of monomials of the exponential
polynomial ¢ is not greater than ((*") +2")/2.

Proof of Proposition 3. Let y (1), y (1) be two geodesics on M". We equip all the
objects related to y () with the tilde. Construct the operators Q(¢), Q(#) for y(¢)
and y (1) respectively. By assumption, we can choose orthonormal bases at 77, gy M"
and Ty M" such that Q(r) = o).

Introduce the matrices A and B as in the proof of Proposition 2. Then Q = A~'B
and B'B — B'B = 0, A'B — A'B = —1I, and a direct computation shows that
Q7N = (B@)'B(1t))™".

It follows that B(r) = V(1) B(r) with V(7) an orthogonal matrix function. Since
B'B — B'B = B'B — B'B = 0, the matrix V (r) must be constant. Thus R(r) =
VR(t)V~! for some constant orthogonal matrix V.

So, for any two geodesics y(¢) and 7 (t), we can choose parallel orthonormal
bases such that R(1) = R(7). In particular, for any point x € M" and unit vec-
tors X, Y € TuM", the operators ((VxR)(X,.)X)xt and ((VyR)(Y,.)Y)y. are
equal, up to an orthogonal conjugation. By [14, Lemma 1.1] applied to the operator
(VxR)(X, .)X)x1, we get VR = 0 and the claim follows. O

Example 1. If M" is two-point homogeneous, then the operator Q(¢) is diagonaliz-
able, with diagonal entries of the form A cot(rr), A coth(A#) or ! depending on the
curvature.



Vol. 80 (2005) Two theorems on harmonic manifolds 37

Example 2. In this example, we use the results and notation of [1, Ch. 4].

Let M43 = n@ 3@ a be a Damek—Ricci space with dim 3 = 2, and let y (¢) be a
generic geodesic starting at the origin. Identifying tangent spaces 7, )M along y (1)
via left translation, wehave y (r) = V(£) + Y (1) +s(t)A,with V = V(0), Y(0) = ¥,
5(0) = s nonzero, and T}, () M = 54 @ p @ q. This decomposition is orthogonal, with
subspaces s4, p and g being R(¢)-invariant and parallel along , since y (¢) € s4 and
the two-dimensional subspace b = Span(V (¢), Jy()V (¢)) does not depend on ¢.

Now s is tangent to a totally geodesic CH? ¢ M, and R(t)p = —% id},. Hence
Q(r) is diagonalizable on the 4n — 1-dimensional space (s4 @ p) N ¥ (1)+, with
diagonal entries coth() of multiplicity one and % coth(#/2) of multiplicity 4n — 2.

The behavior of Q(r) is more complicated on the three-dimensional space q.
First find six Jacobi fields along y lying in q. Denote « = s + i||Y|| and introduce a
complex function ¢ (1) = « sinh(¢/2) — cosh(z/2) and a real function f (1) = ¢pp =
(s sinh(z/2) — cosh(z/2))> + ||Y||? sinh?(z/2) (note that f(r) = 1/ h(t), the function
h(t) defined in 4.1.11 of [1]). Let X € 3 be a unit vector orthogonal to Y. Then the
vector field f(¢)X 1s Jacobi, which can be checked directly.

Taking this into account we can rewrite the Jacobi equation for a vector field
U(t) + g(1)X C q as follows:

U= JyyU+ & IronU = A+ IYOIPU + $Ix V(1) =0,

gf —fe+ fUxU, V(@) =c
for some constant ¢c. Denote W(t) = JxU (1), J = ||Y(l)||_l.]y(t). Then W(¢) is
mb,and J: b — b is a skew-symmetric orthogonal operator. Introduce complex
valued functions w(t) = (W@, V) +i(W@), JV)/|VI,v@) = (V(©), V) +
V), JV)/IVI|. The Jacobi equation now has the form

W—il|lY | f b — A+ Y IP TR =20Y 1 Dw —ef T =0,
gf — fé+ fRe(wv) =rc,

and its general solution is given by

w= fV2(AP* + BE + CoP).
g =2A|V||"! cosh(z/2) Re((e — ™ 1)) — 2||V || cosh(z/2) Re(Ch /)
—2|| V|| f cosh(z/2)((1 — | V||*) sinh(z/2) — s cosh(7/2)) Re(Bp 2™ 2),

with constants A € R, B,C € C and ¢ = —2A|Y|?/||V|. This gives explicit
formulae for Jacobi fields.

The matrix of the operator Q(t)|q in the orthonormal basis e = JxV/||V],
ey = —JxJV/||V||, e3 = X has the form £ ()73 (V(1)' Q(1)V (1)), where Q(t) is a
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3 x 3 symmetric matrix with entries
Q1 = (|V|*tanh(z/2) + coth(t/2))/2, Q12 =0, Q2 = 2coth(r/2),
013 = —||V | tanh(z/2)((1 — | V||?) sinh(/2) — s cosh(/2)),
Oz = Y| | VIIsinh(/2)/2, Q33 = f()((1 — ||V ||?) tanh(t/2) + coth(/2))/2,

and
s sinh(t/2) — cosh(z/2) [|1Y || sinh(z/2) 0
V() = —||Y || sinh(z/2) s sinh(z/2) —cosh(z/2) 0
0 0 1

So the matrix equation (2), with the function 6(¢) = 4 sinh?(¢/2) sinh(¢), has a
continuous family of solutions of the form given above.

4. Proof of Proposition 4

We prove Proposition 4 by explicitly solving the equations (1), the first two Ledger
conditions. First, in Lemma 2, we construct a specific orthonormal basis for R>,
in which the algebraic curvature tensor R has a simple structure. Then, with some
computations, we find that R have the required form (3). Note that the constant
curvature tensor is a particular case of (3), when y = 0.

For an orthonormal basis {¢;} for R>, denote Rijuii = (R(e;, ej)ex, ;) the com-
ponents of the algebraic curvature tensor. Let « (o) be the sectional curvature of a
two-plane o, in particular, denote «;; = «j; = R;ji; the sectional curvature of the
two-plane spanned by vectors ¢;, e;. It will be convenient to set k;; = 0.

The equations (1) have the following form [2, equation (6.50)]:

Ricij:ZpRipjp:CSij, 1<i,j<5 (15)
symijkl(zpq RiquRkplq) =H symijkl(sijakl)’ 1 <i,j,k <5, (16)

where §;; 1s the Kronecker delta, all the summations are from 1 to 5, and Sym denotes
the sum by all permutations of the subscripts i, j, k, [. Expanding the equation (16)
we find

Y pg Ripy = H; (17)

qu RipiqRipjq =0, (18)
qu(Ripiququ + Rinjq + Ripjq Rjpiq) = H, (19)
qu(Ripiqupkq + Ripjq Ripkg + Ripjq Ripig) =0, 20)

Symjkl (qu Ripjq Rkplq) =0, (21
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where i, j, k, [ are pairwise nonequal.
We will use the following index convention throughout this section:

l<ijkl,pg<5 2=<ab,cd fg=5,

unless the bounds are explicitly indicated.

The sectional curvature k = k(o) 1s a differentiable function on the Grassmannian
G(2,5) of two-planes in R>. We call a two-plane o € R critical if it is a critical
point for «. It is easy to see that o = Span(U, V), U, V € R is critical if and only
if R(U,V,U,W)=R(U,V,V,W)=0forany W e o1

Lemma 2. There exists an orthonormal basis {e;} for R such that every two-plane
Span(ey, ¢,) is critical, or equivalently

Ria1h = Righa =0, b ?é L,a. (22)

Proof. To construct the required basis we take a critical two-plane o and choose an
orthonormal basis e1, ¢; in it. Then the subspace L = o is an invariant subspace
of the Jacobi operator R,,. Choosing e3, e4, e5 to be orthonormal eigenvectors of the
restriction of R,, to L we obtain

Ri21a = Rizar = Rigip =0, 3<a#b<5. (23)

Then using (15, 16) we show that the basis ¢;, e; in o can be chosen in such a
way that all the remaining components Ry, = 0, a # b also vanish, so that (22) 1s
satisfied.

From (15) Ricy, = Ricy, = 0fora = 3,4, 5, and Rici; = 0. Using (23) we find

Ria3a + Ris3s = Ri3a3 + Risas = Ri3s3 + Rigsa = 0,
Rya3q + Rpszs = Ryzaz + Rasas = Rozsz + Ragss = 0, (24)
Ri1323 + Ri424 + Risas = 0.
Let A1, A2, A3 be the eigenvalues of R,,|; corresponding to the eigenvectors e3,

es, es, respectively. Then Riz1p = Ag—28ap, a,b = 3,4,5, and (18) with i = 1,
Jj =3,4,5,2 gives, respectively,

A R1a34 + A3R1535 = A R1343 + A3 R1545 = A1 R1353 + Ao Ri454 = 0,

(25)
A1R1323 + A2 R1424 + A3 R1525 = 0.

The equations (23, 24, 25) do not yet imply (22): we need to choose a specific
basis e;, e; ino.

For a fixed orthonormal basis E1, E; in o, let X(¢p) = cos¢pE; + singpEs,
¢ € [0,2m7). Since the two-plane o 1is critical, both X (¢) and X (¢ + 7/2) are
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cigenvectors of the Jacobi operator Ry (), with eigenvalues 0 and « (o), respectively.
Therefore, their span ¢ and its orthogonal complement L are invariant subspaces of
Rx(¢), for any ¢. Hence we can define a symmetric operator M (¢): L — L, the
restriction of Ry () to L. It then follows from (1) that for all ¢ € [0, 27)

TrM(p)=C =C — (o), TrM*(p)=H=H — (o). (26)
Explicitly, for U € L

M(p)U = cos® ¢ R, U + sin® p Rp, U

) 27)
+ cospsin (R(Ey, U)Ey + R(Ey, U)Ey).

We have several cases depending on the cigenvalues of M (¢).

Case 1. There exists ¢ such that all the eigenvalues of M (¢p) are equal. Then by (26),
C? = 3H and so the operator M(¢) is scalar; M(¢) = %C’idL. By (27), for all
U e L. R(E;,U,Ey,U) = 0, since Rp,U = M(O)U = 1 CU and Rp,U =
Mz /2)U = % CU. It follows that for ¢; = E;, e; = E, and any orthonormal
vectors e3, eq, es € L, Riy0 = 0 whena = 3,4, 5.

Introduce alinearoperator N: L — Lby NU = R(Y, V)E;,where Y, U,V € L
and U = Y x V, the cross product in the three-dimensional space L. The operator
N is well-defined and symmetric. Indeed, let ¥ and Z be two orthonormal vectors
mLandU =Y xZ ThenZ=UxY,Y=ZxUandso(NZ,Y)—(NY,Z)=
RWU,Y,E1,Y)+R(U, Z,E;,Z) =Ric(U, E1) = 0.

Let ez, e4, es € L be orthonormal eigenvectors of the operator N. Then Ry,5, =
(N(ep x e4),e,) =0forall3 <a #b <3.

Combining this with (23) we find that (22) is satisfied, hence all the two-planes
Span(ey, ¢,) are critical.

Since the operator M(¢) is symmetric and analytic, its eigenvalues are ana-
Iytic functions of ¢. If A(¢) is an eigenvalue of M(¢), which is simple at ¢ =
¢o, then the corresponding unit eigenvector U(¢) is also analytic in a neighbour-
hood of ¢, and 2’ (¢y) = %(M(¢)U(¢)y U($))ip=¢ = (M'($0)U (o). U(go)) +
21 (o) (U’ (o), U(po)) = (M'(po)U (¢bo), U (¢b0)).

We call ¢ a critical angle if 1t 1s critical for the function det M ().

Modulo Case 1, one of the following two cases may occur.

Case 2. There exists a critical angle o such that A1 (¢o), A2(do), A3(po) are pairwise
nonequal. From (26) we have

(M@ B)+A3@) = W@ A3 13 B)) = (B ra(B)A3 () gy, = 0.

This gives a system of linear equations for A;(¢), which implies A/ () = 0, since
Ai (o) are pairwise nonequal. Then (M'(¢o)U;, U;) = 0, where U; is a unit eigen-
vector of M (¢q) corresponding to the eigenvalue A; (¢g), i = 1,2, 3.
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Define e1 = X (¢p), e2 = X(¢po +7/2) and e; 4o = U;, i = 1,2, 3. Then by (27)
Riaza = 3(M'(¢0)eq, ea) = 0 fora =3,4,5.

Also, Ri434 = Ri535 = Risas = Riza3 = Ri3s3 = Rigsa = 0 by (24, 25).

Thus all the equations (22) are satisfied.

Case 3. For any critical angle ¢q, two of the three eigenvalues A;(¢o) are equal. Let
¢o be a critical angle, and let the eigenvalues A; = A; (¢g) be labelled in such a way
that 11 # Ay = A3.

Choose e1 = X (¢hy), e2 = X(¢pp+7/2), and e3, ey, s orthonormal eigenvectors
of M (¢py), with e3 corresponding to A (eq, e5 can be chosen up to a rotation in the
Ag-eigenspace of M (¢y)).

As in Case 2, we find }»/1 ((,250) = (0. Then by (27) R1323 = %(M’(¢0)e3, 63> =1,

From the equations (24, 25) we obtain Ri343 = Ri3s3 = Risqs = Rigsq = 0.
Combining this with (23) we find that the two-plane ¢’ = Span(e;, e3) must be
critical, while the two-planes Span(e;, ¢4) and Span(e;, es) are critical if Ri4p4 =
R1434 = 0 and R1525 = R1535 = 0, respectively.

From (26), A1 +2iy = C, A2 4222 = H. So for every critical angle ¢, the
eigenvalues of M (¢o) are {A], A5, A5}, € = &, where }\fc = %(é FV6H —2C?),
xf = %(ZC‘ + v/ 6H — 2C?). They correspond to the global extrema of det M (¢)
subject to equations (26).

We have two possibilities:

(1) the operator M (¢) has the same set of eigenvalues (say A7, }\;— , }\EL ) for all critical
angles ¢;

(2) there exist two critical angles, ¢+ and ¢~ such that the eigenvalues of M (¢€) are
AS, A5, A5, € = =%, respectively.

Consider them separately.

(1) The only critical values of the function det M (¢) are }»f' (,\;' )2, the global
maxima. Then det M (¢) is constant and the eigenvalues of M (¢) are also constant:
)\f', }\; , }\;r . It follows that the operator M(¢): L — L defined by M(¢) = M(¢) —
)»; 1d;, has eigenvalues )\f’ — )\; , 0, 0 for all ¢, and in particular, rk M(¢) = 1. By
(27), the matrix of M (¢) in the basis {e; } has the form

M($)ab = (] — A3)8a3dp3 cos® ¢
+ (Ria2p + Rivza) cos ¢ sin g + (Raazp — A3 8ap) sin® ¢,
where 3 < a,b < 5. Equating the coefficients of cos® ¢ sin ¢ in 2 x 2-minors to

zero, we find
Ri424 = Ria25 + Ri524 = Ri525 = 0. (28)

It remains to show that Ry434 = Rjs35 = 0. The equations (28) are still true, if we
replace the vectors ey, es by eq() = cos weq+sin aes, es(@) = — sin o e4 +cos aes
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lying in the )»;' -cigenspace of the operator M (¢pg). Then R(eq, eq(), e3, es()) =
cos2a Rysza + sin2«a (Ris35 + Ris34)/2, and we can choose « in such a way
that R(ej, es(), €3, ea(e)) = 0. From the first equation of (24) it follows that
R(ey, e5(a), e3, es(a)) = 0. Hence eq, 3, €3, e4(w), es(«) is the sought basis.

(2) Since all the other possibilities are already considered, we can assume that for
any initial choice of a critical two-plane o, there exist two critical angles, ¢ and ¢~
such that the eigenvalues of the operator M (¢ ) are A{, A5, A5, € = =&, respectively.

From the above, we know that if ¢ is a unit eigenvector of M (¢ ) corresponding to
the cigenvalue A, then both two-planes o = Span(X (¢°), €5), ¢ = £, are critical.
Moreover, from (26) A] + 245 = C, (ki)z + 2()»3)2 = H and so }\;L + A7 = %C‘ =
2(C — k(o). Since A = (M (¢)e5, €5) = R(X (#°), €5, X (¢°). €§) = k(0), we
find that for every critical two-plane o there exist two critical two-planes, o T, o~
crossing o by aline and such that k(6 ) + k(0 ™) = %(C —k(0)).

We say that two critical two-planes (o7, 03), with sectional curvatures « (o1) =
x, k(o) =y, form a critical pair, if they intersect by a line, and for a unit vector X
on that line, the eigenvalues of the operator (Ry)|x1 are x, y, z, 2.

For any critical two-plane o, the pairs (o, o) and (o, o7) are critical with sec-
tional curvatures (« (o), AT) and (x (o), A7), respectively. Moreover, for any critical
pair (o1, 02) with sectional curvatures (x, y), there exists another critical pair with
sectional curvatures (x, y), where y = %(C — x) — y. Indeed, choose an orthonor-
mal basis for R> in such a way that o1 = Span(e;, ¢3), 0, = Span(ey, e3). De-
note x = «(o1), y = «(02), z, z the eigenvalues of the operator (Rel)|e1i~ For

every ¢, the subspace L = all is an invariant subspace of the Jacobi operator

Ry gy, with X (¢) = cospe; + singey. Define the operator M(¢p): L — L by
M(p) = (Rxp)) . Since Tr M(¢) and Tr M?(¢) are constant and the eigenvalues
of M(0) = (Re,)|L are y, z, z, the function det M (¢) has a global extremum at ¢ = 0,
and so the angle ¢ = 0 must be critical for det M (¢). Then there exists another crit-
ical angle ¢ such that the eigenvalues of M (¢) are 7, %, Z, with y + § = %(C —x).
Moreover, for a unit eigenvector ez of M ($) corresponding to the eigenvalue y, the
two-plane § = Span(X (), &3) is critical. This gives another critical pair (o7, &),
with sectional curvatures (x, %(C —x)—y).

If (o1, 02) 1s a critical pair with sectional curvatures (x, y), then the pair (o, o1) 1s
also critical, with sectional curvatures (y, x). Itfollows that starting with a critical pair
with sectional curvatures (x, y) we can successively construct a critical pair with sec-
tional curvatures (x, ),y = %(C —x)—y, then a critical pair with sectional curvatures
(¥, x), then a critical pair with sectional curvatures (y, x), x = %(C —3y) —x, and fi-
nally a critical pair with sectional curvatures (x, y) = (— %x + %y—l— % C; %C — %x —y).

If (01, 07) 1s a critical pair and X is a unit vector in o1 N o7, then the numbers x,
¥, Z, 2, the eigenvalues of (Ry)|x1, must satisfy the equations x + y + 2z = C,
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x2 +y2 +27% = H by (1). So the point (x, y) lies on the ellipse

3x2 +3y? +2xy —2C(x + y) + (C* —2H) =0, (29)
in the xy-plane, and for some angle v we have

F= 7W(cosxh+\/§sin1p)+%, y = 7W(cosw—«/§sinw)+%

The transformation (x, y) — (X, y) = (—%x + %y + %C, %C — %x — y) corresponds
to the shift v — ¥ + o, with €/ = —F + #i. This number is not a root of 1.
Indeed, for any m € N, e™% = 97" (—a,, + /2byi), with a,, = by, = 1 (mod 3),
which can be easily proved by induction. So the set of pairs (x, y), the sectional
curvatures of critical pairs of two-planes, is dense on the ellipse (29). Then by
compactness, for any two numbers (x, y) satisfying (29) there exists a critical pair
having sectional curvatures (x, y). In particular, there exists a critical pair (o1, o7)
with x = k(o7) = %C + %«/12H — 3C2. Then, for a unit vector X € o7 N o7, the
operator (R X)lgﬁ has an eigenvalue with multiplicity three, and we come to Case 1
with o = o71. O

From now on, we fix the basis {¢;} constructed in Lemma 2. In this basis, the
equations (22) hold, and we also have a symmetry with respect to permutations of
{e2, e3, ey, e5}.

Introduce two 4 x 4-matrices, 7' = (t;/) and P = (P,3) with entries

f; =0, tg = Ricpa + Rigve, Pya =0, Pup = Rycaas
where {a, b, c,d} =1{2,3,4,5}. We have, for any a,
S
Zf=2 t? =0 30)

from the symmetries of the curvature tensor. Moreover, Py, + Py, = Ricg = 0 by
(15), so P 1s skew-symmetric.

Lemma 3. If T = 0, then the sectional curvature is constant.

Proof. LetT = 0. Then Ry, = 0 forall a, b, ¢ > 2. Indeed, if a = c this follows
from (22). For a, b, ¢ pairwise nonequal, we have Ryyp. = %(tg - If) by the first
Bianchi identity.

From Ris5. =0, a, b, c > 2 and (22) we find that the equations (17) withi = 1
and (19) withi = 1, j = a have the form

5
Zf:z’flzf =H, Zf;éa Kifkaf +K12a =H,

respectively. Summing up the second equation by a from 2 to 5 and using the first
equation and the fact that 37_, x;; = Ric;; = C we obtain C? = 4H.
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It follows from (1) that forany X € R>, (Tr Rx)* = 4 Tr(R%). Hence (Rx)|xL =
CIX|%id,y ., that is, R(X, U)X = $|X||?U when U L X, and so the sectional
curvature is constant. O

Lemma 4. Rp345 = Rp453 = Ras34 = 0.

Proof. Using (22) we obtain from (18) with j = 1,i =a > 1:

Y5y Pagt] =0. 31)
The equation (20) with j = 1,i = a, k = b takes the form
Puptf — Poatd — Pyctl + 1) (Racha + Raave) =0, {a.b,c.d} ={2,3,4,5}. (32)
Introduce the numbers w; as follows:

o = Rozsa + Roas3, 1 = Rapsa + Raaso, 12 = Razsy + Rapsz.

We have Rycpg + Raape = tjatp—7 With {a, b, ¢, d} = {2,3,4,5}, and po + p1 +
a2 = 0. Since Py, =t = 0, both (31) and (32) can be written in the form

2;22 betf = Puptf + tjarp-ntl, a,b>2. (33)

Taking the sum by a from 2 to 5 and applying (30) on the left hand side and (31) on
the right hand side we come to 3">_, ptja4p_7tL = 0, forall b > 2. Using (30) and
the fact that r; = 0, we solve for tfz’ getting

12 = g"pra—m — tpre—7) = 36" Roaca (34)

for some numbers ¢2, ¢, ¢*, ¢°, where the permutation (b, a, ¢, d) — (2,3,4,5) is
even (the last equation follows from (4|p44—7] = Rpadc + Rbcaa and the first Bianchi
identity).

Interchange a and » in (33) and subtract (31). Since t,f = 0 and the matrix P is
skew-symmetric, we get Pac(t; —17) + Pad(tlf — téf ) = Wa+b-7)1; » with the indices
¢, d chosen in such a way that the permutation (b, a, c,d) — (2,3,4,5) is even.
SUbStituting (34) we obtain 3 Pycq®(Repaa — Reaan) + 3Padqd(Rdbca — Ruabe) =
Mla+b—7\t; . But Repag — Reaab = —Rpcad — Rbdac = —ttjatb-7), Ravea — Raabe =
Racba + Raabe = tiat+b—7, and so

(3Pucq® —3Puaq” + t)parr—7 =0, (b, a, ¢, d) an even permutation.
Now if tjgq5—7/(= t)era—7)) # 0, then

1 =3Paq® —3Pucq®, 12 =3Ppeq® —3Ppiq",
15 =3Pupq” —3Puq®, 19 =3Piq® —3Puq’,
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with the last three equations obtained by replacing the pair (a, b) by (b, a), (¢, d),
(d, ¢), respectively, and taking into account the evenness of (b, a, ¢, d). Multiplying
these equations by ¢%, ¢, ¢, g%, respectively, and adding up, we get gty + q° t,f +
gt + thf = 0, since P is skew-symmetric. By (34) this implies

(¢ + @)+ (49* + (D)) Roaca = 0.
If Rpgeq # 0, then T = 0 by (34) and the claim follows from Lemma 3. Assuming
T # 0 we get that for any pair a # b from {2, 3, 4, 5} either Rycpq + Roape =

Hatb—7] = 0, or Rpyeq = 0. From this and the first Bianchi identity we obtain
Ra345 = Roasz = Ros3a = 0. a

Using the result of Lemma 4, the equations (22) and the definition of the té’ ’s and
P,,’s we can simplify some of the equations (17)—(21): the equations (17) withi = 1,
A7 withi =a, (19 withi =1, =a, (19 withi =a, j = b, (18) withi = ¢,
Jj =b,and 20) with i = 1, j = a, k = b have the following form, respectively:

>ty =, 35)

Zp ap +22f af = (36)

> Klpkap + i3, + Zf(ta )2 =H, G37)

Y, apkvp 12 + X pog PR +3(PL — PLY+ (P + (19 =H,  (38)
Poa(kae — Kcq) — Pea Pog — Pea Ppa = 0, (39)

Pea(icic — k1) + 1812 = 0, (40)

where {a, b, c, d} =1{2,3,4,5}.

Lemma 5. If P = 0, then the sectional curvature is constant.

Proof. From (40) we get tgtg = 0 forall a, b > 2. This, together with (30), implies
that at least for one value of a, 7 = 0 for all b. Without loss of generality, assume
that 2 = 2 =2 =10.
Summing up (38) by b # a and adding (37) we obtain
S Kapkip T X () + Ly (197 + (1) = 4H,
where {c, d} = {2,3,4,5}\ {a, b}. Now by (15) Y, x;; = C, so the first term on the

left hand s1de equals C2. The sum of the two remaining terms is Z > fa (tf )y =

> g(t — 2,8 )2. Therefore we obtain
>, (2 =Y, (1)) +C? —4H.

The right hand side does not depend on a. However, for ¢ = 2, the left hand side
vanishes. Hence 7' = 0 and it remains to apply Lemma 3. o
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From now on we assume that at least one of the P, ’s is nonzero.
Using (22) and Lemma 4 we simplify (18) withi = b, j = 1 and (20) withi = a,
j =1, k = b to the form

Poatf + Pyctf + Poatfl =0, (41)
Pab[};l - Pbclé - Pbdféi =0, (42)

respectively, where {a, b, ¢, d} = {2, 3, 4, 5}. Adding (41) and (42) we obtain
Pey(t — 1) + Pap(td — 1) = 0. (43)
Interchanging a <> b, (a, b) <> (¢, d) and (a, b) <> (d, c) we get, respectively:

Pca(tac - t[f) + Pda(tg - l[f) =0,
Poa(t® —19) + Poa(t? — 1) = 0,
Poht® — 43) + Pysli2 — 1) = 0.

So either Puy Pag — PegPap = 0,011 = 15,14 = 18,18 = 19,10 =15,

Up to a sign, there are three minors of the form P, Py, — Poy Pyp in the matrix
P, depending on the choice of the pair {a, b} C {2, 3,4, 5}.

If at least two of them are nonzero, then t; = #; = t; for all {a,b,¢,d} =
{2,3,4,5} and so T = 0 by (30). The proof is then completed with Lemma 3.

Let precisely one of the three minors P, Py, — P.,P;p be nonzero, say
Py3Psy — PpaPs3 = Pp3Pys — PasPyz = 0 and P34Pys — PyaP3s # 0. Then
=021 =1,66=6,15 =1;. Denoting > =12, 3 =3, t* =15, > =15
we get 12 = =212, 15 = =263, 18 = —2t* 1] = —2¢° from (30). From (43) with
a=4b=3,c=1,d =2, Py3st? = Ps3t>. Then from (41) with b = 3 we get
P321‘2 — P34l4, and so P23lf2 = P43l4 = P53IS. Similar arguments show that P,;t%
does not depend on a # b. In particular, Ps3t> — Py3t* = Psyt® — Pypt* = 0 and so
t* = 13 = 0 since P34 Pas — Pay P3s # 0. Similarly, 2=3= 0,thatis, 7 = 0, and
it remains to apply Lemma 3.

Finally, assume that all the minors Py, Py, — P, Py, vanish. It is easy to see that
Py Py, = 0forall {a, b, c,d} ={2,3,4, 5}, and so the matrix Py, is of one of the
following forms, up to relabelling the subscripts:

0 Py Py P 0 Pys Py 0
= 0 0 —Px 0 Py 0
—Py 0 0 0| —Pyy —Py 0 0 (441, 447)
—Ps 0 0 0 0 0 0 0

and at least one of the P,;’s is nonzero.
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Lemma 6. If the matrix P has the form (441), then at most one of the Py, a > 2
can be nonzero.

Proof. Taking a = 2 in (39) we obtain
Pry(ic2e — kac) = PacPap, {b,c,d} = {3,4,5}. (45)

First assume none of Pa3, Py, Prs vanishes.

Then we get ko —k4c = kap —kgp for any triple {b, ¢, d} = {3, 4, 5}. Introduce the
numbers v3, v4, vs by vy = k20 — Kde, ¢ £ 2, d. We have kgc = k2 —vg = k24 — Ve
and so «p; + v, ¢ # 2 does not depend on ¢. Denote & = k. + v.. Then

Koe =& —Vve, Kie=§&—ve—vy, c,d#2, c#d. (46)

Then by (15), C = " koi = w12 + 36 — Zf vpand fora #2,C =) ke =
Klg +3& — 2v, — Zf vy. It follows that k1, = k12 + 2v,, and so by (15), C
ik =4k +3 Zf vy. Then

kiz =& =Y v, Kla=£&—) svr+2vs, a#2.

Substituting this and (46, 44;) to (35,36) we obtain 2P7, + 452 — 4 vy +
23 vi 20 =482 —4E Y v +43 vi = H,and so

P =vi+vi, fa.b,c}=1{3,4,5).
On the other hand, (45, 46) imply
Prgva = PPy,  {d,b,c} ={3,4,5}.

2 _ (P PrN\2 Py, Pyp\2 P2 Py\2 .
It follows Fhat Ba = (#) + (ZITZ”) and so (P—zb) + (P%i) = 1 Smce the
left hand side must be greater than or equal to 2, we come to the contradiction.

So at least one of Pa3, Pa4, Pas vanishes, and the claim follows from (45). O

Lemma 7. If the matrix P has the form (44,), then either the sectional curvature is
constant, or at most one of the P»,, a > 2 is nonzero.

Proof. Assume that all three numbers Ps3, Paa, P34 are nonzero (otherwise, rela-
belling the subscripts we come to a subcase of (441)).

The equation (43) with d = 5 gives Pe (£ — 1) = 0, {a, b, c} = {2,3,4}, and
sot; =1;. Denote 1 =1 =15, {a,b,c} ={2,3,4}

Taking d = 5 in (40) we find 127 = 0. Therefore t”t% = 0 for all a, b # 5, and
so at least two of the three numbers 2, 13, t* vanish. Let say 1> = t* = 0. Then also
?=0by @) witha=2,b=3,c=4,d =35 Hencet> =12 =t* =0forall a.
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The equation (40) with ¢, d # 5 gives k12 = k13 = k14. Denote their common
value by «. From (35) and (36) with a = 5 we get 3k = 35 + k& + «. But
from (15) C = >, k1; = Y_; «5i, hence 3k = k25 + k35 + k45. It follows that
k25 = K35 = k45 = k. Applying (15) again we find that k23 = x4 = x34. Denote
their common value by «.

The equation (37) with @ # 35 now yields 2« + k2 + kK5 + (IS)2 =H It
follows that 25 = +1; = =+ and so 1; = 15 = 1 = 0 by (30). Thus 7 = 0 and
the claim follows from Lemma 3. O

As Lemma 6 and Lemma 7 show, it remains to consider the case when only one
of the P,;’s is nonzero. After relabelling we can assume that Pp3 # 0, and all the
other P,;’s vanish.

The equation (39) with (b, ¢) = (4, 5), (5, 4) yields

K34 = Kp4, K35 = K25, Ki2 = K13, 47)

the latter equation follows from (15): C =", ki = Y, k3.

From (42) we get 12> = t3 = 0 for all @, and from (40) witha = 4, b = 5 and (47)
131; = 0. Without loss of generality assume 7; = 0. Then (21) withi = 1, j = 2,
k = 3,1 = 4 takes the form

Py (ty — t3) + 15 (k12 + Kk34) + 15 (k13 + K24) = 0.

But t25 = —t35 by (30), so (47) implies t; = té‘.
From the equations (36) with « = 2 and (38) with a = 2, b = 3 we find

Ky + i35 + K3y + 55 + 2P = Y kaiksi + %y — 2P 4+ (th? = H,

and so 4P = (t)? by (47). Then 2P% = =+:{ and we can take the minus sign on
the right hand side replacing the vector e; by —ey, if necessary. It now follows from
(30) that the only nonzero entries of the matrices P and 7 can be

G=ti=p, ti=-2u, H=v, t5=—v, Py=p#0. (48
Then from (35), (36) with a = 4, and (37) with a = 4 we get
ety ity Ky Fiefs = iy i3y i3y KGs = Kiakaa K134+ kg 1545 = H,

so the vectors (k12, K13, K14, K15) and (ko4, k34, K14, k45) are equal. Combining this
with (47) we find:

K12 = K13 = K24 = K34, K35 = K25, K15 = K45. (49)

Now from (15), C = Y, k4; = Y _; ks;, which gives k14 + 2«24 = k154 2«25, and
from 36) witha =4,a =5, H =), /cfi =Y, K;. and so K124+2K224 = /c125 +2K§5.
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Hence cither 14 = K15, k24 = K25 OF ko4 = zk14 + FK15, K25 = FK14 + 5K15.

But the first case is not possible, since otherwise (37) with a = 5 and (49) imply
iK% + 1k 4,y + 1 + 4(t$)? = H, and so t§ = 0 by (35). This contradicts to
u # 0 from (48). In the second case, we solve (15) getting

K12 = K13 = K3 = K24 = K34 = O — ¥/, (50)
ks = k35 = — 3y, Kis=Kk45 =0, K4 =0co—4dy,

where C = 4o — 6y.

Substituting (50) and (48)to 1) withi =1, j =2,k =3,l = Swefindv =3y.
From (50, 35, 36) we get 4a> — 12y +18y? = 4> — 12y +12y%+2u% = H, and
so i = £+/3y. Replacing the vector es by —es, if necessary, we can take 1 = +/3y.

Using (48) and the fact that Ry, = %(t,f - th ), which follows from the definition
of the #;’s we find that the nonzero components of the algebraic curvature tensor R
are those listed in (50) and

Riza =y, Rims=+3y, Rizaa=—y, Rizns=+3y,

(51
Rz = =2y, Rops =3y, Raps = —/3y.

It can be checked directly that the algebraic curvature tensor with components
given by (50, 51) satisfies the first two Ledger formulae (1). o
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