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Lorentzian Kleinian groups

Charles Frances

Abstract. In this article we introduce some basic tools for the study of Lorentzian Kleinian
groups. These groups are discrete subgroups of the Lorentzian Mobius group O(2, n), acting
properly discontinuously on some nonempty open subset of Einstein’s universe, the Lorentzian
analogue of the conformal sphere.
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groups.

1. Introduction

To understand a hyperbolic manifold H"+!/T" (H"+! denotes here the (n + 1)-
hyperbolic space and I' C O(1,n + 1) is a discrete group of hyperbolic isome-
tries), a nice and powerful tool is the dynamical study of the conformal action of I'
on the sphere S". This deep relationship between hyperbolic and conformally flat
geometry has a counterpart in Lorentzian geometry, often quoted by physicists as
AdS/CFT correspondence. Let us first recall what is the Lorentzian analogue of the
pair (H™*+1,§™). The (n 4+ 1)-dimensional Lorentzian model space of constant cur-
vature —1 is called anti-de Sitter space, denoted AdS, 41 (precisely, we are speaking
here of the quotient of the simply connected model AdS n+1 by the center of its isom-
etry group, see [O’N], [Wo]). This space, like the hyperbolic space, has a conformal
boundary. It is called Einstein’s universe, denoted Ein,,, and it can be defined, up to
a two-sheeted covering, as the product S! x S"~! endowed with the conformal class
of the metric —dt? x gsn-1. From the conformal viewpoint, Einstein’s universe has
a lot of properties reminiscent of those of the sphere. In particular, the group O(2, n)
of isometries of AdS, 1 turns out to be also the group of conformal transformations
of Ein,. The understanding of an anti-de Sitter manifold AdS, ; /T" thanks to the
conformal dynamics of I" on Ein, is one of the motivations for studying Lorentzian
Kleinian groups, which we define by analogy with the classical theory as discrete
subgroups of O(2, n) acting freely and properly discontinuously on some nonempty
open subset of Ein,,.
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Since the works of Poincaré and Klein at the end of the nineteenth century, the
classical theory of Kleinian groups has generated a great amount of works and pro-
gressed very far (we refer the reader to [A], [Ka], [Ma], [MK] for a historical account
and good expositions on the subject).

Other notions of Kleinian groups also appeared in other geometric contexts, such
as complex hyperbolic and projective geometry (see for example [Go], [SV]).

To our knowledge, nothing systematic has been done for studying Lorentzian
Kleinian groups, so that the aim of this article is to lay some basis for the theory. In
particular, our first task is to build and study nontrivial examples of such groups.

The first part of the paper (Sections 3 and 4) is devoted to what could be called
Lorentzian Mobius dynamics, namely the dynamical study of divergent sequences of
O(2, n) acting on Ein,. This dynamics appears richer than that of classical Mobius
transformations on the sphere. This is essentially due to the fact that O(2, n) has
rank two, and the different ways to reach infinity in O(2, n) induce different dy-
namical patterns for the action on Ein,. These patterns, which are essentially three,
are described in Section 3, Propositions 3, 4 and 5. Let us mention here two new
phenomena (with respect to the Riemannian context) illustrating the dynamical com-
plications we are confronted with. Firstly, the Lorentzian Mobius group O(2, n) is
not a convergence group for its action on Ein, (roughly speaking, a group G acting
by homeomorphisms on a manifold X is a convergence group if any sequence (g;)
of G tending to infinity admits a subsequence with a “north—south” dynamics, i.e. a
dynamics with an attracting pole p* and a repelling one p~. See for example [A],
p. 40, for a precise definition). Secondly, a discrete subgroup I' C O(2, n) does not
always act properly on AdS, +1.

In spite of these differences with respect to the classical theory it is still possible
to define the limit set of a discrete subgroup I' C O(2, n) (see Section 4). This is a
closed I'-invariant subset Ar C Ein,, such that the action on the complement Qr
is proper. Moreover it is a union of lightlike geodesics, so that it defines naturally
a I"-invariant closed subset f\r of L, the space of lightlike geodesics of Ein,, (this
space is described in Section 2.5). Unfortunately, the nice properties of the limit set in
the classical case of groups of conformal transformations of the sphere are generally
no longer satisfied in our situation. For example, the limit set that we define is not, in
general, a minimal set for the action of I' on Ein,, (although f\p is sometimes minimal
for the action of I' on LL,,, see Theorem 1 below). The groups I' C O(2, n) acting
properly on AdS, 4 are those whose behaviour is closest to that of classical Kleinian
groups. They will be called groups of the first rype. For them we get nice properties
for the limit set.

Theorem 1. Let I be a Kleinian group of the first type and Ar its limit set.

(1) The action of T is proper on Qr U AdS,+1 C Ein, 1.
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(i) Qr is the unique maximal element among the open sets Q2 C Einy, such that T’
acts properly on QU AdS;+1.

(i) If moreover I' is Zariski dense in O(2, n), theri Qr is the unique maximal open
subset of Ein, onwhich I acts properly, and Ar is a minimal set for the action
of I on L.

In Section 5, we give several examples of families of Lorentzian Kleinian groups.
These basic examples being constructed, it is natural to try to combine two of them to
get other more complicated examples. This is the aim of Section 6, where we prove
the following result (an analogue of the celebrated Klein’s combination theorem):

Theorem 2. Let I'y and 'z be two cocompact Lorentzian Kleinian groups with fun-
damental domains D1 and D2. Suppose that both D1 and Dy contain a lightlike
geodesic. Then one can construct from I'1 and Ty another cocompact Kleinian
group, isomorphic to the free product I'y = I';.

By a cocompact Kleinian group we mean a group acting properly on some open
subset of Ein, with compact quotient.

We then use Theorem 2 in Section 7 to construct Lorentzian Schottky groups. The
study of such groups can be carried out quite completely. The limit set Ar and the
topology of the conformally flat Lorentz manifold obtained as the quotient Qr/I" of
the domain of properness are made explicit in this case, and we get:

Theorem 3. Let I = (s1,...,5g) (g > 2) be a Lorentzian Schottky group.
(1) The group T is of the first type.
(i1) The limit set Ar is a lamination by lightlike geodesics. Topologically, it is a
product of RP with a Cantor set.
(iii) The action of T" is minimal on the set of lightlike geodesics of Ar.
(iv) The quotient manifold Qr/ U is diffeomorphic to the product

Sl x (Sl x Sn—l)(g—l)ﬁ7

where (S! x S"_l)(g_l)11 is the connected sum of (g — 1) copies of St x s*—1.

2. Geometry of Einstein’s universe

A detailed description of the geometry of Einstein’s universe can be found in [Frl],
[Fr2] and [CK]. Also, for the readers who are not very familiar with Lorentzian space-
times of constant curvatures, good expositions can be found in [Wo], chapter 11, and
[O’N], chapter 8. In this section we briefly recall (without any proof) the main
properties which will be useful in this article.
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2.1. Projective model for Einstein’s universe. Let R>" be the space R**2, en-
dowed with the quadratic form ¢>" (x) = —x7 —x3 + x5 +- - - +x2 42 Theisotropic
cone of g2 is the subset of R*" on which ¢*>" vanishes. We call C*>" this isotropic
cone, with the origin removed. Throughout this article we will denote by 7 the projec-
tion from R?" minus the origin on R P"+1. The set 7z (C?>") is a smooth hypersurface
¥ of RP*+!. This hypersurface turns out to be endowed with a natural Lorentzian
conformal structure. Indeed, for any x € C>", the restriction of g>” to the tangent
space T, C>", that we call c}i’”, is degenerate. Its kernel is just the kernel of the tan-
gent map d,r. Thus, pushing c}i’” by d,m, we get a well-defined Lorentzian metric
on Ty X. If m(x) = m(y) the two Lorentzian metrics on T () X obtained by push-

ing in’" and t}i’” are in the same conformal class. Thus the form ¢>" determines
a well-defined conformal class of Lorentzian metrics on %. One calls Einstein’s
universe the hypersurface X together with this canonical conformal structure.

The intersection of C>" with the Euclidean sphere defined by x7 + x7 + - +
x2 42 = lisasmoothhypersurface % ¢ R%". One can check that ¢ 2" has Lorentzian
2.0
>
(S x§"1, —dt? 4 g¢u-1). Now Einstein’s universe is conformally equivalent to the
quotient of (S' x$"~1, —dt? + g¢a-1) by aninvolution (induced by the map x > —x
of R2M),

signature when restricted to f), and in fact, (f] q ) is isometric to the product

2.2. Conformal group. In the previous projective model for Einstein’s universe the
subgroup O(2, n) C GL,42(R) preserving g>" acts conformally on Ein,. In fact,
the conformal group Conf (Ein,) of Ein, is exactly PO(2, n). Let us now recall the
following result, which is an extension to Einstein’s universe of a classical theorem
of Liouville in Euclidean conformal geometry (see for example [CK], [Fr3]):

Theorem 4. Any conformal transformation between two open sets of Ein, is the
restriction of a unique element of PO(2, n).

2.3. Lightlike geodesics and lightcones. Itisaremarkable fact of pseudo-Riemann-
ian geometry that all the metrics of a given conformal class have the same lightlike
geodesics (as sets, but not as parametrized curves). In the case of Einstein’s universe,
the lightlike geodesics are the projections on Ein, of 2-planes P C R>" such that
q|2};” = 0. Hence lightlike geodesics of Ein, are copies of RP!.

Given a point p in Einy,, the lightcone with vertex p, denoted by C(p), is the set of
lightlike geodesics containing p. In the projective model, if p = 7 (), with u some
isotropic vector of R>", then C(p) is just 7(P N C>™), where P is the degenerate
hyperplane P = u= (the orthogonal is taken for the form g>"). The lightcones are not
smooth submanifolds of Ein,. The only singular point of C(p) is p, and C(p)\{p}
is topologically R x $"2.
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2.4. Homogeneous opensubsets. We will deal in this paper with several interesting
open subsets of Ein,, all obtained by removing from Ein, the projectivization of
peculiar linear subspaces of R>". We will be very brief here and refer to [Wo] for a
more detailed study (especially concerning de Sitter and anti-de Sitter spaces).

Minkowski components. Given a point p € Ein,, the complement of C(p) in Ein,, is
a homogeneous open subset of Ein,, which is conformally equivalent to Minkowski
space R1"~1. We say that this is the Minkowski component associated to p. In fact,
we have an explicit formula for the stereographic projection identifying Ein, \C(p)
and RV~ (see [CK], [Frl]).

De Sitter and anti-de Sitter components. Just as Minkowski space arises by removing
from Ein, the projectivization of a lightlike hyperplane, one also gets interesting open
subsets by removing the projectivization of other (i.e. nondegenerate) hyperplanes.

If P is some hyperplane of R>" with Lorentzian signature, then (P N C>™")
is a Riemannian sphere S of codimension one. The canonical conformal structure
of Ein, induces on this sphere the canonical Riemannian conformal structure. The
stabilizer of S in O(2, n) is a group G isomorphic to O(1, n). The complement of
S in Ein, is a homogeneous open subset of Ein,, conformally equivalent to the de
Sitter space d S,,. Therefore S"~!, with its canonical conformal structure, appears as
the conformal boundary of d S,

If P is some hyperplane of R>" with signature (2, n — 1), then the projection
(PN C%") is a codimension one Einstein universe E. The stabilizer of E in O(2, n)
is a subgroup isomorphic to O(2, n — 1). The complement of E is a homogeneous
open subset of Ein,,, which is conformally equivalent to the anti-de Sitter space AdS,,.
In this way we see Ein, _ as the conformal boundary of AdS,.

Complement of a lightlike geodesic. What do we get if we remove from Ein,
the projectivization of a maximal isotropic subspace of R>"? Such subspaces are
2-planes, so that the resulting open set is the complement 24 of a lightlike geodesic
A C Ein,. Open sets like 2 admit a natural foliation by degenerate hypersurfaces,
and this foliation FA is preserved by the whole conformal group of Q2. This foli-
ation can be described as follows: given a point p € A, we consider the lightcone
C(p) with vertex p. Since A is a lightlike geodesic, we have A € C(p). Now the
intersection of C(p) with 24 is a degenerate hypersurface of 2, diffeomorphic to
R*=1. We callit #(p). If p # p’, #(p) and #(p’) only intersect along A, and the
leaves of the foliation € are just the #(p) for p € A.

2.5. The space L, of lightlike geodesics of Ein,. Since this space will appear
naturally when we will define the limit set of a Lorentzian Kleinian group, we briefly
describe it.

The stabilizer of a lightlike geodesic in O(2, n) is a closed parabolic subgroup
P, isomorphic to (R x SL(2, R) x O(n — 2)) X Heis(2n — 3), where Heis(2n — 3)
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denotes the Heisenberg group of dimension 2n — 3. Thus LL,, can be identified with
the homogeneous space O(2, n)/ P, which has dimension 2n — 3.

Let H c R>" be a hyperplane with Lorentzian signature, and let ¥ be the
projection of HNC>" on Ein,,. The hypersurface X is a codimension one Riemannian
sphere of Ein,. Now for any isotropic 2-plane P < R>", P N H is 1-dimensional
and isotropic. Equivalently, any lightlike geodesic of Ein,, intersects X in exactly one
point. We get a well-defined submersion p: L, — X. The fiber over g € X is the
set of lightlike geodesics inside the lightcone C(g). So, L, is topologically an $"~2
fiber bundle over S*~!. Notice that O(2, n) does not preserve the bundle structure.

3. Conformal dynamics on Einstein’s universe

3.1. Cartan decomposition of O(2, ). From now on it will be more convenient to
work in a basis of R>" for which ¢>"(x) = —2x1x,42 + 2X2%p41 + x32 4+ 4 x,%.
We call O(2, n) the subgroup of GL,4+2(R) preserving the form g*". Let AT bea
the subgroup of diagonal matrices in O(2, n) of the form

P

el

e H

o=
with & > @ > 0. Such an A7 is usually called a Weyl chamber. The group SO(2, n)
can be written as the product K ATK where K is a maximal compact subgroup of
SO(2, n). This decomposition is known as the Cartan decomposition of the group
SO(2, n) (compare [B], IW]). Such a decomposition also exists for O(2, n), with
K a compact set of O(2, n). Moreover, for every ¢ € O(2, n), there is a unique
a(g) € AT suchthat g € Ka(g)K. The element a(g) is called the Cartan projection
of g. As a matrix it is written

eMe)
eH (@

a(g) =

e (&)

e~ @)
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The reals A(g) > u(g) > 0 are called the distortions of the element g (associated
with the given Cartan decomposition).

3.2. Qualitative dynamical description. We want to understand the possible dy-
namics for divergent sequences (gx) of O(2, n) (i.e. sequences leaving every compact
subsetof O(2, n)). Our approach considers sequences g (x), where (xy) is a converg-
ing sequence of Ein,. It is important to consider arbitrary such convergent sequences,
not only constant sequences, in order to characterize proper actions. Recall that given
a subgroup I' of homeomorphisms of a manifold X, one says that the action of I"
on X is proper if for all convergent sequences (xx) of X and all divergent sequences
(gr) of T', the sequence gi(xx) does not have any accumulation point in X. Notice
that there exist actions for which gy (x) diverges for all divergent (gr) € I' and all
x € X, but which are not proper (look, for example, at the action of a hyperbolic
linear transformation of SL.(2, R) on the punctured plane R2\{0}).

Definition 1. Let (gx) be a divergent sequence of homeomorphisms of a manifold X
(i.e. (gx) leaves any compact subset of Homeo(X)). For any point x € X, we define
the set

Dgy(x) = U {accumulation points of (gx(xx))}.

Xf—>X

The union is taken over all sequences converging to x.

Further, for any set £ C X, D(g)(E) = Jyep D(g)(x). Taking the union,
over all divergent sequences (gx) € I', of the sets D, (E), we get a closed set
Dr(E) C X that we call the dynamic set of E.

Notice that for two points x and yin X, y € Dr(x) ifand only if x € Dr(y). We
say in this case that x and y are dynamically related.

The interest of this definition for the study of actions of discrete groups can be
illustrated by the following: let I' be a discrete group of Homeo(X) acting on some

open subset 2 C X. Then the next result is easily proved.

Proposition 1. The group I acts properly on Q iff no two points of Q2 are dynamically
related.

Assuming that the action of I" on €2 is proper, we also have:

Proposition 2. If the action of T on Q has compact quotient, then every x € 32
must be dynamically related to some point y of 2 (depending on x).

Now let (gx) be a divergent sequence of O(2, n). We define Ay = A(gk), pr =
nu(gr) and & = A — px. We say that the sequence (gx) fends simply to infinity if
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a) the three sequences (Ag), (ux) and (8;) converge respectively to some Aoo, Moo
and 8o in R;
b) compact factors in the Cartan decomposition of (gi) both admit a limit in K.

Of course, every sequence tending to infinity admits some subsequence tending
simply to infinity, so that we will restrict our study to these last ones. The sequences
tending simply to infinity split into three categories:

(1) Sequences with balanced distortions. This name denotes the sequences (gx) for
which Ay = oo = 400 and d is finite.

(1) Sequences with bounded distortion. This denotes the sequences (gi) for which
Moo # +00.

(ii1) Sequences with mixed distortions. This denotes the sequences (gi) for which
Aoo = Moo = doo = +00.
To each type corresponds, as we will see soon, distinct dynamical behaviours.

Notation. In the following we will use notations such as C(p), #a, . ... We invite
the reader to look at Section 2, where these notation were introduced.

For any set £ in R>", we use the notation 7 (E) for 7 (E N C>"). If y and ¢ are
two real numbers, we write I.(y) for the closed interval [y — &, y + ¢].

For every x = (x1,x2,...,x,42) In R2" we define the e-box centered at x as
Be(x) = Io(x1) x Io(x2) X -+ X I (xp42)

For a sequence (gx) of O(2, n) tending simply to infinity, we call B°(x) the
compact set obtained as the limit (for the Hausdorff topology) of the sequence of
compact sets gx o 77 (B.(x)) (this limit will always exist in the examples we will deal
with).

Finally, we will often denote in the same way an element of O(2, n) and the
conformal transformation of Ein, that it induces.

3.2.1. Dynamics with balanced distortions

Proposition 3. Let (gi) be a sequence of O(2, n) with balanced distortions. Then
we can associate to (gr) two lightlike geodesics AT and A=, called attracting
and repelling circles of (gr), and wo submersions mw, : Eing\A~ — A™ (resp.
m_: Bing\AT — A7), whose fibers are the leaves of - (resp. Ha+), such that
the following holds.

For every compact subset K of Eing\A~ (resp. Eing\A™"), D(g,)(K) = m4(K)
(resp. D(gil)(K) =m_(K)).

Remark 1. Before beginning the proof, let us remark that if (g) has balanced distor-
tions (resp. bounded distortion, resp. mixed distortions), it will be so for any compact
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perturbation of (gi), i.e. any sequence (/ ,El)gkl ,52)) for (I ,({1)) and (/ ,EZ)) two converging
sequences of O(2, n). In the same way the conclusions of the above proposition are
not modified by a compact perturbation, even if of course 774 and A¥ are. So in the
following (and also in Sections 3.2.2 and 3.2.3) we will restrict the proofs to the case
where (g) is a sequence of AT,

Proof. We restrict the proof to the case Ap = pg, so that o, = 0.

We begin by defining A* and 7*. Letus call P* (resp. P ™) the 2- plane spanned
by e1 and ey (resp. e,4+1 and e,42), and AT (resp. A~ ) the projection on Ein, of
these 2- planes. The space R2:n splits as a direct sum Py @ Py @ P, where Py is the
span of e, ..., e,. This splitting defines a projection 7. (resp. 7_) from R>" to the
plane P (resp. P~). The image 74 (x) is nonzero as soon as x is an isotropic vector
of g%" which is not in P~. Thus 7, induces a projection 7. of Ein,\A~ on A*
whose fibers are the projections on Ein, of the fibers of 7+. These are degenerate
hyperplanes of R>", defined as ¢%"-orthogonals of vectors of P~. So, the fibers of
4 are the intersections of Ein, \A ™ with the lightcones with vertex on A~, i.e. the
leaves of Fl-.

Now letus choose x such thatz (x) & A™. Since gxost (Be (x)) = 77 (I yy. . (€™ x1) x
Lo (€M xp) x Io(x3) X« X Lo (xn) X Lwgp (e expi1) X 1-ap, (e *xp42)), we
obtain, for e sufficiently small, that BX°(x) = 77 (L, (x1) x L:(x2) x {0} x --- x {O}).
We thus have B2 (x) € A™. Since ¢ is arbitrarily close to 0, for any sequence (xx)
such that 7 (xz) tends to 7 (x), we have limy_, o gx © m(xg) = 7w(x1,x2,0,...,0).
This concludes the proof. ]

3.2.2. Dynamics with bounded distortion

Propositiond. Let (gi) be a sequence of O(2, n) with bounded distortions. Then we
can associate to (gr) two points pT and p~ of Einy, called attracting and repelling
poles of (gk), and a diffeomorphism g~ from the space of lightlike geodesics of
C~ = C(p™) in the space of lightlike geodesics of C* = C(p™), conformal with
respect to the natural conformal structure of these two spaces, such that we have:

(i) For all compact subset K inside Ein,\C~, we have Dg(K) = {pTL.

(1) For alightlike geodesic A C C~ and a point x of A distinct from p~, Dg,)(x)
is the lightlike geodesic goo(A).

(iii) The set Dg,y(p™) is the whole of Ein,.
The cones CT and C~ are called attracting and repelling cones of (g).

Remark 2. The dynamical pattern of the sequence (g, 1) is obtained by switching
the +’s and the —’s in the statement. This remark holds also for Proposition 5.
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Proof. Following Remark 1, we do the proof for a sequence (gr) of AT, with
limy 00 Ag = +00.

Let p* = 7t(e1), p~ = w(ent2), CT =7 ((en) 1), C~ = 7 ((ens2) V).

Let us first remark that if x; # 0, then clearly B2°(x) = p™. This proves (i), as
well as (iii), passing to the complement.

If 7(x) € C~ and if ¢ is sufficiently small, we get that B°(x) = 7 (R x
Lopcog(eF°xp) X Io(x3) X+ X Io(xy) X Ly—poog (e #xy41) x {0}).

The lightlike geodesics of Ct and C~ are parametrized by a sphere $"~% corre-
sponding to isotropic directions of the space spanned by ey, ..., e,41.

We define goo as the element of O(1, n — 1) given by

eftoo

e Moo

The spaces of lightlike geodesics of C* and C~ have a canonical conformal Rieman-
nian structure, and we see that the map g, is a conformal diffeomorphism between
these two spaces.

By the above formula, if 7 (x;) converges to 7 (x), the accumulation points of the
sequence g (7 (xg)) are in every BS°(x), for arbitrary small e. The intersection of all
BX(x)is (R x {e#®x3} x {x3} x - -+ X {x3} x {e7#®x,41} x {0}), i.e. the image
by g of the lightlike geodesic passing through p~ and 7 (x). Conversely, every point
7 (y) of this geodesic is in the Hausdorff limit of g o 77 ( B. (x)). Hence, there exists a
sequence x; of Be(x) with limg_, o0 gk 07 (x}) = 7 (y). Let & be a sequence tending
10 0. Then limg— 00 gk 0 7 (x5 ) = 7 () for some sequence of integers ng, and 7 (x;,%)
tends to 77 (x). This concludes the proof of (ii). O

3.2.3. Mixed dynamics

Proposition 5. Let (gx) be a sequence of O(2, n) with mixed distortions. Then we
can associate 10 (gr) wo points p+ and p~, called attracting and repelling poles
of the sequence, as well as two lightlike geodesics AT et A~ (called attracting and
repelling circles), with the inclusions p™ ¢ AT C CT =C(pHand p~ € A~ C
C~ = C(p7™), such that the following properties hold:

(i) For every compact subset K inside Eing\C~, the set D(g,,(K) is {p*}.

(it) If x is a point of C~ not on A~, then Dg,(x) is the lightlike geodesic A™T.
(iii) If x is a point of A~ distinct from p~, then Dyg,(x) is the attracting cone C¥.
(iv) The set D, p~ is the whole of Ein,.
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The cones C* and C~ are called attracting and repelling cones of the sequence (gi).

Proof. Once again we suppose that (gi) is in A™.

Let p* = 7(er), p~ = m(eng), CF = 7 ((en)h), € = #((ens2)h). The
circle AT (resp. A7) is the projection of the 2-plane spanned by e; and e (resp.
en+1 and e,12). We do not show (i) and (iv), the proof being exactly the same as for
Proposition 4.

Ifn(x) e C7,but w(x) ¢ A7, then x; = 0, but x2 # 0. In this case we get
BX(x) = 7 (R x I.(x2) x {0} x -+ x {0}), that is to say A™.

The intersection of all the BZ°(x) is 7 (R x {x2} x {0} x - - - x {0}), i.e. the lightlike
geodesic A™T. The fact that D(g,)((x)) = AT is proved exactly as in Proposition 4.

When 7(x) € A™, only x,4; and x,47 do not vanish and by the assumption
7(x) # pt, we get x,41 # 0. Hence, we have that B®(x) is #(R x --- x R x
I (x511) x {O)), that is to say CT.

As previously, we get Dig,) (7 (x)) = CT. a

Remark 3. Notice that different configurations for the dynamical elements described
above can occur. For example, attracting and repelling circles of a dynamics with
balanced or mixed distortions can intersect, or even be the same. In fact, all the
possible configurations can occur.

4. About the limit set of a Lorentzian Kleinian group

4.1. Definition of the limit set. Given a Kleinian group I on a manifold X, it is
quite natural to ask if there is in some sense a “canonical” open set 2 C X on
which I" acts properly. For example, any Kleinian group I" on the sphere S" admits
a limit set A and the open set Qr = S"\Ar is distinguished, since it is the only
maximal open subset on which I' acts properly. The nice properties of the limit set of
a Kleinian group on S" rest essentially on the fact that the Mobius group O(1, n + 1)
is a convergence group on S". We just saw in the previous section that O(2, n) is
quite far from being a convergence group on Ein,, but we would nevertheless like to
define a limit set A associated to a given discrete group I' C O(2, n). We require
that such a limit set have at least the two following properties:

(1) Ar is a I'-invariant closed subset of Ein,.
(i1) The action of T" on Qr = Ein, \ Ar is properly discontinuous.

Definition 2. Given I discretein O(2, n), we define S (resp. 77 ) the set of sequences
(yx) of T', tending simply to infinity, with mixed or balanced distortions (resp. with
bounded distortion). If () is a sequence of 8 (resp. I1), wecall A+ (i) and A~ (yz)
(resp. CT(yx) and C~(y)) its attracting and repelling circles (resp. aitracting and
repelling cones).
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Definition 3. We define the limit set of a discrete I’ € O(2, n) as
_ A (2)
Ar = A UAD,

where

1
AV = | ateua-ow)
(yk)€sr
and

AP = | crouc-o.

(yi) €T

Notation. The complement of Ar in Ein, is denoted by Qr.

It is clear that Ar is closed and I'-invariant. Let us remark that A is a union of
lightlike geodesics, so that it also defines a closed I'-invariant subset Ar cL,.

From the dynamical properties stated in the previous section, one checks easily
that no pair of points in Q can be dynamically related, so that the action of I" on Qr
is proper.

4.2. Lorentzian Kleinian groups of the first and the second type. Until now we
did not focus on a fundamental difference between the action of O(1, n+1) on S" and
that of O(2, n) on Ein,. Although any discrete group I' C O(1, n + 1) automatically
acts properly on H' 1, it is not true in general that a discrete I'  O(2, n) does so on
AdS;+1. This motivates the following distinction between subgroups of O(2, n).

Definition 4. A discrete group I" of O(2, n) is of the first type if it acts properly on
AdS;+1. If not, it is said to be of the second type.

Notice that this terminology has no connection with the denomination of being
of first kind and of second kind for the standard Kleinian groups on the sphere.

The previous dichotomy has a nice translation into dynamical terms due to the
next result.

Proposition 6. A Kleinian group I of O(2, n) is of the first type if and only if it does
not admit any sequence (yy) with bounded distortion.

Proof. Weendow R22+1 with thequadraticforqu*”“(x) = —2x1Xp42+2x0x 41+
x32 + e 4 x,% + x3+3 and call ey, ..., e,43 the canonical basis. The subgroup of

0(2, n+1) leaving invariant the subspace spanned by the first » 4 2 basis vectors can
be canonically identified with O(2, »). This identification defines an embedding j
from O(2, n) into O(2, n + 1). The action of j (O(2, n)) on Ein, 41 leaves invariant a
codimension one Einstein universe that we call Ein,,. As we saw in the introduction,
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the complement of Ein, in Ein,y; is conformally equivalent to the anti-de Sitter
space AdS; 1.

Let us consider some g in O(2, n). In the basis e1, ..., ent3, j(g) = (%), s0
that when we perform the Cartan decomposition of j (g), we find the same distortions
as for g.

Suppose now that I" admits some sequence (y;) with bounded distortion. By
the remark above, j(yx) has also bounded distortion as a sequence of O(2, n + 1).
We call C* and C~ its attracting and repelling cones in Ein, 1. By Proposition 4,
D (CTNAdAS,41) = ctn AdS;+1. Therefore we can find two points of AdS,+1
which are dynamically related, so that the action of (yx) on AdS,+1 cannot be proper
(Proposition 1).

Conversely, let us consider some sequence (yi) tending simply to infinity and with
balanced or mixed distortions. Then the sequence j(yx) has the same properties.
Let us call AT and A~ the attracting and repelling circles of this latter sequence.
Looking at the matrix expressions, it is clear that A* C Ein, and A~ C Ein,. By
Propositions 3 and 5, D(,,)(x) C Ein, for any point x € AdS, 1. So, if we assume
that I" has no sequence with bounded distortion, we get Dr(x) C Ein, for any point
x € AdS;41. Using Proposition 1, we get that I' acts properly on AdS;+1. O

4.3. Limit set of a group of the first type: proof of Theorem 1. Since I is of the
first type, Ar is also the limit set of I", regarded as a subgroup of O(2, n 4 1) acting
on Ein, 1. The complement of this limit set in Ein, 4 is precisely Qr U AdS,+1, so
that (i) of the theorem is clear.

To prove (ii), let us suppose that I" acts properly on some 2 U AdS, 41 with ©
not included in Q2. Then there is a sequence (i) of I' (with balanced or mixed
distortions) such that A~ (y;) meets Q2.

Lemma 1. Let I" be a discrete group of O(2, n) acting properly on some open set
Q. Then for any sequence (yi) of U with balanced distortions, neither A (y) nor
A™ () meets Q2.

Proof. Suppose on the contrary that for some (y;) with balanced distortions, we
have At (yx) N Q # @. From Proposition 3, we infer that the set D, (AT () N Q)
contains a lightlike geodesic A in its interior. So, there is a tubular neighbour-
hood U of A contained in Ext(€2) (Ext(£2) denotes the complement of €2 in Einy).
But we also infer from Proposition 3 that for any A not meeting A~ (yx), we have
limg— 400 ¥k (A) = AT (yr). As a consequence, any lightlike geodesic of Ext(€2)
has to cut A= (y,). Since all the lightlike geodesics included in U cannot all meet
A~ (yr) we get a contradiction. g

The lemma above tells us that the sequence (yx) has mixed distortions. For any
point x € A~ (y) N 2, we have Dy, (x) = CT (). Since C (k) meets AdS;41,
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we get pairs of points in 2 U AdS, 1 which are dynamically related, and the action
cannot be proper by Proposition 1.

Remark 4. For I Kleinian of the first type, the manifold /" appears as the
conformal boundary of the complete anti-de Sitter manifold AdS, 1 /T" (see [Fr4]
for more details on this point).

To prove (ii1), we begin by showing that Ar C L, is a minimal set. This is in fact
a particular case of a general result of Benoist ([B]), but we give a simple proof.

Let A be a closed I'-invariant subset of L. Any sequence (y) tending simply
to infinity in I" has either mixed or balanced distortions. As a simple consequence
of Propositions 3 and 5, we get that if A is a lightlike geodesic of Ein, which does
not meet A~ (yx), then limy_, 1o ¥k (A) = AT (). So, if for any sequence (y;) as
above, no geodesic of A meets A~ (vx), we have Ar C A, and we are done.

On the contrary, if for some (yy), all the geodesics of A meet A~ (y), we claim
that I cannot be Zariski dense. Indeed, by Zariski density, I' cannot leave A~ (yx)
invariant. So, let us choose y € I' such that ¥ (A~ () # A7 (wk). If ¥y (A7 (vk))
and A~ (yx) are disjoint, the set of lightlike geodesics meeting both g(A~ (yx)) and
A~ () is contained in a 2-dimensional Einstein universe, which have to be fixed by
I': a contradiction with the Zariski density of T".

If g(A~(»)) and A~ (y) meet in one point p, then any lightlike geodesic meet-
ing both g(A~(y)) and A~ (y%) has to contain p. Indeed, due to the fact that the
quadratic form ¢>" cannot have some 3-dimensional isotropic subspace, there is no
nontrivial triangle of Ein,, whose edges are pieces of lightlike geodesics. We infer
that I" has to fix the lightcone C(p) and we get once again a contradiction.

We can now show that Qr is the maximal open set on which the action of I is
proper. Suppose that I acts properly on €2 which is not included in Q. We call
A the complement of €2 in Fin,. Since Ar ¢ A, there is a sequence (y;) tending
simply to infinity in I with AT (y) N Q # .

Lemma 2. If an infinite Kleinian group I' C O(2, n) acts properly on some open
subset 2, then the complement A of 2 in Ein, contains a lightlike geodesic.

Proof. Letus pick a sequence (yx) tending simply to infinity in I'. Suppose first that
(v1) has mixed dynamics. Suppose that A~ (yx) meets Q2 atapointx (if A~ (y)NQ =
f, we are done). By properness, Dg,)(x) N Q = #. But D(g,)(x) = C*(gk), which
contains infinitely many lightlike geodesics, and the conclusion holds.

Also, if (g) has balanced (resp. bounded) distorsions, the dynamic set D g, yx of
x € A7 (yx) (resp. x € C~(yx)) contains infinitely many lightlike geodesics. The
proof works thus in the same way. o
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Now let us look at the lightlike geodesics of A. Since by Zariski density, [" cannot
fix a finite family of lightlike geodesics, there are infinitely many lightlike geodesics
in A. But all these geodesics have to meet A~ (yx), because if some A does not,
limy 100 Y (A) = AT (). A contradiction with AT(y) N Q # @. Now, we
conclude as for proving the minimality property of Ar: all the lightlike geodesics of
A are in the same I'-invariant Einstein torus, or the same I'-invariant lightcone, and
we get a contradiction with the Zariski density of T.

5. Some examples of Lorentzian Kleinian groups

5.1. Examples arising from structures with constant curvature. In Lorentzian
geometry, a completeness result ensures that any compact Lorentzian manifold with
constant sectional curvature is obtained as a quotient R1"~1/T" or AdS,,/ T, where I
is a discrete group of Lorentzian isometries. This deep theorem was first proved for
the case of curvature zero by Carriere in [Ca], and generalized by Klingler in [K1] (note
that compact Lorentzian manifolds cannot have curvature +1). Another result, known
as ﬁmteness of level (see [KR], [Ze]), ensures that any compact quotient AdSn /F
(where I' is a discrete group of isometries) is in fact, up to finite cover, a quotient
AdS, /T'. Since R1"~1 and AdS,, both embed conformally into Ein,, (see Section 2),
by Theorem 4 we get that any compact Lorentzian structure with constant curvature
is (up to finite cover) uniformized by a Lorentzian Kleinian groups. Moreover, in this
case the structure of the groups involved is fairly well understood, due to [CaD], [Sa]
and [Ze].

5.2. Examples arising from flat CR-geometry. Letus consider the complex vector
space C"*! endowed with the hermitian form 21" ~1(2) = —|z112 + |2212 + |z3 2 +

-+ |zn411%. We consider C<c , the lightcone defined as {z € C"*!| K17 (z) = 0},
and call @~ the open set {z € C"*!| Bl (z) < 0}. If we project @~ on the complex
projective space CP", we get the complex hyperbolic space H.. If we project C(C
minus the origin on CP", we get a sphere S**~!, naturally endowed with a CR-
structure. This CR-sphere can be seen at the mﬁmty of Hf.. If, instead of looking
at the complex directions of CL", we consider the quotient Cé‘” JR* of C(g:’” by the
real homotheties, then the space that we get is Einstein’s universe of dimension 2x.
In other words, there is a fibration f: Einp, — S?"=1 whose fibers are circles. The
fibration is preserved by the group U(1, n), which acts on Einy, as a subgroup of
0(2,2n). If Z denotes the center of U(1, n) (homotheties by complex numbers of
modulus 1), then the fibers of f are exactly the orbits of Z on Einy,. These orbits are
lightlike geodesics.

Proposition 7. If I € U(1, n) is a discrete group, whose projection " on PU(1, n)
acts properly discontinuously on @ C S*~1, then T is a Kleinian group of Einy,
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and acts properly discontinuously on Q@ = f Q). If G acts with compact quotient
on 2, so does T" on Q.

Remark 5. The group PU(1, ) acting on S**~! is a convergence group, and there
is a good notion of limit set for a discrete group G as above (see for example [A]).
In fact, it is not difficult to check that the Lorentzian Kleinian groups I' built as in
Proposition 7 are of the first type. Their limit set is just the preimage by f of the limit
set [\ﬁ of I on §2"—1,

To illustrate this case, let us mention the two following examples.

Example 1. We write eachz € C"t!asz = (x, y) withx and y inIR". We identify the
real hyperbolic space HJ, with the setof points (x, 0) with —xf +x3+- - +x2, | = —
and x; > 0. If (x, y) is moreover in the unit tangent bundle of HY,, it satisfies the
following two extra equations:

—x1y1+x2y2+ -+ X0, =0,
B R N

Projectivising, we get an open subset € C S*~!. In fact Q is precisely $?*~!
minus an (n — 1)-dimensional sphere ¥ (the projection on $?*~! of the set {z =
(x,0)| —xf+x3+--+xZ =0}

Now the subgroup G = O(1, n) of real matrices in U(1, n) acts on $?=1 and
preserves €. Identifying €2 with T1H” , we get that G acts properly and transitively
on Q. As a consequence we have the following

Fact. Any discrete group I in O(1, n) acts properly discontinuously on Q. Consid-
ered as a subgroup of O(2, 2n) it yields a Kleinian group acting on Einy,,.

The Kleinian manifold €2/ I" obtained in this way are circle bundles over TY(N),
where N is the hyperbolic manifold H, /T

Example 2. Inside U(1, n) there is a group G isomorphic to the Heisenberg group
of dimension 2n — 1. The group G fixes a point p on S?*~1 and acts simply
transitively on the complement of this point. By Proposition 7, any discrete group
in & will yield a Lorentzian Kleinian group, acting properly on the complement of a
lightlike geodesic. The Kleinian manifolds obtained in this way will be circle bundles
over nilmanifolds.

5.3. Subgroups of O(1, r) x O(1, s). We still endow R2" with the quadratic form
g>"(x) = —2x1xn42 + 2x2%n41 + x5 + -+ + x2, and we consider an orthogo-
nal splitting R2" = E; + E, with E; and E, two spaces of signature (1, r) and
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(1, s) respectively (r # 0, s # 0and r +s = n). We suppose also r < s. For ex-
ample, we take E1 = (e1,e3,...,e34r-2,e542) and E2 = (€2, €347-1, ..., €n+1).
The subgroup G of O(2, n) preserving this splitting is isomorphic to the product
O(1, r) x O(1, s). Before describing some examples of Kleinian groups in G, let us
say a few words about the geometric meaning of this splitting on Ein,,.

Lemma 3. We can write Eing, as a union Q21U Q2 U X. The set Q1 (resp. Q2) is
open, G-invariant, homogeneous under the action of G, and conformally equivalent
to the product dS, x H* (resp. H" x dSy). X is a singular, degenerate G-invariant
hypersurface.

Proof. We call 71 and 7, the projections of R>" on E; and E», respectively. The
projection of vectors u = (v, w) of R>", for which both v = 71 (u) and w = 75 (u)
are isotropic, gives the hypersurface . We will say more about it later.

The vectors u = (v, w), for which neither v nor w is isotropic, are of two kinds.

Those for which g*>"(v) > 0. Since we work projectively, we can suppose that
g>"(v) =1 and ¢>"(w) = —1. In a further quotient by —Id these vectors project
on the product d S, x H*. They constitute the open set 1.

Those for which ¢>"(v) < 0. These vectors project on a product H" x d Sy and
constitute the open set ;. O

The hypersurface % can be regarded as the conformal boundary of the spaces
dS, x H® and H" x dS;. Let us describe it more precisely. The isotropic vectors
(v, w) of R*", for which v and w are isotropic, split themselves into two sets. Those
for which either v or w is zero. Their projectivisation gives two Riemannian spheres
%1 and % of dimension (r — 1) and (s — 1) respectively.

Those for which v and w are nonzero project on the product of the projectivisation
of the lightcone of £ by the lightcone of E,, namely " ~! xC!*. So ¥ minus T{UX,
has two connected components, each of which is diffeomorphic to §"~! x $5~! x R.
One can check that X is obtained as the union of the lightlike geodesics intersecting
both X1 and 2».

We now give some examples of Kleinian groups in G.

Example 3. Let us take a discrete group I inside O(1, r) and any representation p
of T inside O(1, 5). We call I', = Graph(I', p) = {(7, p(»))|7 € ['}. Then I’ is
a Lorentzian Kleinian group of O(2, n). Indeed, its action on Q2 = H" x dS; is
clearly proper. Let us say a little bit more about the limit set of these groups. We call
A the limit set of the group I" on the sphere X1.

Case a): p is injective with discrete image. A sequence (yi) of I', can be written
as a matrix (V" 0G0 ) If (&) tends simply to infinity, so does the sequence (k)
(resp. p(y;)) in O(1, r) (resp. in O(1, s)). We thus see that () has either mixed
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or balanced distortions. In particular, the group I',, is always of the first type in this
case.

The attracting and repelling circles of (yx) can be described as follows. Since
the sequence (yx) (resp. p(yx)) tends simply to infinity in O(1, r) (resp. O(1, s)),
it has two attracting and repelling poles p™(P) and p~ (P) (resp. p*(p (7)) and
P~ (p(?))) on Xp (resp. Tp). Then AT () (resp. A~ (yx)) is simply the lightlike
geodesic of Ein,, joining p*(y) and p*(p (7)) (resp. p~ (7) and p~ (o (3x))). In
particular, the limitset A1, is aclosed subset of X (strictly included in X if Ap # 2y).
An interesting subcase arises when we take for ["a cocompact lattice in O(1, 2), and
a quasi-fuchsian representation p : [ — O(1, s) (s > 2). The limit set of ,o(f‘) on
2 is a topological circle, and we get for the limit set A, a topological torus. One
can prove moreover (which is omitted here) that the action of I, is cocompact on the
complement of its limit set.

Case b): p is not injective with discrete image. In this case there is a sequence
(vx) tending simply to infinity in I', such that p (%) is bounded. Such a sequence
(k) has bounded distortion, and the group I, is of the second type. The attracting
and repelling poles pT (y¢) and p~(yx) are both on X1. In fact they are the attracting
and repelling poles of (%) (acting as a sequence of O(1, ) on X1). In this case the
limit set Ar, is just the union of lightcones with vertex on A .

6. About Klein’s combination theorem

The examples of Kleinian groups given so far are not completely satisfactory, since
they arise from geometrical contexts such as Lorentzian spaces with constant cur-
vature or flat CR-geometry, and in some way are not “typical” of conformally flat
Lorentzian geometry. For instance, we still do not have examples of Zariski dense
Kleinian groups on Ein,. One way to construct other classes of examples is to com-
bine two existing Lorentzian Kleinian groups to get a third one. In the theory of
Kleinian groups on the sphere this kind of construction is achieved on the basis of
the celebrated Klein’s combination theorem ([A], [Ma]). We now state a generalized
version of this theorem. For this we need the following definition.

Definition 5. Let X be a manifold. A Kleinian group on X is a discrete subgroup
of diffeomorphisms I" acting properly discontinuously on some nonempty open set
Q C X. We say that an open set D C 2 is a fundamental domain for the action
of I' on Q if D does not contain two points of the same I'-orbit and if moreover

Uyer »(D) = 2.

Notation. For any subset D of the manifold X, we call Ext(D) the complement of
Din X.
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Theorem 5 (Klein). LetI'; (i = 1, ..., m) a finite family of Kleinian groups on a
compact connected manifold X. We suppose that each I'; acts cocompactly on some
open subset Q; of X with fundamental domain D;. We assume moreover that for each
i # j, Ext(D;) C Dj, and that D = (i, Di # @. Then we have:

(1) The group T" generated by the I'; s is isomorphic to the free product 'y s - -5y,

(i) The group T is Kleinian. More precisely, Q2 = Uy er ¥ (D) is an open subset of
X, and 1" acts properly discontinuously and cocompactly on 2, with fundamental
domain D.

Proof. We do the proof for two groups I'1 and I', the final result being then obtained
by induction. Lety = ys¥s—1...y2y1 beawordof I'suchthaty; € G, (j; € {1,2})
and j; # ji+1. Then the first condition on the fundamental domains yields the in-
clusions ysys—1...v2v1(D) C ys¥s—1...v2(Ext(Dj,)) C -+ C ys(Ext(Dj, ;) C
Ext(D ). So, for any nontrivial reduced g, ¥ (D) D = §. This proves that y cannot
be the identity, and (i) follows. In the same way, we prove that y (D) N D = ¢ as
soon as s > 1. Since D is compact in €27 and €22 and the action of I'1 and I'; is
proper, we get

Lemma 4. The intersection y (D) 0 D is empty for all but a finite number of y’s.

Lemma 5. There is a finite family vy, . . ., vs of elements of T such that DUy (D)U
<« Uy (D) contains D in its interior.

Proof. We choose some openneighbourhood U; of 3 Dy suchthat Uy C €21 and Upisa
compact subsetof €21. Since Dj is a fundamental domain of I'1, for each x € Uj there
exists a y, € I'y such that x € y, (D). Butsince the action of I'y is proper y (D1)NU;
is nonempty only for a finite number of elements yl(l), R 'ys(l) of I'y. Thus D1 UU;
is included in Dy U yl(l) (DU - Uy (D)), and Dy is contained in the interior of
DUy V(DU -+ Uy (Dy). Butif D) = Dy\K, where K is a compact subset
of Dy, then we also have D} UU; C DjU ;vl(l)(ﬁi) WERAY yS(l)(ﬁi). In particular,
when K is the exterior of D,, we get that D UU; € DU yl(l)(ﬁ) U---uy(D).
Now we can apply the same argument for a neighbourhood U of 3D in 27. We
getafinite family ¥, . .., %> of [y such that DUU, < DUy, ? (D)U- - -Uy, > (D).
Settingm = s +1t,y; = yi(l) fori =1,...,sand ys4; = yi(z) fori =1,...,t, we
get the lemma. O

Asaconsequence of this lemma, we get that the set 2 = Uy eV (D)isanopenset.
It remains to prove that the action of I on €2 is proper. Indeed, since I' is not
a priori a convergence group, the fact that I' acts discontinuously on €2 no longer
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ensures that the action is proper. That is why our assumptions (in particular the
assumption of cocompactness) are stronger as for the classical Klein’s theorem on
the sphere.

Suppose, on the contrary, that there is a sequence (x;) of €2 converging to x~, € €2,
and a sequence (y;) tending to infinity in I', such that y; = y;(x;) converges to
Yoo € €. We can assume that xo, € D. On the other hand, by definition of €2, there
is a o such that v, € yo(D). Lemma 5 ensures that for i sufficiently large, x; must
bein D U y;, (D) U+~ U 3, (D), and y; in yo(D) U yoyi, (D) U -+ - U yo;, (D)).
But then, Lemma 4 implies that the sequence (y;) takes its values in a finite set, a
contradiction with the fact that (y;) tends to infinity in I". O

We would like to apply the theorem above to combine Lorentzian Kleinian groups.
Notice that for two Kleinian groups the condition Ext(D1) C D implies 021 C D»
and 02, C Dj. Together with Lemma 2, we get that if two cocompact Lorentzian
Kleinian groups can be combined, then their fundamental domains have to contain
a lightlike geodesic (in particular, no Kleinian group uniformizing a manifold with
constant curvature can be combined with another Kleinian group). It turns out that
this obstruction is the only one which forbids combining two Lorentzian Kleinian
groups, as shown by Theorem 2, which we now prove.

6.1. Proof of Theorem 2. We choose A1 C Dj and Ay C D>, two lightlike
geodesics. Since D1 and D; are open, they contain not only one, but in fact infinitely
many lightlike geodesics, so that we can moreover choose A1 and A disjoint. We
begin with a useful lemma.

Lemma 6. Given Ay and Az two disjoint lightlike geodesics of Einy, there exists
g € Conf(Ein,) such that (g5) has mixed distortions and admits A1 and Ao as
attracting and repelling circles.

Proof. The geodesic A1 (resp. Az)is the projection on Einy, of a 2-plane (¢}, ¢5) (resp.
(¢5, €})) of R>". We choose moreover €5 and ¢} such that g>" (¢}, ¢}) = —2 and
g>"(eh, €}) = 2. The g>"-orthogonal F o (e, €}, €}, €}) has Riemannian signature
and we denote by eg, R 9;1 4o One of its orthonormal basis. Then we consider some
element g of O(2, n), which writes in the base (¢/, ..., e, ) as
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If we choose A > p > 0, then it is clear that (g*) has mixed distortions with
AT =Ajand A~ = A,. o

We now take some g € Conf(Fin,) as in the lemma above. Let us choose V
(resp. V2) an open tubular neighbourhood of Aj (resp. Az) such that \71 C Dx (resp.
Vo C Dy). The complement of V; (i = 1,2) in Ein, is denoted by Ext(V;). It
follows from Proposition 5 (i) and (ii) that the set dynamically associated to Ext(V>)
with respect to (g%) is included in At. Since Ext(V5) contains a lightlike geodesic,
it is exactly AT. Hence, for ko sufficiently large, gM(Ext(Va)) C V. We call
I, = goTg~%  The group I'} is a cocompact Lorentzian Kleinian group with
fundamental domain D), = g*(Dy). But gko(D5) contains g® (Int(V5)), and as we
just saw, Ext(Vq) C gk (Int(V1)). So Ext(D’z) C D;. We can then apply Theorem 5,
and we get that the group generated by I'; and I'y is still Kleinian, cocompact, and
isomorphic to I'y % I', i.e. I'y % I'y.

Example 4. All the cocompact Lorentzian Kleinian groups of the Examples 1 and
2 of Section 5 satisfy the hypothesis of Theorem 2. This is also the case of most
instances of Example 3, when p is injective with discrete image. Thus such groups
can be combined and give new examples. Notice that in the proof of Theorem 2, the
gluing element g can be chosen in many ways. In particular, starting from two groups
of the Examples 1, 2 or 3, suitable choices of g will give combined groups which are
Zariski dense in O(2, n).

6.2. Lorentzian surgery. Theorem 2 reflects in fact the group theoretical aspect of
a slightly more general process of conformal Lorentzian surgery.

Let M; and M> be two conformally flat Lorentzian manifolds (we do not make
any compactness assumption). Suppose that M contains a closed lightlike geodesic
A1 admitting some open neighbourhood Uy which embeds conformally, via a certain
embedding ¢y, into Ein,. Suppose moreover that the same property is satisfied by
M, for a closed lightlike geodesic Aj, an open neighbourhood U, and a confor-
mal embedding ¢,. We can suppose that ¢1(A1) and ¢,(A,) are disjoint in Ein,.
By Lemma 6, ¢1(A1) and ¢»(A3) are the attracting and repelling circles of some
element g € Conf(Ein,). As in the proof of Theorem 2, there exist two open neigh-
bourhoods Vi and V, of A; and Aj respectively, such that Vi C Uy, Vo C Uy,
and g(Ext(¢2(V2))) = ¢1(V1). In particular g(3(¢2(V2))) = 3(¢1(V1)) (recall that
d denotes the boundary). So the element g provides a gluing map f between 0V
and dV,. We denote by M, (resp. M, ) the manifold M; (resp. M) with Vi (resp.
V2) removed. We call M = Mt ;M the manifold obtained from My U M after
identification of 0V} and 9V, by means of the map f. Since g € Conf (Ein,), the
“surgered manifold” M is still endowed with a conformally flat Lorentzian structure.
Theorem 2 ensures that if one starts with two compact Kleinian structures M; and
M,, the conformally flat structure on Mt fM 2 18 still Kleinian.
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Remark 6. This surgery process is reminiscent of Kulkarni’s construction of a con-
formally flat Riemannian structure on the connected sum of two conformally flat
Riemannian manifolds ([K1]). We do not know whether the connected sum of two
conformally flat Lorentzian manifolds can still be endowed with a conformally flat
Lorentzian structure.

7. Lorentzian Schottky groups

As anapplication of the former sections we study here the Lorentzian Schottky groups.
These groups are interesting since we can completely determine their limit set and
the Kleinian manifolds they uniformize. Moreover, they can be used to construct
examples of conformally flat manifolds with some peculiar properties (see [Fr2]).
Letus consider afamily {(A7, Ai"), < (A A;)} of pairs of lightlike geodesics
in Ein,. We suppose moreover that the Af‘ are all disjoint. By Lemma 6, there exists
a family s1,..., s¢ of elements of Conf (Ein,) with mixed dynamics such that the
attracting and repelling circles of s; are precisely Ai+ and A;". Looking if necessary

at suitable powers sik" of s;, we can find open tubular neighbourhoods UijE of the Aii
with the following properties:

(i) The U* are all disjoint.

(i) s; (Ext(U;7)) = ﬁi+ foralli=1,...,¢g.

Suchagroup I’ = (s1, ..., s¢)iscalleda Lorentzian Schotiky group. Properties (i)
and (ii) are classically known as ping-pong dynamics (see for example [dIH]). For
each i, the group (s;) acts properly cocompactly on the open set Ein, \{A; U Al.+},
and a fundamental domain is just given by D; = Einn\{ﬁi+ ) Ui_ }. Now, since the
U are disjoint, we get that Ext(D;) C Dj foralli # j. If wecall D = (f_, Dy, it
is clear that D # . We then apply Theorem 5 to obtain

Proposition 8. A Lorentzian Schottky group I' = (s1,...,5,) is a free group of
Conf (Ein,). Moreover, ' is Kleinian, it acts properly and cocompactly on Q2 =
U, er ¥ (D). A fundamental domain for this action is given by D = (;_; D;.

We are now going to describe €2 and its complement A C Fin,, more precisely.

Let us recall that in a finitely generated free group each element y can be written
in an unique way as a reduced word in the generators. We denote by |y| the length
of this word. Let us also recall that we can define the boundary oI" of I' as the set
of totally reduced words of infinite length. Hence the elements of the boundary can
be written as sf]l ....siskk . withe; € {1} andije; # —ijr1641 forall j > 1.
Since we supposed that ¢ > 2, the boundary dI" is a compact metrizable space,
homeomorphic to a Cantor set (see [GdIH]).
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Foreach k € N, we call I}, = U[ylfky(ﬁ), with the convention Fy = D. Itis
not difficult to check that Fr—1 C Fi, and Q = (Uper Fr. S0, A = (gery EXt(Fi).
For each k, we set Ay = Ext(Fy), and thus, we also have A = (", Ag. The

set Ay is a disjoint union of exactly 2g.(2g — 1)* connected components, in one to
one correspondence with the words of length k+11inI'. For example, to the word
€1 k+1

Siyp oS corresponds the component s Ek(U;k*ll) of Ar. We can now state

the followmg result.

Lemma 7. There is a homeomorphism K between the boundary 31" and the space of
connected components of A (endowed with the Hausdorff topology for the compact
subsets of Einy).

Proof. Let yoo = sigl1 . be an element of 3I". We call yx = s .5 and

k I

we look at the decreasing sequence of compact subsets K (yi) = sl.1 —_ s;k: 11 (U igk").
This decreasing sequence of compact sets tends to a limit compact set K (yso) for the
Hausdorff topology. Since the Ul-jE are connected, so are the K (y1), and K (y0) 18
itself connected. Let us remark that if y~ and v/, are distinct in 9T, then K () and
K (y{) are disjoint for k large (they represent two distinct components of Ax), so that
K (yoo) and K (y/,) are disjoint.

Reciprocally, choose xo € A. Since A = [Ny Ak With Agp1 C A, X0
must be an element of some connected component Cy C A for each k. More-
over Cry1 C Cir. But Cy is then a decreasing sequence of compact subsets of

the form sg1 s 1(U “ky and thus converges to a limit compact set K (ys) for

lk]
&
yoo—sl] ....S

We have proved that the mapping K between dI" and the set of connected com-
ponents of A is a bijection. It remains to prove that it is a homeomorphism, and for
this, it is sufficient to show that K is continuous. Let us consider a sequence y( L
of elements of I', converging to some y~o. It means that there is a sequence (r;) of
integers which tends to infinity, such that y(") and v~ have the same r,, first letters.
Foreachn e N, K (y(" )) is a decreasing sequence of compact sets C. (”), where each
C,E") is a connected component of Ag. On the other hand, K (y) is the limit of a
decreasing sequence of Cy, where each Cy is a connected component of Aj. Since

y@ and y~o have the same r, first letters, we have C(”) _1 = Cy,_q for all n. Thus,

the limit, as » tends to infinity, of C( B ~118 K(¥x). But since K (y(”)) C Cr(:‘)_l, we

(”)) =

get that lim,,_, oo K (¥xo K (y~) and we are done. O

The next step is to show the following lemma.

Lemma 8. The connected components of A are lightlike geodesics.
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Proof. Let us consider yoo = s;'...s;* ... in the boundary of I'. We know that
K (o) is the limit of the sequence sfll . s;":ll (U ii""). Since the sequence is decreas-
ing, the limit remains the same if we consider a subsequence. Thus we can make the
extra assumption that K (y) is the limit of a sequence yk(U;f 9y, such that () tends
simply to infinity and the first and last letters of y; are always the same, namely sigl 1
and s;’ '. Observe that jigj, # —joej,. We are going to discuss the different possible

dynamics for (yx), and we first prove that (yx) cannot have bounded distortion.
Suppose that it is the case. We call p* (resp. p~) and C T (resp. C ™) the attracting
(resp. repelling) pole and cone of (yx). If x is a point of D, then for all £ € N,
vi(x) € U and %~ (x) € U, 7. So we must have p* € U' and p~ € U,
In particular, p~ is not in Uj(fo. On the other hand, it is a general fact that in Ein,
any lightlike cone meets any lightlike geodesic (just because degenerate hyperplanes
pe.
always meet null 2-planes in R>"). In particular, the cone C~ meets A j(’) % and thus
U;(fo. We call V;Ojo =C™ N Uj.ojo. Since U;)jo does not contain p~, we infer from
Proposition 4 (i) and (ii) that K (ve) = D(yk)(\_/;jo ). More precisely, if Vj;() is the
set of lightlike geodesics of C~ meeting V]Zjo, then K (y~o) is the closure of the
union the lightlike geodesics of ;?OO(VZO) (see Proposition 4 for the notation y ).
In particular, K (ys) contains a lightlike geodesic. Now some lightlike geodesic of
C~ does not meet V;)]O . Indeed, if this is not the case, then Proposition 4 (ii) ensures
that K (ys) = C~. Butif we take y., # ¥so, then K (y/,) contains some lightlike
geodesic by the remark above. Since any lightlike geodesic meets C™—, we get a
contradiction with the fact that K (y~) and K (y~) have to be disjoint.

Now let us perturb slightly the sets Uj.ojo and Uj_ogj0 into some sets U ;»0810 and

U }0_870, in order to get another fundamental domain D’, very close to D. Since
it is very near to D, D’ is included in some F} for k sufficiently large, and so
Uy er 7(D") = U, er v (D). We prove as above that the limit of the compact sets
vie(U J’.O “0) is still a connected component of A and consequently of the form K (y.).
We just saw that some lightlike geodesics of C~ do not meet ‘7;)‘0, so that ‘72‘0 is

not the whole of $"~2. It is thus possible to choose U ;OSJ'O in such a way that some

. o 5
points of V/

are not in ‘7%0. But then K (y/,) and K (v~) will be two different
components, hence disjoint. On the other hand, since the intersection of UJSOJ * and
U J/.ngo is not empty (Aj»;o is inside), K (y~0) and K (yZ,) must have some common
points. We thus get a contradiction.

Itremains to deal with the case where () has mixed or balanced distortions. Once
again, if x is a point of D then for all k € N, y(x) € U.sl1 and ¥~ H(x) € Uj_lgjl.

1
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Hence the attracting circle A™ is in U} and the repelling one A~ is in Uj_lsj ' In
particular U;Ojo does not meet A~. We infer from Proposition 5 and Proposition 3
that limg_, oo yk(U;)"o) C AT, but since Uj(jo contains a lightlike geodesic, we have
the equality limg_, yk(U;f 0y = A*. We finally obtain that K (ys) = A™. O

7.1. Proof of Theorem 3. We begin by proving that the group I' is of the first
type. Suppose on the contrary that there is some sequence (y) in I' with bounded
distortion. Then D meets the repelling cone C~. Otherwise C~ would be included
in some Uii, say U1+ . But since AT meets C™, the intersection between A and

U 1+ would be nonempty, a contradiction. By Proposition 4 (ii), lim_ yx(D) is a

compact subset containing infinitely many lightlike geodesics. But limg_, 0 ¥ (D) is
also a connected subset of A. This contradicts the fact that the connected components
of A are lightlike geodesics.

We claim that the equality Ar = A holds. Indeed, for any sequence (yx) of I'
tending simply to infinity, () tends to A+ (yx). We thus see that Ap C A. Now
it is a general fact that if a group I acts properly cocompactly on some open set €2,
then it cannot act properly on some open set ' strictly containing €. So Q cannot
be strictly contained in Ein, \Ar, and we obtain A = A.

We now prove that Ar is the product of RP! with a Cantor set. The space Ein,,
is the quotient of S! x §"~! by the product of antipodal maps, so that there is a
fibration f: Ein, — RP!. The fibers of f are conformal Riemannian spheres of
codimension one. In the projective model they are obtained as the projection of the
intersection between C>" and some hyperplanes P C R>" of Lorentzian signature.
As aconsequence any lightlike geodesic is transverse to any fiber of f. Letus choose a
fiber F¢ above a point 7o of RP!. FromLemmas 7 and 8, A (and thus Ar)is transverse
to Fo and intersects it along a Cantor set C. For each x € €, we call x(¢) the unique
element of £~1(t) N Ar such that x and x (¢) are on the same lightlike geodesic of A.
Then Lemma 7 ensures that the following mapping is a homeomorphism:

RP' x ¢ — A,
(t, x) — x(1).

This proves (ii).

Due to the homeomorphism K we get that, since the action of I" on its boundary is
minimal (see for instance [GdIH]), the action of I" on the space of lightlike geodesics
of Ar is also minimal, which establishes (iii).

For the proof of (iv) we refer to Theorem 5 of [Fr2] (in fact, in [Fr2] we considered
only particular cases of Schottky groups, but the proof of Theorem 5 includes the
general case).
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