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Lorentzian Kleinian groups

Charles Frances

Abstract. In this article we introduce some basic tools for the study of Lorentzian Kleinian
groups. These groups are discrete subgroups of the Lorentzian Möbius group O(2, n), acting
properly discontinuously on some nonempty open subset of Einstein's universe, the Lorentzian
analogue of the conformai sphere.
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1. Introduction

To understand a hyperbolic manifold H"+1/r (H"+1 denotes here the (n + 1)-
hyperbolic space and V c 0(1, n + 1) is a discrete group of hyperbolic isome-

tries), a nice and powerful tool is the dynamical study of the conformai action of V

on the sphere §". This deep relationship between hyperbolic and conformally flat
geometry has a counterpart in Lorentzian geometry, often quoted by physicists as

AdS/CFT correspondence. Let us first recall what is the Lorentzian analogue of the

pair (HF+1, §"). The {n + 1)-dimensional Lorentzian model space of constant
curvature —1 is called anti-de Sitter space, denoted AdSn+i (precisely, we are speaking

here of the quotient of the simply connected model AdSn+i by the center of its îsom-

etry group, see [O'N], [Wo]). This space, like the hyperbolic space, has a conformai
boundary. It is called Einstein's universe, denoted Einn, and it can be defined, up to
a two-sheeted covering, as the product S1 x S""1 endowed with the conformai class

of the metric —dt2 x gSn-\. From the conformai viewpoint, Einstein's universe has

a lot of properties reminiscent of those of the sphere. In particular, the group 0(2, n)
of isometries of AdSn+i turns out to be also the group of conformai transformations
of Ein«. The understanding of an anti-de Sitter manifold AdSn+i / V thanks to the

conformai dynamics of V on Ein« is one of the motivations for studying Lorentzian
Kleinian groups, which we define by analogy with the classical theory as discrete

subgroups of 0(2, n) acting freely and properly discontinuously on some nonempty
open subset of Ein„.
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Since the works of Poincaré and Klein at the end of the nineteenth century, the

classical theory of Kleinian groups has generated a great amount of works and

progressed very far (we refer the reader to [A], [Ka], [Ma], [MK] for a historical account
and good expositions on the subject).

Other notions of Kleinian groups also appeared in other geometric contexts, such

as complex hyperbolic and projective geometry (see for example [Go], [SV]).
To our knowledge, nothing systematic has been done for studying Lorentzian

Kleinian groups, so that the aim of this article is to lay some basis for the theory. In
particular, our first task is to build and study nontrivial examples of such groups.

The first part of the paper (Sections 3 and 4) is devoted to what could be called
Lorentzian Möbius dynamics, namely the dynamical study of divergent sequences of
0(2, n) acting on Ein„. This dynamics appears richer than that of classical Möbius
transformations on the sphere. This is essentially due to the fact that 0(2, n) has

rank two, and the different ways to reach infinity in 0(2, n) induce different
dynamical patterns for the action on Einn. These patterns, which are essentially three,

are described in Section 3, Propositions 3, 4 and 5. Let us mention here two new
phenomena (with respect to the Riemannian context) illustrating the dynamical
complications we are confronted with. Firstly, the Lorentzian Möbius group 0(2, n) is

not a convergence group for its action on Ein„ (roughly speaking, a group G acting
by homeomorphisms on a manifold X is a convergence group if any sequence (g,)
of G tending to infinity admits a subsequence with a "north-south" dynamics, i.e. a

dynamics with an attracting pole p+ and a repelling one p See for example [A],
p. 40, for a precise definition). Secondly, a discrete subgroup F c 0(2, n) does not
always act properly on AdSn+i.

In spite of these differences with respect to the classical theory it is still possible
to define the limit set of a discrete subgroup F c 0(2, n) (see Section 4). This is a

closed F-invariant subset Ar c Ein«, such that the action on the complement Qr
is proper. Moreover it is a union of lightlike geodesies, so that it defines naturally
a F-invariant closed subset Âr of L„, the space of lightlike geodesies of Ein« (this

space is described in Section 2.5). Unfortunately, the nice properties of the limit set in
the classical case of groups of conformai transformations of the sphere are generally
no longer satisfied in our situation. For example, the limit set that we define is not, in
general, a minimal set for the action of F on Ein„ (although Ar is sometimes minimal
for the action of F on L„, see Theorem 1 below). The groups F c 0(2, n) acting
properly on AdSn+i are those whose behaviour is closest to that of classical Kleinian

groups. They will be called groups of the first type. For them we get nice properties
for the limit set.

Theorem 1. Let V be a Kleinian group of the first type and Ar its limit set.

(i) The action of F is proper onfifU AdSn+i c Einn+i.
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(ii) Qr is the unique maximal element among the open sets Q c Ein„ such that Y

acts properly onQU AdSn+i.

(iii) If moreover Y is Zariski dense in 0(2, n), then Qr is the unique maximal open
subset of Ein« on which Y acts properly, and Âr is a minimal set for the action

of Y on~Ln.

In Section 5, we give several examples of families of Lorentzian Kleinian groups.
These basic examples being constructed, it is natural to try to combine two of them to

get other more complicated examples. This is the aim of Section 6, where we prove
the following result (an analogue of the celebrated Klein's combination theorem):

Theorem 2. Let Fi and Y2 be two cocompact Lorentzian Kleinian groups with
fundamental domains D\ and D2. Suppose that both D\ and D2 contain a lightlike
geodesic. Then one can construct from Fi and Y2 another cocompact Kleinian

group, isomorphic to the free product Y\ * Y2.

By a cocompact Kleinian group we mean a group acting properly on some open
subset of Einn with compact quotient.

We then use Theorem 2 in Section 7 to construct Lorentzian Schottky groups. The

study of such groups can be carried out quite completely. The limit set Ar and the

topology of the conformally flat Lorentz manifold obtained as the quotient Qr/Y of
the domain of properness are made explicit in this case, and we get:

Theorem 3. Let Y (s\, sg) (g > 2) be a Lorentzian Schottky group.

(i) The group Y is of the first type.

(ii) The limit set Ar is a lamination by lightlike geodesies. Topologically, it is a

product of RP1 with a Cantor set.

(iii) The action of Y is minimal on the set of lightlike geodesies of Ar.
(iv) The quotient manifold Qr/Y is diffeomorphic to the product

where (S1 x S11'1)^ 1)ö
is the connected sum of{g - 1) copies of S1 x S""1.

2. Geometry of Einstein's universe

A detailed description of the geometry of Einstein's universe can be found in [Frl],
[Fr2] and [CK]. Also, for the readers who are not very familiar with Lorentzian space-
times of constant curvatures, good expositions can be found in [Wo], chapter 11, and

[O'N], chapter 8. In this section we briefly recall (without any proof) the main

properties which will be useful in this article.
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2.1. Projective model for Einstein's universe. Let M2'11 be the space M.n+2,

endowed with the quadratic form q2'n (x) —x2 — x\ + x2 -\ \- x2+2. The isotropic

cone of q2'11 is the subset of M.2'11 on which q2'11 vanishes. We call C2>" this isotropic
cone, with the origin removed. Throughout this article we will denote by n the projection

fromM.2'11 minus the origin onRPn+1. The set n(C2'n) is a smooth hypersurface
S of RPn+1. This hypersurface turns out to be endowed with a natural Lorentzian
conformai structure. Indeed, for any x g C2", the restriction of q2'11 to the tangent
space TxC2'n, that we call qx'n, is degenerate. Its kernel is just the kernel of the

tangent map dxn. Thus, pushing q2x'n by dxn, we get a well-defined Lorentzian metric
on Tn(x) S. If n(x) n(y) the two Lorentzian metrics on Tn(x) S obtained by pushing

ql'n and q2,'11 are in the same conformai class. Thus the form q2'11 determines
a well-defined conformai class of Lorentzian metrics on S. One calls Einstein's
universe the hypersurface S together with this canonical conformai structure.

The intersection of C2" with the Euclidean sphere defined by x2 + x| + ¦ ¦ ¦ +
x2+2 lis a smooth hypersurface Ê c R2'11. One can check that q2'11 has Lorentzian

signature when restricted to Ê, and in fact, (Ê, q2f) is isometric to the product

(S1 x S""1, —dt2 + g§n-i Now Einstein's universe is conformally equivalent to the

quotient of (S1 x S""1, -dt2 + ggn-i) by an involution (induced by the map x \-+ —x

ofM2'11).

2.2. Conformai group. In the previous projective model for Einstein's universe the

subgroup 0(2, n) c GLn+2(M) preserving q2'11 acts conformally on Ein«. In fact,
the conformai group Conf (Ein„) of Ein„ is exactly P0(2, n). Let us now recall the

following result, which is an extension to Einstein's universe of a classical theorem
of Liouville in Euclidean conformai geometry (see for example [CK], [Fr3]):

Theorem 4. Any conformai transformation between two open sets of Ein« is the

restriction of a unique element of P0(2, n).

2.3. Lightlike geodesies and lightcones. It is a remarkable fact ofpseudo-Riemann-
ian geometry that all the metrics of a given conformai class have the same lightlike
geodesies (as sets, but not as parametrized curves). In the case of Einstein's universe,
the lightlike geodesies are the projections on Einn of 2-planes P c K2" such that

q^p 0. Hence lightlike geodesies of Ein« are copies of RP1.

Given a point p in Ein„, the lightcone with vertex p, denoted by C(p), is the set of
lightlike geodesies containing p. In the projective model, if p n{u), with u some

isotropic vector of R2'11, then C{p) is just n{P n C2-"), where P is the degenerate

hyperplane P u1- (the orthogonal is taken for the form q2'11). The lightcones are not
smooth submanifolds of Ein«. The only singular point of C{p) is p, and C(p)\{p}
is topologically R x §"~2.
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2.4. Homogeneous open subsets. We will deal in this paper with several interesting

open subsets of Einn, all obtained by removing from Einn the projectivization of
peculiar linear subspaces of M2". We will be very brief here and refer to [Wo] for a

more detailed study (especially concerning de Sitter and anti-de Sitter spaces).

Minkowski components. Given a point p e Einn, the complement of C(p) in Einn is

a homogeneous open subset of Ein„, which is conformally equivalent to Minkowski

space M1""1. We say that this is the Minkowski component associated to p. In fact,

we have an explicit formula for the Stereographic projection identifying Einn\C(p)
and M1-""1 (see [CK], [Frl]).

De Sitter and anti-de Sitter components. Just as Minkowski space arises by removing
from Einn the projectivization of a lightlike hyperplane, one also gets interesting open
subsets by removing the projectivization of other (i.e. nondegenerate) hyperplanes.

If P is some hyperplane of M2'11 with Lorentzian signature, then n(P n C2>")

is a Riemannian sphere S of codimension one. The canonical conformai structure
of Ein„ induces on this sphere the canonical Riemannian conformai structure. The
stabilizer of S in 0(2, n) is a group G isomorphic to 0(1, n). The complement of
S in Ein„ is a homogeneous open subset of Ein„, conformally equivalent to the de

Sitter space d§„. Therefore 8" l, with its canonical conformai structure, appears as

the conformai boundary of d §„
If P is some hyperplane of M2'11 with signature (2, n — 1), then the projection

jt (P n C2") is a codimension one Einstein universe E. The stabilizer of E in 0(2, n)
is a subgroup isomorphic to 0(2, n — 1). The complement of £ is a homogeneous

open subset of Ein«, which is conformally equivalent to the anti-de Sitter space AdS„.
In this way we see Ein„_i as the conformai boundary of AdSn.

Complement of a lightlike geodesic. What do we get if we remove from Ein„
the projectivization of a maximal isotropic subspace of M2"? Such subspaces are

2-planes, so that the resulting open set is the complement Qa of a lightlike geodesic
A c Einn. Open sets like Qa admit a natural foliation by degenerate hypersurfaces,
and this foliation Ha is preserved by the whole conformai group of Qa- This
foliation can be described as follows: given a point p e A, we consider the lightcone
C(p) with vertex p. Since A is a lightlike geodesic, we have A c C(p). Now the

intersection of C(p) with Qa is a degenerate hypersurface of Qa, diffeomorphic to
R""1. We call it M{p). If p £ p', ,K{p) and M{p') only intersect along A, and the

leaves of the foliation Ma are just the M{p) for p e A.

2.5. The space L„ of lightlike geodesies of Ein„. Since this space will appear
naturally when we will define the limit set of a Lorentzian Kleinian group, we briefly
describe it.

The stabilizer of a lightlike geodesic in 0(2, n) is a closed parabolic subgroup
P, isomorphic to (R x SL(2, R) x 0(n - 2)) x Heis(2n - 3), where Heis(2n - 3)
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denotes the Heisenberg group of dimension In — 3. Thus L„ can be identified with
the homogeneous space 0(2, n)/P, which has dimension In — 3.

Let H c M2" be a hyperplane with Lorentzian signature, and let S be the

projection of//nC2" onEin„. The hypersurface S is a codimension one Riemannian

sphere of Ein„. Now for any isotropic 2-plane P c M.2'11, P n H is 1-dimensional
and isotropic. Equivalently, any lighthke geodesic of Ein„ intersects S in exactly one

point. We get a well-defined submersion p:~Ln —>¦ S. The fiber over q g S is the

set of lightlike geodesies inside the lightcone C{q). So, L„ is topologically an §"~2

fiber bundle over S""1. Notice that 0(2, n) does not preserve the bundle structure.

3. Conformai dynamics on Einstein's universe

3.1. Cartan decomposition of O(2, «). From now on it will be more convenient to
work in a basis of M2'11 for which q2'n(x) —2xixn+2 + 2x2Xn+i + x2 + ¦ ¦ • + x2.

We call 0(2, n) the subgroup of GLn+2(K) preserving the form q2'11. Let A+ be a

the subgroup of diagonal matrices in 0(2, n) of the form

x \

r,-X

with X > n > 0. Such an A+ is usually called a Weyl chamber. The group S0(2, n)
can be written as the product KA+K where K is a maximal compact subgroup of
S0(2, n). This decomposition is known as the Cartan decomposition of the group
S0(2, n) (compare [B], [IW]). Such a decomposition also exists for 0(2, n), with
K a compact set of 0(2, n). Moreover, for every g g 0(2, n), there is a unique
a(g) g A+ such that g G Ka(g)K. The element a (g) is called the Cartan projection
of g. As a matrix it is written

Kg) \

a(g)

e~x{g) I

pi^\&
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The reals X(g) > /j,(g) > 0 are called the distortions of the element g (associated
with the given Cartan decomposition).

3.2. Qualitative dynamical description. We want to understand the possible
dynamics for divergent sequences (gk) of 0(2, n) (i.e. sequences leaving every compact
subset of 0(2, «)). Our approach considers sequences gk(xk), where (xk) is aconverg-
ing sequence of Ein«. It is important to consider arbitrary such convergent sequences,
not only constant sequences, in order to characterize proper actions. Recall that given
a subgroup F of homeomorphisms of a manifold X, one says that the action of F

on X is proper if for all convergent sequences (xk) of X and all divergent sequences
(gk) of F, the sequence gk(xk) does not have any accumulation point in X. Notice
that there exist actions for which gk(x) diverges for all divergent (gk) £ F and all

x e X, but which are not proper (look, for example, at the action of a hyperbolic
linear transformation of SL(2, R) on the punctured plane M2\{0}).

Definition 1. Let (gk) be a divergent sequence of homeomorphisms of a manifold X
(i.e. (gk) leaves any compact subset of Homeo(X)). For any point iel,we define
the set

D() U {liPomts
The union is taken over all sequences converging to x.

Further, for any set E c X, D(gk)(E) \JxeE D(gk)(x). Taking the union,
over all divergent sequences (gk) e F, of the sets D(gk)(E), we get a closed set

Dr(E) c X that we call the dynamic set of E.
Notice that for two points x and y in X, y e Dr (x) if and only if x g Dr (y). We

say in this case that x and y are dynamically related.

The interest of this definition for the study of actions of discrete groups can be

illustrated by the following: let F be a discrete group of Homeo(X) acting on some

open subset fiel Then the next result is easily proved.

Proposition 1. The group F acts properly on Q iffno two points of Q are dynamically
related.

Assuming that the action of F on Q is proper, we also have:

Proposition 2. If the action of F on Q, has compact quotient, then every x e 90,

must be dynamically related to some point y of Q (depending on x).

Now let (gk) be a divergent sequence of 0(2, n). We define Xk Hgk), ßk
ß(gk) and Sk ^ — [ik- We say that the sequence (gk) tends simply to infinity if
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a) the three sequences (Xk), (p-k) and (8k) converge respectively to some Xœ, /j,œ
and (5oo in R;

b) compact factors in the Cartan decomposition of (gk) both admit a limit in K.

Of course, every sequence tending to infinity admits some subsequence tending
simply to infinity, so that we will restrict our study to these last ones. The sequences
tending simply to infinity split into three categories:

(i) Sequences with balanced distortions. This name denotes the sequences (gk) for
which À-oo /Zoo +cxd and 8^ is finite.

(ii) Sequences with bounded distortion. This denotes the sequences (gk) for which

Moo ¥" +O0.

(iii) Sequences with mixed distortions. This denotes the sequences (gk) for which
^oo Moo 8oo +CXD.

To each type corresponds, as we will see soon, distinct dynamical behaviours.

Notation. In the following we will use notations such as C(p), J£a, ¦ ¦ ¦ ¦ We invite
the reader to look at Section 2, where these notation were introduced.

For any set E in IR2'", we use the notation tc(E) for 7t(E n C2>"). If y and e are

two real numbers, we write Is(y) for the closed interval [y — e, y + e].
For every x (x\,X2, ¦ ¦ ¦, xn+2) in IR2'", we define the e-box centered at x as

BE(x) /g(xi) X IE(X2) X ¦ ¦ ¦ X IE(xn+2)
For a sequence (gk) of 0(2, n) tending simply to infinity, we call Bf(x) the

compact set obtained as the limit (for the Hausdorff topology) of the sequence of
compact sets gk on(Bs(x)) (this limit will always exist in the examples we will deal

with).
Finally, we will often denote in the same way an element of 0(2, n) and the

conformai transformation of Einn that it induces.

3.2.1. Dynamics with balanced distortions

Proposition 3. Let (gk) be a sequence of 0(2, n) with balanced distortions. Then

we can associate to (gk) two lightlike geodesies A+ and A called attracting
and repelling circles of (gk), and two submersions n+: Einn\A~ —>¦ A+ (resp.

it- : Ein„\A+ -> A whose fibers are the leaves of J£A- (resp. J^a+X such that
the following holds.

For every compact subset K o/Einn\A~ (resp. Einn\A+), D(gk)(K) n+(K)
(resp. D(g-

Remark 1. Before beginning the proof, let us remark that if (gk) has balanced distortions

(resp. bounded distortion, resp. mixed distortions), it will be so for any compact
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perturbation of (gk), i.e. any sequence (lk gklk for (lk and (lk two converging

sequences of 0(2, n). In the same way the conclusions of the above proposition are

not modified by a compact perturbation, even if of course n± and A1*1 are. So in the

following (and also in Sections 3.2.2 and 3.2.3) we will restrict the proofs to the case

where (gk) is a sequence of A+.

Proof. We restrict the proof to the case kk ßk, so that 8^ 0.

We begin by defining A1*1 and n ±. Let us call P+ (resp. P ~ the 2- plane spanned

by e\ and e2 (resp. en+\ and en+2), and A+ (resp. A~ the projection on Ein„ of
these 2- planes. The space M2'11 splits as a direct sum P+ © Po © P-, where Po is the

span of e3, en. This splitting defines a projection n+ (resp. îi-) from M2-" to the

plane P+ (resp. P The image n+ (x) is nonzero as soon as x is an isotropic vector
of q2'11 which is not in P~. Thus tt+ induces a projection n+ of Ein„\A~ on A+
whose fibers are the projections on Ein„ of the fibers of n+. These are degenerate

hyperplanes of R2'11, defined as g2-"-orthogonals of vectors of P So, the fibers of
7T+ are the intersections of Ein„\A~ with the lightcones with vertex on A i.e. the

leaves of J£A-.
Now let us choose x such that n(x) ^ A~. Since gkon(BE(x)) n(IexkE(ekkxi)x

IeßkE(eßkx2) x 7£(x3) x ¦ ¦ ¦ x Is(xn) x /g-^£(e"wxn+i) x Ie-xks(e~Xkxn+2)), we
obtain, fore sufficiently small, that B£°(x) tc(Is(x\) x Ie{x2) x {0} x ¦ ¦ ¦ x {0}).
We thus have Bf{x) c A+. Since e is arbitrarily close to 0, for any sequence (xk)
such that n(xk) tends to n(x), we have lim^^oo gk o n(xk) n(x\,X2, 0,..., 0).
This concludes the proof.

3.2.2. Dynamics with bounded distortion

Proposition 4. Let (gk) be a sequence of 0(2, n) with bounded distortions. Then we

can associate to (gk) two points p+ and p of Einn, called attracting and repelling
poles of (gk), and a diffeomorphism goo from the space of lightlike geodesies of
C~ C(p in the space of lightlike geodesies of C+ C(p+), conformai with
respect to the natural conformai structure of these two spaces, such that we have:

(i) For all compact subset K inside Ein„\C~, we have D(gk) (K) {p+}.

(ii) For a lightlike geodesic A c C~ and a point x of A distinct from p~, D(gk)(x)
is the lightlike geodesic goo (A).

(iii) The set D(gk) (p is the whole of Ein„.

The cones C+ and C~ are called attracting and repelling cones of (gk).

Remark 2. The dynamical pattern of the sequence (gkX) is obtained by switching
the +'s and the —'s in the statement. This remark holds also for Proposition 5.
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Proof. Following Remark 1, we do the proof for a sequence (gk) of A+, with
hm^oo ^k +00.

Let p+ it{ei), p~ it(en+2), C+ n((ei)1), C~ n((en+2)^).
Let us first remark that if x\ ^ 0, then clearly B£°(x) p+. This proves (i), as

well as (iii), passing to the complement.
If n(x) g C~ and if e is sufficiently small, we get that B£°(x) jt(1 x

Vco£(e'iooX2) x /£(x3) x ¦ ¦ ¦ x IE(xn) x Ie-nooE(e~iÀ<X}xn+\) x {0}).
The lightlike geodesies of C+ and C~ are parametrized by a sphere §"~2

corresponding to isotropic directions of the space spanned by e2, ¦ ¦ ¦, en+\.
We define goo as the element of 0(1, n — 1) given by

The spaces of lightlike geodesies of C+ and C have a canonical conformai Rieman-
nian structure, and we see that the map g^ is a conformai diffeomorphism between
these two spaces.

By the above formula, if tt(jc^) converges to n(x), the accumulation points of the

sequence gk(^(xk)) are in every B™ (x), for arbitrary small e. The intersection of all

Bf(x) is jt(R x {e^°°x2} x {x3} x ¦ ¦ ¦ x {xn} x {e~^°°xn+i} x {0}), i.e. the image
by g of the lightlike geodesic passing through p and n{x). Conversely, every point
n {y) of this geodesic is in the Hausdorff limit of gu ° tc {Be (x)). Hence, there exists a

sequence x| of Be(x) wifhlim^oo gk °x(xEk) n(y). Let eu be a sequence tending
toO. Then lim^oo gk°x{x8nkk) n{y) for some sequence of integers«^ and7r(x^)
tends to 7r(x). This concludes the proof of (ii).

3.2.3. Mixed dynamics

Proposition 5. Let {gk) be a sequence of 0(2, n) with mixed distortions. Then we

can associate to (gk) two points p+ and p called attracting and repelling poles
of the sequence, as well as two lightlike geodesies A+ et A~ (called attracting and

repelling circles), with the inclusions p+ e A+ c C+ C(p+) and p g À~ c
C~ C(p~), such that the following properties hold:

(i) For every compact subset K inside Ein„\C~, the set D(gk)(K) is {p+}.

(ii) Ifx is a point ofC~ not on A then D(gk)(x) is the lightlike geodesic A+.

(iii) Ifx is a point of A~ distinct from p then D(gk)(x) is the attracting cone C+.

(iv) The set D(gk)p~ is the whole of Ein„.
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Thecones C+ andC~ are called attracting and repelling cones of the sequence (gu)-

Proof. Once again we suppose that (gu) is in A+.
Letp+ Tt{ei), p~ 7t(en+2), C+ n{{ei)L), C~ n((en+2)L). The

circle A+ (resp. A is the projection of the 2-plane spanned by e\ and e2 (resp.

en+\ and en+2). We do not show (i) and (iv), the proof being exactly the same as for
Proposition 4.

If n(x) g C but n(x) ^ A then x\ 0, but x2 ^ 0. In this case we get
5£°°(x) 3t(R x /£(x2) x {0} x ¦ ¦ ¦ x {0}), that is to say A+.

The intersection of all the Bf (x) is n (R x {x2} x {0} x ¦ ¦ ¦ x {0}), i.e. the lightlike
geodesic A+. The fact that D(gk) {n{x)) A+ is proved exactly as in Proposition 4.

When n(x) g A only xn+\ and xn+2 do not vanish and by the assumption

n{x) ^ p+, we get xn+\ ^ 0. Hence, we have that Bf{x) is ^(R x ¦ ¦ ¦ x R x
/£(xn+i) x {0}), that is to say C+.

As previously, we get D(gk)(n(x)) C+.

Remark 3. Notice that different configurations for the dynamical elements described
above can occur. For example, attracting and repelling circles of a dynamics with
balanced or mixed distortions can intersect, or even be the same. In fact, all the

possible configurations can occur.

4. About the limit set of a Lorentzian Kleinian group

4.1. Definition of the limit set. Given a Kleinian group F on a manifold X, it is

quite natural to ask if there is in some sense a "canonical" open set Q c X on
which F acts properly. For example, any Kleinian group F on the sphere 8" admits
a limit set Ar and the open set £2r §"\Ar is distinguished, since it is the only
maximal open subset on which F acts properly. The nice properties of the limit set of
a Kleinian group on 8" rest essentially on the fact that the Möbius group 0(1, n + 1)

is a convergence group on §". We just saw in the previous section that 0(2, n) is

quite far from being a convergence group on Ein«, but we would nevertheless like to
define a limit set Ar associated to a given discrete group F c 0(2, n). We require
that such a limit set have at least the two following properties:

(i) Ar is a F-invariant closed subset of Ein„.

(ii) The action of F on Qr Ein„\Ar is properly discontinuous.

Definition 2. Given F discrete in 0(2, n), we define $r (resp. 7~r the set of sequences
iyk) of F, tending simply to infinity, with mixed or balanced distortions (resp. with
bounded distortion). If (yu) is a sequence of Sr (resp. 7"r),wecall A+(y^) andA~(y^)
(resp. C+(yt) and C~(yt)) its attracting and repelling circles (resp. attracting and

repelling cones).
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Definition 3. We define the limit set of a discrete F c 0(2, n) as

where

kf (J A%)UA-(n)

and

Ar2)= U C+(yk)UC-(yk).

Notation. The complement of Ar in Einn is denoted by Qr-

It is clear that Ap is closed and F-invariant. Let us remark that Ap is a union of
lightlike geodesies, so that it also defines a closed F-invariant subset Ar C L„.

From the dynamical properties stated in the previous section, one checks easily
that no pair of points in Q p can be dynamically related, so that the action of F on Q p

is proper.

4.2. Lorentzian Kleinian groups of the first and the second type. Until now we
did not focus on a fundamental difference between the action of 0( 1, n +1 on §" and

that of 0(2, n) on Ein«. Although any discrete group F c 0(1, n + 1) automatically
acts properly on HF+1, it is not true in general that a discrete F c 0(2, n) does so on
AdS„+i. This motivates the following distinction between subgroups of 0(2, n).

Definition 4. A discrete group F of 0(2, n) is of the first type if it acts properly on
AdSn+i. If not, it is said to be of the second type.

Notice that this terminology has no connection with the denomination of being
of first kind and of second kind for the standard Kleinian groups on the sphere.

The previous dichotomy has a nice translation into dynamical terms due to the

next result.

Proposition 6. A Kleinian group F of 0(2, n) is of the first type ifand only if it does

not admit any sequence (yu) with bounded distortion.

Proof. We endow M2'"+1 withthequadraticformg2'"+1(x) —2x\xn+2+2x2Xn+\ +
x| + ¦ ¦ ¦ + x2 + x2+3 and call e\, en+i the canonical basis. The subgroup of
0(2, n +1) leaving invariant the subspace spanned by the first n + 2 basis vectors can
be canonically identified with 0(2, n). This identification defines an embedding j
from 0(2, n) into 0(2, n + 1). The action of j (0(2, n)) on Einn+i leaves invariant a

codimension one Einstein universe that we call Ein„. As we saw in the introduction,
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the complement of Ein„ in Einn+i is conformally equivalent to the anti-de Sitter

space AdSn+i.
Let us consider some g in 0(2, n). In the basis e\, en+3, j(g) (g 1 so

that when we perform the Cartan decomposition of j(g), we find the same distortions
as for g.

Suppose now that F admits some sequence (yt) with bounded distortion. By
the remark above, jiyu) has also bounded distortion as a sequence of 0(2, n + 1).

We call C+ and C~ its attracting and repelling cones in Einn+i. By Proposition 4,

D(gk) (C n AdS„+i C+ n AdS„+i. Therefore we can find two points of AdS„+i
which are dynamically related, so that the action of (yt) on AdSn+i cannot be proper
(Proposition 1).

Conversely, let us consider some sequence (yt) tending simply to infinity and with
balanced or mixed distortions. Then the sequence j(yk) has the same properties.
Let us call A+ and A~ the attracting and repelling circles of this latter sequence.
Looking at the matrix expressions, it is clear that A+ c Ein„ and A~ c Ein„. By
Propositions 3 and 5, D(gk)(x) c Ein« for any point x e AdSn+i. So, if we assume
that F has no sequence with bounded distortion, we get Dp 00 C Ein« for any point
x g AdS„+i. Using Proposition 1, we get that F acts properly on AdS„+i.

4.3. Limit set of a group of the first type: proof of Theorem 1. Since F is of the

first type, Ar is also the limit set of F, regarded as a subgroup of 0(2, n + 1) acting
on Einn+i. The complement of this limit set in Einn+i is precisely fipU AdS„+i, so

that (i) of the theorem is clear.

To prove (ii), let us suppose that V acts properly on some Q U AdS„+i with Q

not included in Qr- Then there is a sequence {yu) of V (with balanced or mixed
distortions) such that A~(yic) meets Q.

Lemma 1. Let F be a discrete group of 0(2, n) acting properly on some open set
Q. Then for any sequence (yk) of V with balanced distortions, neither A+(y^) nor

meets Q.

Proof. Suppose on the contrary that for some iyu) with balanced distortions, we
have A+(yk) flß^0. From Proposition 3, we infer that the set D(Yk) A+(y^) n Q.)

contains a lightlike geodesic A in its interior. So, there is a tubular neighbourhood

U of A contained in Ext(Œ) (Ext(Œ) denotes the complement of Q in Einn).
But we also infer from Proposition 3 that for any A not meeting A (yk), we have

lim^+oo yt(A) A+(yt). As a consequence, any lightlike geodesic of Ext(Œ)
has to cut A (Yk). Since all the lightlike geodesies included in U cannot all meet
A~ (Yk) we get a contradiction.

The lemma above tells us that the sequence (yu) has mixed distortions. For any
point x g A~(yt) n Q, we have D(yk)(x) C+(yic). Since C+(yic) meets AdSn+i,
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we get pairs of points infiU AdSn+i which are dynamically related, and the action

cannot be proper by Proposition 1.

Remark 4. For F Kleinian of the first type, the manifold i^r/T appears as the

conformai boundary of the complete anti-de Sitter manifold AdSn+i / F (see [Fr4]
for more details on this point).

To prove (iii), we begin by showing that Âr C L„ is a minimal set. This is in fact
a particular case of a general result of Benoist ([B]), but we give a simple proof.

Let Â be a closed F-invariant subset of L„. Any sequence (yt) tending simply
to infinity in F has either mixed or balanced distortions. As a simple consequence
of Propositions 3 and 5, we get that if A is a lighthke geodesic of Ein« which does

not meet A (yk), then lim^+00 yt(A) A+(yt). So, if for any sequence (yk) as

above, no geodesic of Â meets A~ (yt), we nave Ar c A, and we are done.

On the contrary, if for some (yk), all the geodesies of Â meet A (yk), we claim
that F cannot be Zariski dense. Indeed, by Zariski density, F cannot leave A~(yt)
invariant. So, let us choose y G F such that y (A (yk)) ^ A (yk). If y (A (yk))
and A~(yt) are disjoint, the set of lightlike geodesies meeting both g(A~(yt)) and

A~ (yk) is contained in a 2-dimensional Einstein universe, which have to be fixed by
F: a contradiction with the Zariski density of F.

If g(A (yu)) and A (yt) meet in one point p, then any lightlike geodesic meeting

both g(A~(yt)) and A~(yt) has to contain p. Indeed, due to the fact that the

quadratic form q2'11 cannot have some 3-dimensional isotropic subspace, there is no
nontrivial triangle of Ein«, whose edges are pieces of lightlike geodesies. We infer
that F has to fix the lightcone C(p) and we get once again a contradiction.

We can now show that £2 r is the maximal open set on which the action of F is

proper. Suppose that F acts properly on Q, which is not included in Qr- We call
A the complement of Q in Ein„. Since Ar <£. A, there is a sequence (yk) tending
simply to infinity in F with A+(yt)flfl ^ 0.

Lemma 2. If an infinite Kleinian group F c 0(2, n) acts properly on some open
subset Q, then the complement A of Q, in Ein« contains a lightlike geodesic.

Proof. Let us pick a sequence (yt) tending simply to infinity in F. Suppose first that

(yk) has mixed dynamics. Suppose that A ~(yt) meets Œatapointx (if A~(yic)nQ
0, we are done). By properness, D(gk)(x) nß 0. But D(gk)(x) C+(gk), which
contains infinitely many lightlike geodesies, and the conclusion holds.

Also, if (gk) has balanced (resp. bounded) distorsions, the dynamic set D(gk)x of
x g A (yk) (resp. x g C~(yk)) contains infinitely many lightlike geodesies. The

proof works thus in the same way.
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Now let us look at the lightlike geodesies of A. Since by Zariski density, F cannot
fix a finite family of lightlike geodesies, there are infinitely many lightlike geodesies
in A. But all these geodesies have to meet A (yt), because if some A does not,
lim^+oo Yk(A) A+(yic). A contradiction with A+(y^) flîî / 0. Now, we
conclude as for proving the minimality property of Âr: all the lightlike geodesies of
A are in the same F-invariant Einstein torus, or the same F-invariant lightcone, and

we get a contradiction with the Zariski density of F.

5. Some examples of Lorentzian Kleinian groups

5.1. Examples arising from structures with constant curvature. In Lorentzian

geometry, a completeness result ensures that any compact Lorentzian manifold with
constant sectional curvature is obtained as a quotient R1-" V F or AdS„/ F, where F

is a discrete group of Lorentzian isometries. This deep theorem was first proved for
the case of curvature zero by Carrière in [Ca], and generalized by Klingler in [Kl] (note
that compact Lorentzian manifolds cannot have curvature +1 Another result^known
as finiteness of level (see [KR], [Ze]), ensures that any compact quotient AdSn/F
(where F is a discrete group of isometries) is in fact, up to finite cover, a quotient
AdSn / F. Since R1>n 1 and AdSn both embed conformally into Ein„ (see Section 2),

by Theorem 4 we get that any compact Lorentzian structure with constant curvature
is (up to finite cover) uniformized by a Lorentzian Kleinian groups. Moreover, in this

case the structure of the groups involved is fairly well understood, due to [CaD], [Sa]
and [Ze].

5.2. Examples arising from flat CR-geometry. Let us consider the complex vector

space C"+1, endowed with thehermitianform hl'n~l{z) -|zi|2 + |Z2|2 + Iz3l2 +
h |z„+i|2. We consider c\f, the lightcone defined as {z e C"+1| hl<n{z) 0},

and call Q~ the open set {z e C"+11 hl>n{z) < 0}. If we project Q~ on the complex

projective space C P", we get the complex hyperbolic space H£. If we project C^'"
minus the origin on CP", we get a sphere S2""1, naturally endowed with a CR-
structure. This CR-sphere can be seen at the infinity of H^. If, instead of looking
at the complex directions of C^'", we consider the quotient C^'"/R* of C^n by the

real homotheties, then the space that we get is Einstein's universe of dimension In.
In other words, there is a fibration / : Eui2„ -> S2""1 whose fibers are circles. The
fibration is preserved by the group U(l, n), which acts on Eui2„ as a subgroup of
0(2, In). If Z denotes the center of U(l, n) (homotheties by complex numbers of
modulus 1), then the fibers of / are exactly the orbits of Z on Ein2„. These orbits are

lightlike geodesies.

Proposition 7. If F e U(l, n) is a discrete group, whose projection f on PU(1, n)
acts properly discontinuously on Û c S2""1, then F is a Kleinian group of Ein2„
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and acts properly discontinuously onQ, Z"1 (Ô). If G acts with compact quotient
on Û, so does F on Q.

Remark 5. The group PU(1, n) acting on S2""1 is a convergence group, and there
is a good notion of limit set for a discrete group G as above (see for example [A]).
In fact, it is not difficult to check that the Lorentzian Kleinian groups F built as in
Proposition 7 are of the first type. Their limit set is just the preimage by / of the limit
set Â^ of f onS2"-1.

To illustrate this case, let us mention the two following examples.

Example 1. We write each z £ C"+1 as z (x,y) with x and y in R". We identify the

real hyperbolic spaceHg with thesetof points (x, 0) with -x2+x|+- ¦ +x2+1 -1
and xi > 0. If (x, y) is moreover in the unit tangent bundle of Hg, it satisfies the

following two extra equations:

-x\y\ + X2J2 H h xnyn 0,

-yl + yl + '-' + yl+i =l-

Projectivising, we get an open subset Û c S2""1. In fact Û is precisely S2""1

minus an {n — 1)-dimensional sphere S (the projection on S2""1 of the set {z

(x,0)| -x2 + x2 + ---+x2+1=0}).
Now the subgroup G 0(1, n) of real matrices in U(l, n) acts on S2""1 and

Û Ûpreserves Û. Identifying Û with T1!^, we get that G acts properly and transitively

on Û. As a consequence we have the following

Fact. Any discrete group F in 0(1, n) acts properly discontinuously on Û. Considered

as a subgroup of'0(2, In) it yields a Kleinian group acting on Ein2„.

The Kleinian manifold Q/F obtained in this way are circle bundles over T1 (N),
where ./V is the hyperbolic manifold H^/ F.

Example 2. Inside U(l, n) there is a group G isomorphic to the Heisenberg group
of dimension 2« — 1. The group G fixes a point pœ on S2""1 and acts simply
transitively on the complement of this point. By Proposition 7, any discrete group
in G will yield a Lorentzian Kleinian group, acting properly on the complement of a

lightlike geodesic. The Kleinian manifolds obtained in this way will be circle bundles

over nilmanifolds.

5.3. Subgroups of O(l, r) x O(l, s). We still endow M2'11 with the quadratic form
q2'n(x) -2xixn+2 + 2x2xn+i + x2 + ¦ ¦ ¦ + x2, and we consider an orthogonal

splitting IR2'" E\ + E2 with E\ and £2 two spaces of signature (1, r) and
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(1, s) respectively (r ^ 0, j / 0 and r + s n). We suppose also r < s. For
example, we take E\ (e\, e^, e3+r-2, e«+2) and £2 (e2, e3+r-l, • • •, en+\).
The subgroup G of 0(2, n) preserving this splitting is isomorphic to the product
0(1, r) x 0(1, s). Before describing some examples of Kleinian groups in G, let us

say a few words about the geometric meaning of this splitting on Ein«.

Lemma 3. We can write Einn as a union Qi U Q2 U S. The set Qi (resp. Q2) is

open, G-invariant, homogeneous under the action ofG, and conformally equivalent
to the product dSr x W (resp. W x dS^). S is a singular, degenerate G-invariant
hypersurface.

Proof. We call tz\ and 712 the projections of M2'11 on E\ and E2, respectively. The
2

projection of vectors u (v, w) of M.2'11, for which both v it\ (u) and w

are isotropic, gives the hypersurface S. We will say more about it later.

The vectors u (v, w), for which neither v nor w is isotropic, are of two kinds.

Those for which q2'n(v) > 0. Since we work projectively, we can suppose that
q2'n(v) 1 and q2'n(w) — 1. In a further quotient by -Id these vectors project
on the product d §r xff. They constitute the open set Q\.

Those for which q2'n(v) < 0. These vectors project on a product Hr x dSs and

constitute the open set ^2- D

The hypersurface S can be regarded as the conformai boundary of the spaces

dSr xff and Hr xdSs. Let us describe it more precisely. The isotropic vectors
(v, w) of M2'", for which v and w are isotropic, split themselves into two sets. Those

for which either v or w is zero. Their projectivisation gives two Riemannian spheres

Si and S2 of dimension (r — 1) and (s — 1) respectively.
Those for which v and w are nonzero project on the product of the projectivisation

of the lightcone of E\ by the lightcone of ^»namely E>r~1 xCliS. So S minus S1US2
has two connected components, each of which is diffeomorphic to §r-1 x§s-1 xi.
One can check that S is obtained as the union of the lightlike geodesies intersecting
both Si and £2.

We now give some examples of Kleinian groups in G.

Example 3. Let us take a discrete group f inside 0(1, r) and any representation p
of f inside 0(1, s). We call rp Graph(f, p) {(y, p(y))\y G f}. Then Tp is

a Lorentzian Kleinian group of 0(2, n). Indeed, its action on Œ2 Hr x dSs is

clearly proper. Let us say a little bit more about the limit set of these groups. We call

Af, the limit set of the group F on the sphere Si.
Case a): p is injective with discrete image. A sequence {yu) of Tp can be written

as a matrix (n (- If iYk) tends simply to infinity, so does the sequence (yt)

(resp. piy/c)) in 0(1, r) (resp. in 0(1, s)). We thus see that (yu) has either mixed
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or balanced distortions. In particular, the group Fp is always of the first type in this

case.

The attracting and repelling circles of (yk) can be described as follows. Since
the sequence (9k) (resp. p(9k)) tends simply to infinity in 0(1, r) (resp. 0(1, s)),
it has two attracting and repelling poles p+(9k) and p (9k) (resp. p+(p(9k)) and

P (p(9k))) on Si (resp. £2). Then A+(yic) (resp. A (yk)) is simply the lightlike
geodesic of Ein„ joining p+(9k) and p+(p(9k)) (resp. p (9k) and p (p(9k)))- In
particular, the limit set A rp is a closed subset of S (strictly included in S if A ^ 7^ Si).
An interesting subcase arises when we take for f a cocompact lattice in 0(1, 2), and

a quasi-fuchsian representation p: F —>¦ 0(1, s) (s > 2). The limit set of p(T) on
T,2 is a topological circle, and we get for the limit set Arp a topological torus. One

can prove moreover (which is omitted here) that the action of Fp is cocompact on the

complement of its limit set.

Case b): p is not injective with discrete image. In this case there is a sequence
tending simply to infinity in Fp such that p(9k) is bounded. Such a sequence
has bounded distortion, and the group Fp is of the second type. The attracting

and repelling poles p+(yk) and p~(yk) are both on Si. In fact they are the attracting
and repelling poles of (9k) (acting as a sequence of 0(1, r) on Si). In this case the

limit set Arp is just the union of lightcones with vertex on Ap.

6. About Klein's combination theorem

The examples of Kleinian groups given so far are not completely satisfactory, since

they arise from geometrical contexts such as Lorentzian spaces with constant
curvature or flat CR-geometry, and in some way are not "typical" of conformally flat
Lorentzian geometry. For instance, we still do not have examples of Zariski dense

Kleinian groups on Ein«. One way to construct other classes of examples is to combine

two existing Lorentzian Kleinian groups to get a third one. In the theory of
Kleinian groups on the sphere this kind of construction is achieved on the basis of
the celebrated Klein's combination theorem ([A], [Ma]). We now state a generalized
version of this theorem. For this we need the following definition.

Definition 5. Let X be a manifold. A Kleinian group on X is a discrete subgroup
of diffeomorphisms F acting properly discontinuously on some nonempty open set
Q, c X. We say that an open set D c ß is a fundamental domain for the action
of F on Q if D does not contain two points of the same F-orbit and if moreover

Notation. For any subset D of the manifold X, we call Ext(D) the complement of
DinX.
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Theorem 5 (Klein). Let Y; (i 1, m) a finite family of Kleinian groups on a

compact connected manifold X. We suppose that each Y; acts cocompactly on some

open subset QiofX with fundamental domain D\. We assume moreover thatfor each

i £ j, Ext(A) C Dj, and that D f|£Li Di ^ 0. Then we have:

(i) The group Y generatedby the F,- 's is isomorphic to the free product Y\ * - - -* Ym.

(ii) The group Y is Kleinian. More precisely, Q Uyer Y(D) *'* an open subset of
X, and Y acts properly discontinuously and cocompactly on Q, withfundamental
domain D.

Proof. We do the proof for two groups T\ and Y 2, the final result being then obtained

by induction. Let y ysys-i ¦ ¦ ¦ YiY\ be a word of Y such that y, e Gj. (j; e {1, 2})
and ji ^ ji+\. Then the first condition on the fundamental domains yields the

inclusions YsYs-\ ¦ ¦ ¦ Y2Yl(D) C YsYs-l ¦ ¦ ¦ /2(Ext(Dil)) C ¦¦¦ C yi.(Ext(D/s_1)) C

Ext(Djs So, for any nontrivial reduced g,y(D)nD 0. This proves that y cannot

be the identity, and (i) follows. In the same way, we prove that y(D) n D 0 as

soon as s > 1. Since D is compact in Qi and Œ2 and the action of Pi and F2 is

proper, we get

Lemma 4. The intersection y(D) n D is empty for all but a finite number ofy's.

Lemma 5. There is a finite family y\, ys ofelements of Y such that D U y\ (D) U

• • • U ym (D) contains D in its interior.

Proof. We choose some open neighbourhood UiofdDi such that [/icßi and U\ is a

compact subset of Q\. Since Di is a fundamental domain of Y\, for each x e U\ there

existsayx e Fisuchthatx e yx(Di). But since the action of Y\ ispropery(Di)nC/i
is nonempty only for a finite number of elements y\ ys of Y\. Thus Di U U\

is included in Di U y| (öi) U -- - U y} (öi), and Di is contained in the interior of

£>i U y[1\Di) U ¦ ¦ ¦ U yi1}(Di). But if D[ Di\K, where K is a compact subset

of £>i, then we also have D[ U Ux c D[ U y[l) (D[) U - - - U yi1} (DJ). In particular,

when K is the exterior of D2, we get that D U C/i c D U yj(1) (D) U ¦ ¦ ¦ U y,.(1) (D).
Now we can apply the same argument for a neighbourhood U2 of 9D2 in ^2- We

get a finite family y[2), y/2) of F2 suchthatDUC/2 C DUy1(2)(D)U- ¦ Uy/2)(D).

Setting m s + t,yi y/1-1 for i 1, s and ys+i y/2) for i 1, t, we
get the lemma.

As a consequence of this lemma, we get that the set Q, \Jy er y (D) is an open set.

It remains to prove that the action of F on Q, is proper. Indeed, since F is not
a priori a convergence group, the fact that F acts discontinuously on Q no longer
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ensures that the action is proper. That is why our assumptions (in particular the

assumption of cocompactness) are stronger as for the classical Klein's theorem on
the sphere.

Suppose, on the contrary, that there is a sequence (x, of Q, converging to Xoo G Œ,

and a sequence (yi) tending to infinity in V, such that y, yi(xi) converges to

yœ G Q. We can assume that xœ g D. On the other hand, by definition of Q, there

is a yo such that yœ G yo(D). Lemma 5 ensures that for i sufficiently large, x\ must

be in D U yh(D) U ¦ ¦ ¦ U yim(D), and yi in yo(D) U yoyh(D) U ¦ ¦ ¦ U yoyjJD)).
But then, Lemma 4 implies that the sequence (yi) takes its values in a finite set, a

contradiction with the fact that (y, tends to infinity in F.

We would like to apply the theorem above to combine Lorentzian Kleinian groups.
Notice that for two Kleinian groups the condition Ext(Di) c 02 implies dQ\ c Ö2

and 9^2 C D\. Together with Lemma 2, we get that if two cocompact Lorentzian
Kleinian groups can be combined, then their fundamental domains have to contain
a hghtlike geodesic (in particular, no Kleinian group uniformizing a manifold with
constant curvature can be combined with another Kleinian group). It turns out that
this obstruction is the only one which forbids combining two Lorentzian Kleinian

groups, as shown by Theorem 2, which we now prove.

6.1. Proof of Theorem 2. We choose Ai c D\ and À2 C D2, two lightlike
geodesies. Since Di and D2 are open, they contain not only one, but in fact infinitely
many lightlike geodesies, so that we can moreover choose Ai and A2 disjoint. We

begin with a useful lemma.

Lemma 6. Given A\ and A2 two disjoint lightlike geodesies of Einn, there exists

g g Conf (Ein„) such that (gk) has mixed distortions and admits Ai and A2 as

attracting and repelling circles.

Proof. The geodesic A1 (resp. A2) is the projection on Einn of a 2-plane (e[, e'2) (resp.
(e'3, e'4)) of R2'11. We choose moreover e'3 and e'4 such that q2'n(e[, e'3) —2 and

q2'n(e/2,e/4) 2. Theg2'"-orfhogonal F to (e[, e'2, e'3, e'4) has Riemannian signature
and we denote by e'5,..., e'n+2 one of its orfhonormal basis. Then we consider some
element g of 0(2, n), which writes in the base (e[, e'n+2) as

/ex

-x

g

e

1/
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If we choose X > yu. > 0, then it is clear that (gk) has mixed distortions with
A+ Ai and A~ À2.

We now take some g e Conf (Ein„) as in the lemma above. Let us choose V\

(resp. Vi) an open tubular neighbourhood of Ai (resp. À2) such that V\ c D\ (resp.

V2 C D2). The complement of V\ (i 1, 2) in Einn is denoted by Ext (Vf). It
follows from Proposition 5 (i) and (ii) that the set dynamically associated to Ext( V2)

with respect to (gk) is included in A+. Since Ext(V2) contains a hghthke geodesic,
it is exactly A+. Hence, for ko sufficiently large, g^°(Ext(V2)) c V\. We call

r2 gk°r2g~k°. The group F2 is a cocompact Lorentzian Kleinian group with
fundamental domain D'2 gk°(D2). But gk°(D2) contains g*ö(Int(V2)), and as we
just saw, Ext (Vi) c g*°(Int(V2)). SoExt(D2) c D\. We can then apply Theorem 5,

and we get that the group generated by F2 and T\ is still Kleinian, cocompact, and

isomorphic to T\ * F2, i.e. Pi * F2.

Example 4. All the cocompact Lorentzian Kleinian groups of the Examples 1 and

2 of Section 5 satisfy the hypothesis of Theorem 2. This is also the case of most
instances of Example 3, when p is injective with discrete image. Thus such groups
can be combined and give new examples. Notice that in the proof of Theorem 2, the

gluing element g can be chosen in many ways. In particular, starting from two groups
of the Examples 1, 2 or 3, suitable choices of g will give combined groups which are

Zariski dense in 0(2, n).

6.2. Lorentzian surgery. Theorem 2 reflects in fact the group theoretical aspect of
a slightly more general process of conformai Lorentzian surgery.

Let M\ and M2 be two conformally flat Lorentzian manifolds (we do not make

any compactness assumption). Suppose that M\ contains a closed lightlike geodesic
Ai admitting some open neighbourhood U\ which embeds conformally, via a certain

embedding <pi, into Ein«. Suppose moreover that the same property is satisfied by
M.2, for a closed lightlike geodesic A2, an open neighbourhood U2, and a conformai

embedding <p2- We can suppose that 0i(Ai) and 4>2(Ä2) are disjoint in Ein«.

By Lemma 6, 4>\(A\) and 4>2(^2) are the attracting and repelling circles of some
element g e Conf (Einn). As in the proof of Theorem 2, there exist two open
neighbourhoods Vi and V2 of Ai and A2 respectively, such that V\ c U\, V2 C U2,

and g(Ext(02(V2))) <fo(Vi). In particular g(3(<fc(V2))) 3(0i(Vi)) (recall that
9 denotes the boundary). So the element g provides a gluing map / between 9 V\
and 9 V2. We denote by M\ (resp. M2 the manifold M\ (resp. M2) with V\ (resp.
V2) removed. We call M M1Ö/M2 the manifold obtained from M\ U M2 after
identification of 3 Vi and 9V2 by means of the map /. Since g G Conf (Ein„), the

"surgered manifold" M is still endowed with a conformally flat Lorentzian structure.
Theorem 2 ensures that if one starts with two compact Kleinian structures M\ and

M.2, the conformally flat structure on M1Ö/M2 is still Kleinian.
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Remark 6. This surgery process is reminiscent of Kulkarni's construction of a con-
formally flat Riemannian structure on the connected sum of two conformally flat
Riemannian manifolds ([Kl]). We do not know whether the connected sum of two
conformally flat Lorentzian manifolds can still be endowed with a conformally flat
Lorentzian structure.

7. Lorentzian Schottky groups

As an application of the former sections we study here the Lorentzian Schottky groups.
These groups are interesting since we can completely determine their limit set and

the Kleinian manifolds they uniformize. Moreover, they can be used to construct
examples of conformally flat manifolds with some peculiar properties (see [Fr2]).

Let us consider afamily {( A j~, Af), (A A+)}ofpairs of lightlike geodesies

in Ein«. We suppose moreover that the A^ are all disjoint. By Lemma 6, there exists

a family s\,..., sg of elements of Conf(Ein„) with mixed dynamics such that the

attracting and repelling circles of s; are precisely Af and A. Looking if necessary

at suitable powers sfl of s-,, we can find open tubular neighbourhoods uf of the A^
with the following properties:

(i) The Uf are all disjoint.

(ii) si (Ext(C/-)) Vi+ for all i 1,..., g.

Such a group F (s\,..., sg) is called a Lorentzian Schottky group. Properties (i)
and (ii) are classically known as ping-pong dynamics (see for example [dlH]). For
each i, the group (sj) acts properly cocompactly on the open set Ein„\{A. U A+},
and a fundamental domain is just given by A Ein„\{[/+ U U. }. Now, since the

Uf are disjoint, we get that Ext (A C Dj for all i £ j. If we call D f]f=1 A, it
is clear that D/0. We then apply Theorem 5 to obtain

Proposition 8. A Lorentzian Schottky group F {s\, sg) is a free group of
Conf (Einn). Moreover, V is Kleinian, it acts properly and cocompactly on Q

)- A fundamental domain for this action is given by D p|f=1 A-

We are now going to describe Q and its complement A c Ein„ more precisely.
Let us recall that in a finitely generated free group each element y can be written

in an unique way as a reduced word in the generators. We denote by \y\ the length
of this word. Let us also recall that we can define the boundary 9 F of F as the set

of totally reduced words of infinite length. Hence the elements of the boundary can
be written as s-1 .s-k with ej e {±1} and ijej ^ —ij+\Sj+\ for all j > 1.

Since we supposed that g > 2, the boundary 9 F is a compact metrizable space,

homeomorphic to a Cantor set (see [GdlH]).
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For each k e N, we call Fk \J\Y\<kY(D), with the convention Fç, D. It is

not difficult to check that Fk-i C Ft, and Q, UjteN ?k- So, A f\eNExt(Fjt).
For each k, we set A& Ext(i^), and thus, we also have A f\eN ^-k- The

set A& is a disjoint union of exactly 2g.(2g — \)k connected components, in one to
one correspondence with the words of length k + 1 in F. For example, to the word
s81 s8k+1 corresponds the component s81 s8k(U8k+1) of A^. We can now state

the following result.

Lemma 7. There is a homeomorphism K between the boundary 9 F and the space of
connected components of A (endowed with the Hausdorff topology for the compact
subsets of Ein„).

Proof. Let /oo s8^ s-k be an element of 9F. We call yu s^ s-k and

we look at the decreasing sequence of compact subsets Kiyu) sf1 s8^ (Ufk).
This decreasing sequence of compact sets tends to a limit compact set K(yœ) for the

Hausdorff topology. Since the uf are connected, so are the K(yu), and K(yoo) is
itself connected. Let us remark that if /oo and y^ are distinct in 9F, then K{yu) and

K(yk) are disjoint for k large (they represent two distinct components of Ajt), so that

K(Yoo) and Kiy^) are disjoint.

Reciprocally, choose xœ e A. Since A f\eN-^£ wim ^fe+i C A^, xœ

must be an element of some connected component Ck C A^ for each k. Moreover

Ck+i C Ck. But Ck is then a decreasing sequence of compact subsets of
the form jf1 shJ^iP m<^ tnus converges t0 a limit compact set ^T(/oo) for

f 1 Sic

We have proved that the mapping K between 9 F and the set of connected

components of A is a bijection. It remains to prove that it is a homeomorphism, and for
this, it is sufficient to show that K is continuous. Let us consider a sequence y^
of elements of F, converging to some yoo- It means that there is a sequence (rn) of
integers which tends to infinity, such that y^ and /oo have the same rn first letters.

For each n e N, K(y^) is a decreasing sequence of compact sets C(kn\ where each

C^n) is a connected component of A^. On the other hand, K(yœ) is the limit of a

decreasing sequence of Ck, where each Q is a connected component of A^. Since

y^) and yœ have the same rn first letters, we have C^_x Crn_\ for all n. Thus,

the limit, as n tends to infinity, of Cr("^ is K(yoo). But since Kiy^1) c C{^_v we

get that linin^oo K(y^ Kiy^) and we are done.

The next step is to show the following lemma.

Lemma 8. The connected components of A are lightlike geodesies.
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Proof. Let us consider yœ sp s8k... in the boundary of F. We know that

K(Yoo) is the limit of the sequence sp s^ (U?*). Since the sequence is decreasing,

the limit remains the same if we consider a subsequence. Thus we can make the

extra assumption that K(yoo) is the limit of a sequence yk(UV0), such that (yk) tends

simply to infinity and the first and last letters of yt are always the same, namely sp

and s -n. Observe that ,/ie/j ^ —joejo. We are going to discuss the different possible
dynamics for (yk), and we first prove that (yk) cannot have bounded distortion.

Suppose that it is the case. We call p+ (resp. p and C+ (resp. C the attracting
(resp. repelling) pole and cone of (yk). If x is a point of D, then for all k g N,

yk(x) g C//J1 andyt"1^) e U~8}1. So we must have p+ e Upx and/?" e ^~£;i-

In particular, p~ is not in C/ ;o. On the other hand, it is a general fact that in Ein„
any lightlike cone meets any lightlike geodesic (just because degenerate hyperplanes

always meet null 2-planes in M2"). In particular, the cone C~ meets A^° and thus

U2°- We call VV° C~ n U^0 ¦ Since uV0 does not contain p~, we infer from

Proposition 4(i) and (li) that K(yoo) D(yk)(Vj^). More precisely, if Vej° is the

set of lightlike geodesies of C~ meeting V-M, then K(yO0) is the closure of the

union the lightlike geodesies of yoo(Vj°) (see Proposition 4 for the notation y^).
In particular, K(yO0) contains a lightlike geodesic. Now some lightlike geodesic of
C~ does not meet V-n. Indeed, if this is not the case, then Proposition 4 (ii) ensures

that K(yO0) C But if we take y^ ^ yœ, then K(y^o) contains some lightlike
geodesic by the remark above. Since any lightlike geodesic meets C we get a

contradiction with the fact that K(yoo) and K(yoo) have to be disjoint.

Now let us perturb slightly the sets U^° and Ujo
Jo into some sets Ujq8}0 and

Ujo~8}°, in order to get another fundamental domain D', very close to D. Since

it is very near to D, D' is included in some Fk for k sufficiently large, and so

') Uyer y{D)- We prove as above that the limit of the compact sets

Yk(U'j Ejo) is still a connected component of A and consequently of the form ^(y^,).
We just saw that some lightlike geodesies of C~ do not meet V-;o, so that V -;o is

not the whole of §"~2. It is thus possible to choose U'j^m in such a way that some

points of Vjo
Jo

are not in V^°. But then K(y^) w\AK(yO0) will be two different

components, hence disjoint. On the other hand, since the intersection of U -;o and

U'. Ej° is not empty (A ;o is inside), K(yO0) and K(y^) must have some common
points. We thus get a contradiction.

It remains to deal with the case where yk has mixed or balanced distortions. Once

again, if x is a point of D then for all k € N, yk(x) e Up and y^-1(x) g U¦ n.
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Hence the attracting circle A+ is in Up and the repelling one A~ is in U ¦ n. Inp and the repelling one A is in U ¦

particular U .Jo does not meet A~. We infer from Proposition 5 and Proposition 3

that lim^oo Yk(U^°) c A+, but since U^° contains a lightlike geodesic, we have^
the equality lim^oo YkiU^0) A+. We finally obtain that K(yoo) A+.

7.1. Proof of Theorem 3. We begin by proving that the group F is of the first
type. Suppose on the contrary that there is some sequence (Yk) in F with bounded
distortion. Then D meets the repelling cone C Otherwise C~ would be included
in some U^, say £/+. But since Aj~ meets C~, the intersection between Aj~ and

U* would be nonempty, a contradiction. By Proposition 4 (ii), lim^oo Yk(D) is a

compact subset containing infinitely many lightlike geodesies. But lim^oo Yk{D) is

also a connected subset of A. This contradicts the fact that the connected components
of A are lightlike geodesies.

We claim that the equality Ar A holds. Indeed, for any sequence (yk) of F

tending simply to infinity, {yk) tends to A+(Yk)- We thus see that Ar c A. Now
it is a general fact that if a group F acts properly cocompactly on some open set Q,
then it cannot act properly on some open set Q' strictly containing Q. So Q, cannot
be strictly contained in Ein„\Ar, and we obtain Ar A.

We now prove that Ar is the product of MP1 with a Cantor set. The space Einn
is the quotient of S1 x S""1 by the product of antipodal maps, so that there is a

fibration /: Einn -^ IP1. The fibers of / are conformai Riemannian spheres of
codimension one. In the projective model they are obtained as the projection of the

intersection between C2" and some hyperplanes P c K2'" of Lorentzian signature.
As a consequence any lightlike geodesic is transverse to any fiber of /. Let us choose a

fiber Fo above a point to ofMP1. From Lemmas 7 and 8, A (and thus A p is transverse

to Fo and intersects it along a Cantor set G. For each x g G, we call x{t) the unique
element of / x (On Ar suchfhatx andx(0 are on the same lightlike geodesic of A.
Then Lemma 7 ensures that the following mapping is a homeomorphism:

(t,x) h^ x{t).

This proves (ii).
Due to the homeomorphism K we get that, since the action of F on its boundary is

minimal (see for instance [GdlH]), the action of F on the space of lightlike geodesies
of Ap is also minimal, which establishes (iii).

For the proof of (iv) we refer to Theorem 5 of [Fr2] (in fact, in [Fr2] we considered

only particular cases of Schottky groups, but the proof of Theorem 5 includes the

general case).
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