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The theory of minimal surfaces in M x R

William H. Meeks and Harold Rosenberg*

Abstract. In this paper, we develop the theory of properly embedded minimal surfacesin M xR,
where M is a closed orientable Riemannian surface. We construct many examples of different
topology and geometry. We establish several global results. The first of these theorems states
that examples of bounded curvature have linear area growth, and so, are quasiperiodic. We then
apply this theorem to study and classify the stable examples. We prove the topological result
that every example has a finite number of ends. We apply the recent theory of Colding and
Minicozzi to prove that examples of finite topology have bounded curvature. Also we prove the
topological unicity of the embedding of some of these surfaces.

Mathematics Subject Classification (2000). Primary 53A10; Secondary 49Q05, 53C42.

Keywords. Minimal surface, flux, stable minimal surface, index of stability, minimal lamina-
tion, curvature estimates, periodic minimal surface, quasiperiodic.

1. Introduction

In the present paper, we begin the development of a general theory for properly
embedded minimal surfaces X in a Riemannian three-manifold of the form M x R,
where M is a closed orientable Riemannian surface. The theorems stated in this
Introduction form the main body of this emerging theory. We state once more for
emphasis that in all of these theorems and throughout this paper, M will denote a
closed orientable Riemannian surface. We will consider only non-compact minimal
surfaces . For, if ¥ is compact, then ¥ = M x {t} for some ¢ € R, since the height
function on M x R, restricts to a harmonic function on ¥ which has a maximum on
¥, and hence is constant.

In Section 2, we shall construct a multitude of examples of 2 in M x R of varying
topology and geometry, comparable to the rich family of classical doubly periodic
minimal surfaces in R? x R considered to be properly embedded minimal surfaces %

*This material is based upon work by the NSF under Award No. DMS - 0405836. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the NSF.
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in the quotient T x R, where T is a flat two dimensional torus. In S x R, where S is
the two-sphere of constant curvature one, we have helicoids obtained by spinning a
geodesic of S x {0} while rising in the R factor at a speed proportional to the constant
rate of spinning. The surfaces of revolution in S x R are the unduloids, which behave
qualitatively like the Delaunay unduloids of constant mean curvature % in R}, We
construct a two-parameter family 4 of properly embedded minimal annuli in S x R,
containing the helicoids and the unduloids, and each of these annuli meets the level
set spheres S x {¢} in circles with varying radii. The annuli in 4 are parametrized
by the same family of elliptic functions as the Abresch two-parameter family [1] of
constant mean curvature % periodic annuli in R? foliated by planar lines of curvature
(the larger principal curvatures). We also construct many other interesting > of finite
topology in M x R, including an infinite number of complete minimal graphs over
non-isotopic domains in M, when the genus of M is greater than one (see Theorem 2.3
in Section 2).
Our first main theoretical result deals with surfaces with bounded curvature.

Theorem 1.1 (Linear Area Growth Theorem). If X is a properly embedded connected
non-compact minimal surface in M xR of bounded curvature, then X has linear area
growth, in the sense that given anyt > 1, then c1t < Area(XN(M x [—t,1])) < o,
for some positive constants cy, co. Here ¢y depends only on M and c; depends on
M, an upper and lower bound of the flux of the harmonic height function h: ¥ — R
across a level set of h, an upper bound on the absolute Gaussian curvature of ¥ and
on the homology class represented by the cycle ¥ N (M x {0}) in Hi(M x {0}).

An immediate corollary of Theorem 1.1 is the following:

Corollary 1.1. If X is a properly embedded minimal surface of bounded curvature
in M x R, then X has a finite number of ends.

Note that if ¥ separates M x R, then X N (M x {0}) represents the zero homology
class in Hi(M x {0}), and so, in this case the constant ¢ in the above theorem
depends only on M, curvature estimates for £ and a lower bound for the flux of .
In particular, if M is a two-sphere, then we get this simpler estimation for c3.

Every sequence of properly embedded minimal surfaces in a Riemannian three-
manifold, which satisfy uniform local area and local curvature estimates and such that
each surface in the sequence intersects some compact domain, has a subsequence that
converges to a properly embedded minimal surface with the same uniform local area
and local curvature estimates (see for example [27] and [38]). A simple consequence
of this compactness result and Theorem 1.1 is that every non-compact properly em-
bedded minimal surface in M x R with bounded curvature is quasiperiodic in the
following sense. A properly embedded surface ¥ in a Riemannian three-manifold
N is quasiperiodic, if there exists a discrete infinite closed subset S = {7}, | n € N}
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of the isometry group of N such that 7, (%) converges on compact subsets of N to a
properly embedded surface.

Corollary1.2. If ¥ isaproperly embedded non-compact minimal surface of bounded
curvature in M x R, then X is quasiperiodic. In fact, any sequence of vertical
translations of X in M x R contains a convergent subsequence to another properly
embedded minimal surface with the same bound on its curvature.

In Section 4, we study stable minimal surfaces in M x R. By the curvature
estimates of Schoen [43], every properly embedded stable minimal surface in M x R
has bounded curvature. (Schoen’s theorem states that any immersed complete stable
orientable minimal surface in a homogenous regular three-manifold has uniform
curvature estimates away from its boundary. Thus, if it has empty boundary, then it
has bounded curvature. In our case, if X were non-orientable, stable and properly
embedded in M xR, then small balls in M xR intersected with ¥ are compact surfaces
that separate the ball, and so, Schoen’s curvature estimates imply X has bounded
curvature.) Therefore, every properly embedded non-compact stable minimal surface
in M xR is quasiperiodic. This quasiperiodicity property will be essential in proving
the following theorem, which we refer to as the Stability Theorem and whose proof
appears in [26]. This result is Theorem 1.1 in [26]. This major result classifies all
the non-compact properly embedded orientable stable minimal surfaces into three
categories: they are surfaces of the form y x R where y is a simple closed stable
geodesic in M, minimal graphs over domains in M x {0}, or the periodic multigraphs
M («, r) described in Theorem 4.1. The proof of the Stability Theorem is based in
part on the theoretical results we obtain in Sections 3 and 4 of this paper.

Theorem 1.2 (Stability Theorem (Theorem 1.1 in [26])). Suppose that X is a con-
nected properly embedded stable orientable minimal surface in M x R. Then, X is
one of the surfaces described in (1)—(4) below.

(1) Ziscompactand ¥ = M x {t} for some t € R.
(2) X is of the form y x R, where y is a simple closed stable geodesic in M.

(3) X is periodic under some vertical translation by height r, and so has a quotient
¥ in M x S(r), where S(r) is a circle of circumference r. In this case, for every
p e M, {p} x S(r) intersects = transversely in a single point and the orbit of
the natural action of S(r) on M x S(r) gives rise to a product minimal foliation
of M x S(r). In particular, ¥ is homeomorphic to M and is area minimizing in
its integer homology class.

4) X is a graph over an open connected subdomain of M bounded by a finite
number of stable geodesics, with each end of X asymptotic to the end of one of
the flat vertical annuli described in (2).
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(5) The moduli space of examples described in (3) in the case M is orientable is
naturally parametrized by P(Hy(M)) x RT, where P(Hy(M)) consists of the
primitive (non-multiple) elements in the first homology group of M.

Corollary 1.1 states that a properly embedded minimal surface of bounded cur-
vature in M x R must have a finite number of ends. In Section 5, we prove that the
bounded curvature hypothesis on the surface can be dropped and one still obtains the
finite number of ends conclusion.

Theorem 1.3 (Finiteness of Ends Theorem). If X is a properly embedded minimal
surface in M x R, then X has a finite number of ends.

Corollary 1.3. If X is a properly embedded minimal surface of finite genus in M xR,
then X is conformally a closed Riemann surface punctured in a finite number of points.

The above Finiteness of Ends Theorem appears to be the only interesting gen-
eral result which restricts the topological structure of a properly embedded minimal
surface X in M x R. However, for particular metrics on M, one can obtain deeper
results on the topology and on the embedding of ¥ in M x R. The next theorem,
whose proof appears in Section 6, gives an important example of such a result.

Recall that a handlebody is a three-manifold with boundary that is homeomorphic
to a closed regular neighborhood of a connected properly embedded one dimensional
CW complex in R? and that a surface ¥ in a three-manifold N? is a Heegaard surface
if it separates N into closed complements which are handlebodies. Rosenberg [41]
proved that a properly embedded minimal surface in S x R must have exactly two
ends, where S is the two-sphere endowed with a metric of positive Gaussian curvature.
The next theorem gives a deep generalization of this result to a larger class of metrics
on S.

Theorem 1.4 (Unknotted Theorem). Suppose S is a two-sphere endowed with a
Riemannian metric with no stable simple closed geodesics. Then:

(1) If X is a non-compact properly embedded minimal surface in S x R, then X is
a Heegaard surface for S x R.

(2) Every Heegaard surface for S x R has two ends, and if ¥ is a connected
orientable surface with two ends, then L embeds in S x R as a Heegaard
surface.

(3) Heegaard surfaces of S x R are unknotted, in the sense that if two such sur-
Jaces My, My are diffeomorphic, then there exists an orientation preserving
diffeomorphism f € Dift(S x R) such that f(M1) = Ma.
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We next focus our attention on the case when the properly embedded minimal
surface X in M x R has finite genus. By Theorem 1.3, such a surface % has a finite
number of ends, and so, each end of ¥ is an annulus and ¥ has finite topology. We
then use this finite topology property of X to prove that ¥ has bounded curvature, and
s0, by Theorem 1.1, ¥ has linear area growth. The proof that X has bounded curvature
uses some of the recent results of Meeks, Perez and Ros [20] on the local structure
of properly embedded minimal surfaces with bounded genus in three-manifolds in a
neighborhood of a point of large curvature. Their results in turn depend on recent
curvature estimates of Colding and Minicozzi [2], [3], [5], work of Meeks [35], and
results of Meeks and Rosenberg in [27]. With some further geometric analysis, we
obtain the following two theorems in Section 7.

Theorem 1.5 (Bounded Curvature Theorem). Suppose % is a properly embedded
minimal surface of finite genus in M x R. Then:

(1) X has bounded curvature. Hence, by Theorem 1.1, it has linear area growth
and by Corollary 1.3 it has finite conformal type.

(2) If M has non-positive curvature, then X has finite index with respect to the
stability operator and total curvature c(X) = 2 x (X).

(3) If M has non-positive curvature and M is not a torus, then each end of ¥ is
asymptotic to y x R, where y is a stable embedded geodesic in M. When M is
a flat torus, then each end of X is asymptotic to the end of a totally geodesic flat
annulus in M x R.

@) If 2(n) is a sequence of properly embedded minimal annuli in M x R with
diverging curvature, then the fluxes of the X (n) converge o zero. (Here, the
Jlux of X(n) refers to the flux of the gradient of the harmonic height function
h: X — Racross a level set of h.)

(5) Suppose M is not topologically the two-sphere. Then, there exists an & > 0
such that if ¥ is a properly embedded unstable minimal annulus in M x R, then
the flux of ¥ is at least equal to s. In particular, there exists a positive constant
Cy so that any properly embedded minimal annulus in M x R has absolute
curvature bounded by Cp. When X is a properly embedded minimal surface of
Jinite topology in M x R, then outside of a compact set it has curvature bounded

Theorem 1.6. Suppose X is a properly embedded minimal surface in M x R. If there
exists an e > 0, such that for every a € R, the genus of X N (M x [a —e,a+ ¢€]) is
bounded independent of a, then X has linear area growth.

At the end of the paper, we include a section on concluding remarks and conjec-
tures.
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The theorems stated in this Introduction are strong results on the geometric behav-
ior of minimal surfaces X of finite topology in M x R, which significantly generalize
our earlier theorems [23], where M = T is a flat two dimensional torus. One of the
main theorems in [23] is that such a ¥ has bounded curvature and total Gaussian
curvature ¢(X) = 2w x(X), where x () is the Euler characteristic of X; thus, X
has finite total curvature if it has finite topology. This finite total curvature property
for finite topology X leads to strong restrictions on the geometry and the topology of
such surfaces and forces each annular end of 2 to be asymptotic to the end of a flat
annulus in T x R.

Later Meeks (see Theorem 5.2 in [32]) generalized these results in [23] by proving
that any properly embedded minimal surface ¥ in T x R has a finite number of ends
and by proving that if the genus of X is finite, then X has finite topology and linear
area growth. Meeks’ Theorems identified properly embedded minimal surfaces in
T x R of finite total curvature with those surfaces of finite genus. In particular, if
2 has genus zero, then % has finite total curvature. This result, together with some
other constraints finite total curvature planar domains in T x R satisfy [23], was
then applied by Lazard-Holly and Meeks [16] to prove the deep result: A genus
zero quotient of a properly embedded doubly-periodic minimal surfaces in R is the
quotient of one of the classical doubly-periodic examples defined by Scherk [42] in
1835 (also see [15]).

The authors would like to thank Joaquin Perez for his careful reading of a pre-
liminary version of this manuscript and for his numerous and detailed suggestions
for improving it. We would like to thank him as well for making the Figure 1 in
Section 2.

2. Constructing examples of finite topology

In this section, we will cover some methods that have proven useful in constructing
propetly embedded minimal surfaces % in M x R of finite topology. First, note that
the height function /2: £ — R is harmonic, and so, by the maximum principle, if =
is compact, then it is a level set surface of the form M x {¢} for some ¢ € R. Since
M x R has two ends, a non-compact X must have at least two ends, again by a simple
application of the maximum principle. Thus, the simplest non-compact examples are
minimal annuli A € M x R. Since i: A — R is proper on each end of A, A can be
conformally parametrized by S(r) x R where h=1(1) = S(r) x {t} and S(r) is the
circle of circumference r, where r is the flux of A (the flux of A is defined in the first
paragraph of Section 3 and is just the flux of the gradient of /2 across any level set). In
particular, A intersects each level set M x {t} transversely in a simple closed curve.

2.1. A minimax construction for minimal annuli in § x R. The simplest non-
compact properly embedded minimal annuli in M x R are the totally geodesic annuli
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obtained as y x R, where y is a simple closed geodesic on M. If y is an unsta-
ble geodesic, then frequently there exists a one-parameter family A(¢) of periodic
properly embedded minimal annuli that are unstable (infinite index) and are small
(horizontal) graphs over ¥ x R. In [37], Pedrosa and Ritore described analytically
what these annuli are in the case that M is a two-sphere S endowed with a constant
curvature metric and they called them unduloids. One can also define helicoids [41]
in S x R; they are obtained by rotating a great circle on S at a constant rate in the ¢
parameter about an axis passing through a pair of antipodal points on the rotated great
circle. Our first step in constructing other properly embedded minimal annuliin S xR
is the following lemma, whose proof we postpone to the end of the subsection.

Lemma 2.1. Let S denote the unit two-sphere in R>. Let « denote the great circle
on S which is the intersection of S with the x1x3-plane and let «(0) = « x {0}. For 6,
0 < 0 < 7, let «(0) denote the great circle obtained by rotating « counterclockwise
by angle 6 around the positively oriented x3-axis. Fort > 0, let « (0, t) denote the
great circle a(0) x {t} C S x R. Define the helicoid W, 1) = | J {ac(%, s)10<
s < t} with boundary «(0) and « (0, t). For 0 fixed and for t sufficiently small such
that W (0, t) is strictly stable, there exists an embedded index one minimal annulus
A, 1) C S x[0,t]with d(A#, 1)) = «(0) U «(b, t), which is not a helicoid and
such that the interior of A0, t) is disjoint from W(0,t). Furthermore, A(6,1t) has
the symmetries of the union of its boundary circles.

Let A(0, t) be one of the compact minimal gnnuli in the previous lemma. This
annulus is part of the periodic minimal annulus A(9, ¢) in S x R obtained as the orbit
of the subgroup of the isometry group of S x R generated by reflection across each
of the boundary curves of A(6, t); note that the reflection across « C S x {0} is the
composition of reflection across S x {0} composed with the reflection in the vertical
annulus ¢ x R. Also, A(@, r) is invariant under reflection across v x R, where y is
the equator in S, and it is invariant under reflection across a great circle in S x {%}.

We now checg that for ¢ sufficiently small, A (4, t) is not an unduloid and not a
helicoid. Since A(6, t) contains the non-parallel great circles «(0) and «(9, t), it is
not an unduloid. A(#, t) is not a helicoid, since the level curves in the interior are
not geodesics; they are disjoint from the geodesic level curve of W (8, 1) at this level.
This completes the proof of the next theorem, where ¢ = ¢(6) is chosen small enough
so that W(9, 1) is strictly stable.

Theorem 2.1. For every 0, 0 < 0 < m, there exists a positive number 1(0) such
that for all O < t < t(0), there exists a properly embedded minimal annulus A0, t),
which is not an unduloid or a helicoid, andwhich is the lift of a compact minimal torus
in (S xR)/t(0, 1), where ©(0, 1) is the screw motion symmetry which acts on S by
rotation around the x3-axis by angle 20 and on R by translation by 2t. Furthermore,
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A(O,t) is invariant under reflection across a vertical annulus of symmetry and under
reflection across a great circle in S x {%}.

It turns out that Lemma 2.1 and Theorem 2.1 hold for other metrics on a sphere
S%. We briefly explain this construction for these metrics.

Assume that S? is equipped with a metric invariant under an S action with two
fixed points p, g € S%. Let Vp,q be aleast length geodesic arc on S joining p to g
and let y,, , be the rotation Ry of y, 4, by angle . Identify S? with S% x {0} and
consider the simple closed geodesic y = yp , U 3"1/7, g Let G be the associated S*
action on S? x R and note that G is a subgroup of the larger group G x R of isometries
of S? x R, where R acts on S? x R by vertical translation. It is straightforward to
check the orbit Sp(y), under any of the one-parameter screw motion subgroups S
in G x R, gives rise to a minimal “helicoid” in S x R foliated by geodesics. Also
note that the helicoid Sy (y) is invariant under the isometry which is the composition
of (x, 1) — (Rz(x), —t), which one can consider to be rotation around y. Similarly,
Sy () 1s invariant under rotation around any of its horizontal geodesics. With little
change, the proofs of Lemma 2.1 and Theorem 2.1 generalize to produce a related
one-parameter family of embedded minimal annuli. If, in addition, one assumes that
the metric on S is invariant under a reflectional symmetry that interchanges p and g,
then the annuli produced by this method can be chosen to have the related reflectional
symmetry in S x R.

We now give the proof of Lemma 2.1.

Proof. Let p(0, 1) = (cos (5£),sin (32).0). Fix ¢ and assume that ¢ is chosen
so that W (@, 1) is stable. Let D denote the disk on S x {0} which bounds «(0) and
is disjoint from p(6, 0) and let E be the disk on S x {¢} which bounds «(z, ) and
is disjoint from p (6, ). Note that there exists a one-parameter family of embedded
annuliin S x [0, 1] — W(8, t) with boundary «(0) U «(8, t) which are topologically
parallel to W(8, ) and join the integral currents W (6, ¢) and D U E; these annuli
can also be chosen to have all the symmetries of «(0) U «(8, t). Let B be the ball
in S x [0, t] bounded by W(@,1) U D U E. In B the union «(0) U (6, t) bounds
both the stable helicoid W (8, t) and the stable surface D U E. As we just observed,
these stable surfaces can be joined by a continuous family of embedded annuli with
boundary «(0) U «(6, t). A standard minimax argument (see, for example, [28] and
[39]) implies that «(0) U «(8, t) is the boundary of an index-one embedded minimal
annulus A0, 1) C S x [0, 1] — W(0, t). Since the deformation family of embedded
annuli can be constructed to have the symmetries of «(0) U (6, 1), the results in [39]
imply A(0, t) can be chosen to have the symmetries of «(0) U « (0, t). O

2.2. The two-parameter family -4 of embedded minimal annuliin S x R foliated
by circles. All of the minimal annuli described in the previous subsection are in
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fact in the family +, which we will define and discuss here. We now describe the
two-parameter family # of minimal annuli in S x R. These minimal annuli include
the unduloids, the helicoids and their deformations, which we think of as Riemann
type minimal surfaces [19] in S x R.

Constant mean curvature tori M in R? give rise to minimal annuli in S x R as
follows. The Gauss map f of a constant mean curvature torus is a harmonic map
to S. Its holomorphic Hopf quadratic differential is:

2
_2i<y, %ﬂ 2
dx dy

where z = x +iy is a global holomorphic coordinate on the torus. Since M is a torus,
this is constant:

af

ox

2 3f
ady

Q(f):[

Q(f) =c-dz.

After a linear change of coordinates, we can assume that the constant c is one. Then
the map
F:S'xR—>SxR, F(xy) =(f(x),)

is a conformal harmonic map, i.e., a minimal surface. The Delaunay surfaces (f is
periodic, as defined on a torus) yield the unduloids in S x R and the nodoids yield
the helicoids in S x R under this correspondence by F.

Abresch studied the family of Wente tori (constant mean curvature % in R3),
where one family of principal curvature lines are planar [1]. More generally, he
studied constant mean curvature surfaces parametrized by R?, with the coordinate
axes x and y yielding the (smaller and larger) principal lines of curvature.

Those tori whose small curvature lines, i1, are planar were found among the
solutions of the system:

Aw + sinh(w) - cosh(w) =0

s §
sinh(w)- @ — cosh(w)- @ &' = 0.

Here ’ and * denote the derivatives with respect to x and y, respectively. We remark
that Q( f) = dz? for these surfaces.

Abresch classified all real analytic solutions : R?> — R of the above system in
terms of elliptic functions. He then went on to study the system which corresponds to
the larger curvature lines A, being planar curves. It follows that the Gaussian image
of each such A line is contained in a circle of S. These examples are solutions of the
following system (I):

Aw + sinh (w) - cosh(w) =0
M

coshiuly- a —stnal- o m = 5.
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We remark that Q(f) = —dz? when f is the Gauss map of this Abresch family.
Abresch classifies all solutions of this system as well (it is analogous to the first
solution space), and shows that the associated constant mean curvature surfaces do
notclose upin R3, and so, do not yield Wente tori. However, the solutions of system (1)
do yield minimal immersions I : S xR — S xR. Laurent Hauswirth [13] observed
that the second equation of system (1) is precisely the condition that the level curves
of I be circles. We define 4 to be the family of these minimal surfaces, induced
by solutions of (I). If f denotes the Gauss map of a constant mean curvature surface
solution of (I), then the minimal surface (x, y) — (f(x, y), x) in S x R is foliated
by circles in level set spheres. We now discuss these surfaces from another point of
view.

2.3. The existence of minimal annuli in M x R, foliated by circles in a space
form M. Hauswirth [13] observed that the classical Shiffman Jacobi function (de-
fined below) for minimal surfaces in R3 (transverse to the planes RZ x {t}) generalizes
to M x R, where Misa space form of constant curvature. Shiffman [44] used this
Jacobi function to prove that a compact minimal annulus in R? with boundary circles
in horizontal planes is foliated by circles in horizontal planes; hence, by Riemann
[40], the compact annulus is contained in a periodic minimal surface of genus zero
defined in terms of elliptic functions. This same argument works to prove that our
examples in the previous subsection are foliated by circles, using the fact that the basic
compact annular pieces are bounded by circles and have index of stability one. This
technique also yields another way to generate Riemann type examples of minimal
surfaces in M x R, which we now describe.

Let A be a compact minimal annulus in M x R with boundary curves in M x {1}
and M x {5} with 11 < tp. Let S(r) denote the circle of circumference ». Assume
S(r) x [1, 2] 1s a conformal parametrization of A with i (x, ) = ¢ and where r is the
flux of . Let « (6, t) be the corresponding geodesic curvature function of the level
set curve at height 7. Then,

K
S=r—
a0
is a Jacobi function on A, where A (6, t) is the conformal factor or speed of the level
set curve at the parameter values (6, ¢). If the boundary curves of A are chosen to be
circles and A is strictly stable, then the Shiffman function has zero boundary values
on A, and so, vanishes on A. This means that A is foliated by circles. In the case
M is S, then, by analytic continuation, we obtain a periodic minimal surface A. In
fact, we obtain all the examples in 4 in this way. In the case M = R?, we obtain a
A which is a catenoid or one of the Riemann examples.

Let H be the hyperbolic plane. Now suppose one considers a small stable part
of a catenoid in H x R bounded by a circle in H x {0} and a circle in H x {¢}.
Translate sideways slightly the circle in H x {r}. Then, there is a new annulus A(z, s)
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bounded by the two new circles and, using the Shiffman function, we see that it is
foliated by circles. Notice that A(¢, s) has a vertical plane of symmetry coming from
the symmetry of its boundary circles. Now A(z, s) can be extended to a minimal
surface B(z, s) in some open neighborhood of A(¢, s) since dA(t, s) is analytic.
Clearly, E(z, s) s also foliated by circles. Thus, there is a maximal open minimal
annulus A (s) foliated by circles, and containing A(¢, s). A simple maximum principle
argument (using complete catenoids as barriers) shows the asymptotic boundary of
A(s) is non-empty. Hence, dA(s) consists of two horocycles €y and Cy. Assuming
C; higher than C1, A(s) extends above C3 by level curves of constant curvature less
than one, i.e., equidiitant curves. These curves eventually become a geodesic y».
Similarly, extending A (s) below C7 by equidistant curves, we arrive at a geodesic y;.
Now rotate about y;, and y,» and continue to obtain a complete embedded Riemann
type minimal surface in H x R.

2.4. Connected sum construction. We now present a simple connected sum con-
struction for creating properly embedded minimal surfaces of finite topology from
old ones. Suppose % is a properly embedded minimal surface of finite topology in
M xR and such that there exists a disk D1 C Mj such that (D1 x R)NX = @. First
take the connected sum of M; with another surface M>; M, # M, equals the disjoint
union of M7 — D71 and My — D glued together along their boundary curves where
D; is a disk in M>. Next extend the Riemannian metric on M1 — D1 C M # M3 to
all of M1 # M>; then we can view X as being a minimal surface in (M1 # M) x R.
For example, consider a Scherk doubly-periodic surface of genus zero ¥ ¢ T x R.
Then, using this connected sum construction, we can consider % to be a minimal
surface in (T # T) x R with a metric of non-positive curvature on T # T,

2.5. Construction of minimal annular graphs in M x R. We now describe a
method for constructing a connected annular minimal graph G in M x R. By the
Stability Theorem (Theorem 1.2 stated in the Introduction), any such graph G must
have a finite number of top ends which are asymptotic to the top ends of I'r x R,
where I'r = {x(1), ..., «(T)} is a finite collection of pairwise disjoint stable simple
closed geodesics on M. Let I'p = {B(1), ..., B(B)} be the family of geodesics
corresponding to the bottom ends of G. Since the total flux of the top ends of G is
equal to the total flux of the bottom ends of G, then

T B
PUCIENEDIICICH)
n=1 n=1

where [ refers to the length of the geodesic. It follows from this formula that for an
M with a generic metric every minimal graph in M x R must have some top end
and some bottom end asymptotic to the same y x R, since for a generic melric one
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does not have such a rational relationship for the lengths of distinct closed geodesics.
However, for some special metrics on M it is possible to construct such graphs where
the geodesics in I'7 are disjoint from the geodesics in I'3. We now make one such
construction.

Consider any Riemannian metric on the topological annulus S! x [—1, 1] that is
invariant under the reflection R, (p, t) — (p, —t), and such that there exists a least
length simple closed geodesic « in S' x [—1, 1] with the length of « less than the
length of S x {0}. Suppose « is also chosen to be such a geodesic such that « is
closest to ST x {0}. Since R(«) is disjoint from o, & and R(«) bound a new annulus
A c S x [—1, 1]. Consider the curves «(1) = « x {t} and B(t) = R(x) x {—t}.
Let X (¢) be the area-minimizing surface in A x [—¢, t] with boundary «(¢) U B (7).
A simple application of the maximum principle (Rado’s theorem) implies that >(¢)
is the unique compact minimal surface in A x [—¢, ¢] with boundary () and that
2(¢) is a graph over the annulus A. Since X(¢) is invariant under the isometry
(p.s) = (R(p), —s), (1) N (A x {0}) = S! x {0}. It now follows rather easily,
using that S' x {0} is longer than « and that (¢) is area-minimizing, that the graphs
3(¢) converge to a graph G over A with top end asymptotic to « x [0, 00) and bottom
end asymptotic to R(x) x (—oc0, 0].

The general importance of the example discussed in the previous paragraph is that
it guarantees the existence of minimal annular graphs in those M x R where such a
metric on S' x [—1, 1] isometrically embeds in M. Therefore, a simple consequence
of this result is the following theorem.

Theorem 2.2. Suppose R: M — M is an orientation reversing isometry of an
orientable surface of positive genus with a fixed point component which is a strictly
unstable geodesic. Then M x R admits an annular minimal graph.

2.6. Existence of non-isotopic minimal graphs in M x R. As we observed in the
previous subsection, for a generic metric on M, there do not exist connected minimal
graphs where the multiplicity of the geodesics corresponding to the annular ends of
the graphs is one. In the case M has genus zero, this presents a genuine obstruction
to finding minimal graphs. Also, if M is a torus with a flat metric, then there do not
exist any minimal graphs. However, for any compact orientable Riemannian surface
M of genus greater than one, there exist infinitely many minimal graphs in M x R,
where some closed geodesic corresponding to a top end also corresponds to a bottom
end. For example, for a generic metric on M, there exists a unique embedded closed
geodesic I of least length which does not separate M. For such a Riemannian surface,
there exists a complete minimal graph G over M — I' that is unique up to vertical
translation (see the proof of the next theorem).

Theorem 2.3. If M is orientable of genus at least one and M is not a torus en-
dowedwith a metric which admits an infinite collection of distinct foliations by closed
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geodesics, then there exists an infinite number of non-isotopic domains in M bounded
by geodesics which minimize length in their homotopy class and such that there exist
proper minimal graphs over these domains.

Proof. We will apply the existence theorem, Theorem 4.1 in Section 4, to obtain
our graphs. The reader should consult Section 4 to see the definition of M («, r) C
M x S(r), where S(r) is the circle of circumference r and « € H1 (M) is a primitive
(non-multiple) homology class. We recall the essentials on the construction of these
interesting surfaces. The homology class « can be represented by a simple closed
curve @ with a product annular regular neighborhood A = @ x [—¢,&] C M with
boundary circles «_,, .. Consider M to be the level set surface M x {0} for angle
0 = 0 € S(r); here 0 denotes the identity element in S(r) = R/rZ. Next consider
the annulus G C M x S(r) which is a linear graph of slope 5~ over A in M x S(r),
where we consider the circle S(r) to be a vertical line segment of height  with the
top and bottom points identified. A piecewise smooth surface M («, r) is obtained by
replacing the annulus A on M x {0} by G. The surface M («, r) is then an embedded
surface of least-area in the homotopy class of this surface in M x S(r)}, which
by Theorem 4.1 is unique up to translation. See Figure 1 for an indication of the
construction of M («, r).

Figure 1. The surface M («, r), where M has genus two.

The minimal surface M («, r) in M x S(r) is a graph over M x {0}. Assume for
the moment that the genus of M is greater than one. In this case, we may assume,
after a possible translation in M x S(r), that M («, r) has a horizontal tangent space
at height O (since the foliation of M (¢, r) induced by intersecting with the M x {¢}
must have a singularity). Let ¥ (r) be the minimal foliation of M x R obtained
from translates of lifts M(«,r) of M(a,r) o M x R. By letting r; — oo and
taking a limiting subsequence, we may assume that M («, r;) converges to an area
minimizing surface % (1) which is a leaf of a limit foliation ¥ of the ¥ (r;). Note that
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F (ry) is invariant under vertical translation and so is its limit # . Since the fluxes of
the M («, r;) are bounded from below by the flux of M («, r1) (see Proposition 4.1)
and there is a uniform curvature estimate for stable minimal surfaces in M x R,
Theorem 1.1 implies that every leaf of ¥ is properly embedded. Since r; — o0,
Proposition 4.1 implies that the leaves of ¥ are not periodic, and so, by the Stability
Theorem (Theorem 1.2), any component of (1) containing a nonvertical tangent
space at some point is a graph over its projection to M x {0}. The Stability Theorem
also implies that any leaf of ¥ with some vertical tangent space is a vertical annulus
over a stable embedded geodesicin M x {0}. By our choice of translation of M («, r),
2 (1) has a horizontal tangent space at some point in M x {0}, and so, the component
of X (1) containing this point must be a graph.

Now let C(1) be the union of the components of (1) containing critical points
of h. Since h: C(1) — R has at least one critical point in each component, C(1) is a
graph over a subdomain A(C(1)) € M x {0} with each component of A (C(1)) having
negative Euler characteristic. If x (A(C(1)) # 2g—2, then, after different translations
of M(«, ri)in M x S(r;), we can obtain a new limit surface X (2) with h: X(2) - R
having at least one critical point and such that for the new set C(2), A(C(2)) is
disjoint from A(C(1)). Continuing in this manner, we eventually obtain disjoint
domains A(C(1)), A(C(2)), ..., A(C(n)) in M x {0}, such that every component
of these domains has negative Euler characteristic and such that

M x {0} — | J Ay

=1

consists of components which are compact annuli or which are stable simple closed
geodesics. By construction, the primitive homology class « can be represented by
a finite sum of the boundary curves of the domains A(C(i)), where each boundary
curveis oriented and appears at most once in this sum for each such domain. Itfollows
that such a decomposition A(C(1)), ..., A(C(n)) of M x {0}, defined up to isotopy
in M x {0}, can only give rise to a finite number of primitive homology classes,
since there are only a finite number of combinations of the boundary curves. Since
there are an infinite number of primitive homology classes in H1 (M x {0}), there
exists an infinite number of non-isotopic domains in M bounded by stable geodesics,
which admit proper minimal graphs asymptotic to ends of flat annuli over these stable
geodesics. This proves the theorem in the case the genus of M is greater than one.
Now assume that M has genus one. Let « be a primitive homology class in H1 (M)
such that M is not foliated by simple closed geodesics that represent «. As before,
we have associated foliations ¥ (r;) and a limit foliation . As before, ¥ consists of
leaves which are graphs over annuli or which are vertical annuli over simple closed
geodesics in M x {0}. It also follows that for any leaf of ¥ which is a graph over an
annulus on M, each of its boundary curves represents «. Thus, since we are assuming
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that M x {0} cannot be foliated by simple closed geodesics which represent «, then
F contains a leaf which is an annular graph over an annulus A(«) C M x {0}. Since
Hj (M) has an infinite number of different primitive elements, M must have an infinite
number of non-isotopic annular domains which admit proper minimal graphs. This
completes the proof of Theorem 2.3. o

2.7. A heuristic approach for constructing Scherk towers. We now consider a
possible final method for constructing minimal surfaces of finite topology in a general
M x R; this proposed method is based on the desingularization procedure developed
by Kapouleas [14] to approximate two transversely intersecting properly embedded
non-degenerate minimal surfaces in a Riemannian three-manifold. For example,
suppose I' is a collection of K strictly stable pairwise disjoint geodesics in M. Let
2 be a finite collection of surfaces of the form ¥ = {M x {r1},...,. M x {t;}}.
Then, for k sufficiently large, the method of Kapouleas suggests that there exists
a sequence of properly embedded minimal surfaces X (k) of genus k and with 2K
vertical annular ends such that as k — o0, X (k) converges to X U (I' x R). The
construction of X (k) first entails replacing a small neighborhood of " in ¥ N (I" x R)
by a Scherk necklace, and then producing a small graph over this surface which is
minimal. These 2 (k) would then have index of stability approximately equal to k.
Another variant of this heuristic method is to assume that % is empty but allow I'" to
contain intersecting embedded geodesics and then desingularize I' x R by periodic
properly embedded minimal surfaces, in much the same way that Scherk’s singly-
periodic minimal surfaces desingularize two intersecting planes in R®. It would be
nice to know if either of these heuristic methods can be made rigorous.

3. The linear area growth theorem

In this section, we will assume that M is a compact orientable Riemannian surface of
genus g and that X is a properly embedded orientable minimal surface with compact
boundary and bounded curvature contained in M x R. Our goal is to prove that X has
linear area growth, from which it easily follows that the surface has a finite number
of ends. An important tool for proving these results is the flux of X, which we now
define.

Definition 3.1. Given a properly immersed minimal surface ¥ in M x R without
boundary, we define the flux of X to be the flux of V/ across X N (M x {0}), where
h: % — Ris the harmonic height function 2 (p, ) = t. Since h is a proper harmonic
function, the flux F (%) of X is the flux of V& across any level set of 4, not just the
level set at height zero.

Theorem 1.1 in the Introduction is a simple consequence of the statement and
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proof of the next theorem, which is the main result of this section.

Theorem 3.1. Suppose that X is a connected properly embedded minimal surface
with absolute curvature bounded by a constant Ko in M x [0, 00) and X has compact
boundary 0% C M x {0}. Then:

(1) X has linear area growth in the sense that for every e > (), there exist a constant
C(e) such that the area of Z in M x [a, a+¢€] is less than C(¢g) for all positive a.
The constant C(g) depends on M, the flux F(X) and the homology class of
[0X] € Hi(M x {0}).

If the tangent planes to & make an angle of less than 7 with the horizontal, then
2 has one end and an end representative E(X) such that the vertical projection
w: E(X) — M x {0} embeds as the end of a connected infinite cyclic covering
space 7 M —> M x {0}. In particular, 9% represents a non-zero primitive
homology class in Hi (M x {0}).

2

e

(3) There exists a positive constant Fyy depending only on M such that if the flux
F(X) < Fu, then the tangent planes to ¥ make an angle of less than 5 with
the horizontal. In particular, X is stable when F(X) < Fy.

(4) For every positive € less than one and for every positive number F, there exists a
positive number A(e, F) depending only on M such that if the flux F(X) < F
and for some a > 1, the area of X N (M X [a, a + €]) is greater than A(e, I),
then the tangent planes to X make an angle less than T with the horizontal.

By the monotonicity formula for area, the area of a compact minimal surface with
boundary in a ball in M x R of radius ¢ and centered at a point on the surface has
area greater than &2 for & small and fixed. Since M x R has two ends and each end
representative of X has arca atleast e%ineither M x [a, a+¢e]or M x[—a, —a+e]fora
large, then statement (1) of the above theorem implies that if 2 has an infinite number
of ends, then it does not have bounded curvature. Thus, the following corollary holds.

Corollary 3.1. If X is a properly embedded minimal surface with bounded curvature
and compact boundary in M x R, then X has a finite number of ends.

We first prove a proposition concerning connected infinite cyclic covering spaces
of M that will be useful in the proof of Theorem 3.1, as well as in the proofs of some
of our later theorems.

Proposition 3.1. Suppose p1: My — M and p>: My — M are two connected
infinite cyclic covering spaces of a closed oriented surface M of genus g. Then,
these covering spaces are isomorphic in the sense that there exists a diffeomorphism
f: M — M suchthat fop1: M1 — Mliftsto pa: My — M.
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Proof. Since p1: M1 — M is an infinite cyclic covering space, it corresponds to
the kernel of a surjective representation ¢ : w1 (M) — Z. Since Z is abelian, o
factors through the projection 7w1(M) — w1 (M)/C = H{(M), where C is the
commutator subgroup of 71 (M) and where I (M) is the first homology group of M.
Leto: H{(M) — Z be the representation induced by o

We now give a description of all such representations in terms of primitive (non-
multiple) classes in Hi(M). Let B be a primitive class in H;(M). Since B is a
primitive class, Theorem 1 in [18] implies that we can represent 8 by a simple closed
curve B on M. Consider the surface M — B, and the associated compact oriented
surface M -, which is the compact surface of genus g — 1 obtained by attaching copies
of B oneachendof M —B. M F is oriented from the orientation induced from M.
We label the boundary curves of M by {B. B_} with B, being the boundary curve
whose orientation agrees with the orientation of 8 in M.

Since Hi(M E) = Z2*¢~1 and under the inclusion map one can consider Hy(M E)
to be a subgroup of Hy (M), we can consider H{(M) = Z & Hl(ME), where (1, 0)
is represented by a simple closed curve « that intersects 8 transversely in a single
point with 4-1 intersection number. Consider the surjective quotient homomorphism
3}3—: H(M) > 7Z =H{(M)/Hi (M E)' This representation turns out to be indepen-
dent of the choice of simple closed curve representative for 8; in other words, we get
a well-defined surjective homomorphism 6 : Hi(M) — Z, which is just the prim-
itive cohomology class in H'(M) corresponding to 8 via Poincaré duality. Since
the Poincaré dual of a primitive element in H'(M) is a primitive homology class,
we see that every connected infinite cyclic covering space of M can be realized by a
op: Hi(M) — Z for some unique primitive class g € H;(M).

Suppose that p1, B are two primitive homology classes represented by simple
closed curves 8, B, respectively. By the classification of surfaces, there exists an
orientation preserving diffeomorphism f: M 5 M 3, preserving the + and —
boundary curves and the identification map on each of the boundaries that give back
the surface M. In particular, f induces an orientation preserving diffeomorphism
f: M — M such that f|B;: B, — P, in an orientation preserving manner and
FM—-B)=M— B2 By construction, Faker(53,)) = ker(Gp,). By elementary
covering space theory, f lifts to the associated covering spaces, and so, the covering
spaces are isomorphic. This completes the proof of Proposition 3.1. O

For our later applications, we will need a geometric picture of an infinite cyclic
covering space that arises in the proof of Proposition 3.1 for a fixed primitive homol-
ogy class 8 € Hy(M), which is represented by a simple closed curve 8. Let M ] be
the compact surface defined in the proof of Proposition 3.1. Forevery n € Z consider
ME(n) = ME x {n} with associated boundary curves B4 (n) and S_(n). Consider
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the space M 8 =Unez M E(n) / ~, where ~ means that we identify points of S (n)
with the corresponding B points on S_(n + 1). Then, there is a natural projection
mg: Mg — M, which is the infinite cyclic covering space of M associated to the
primitive homology class 8. For later purposes, note that the curve B4.(1) separates
the two ends of M. Also, note thatif I" is a possibly disconnected finite collection of
oriented simple closed curves that separate the two ends of Mg and are the oriented
boundary of one of these ends, then, up to changing the orientation of I', I" is homol-
ogous to B4 (1), and so, projects to a (possibly disconnected) representative for S.
Further, note that Z acts naturally on M s as a group of covering transformations,
where the generator © satisfies (M E(n)) =M E(n +1).

Proof of Theorem 3.1. For every a € (0, o0), let T, M x [0, 00) — M x R be the
translational isometry 7, ((p, t)) = (p, t —a). Suppose now that X fails to have linear
area growth in M x [0, oo). In this case there exists a sequence of b, — o0 such
that the area of 7, (X) in M x [—%, %] is greater than n. We define X(n) = Tj,, ().
Since the curvature of X(n) in M x R is bounded and ¥ is minimal and embedded,
a subsequence of the ¥ (n) converges to a minimal lamination £ of M x R (see for
example [27] or [38]).

We assert that £ contains M x {0} as a leaf. Suppose for the moment that there is
aleaf of /£ which intersects M x {0} and is not equal to M x {0}. Every such leaf of L
intersects M x {0} transversely at some point. Since the area of X (n) N (M x [—%, %])
goes to infinity, we may assume, after possibly going to a subsequence, that there
exists aleaf L of .£ which is either a limit leaf or has infinite area multiplicity as a limit
of the ¥ (n). Furthermore, L can be chosen so that there is a point p € LN (M x {0})
where the tangent plane to L is not horizontal. For some small geodesic ball B in
M x R centered at p of radius r, the tangent planes to £ N B make a positive angle of
at least 6y with the horizontal. The point p can also be chosen so that, after choosing
a subsequence, the area of X (n) in B is at least n and the tangent planes to X (n) in B
make an angle of at least 8yp/2 with the horizontal. It follows that the fluxes of the
2 (n) across M x {0} are unbounded. But, the flux of X(n) is equal to the flux of X,
which gives a contradiction and thereby proves our assertion.

In the case M 1is topologically a two-sphere, the proof of statement (1) of the
theorem is now very simple and we explain it before proceeding. Note that a standard
monodromy argument shows that when M is simply connected, then the unbounded
sheeting nearby M x {0} implies that one can lift M x (0) to the nearby leaves, so
the X (n) would be compact. This contradiction proves that if the area of ¥ in some
region M x [a, a + ¢] is sufficiently large, then the genus of M is not zero.

Recall that we have shown that the surface M x {0} is one of the leaves of L.
Since X (n) has bounded curvature, there exists an & > 0 such that every component
of A(n) = Z(n) N (M x [—e, e]) is almost horizontal for n large. Furthermore,
for n large, there are a finite number N (n) of components of A(n), each of which
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has boundary in both components of (M x [—¢, €]) by the maximum principle for
harmonic functions. Let X(n, ¢, 1), X(n, &,2), ..., X(n, &, N(n)) be alisting of the
components of A(n).

The choice of & can be made to depend only on the bound Ky for the curvature
of 2 and on the surface M. An effective version of this property is the following
for ¢ sufficiently small. Suppose N is an embedded compact minimal surface in
M x [—4e, 4¢] withboundary in M x {—4e, 4¢} with fixed flux and curvature bounded
by K. If the area of N N (M x [—¢, ¢]) is sufficiently large (relative to its flux), then
the angle that the tangent planes to N make with the horizontal in M x [—2¢, 2¢] is
less than 7. From this point on in the proof of the theorem, we will assume that &
is chosen small enough so that this horizontal property holds for such N. We note
that this additional assumption on & does not affect the proof of the statement of
Theorem 3.1. Also, note that the choice of % is arbitrary and can be replaced by any
small § > 0, if one is willing to choose ¢ sufficiently small and then assume that the
area of N is sufficiently large relative to its flux.

We summarize part of this discussion in the next assertion.

Assertion 3.1. Suppose N is a compact embedded minimal surface in M x [—4e, 4¢]
with absolute curvature at most Ko and 0N € M x {*4e}. For small ¢ > 0, there
exists an N (&) > 0depending on the flux of N such thatif the area of NN(M x[—¢, &])
is at least N (g), then the tangent planes to N N (M x [—2¢, +2¢]) make an angle of
less than Z with the horizontal.

Let F(X) be the flux of ¥, and define the number F(n) € (0, F(X)] to be
the maximum of the fluxes of the components 2(n, ¢, 1), ..., X(n, &, N(n)) across
M x {0}. Since the flux of ¥ is positive and equals the sum of the fluxes of
Y(n,e,1),..., X(n, e, N(n)), the first statement in Theorem 3.1 will follow by con-
tradiction, once we show that the positive integers N (n) are uniformly bounded and
that lim,,_, 5 F'(n) = 0.

In order to prove that lim,_, o, F'(n) = 0, it suffices to prove that there exists a
simple closed Clcurve y on M x {0} such that for each i, 1 < i < N(n), there
exist simple closed Cl-curves y (n,i) C Z(n, ¢, i) which converge C! to y and such
that y (n, i) is homologous to X(n, &,i) N (M x {¢}) in X(n, &, i). The reason that
this suffices is that the lengths of the y (n, i) are then uniformly bounded. Hence, as
n — o0, the y(n, 1) are converging Cltoy ¢ M x {0} and the tangent plane to
¥ (n) along y(n, i) is converging to the horizontal, and so, the flux across y (n, i) is
converging to zero. By our homology condition, it follows that the flux of X(n, ¢, i)
goes to zero as well. The proof of the boundedness of the N (n) and the existence of
the curves y (n, i) will occupy several pages.

For the remainder of the proof fix a collection 8 = {«1, B1, ..., g, Be} Of
oriented simple closed curves on M meeting at a single point, which generate a basis
of 1 (M). At times we will also consider 8 to lie in M x {0}.
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We know that for large n, X(n, ¢, i) is a high order multigraph (with boundary)
which submerses by the projection 7z, : X (n, &,i) - M x {0}, 7, ((p, 1)) = (p, 0).
By embeddedness of X, given y € 8B, (y x R) N X(n, &, i) either contains some
components which are closed curves close to M x {0} or contains some components
which are arcs close to M x {0} which spiral around y C M x {0} and have end
points on distinct components of d(M x [—g, €]), but not both possibilities. Finally,
note that since X is non-compact, at least one of the basis curves for the fundamental
group gives rise to spirals.

From this picture, we assert that one can construct an associated infinite cyclic
covering space 7T, : M — M x {0}. To see this, first consider the holonomy represen-
tation o, on the standard basis 8 of 771 (M, pg) acting on the vertical fiber over some
base point po € M x {0}, starting at some 7y € 7, ! (po) with () close to zero.
The fiber 7, 1( po) has a natural indexing by a finite interval of integers I(n) C Z,
where the ordering is by relative heights and with the index of po corresponding
to 0. Since the surfaces X(n, ¢, i) are high sheeted and almost flat near po, we may
assume, after taking a subsequence, that I (n) C I(n + k) for all positive integers n
and k and that | J, . I (n) = Z. For n large, the inclusion of the simply connected

abstract geodesic completion W of the fundamental domain W of M x {0} bounded
by U?:l a; U By, lifts to X(n, &, i) with base point py lifting to pg. In particular,
we can define for each o or B an integer oy, («) or 6, () in I (n) C Z. This map
induces a homomorphism. Considering py to be the zero element in the image Z of
on: (M x{0}) = Z,letw,: M — M x {0} be the covering space corresponding
to the kernel of . Here, of course, po depends on n and i and we choose Py so that
as n — 00, the height of po converges to zero.

We now make an important comment to help orient the reader on our basic strategy.
This strategy is to show that the number of spirals in X (n) N (y x [—¢, o0], where y
is one of the fixed basis curves for the fundamental group, is bounded independently
of n. This result easily implies that the N (n) are uniformly bounded and only a finite
number of different infinite cyclic covering spaces 7, can arise.

The components of A(n) are cyclically ordered in the following sense. Suppose
W1 and W1 in X(n, &, 1) are two consecutive lifts of the fundamental region W =
M x {0} — B with the second lift above the first. Then, we can order vertically,
by their relative heights over Wi, the other components of A(n), so that there exist
unique lifts Wz C %(n,¢,2),. WN(n) C X(n, &, N(n)) of W to the subregion of
W x R between Wy and W/. By the holonomy representation discussed before, we
see that this ordering is independent of the choice of the lift Wi.

It is now clear that the holonomy representation giving rise to the associated
infinite cyclic covering space is the same for all the N (n) components in A(n).

We will now prove the statements (2), (3), (4) and then we establish statement (1).
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Proof of statement (2). Suppose that the tangent planes to ¥ make an angle of less
than % with the horizontal. We orient ¥ by the pull back of the orientation of M
under the vertical projection 7z : ¥ — M x {0}.

We first observe that ¥ does not separate M x [0, o). To see this, recall that
for some y € 8, (y x [0,00)) N X contains a positive finite number of infinite
spirals beginning at @%. Since X is oriented by its projection to M, the spirals in
(y x [0, 00)) N X are oriented in a consistent manner, i.e., they are oriented by the
oriented intersection (y x [0, co)) N X, which coincides with the orientation they
inherit from the projection 7. It follows that the signed intersection number of y with
d% in M x {0} is equal in absolute value to the non-zero number of these spirals.
Thus, 3% does not separate M x {0}, and so, % does not separate M x [0, o).

Let y’ be a simple closed curve in M x {0} such that y’ intersects d X transversely
in a single point. Note that (¥’ x [0, 00)) N T contains exactly one spiral component.
On the other hand, each end of X intersects ' x [0, c0) by the % hypothesis. Hence,
% has exactly one end.

We now check that 2 has an end representative which embeds the infinite cyclic
covering space 7 : M — M x {0}, associated to the holonomy representation of the
submersion 7 : ¥ — M x {0}. This will complete the proof of statement (2).

Let B be the homology class associated to 7 : M — M x {0} given in the proof
of Proposition 3.1. By the proof of this proposition, if A is a simple closed curve
representative for g, then B lifts to M. Furthermore, any closed curve in M — B lies
in the kernel of the representation and hence lifts to 7: M — M x {0}, where we
consider M — B toliein M x {0}. Since M — f has diameter bounded by some positive
constant C and 7 : ¥ — M x {0} is a submersion that shrinks the lengths of tangent
vectors by at most =, we can lift M — 8 to 3 if we begin the lift at any point of height
at least +/2C. From the discussion following the proof of Proposition 3.1, it is clear
that the end E of X can be represented by the union of all the closure of these lifts
and E corresponds to an end of the infinite cyclic covering space 7: M — M x {0}.
Statement (2) now follows.

Proof of statement (3). We now give the proof of statement (3) in Theorem 3.1. Note
that since X is a surface with curvature bounded by K, there exists a § > 0 such
that every point p € X with tangent plane 7, ¥ making an angle of at least % with
the horizontal has a small intrinsic §-neighborhood of area greater than some positive
constant and on this neighborhood the tangent planes to X make an angle of at least
% with the horizontal. Furthermore, the cross sectional length of the intersection of
this neighborhood of p with the level set surface M x {h(p)} has length bounded
from below by another constant. In particular, the flux of such a surface X is bounded
from below by a constant that only depends on M and K. This completes the proof
of statement (3).
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Assertion 3.2, There is a bound on the number of components N (n) and there are
only a finite number of different possible representations oy, : 7w1(M x {0}) — Z.

Proof. Assume to the contrary that there are an infinite number of different repre-
sentations o, or that the N(n) are unbounded. After choosing a subsequence and
a rearrangement of B, we may assume that oy, ([e1]) > n, or o, ([e1]) > 1 and
N(n) > n.

Let p,: Z(n) "M x [—¢,e] — M x {0} be the associated vertical projection.
Let £ be a regular annular neighborhood of «; in M x {0}. Since o, ([¢t1]) >
n, of oy([c1]) > 1 and N(n) > n, p, 1(E) consists of at least n spiraling strip
components. The areas of the X(n) N (M x [—¢, €]) are unbounded as n — ©0,
since p, L(E)N M x [—e, €] contains at least n components each with area at least
n, where n depends only on E and . By Assertion 3.1, this unbounded area property
implies that the tangent planes to X (n) N (M x [—2¢, 2¢]) make an angle of less than
7 with the horizontal.

Thus, for some fixed » sufficiently large, the tangent planes to X(n) N (M x
[—2¢, 2¢] make an angle of less than % with the horizontal. Furthermore, for this
large value of n, the number of spirals of X(n) N (¢1 x [—2e, 2¢]) is the same as the
number of spirals of X(n) N (¢1 x [—¢, €]), which creates large area in the region
M x [0, 2¢]. So, we can apply the previous argument to conclude that the number of
spirals in 2(n) N (1 x [—¢, 3¢]) is the same number. Continuing, we see that for all
a > 0, the number of spirals of X(n) N (g x [a —¢, a+¢€]) is constant. However, the
number of these spirals is equal to o,/ ([1]) - N(n') for some divergent sequence of
values a = a,, which diverges as n’ — oo by our hypothesis in the first paragraph of
this proof. This contradiction proves that there are only a finite number of different
possible representations o, and the numbers N (n) are bounded. O

By the above assertion, after choosing a subsequence, we can and will assume
from this point on in the proof that the representation o, = o, is independent of n.

With these preliminaries in place, we now show how to construct the curves
y(i,n) C Z(n,e, i) which we discussed at the beginning of the proof and which
converge smoothly to a curve y C M x {0}. Recall, from the proof of Proposition 3.1,
the special curve f for a cyclic covering space 7 : M — M with representation
o:m (M) — Z. The simple closed curve § is defined by having the property that
the connected surface M — B lifts to M. Now choose ¥ to be B. Clearly, there are
lifts y (n,i) C X(n,&,i) of y converging smoothly to y. It remains to prove that
y(n, i) is homologous to X(n, &, i) N (M x {&}).

To do this, we will show that y (n, i) separates X(n, &,i) N (M x {—¢}) from
X (n, &, i) N (M x {€}). Choose a lift M — y of M — y to X (n, e, i) whose closure is
in the 18_0 neighborhood of M x {0}. Note that M/—\y separates (M —y) x[—e, e] into
a top and a bottom component. From the cyclic covering space picture of X(n, ¢, 1)
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near this lift, it is clear y (n, i) C 8(M/—\y) separates 2 (n, &,1) N (M x {—e¢}) from
Y(n,e,i) N (M x {&}).

Now let A be the component of X (n, ¢, i) bounded by y(n,:) and X(n,e,i) N
(M x {e}). A gives the required homology. As remarked at the beginning of the proof
of the theorem, this last result completes the proof that ¥ has linear area growth.

Proof of statement (4). Arguing by contradiction, assume that statement (4) fails to
hold. Let X(n) be a sequence of surfaces satisfying the hypothesis of the theorem
where F(%(n)) < F and such that the area A(n) of A(n) = X(n)N(M X [a, a+¢€])
is greater than »n, for some a > 1, but some tangent plane of X(n) makes an angle
greater than % with the horizontal. The proof of Assertion 3.2 implies that there exists
a bound on the number N (n) of components of A(n) and on the size of the set of
associated holonomy representations for these components (we bound the number of
spirals over a basis for the fundamental group). By statement (3), the flux of each
¥ (n) is bounded from below by a positive Fas. The proof that we just carried out to
show that X has linear area growth, then contradicts that A(n) > nand F'(X(n) > Fy

Proof of statement (1). We have already shown that X has linear area growth. Letting
F = F (%), statement (4) implies that if the area of X is greater than A (e, F'), then
the tangent planes of ¥ make an angle of less than 7 with the horizontal. Assume the
area is greater than A (e, F'). It follows from the proof of statement (2) that ¥ embeds
as the end of an infinite cyclic cover of M x {0} with the projection map agreeing
with the vertical projection of ¥ to M x {0} and A(a) = XN (M X [a,a + ¢€]) 18
connected.

Let y be a simple closed curve of least length which represents the primitive
homology class [0X] € Hi(M). Let ¥ denote the lift of ¥ to A(a). Since the flux
of Vh across ¥ equals F(X), our previous arguments imply that there exists a bound
C(e) for the area of A(a), which only depends on the length of y, which in turn
only depends on the homology class [0 X]. This estimate completes the proof of the
theorem. o

4. Stable minimal surfacesin M x R

Some of the stable minimal surfaces that can arise in M x R are actually periodic
multigraphs, which just means they are lifts of compact embedded “graphical” mini-
mal surfaces in M x S(r), where S(r) is a circle with circumference r. The following
is a description of the moduli spaces of these special minimal surfaces.

Theorem 4.1. Let M be a compact orientable Riemannian surface of genus g. For
each primitive homology class a € Hy (M) and each r € RY, there exists a compact
embedded minimal surface M(«,r) C M x S(r) of genus g such that its preimage
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or “lift” M(a, r) to M x R, rogether with the vertical projection to M x {0}, is
the oriented infinite cyclic covering space of M associated to «. Furthermore, all
vertical translations of M («, r) vield a product minimal foliation of M x S(r) and
M («, r) is the unique minimal surface in its homotopy class up fo translation. Also,
M («, r) minimizes area in its integer homology class.

Proof. Let 0 € S(r) = R/rZ denote the identity element in S(r). For a primitive
class « € Hi(M x {0}), it is easy to construct an embedding M («, r) of M into
M x S(r) which satisfies the following:

(1) M(a, r) is a graph over M x {0} under the natural projection 7 : M x S(r) —
M x {0}.

(2) If B is a simple closed curve with ¢« N[B] = +1, then the lift ﬁof,B to M(a, r)
represents the oriented class ([8], 1) in Hi (M x S(r)) = H1(M) x H1(S(r)).

3) M (a,7) N M x {0} is a simple closed curve which represents the homology
class «.

For an indication of exactly how to construct M (a, 1), see the proofs of Theo-
rem 3.1 and Proposition 3.1 in Section 3, or perhaps the construction is most easily
seen from the discussion at the beginning of the proof of Theorem 2.3 and the related
Figure 1. Also, note that our « corresponds to the homology class in the choice of
the curve B given in the proof of Proposition 3.1.

Let M («, r) be a minimal surface of least-area in the homotopy or the isotopy
class of M (a,r)in M x S(r). The existence of M («, r) follows from the results in
[8] or [28] and the fact that M («, r) is an incompressible surface in M x S(r). By
applying standard surface replacement arguments as first described by Meeks and
Yau in [29], one sees that any two distinct such least-area surfaces in the homotopy
class of M («, r) are disjoint. Therefore, vertical translations of M («, r) are disjoint
from M(«, r), and so, one obtains a foliation of M x S(r) with leaves isometric to
M («, r) and which topologically is a product foliation.

It follows from the existence of this minimal foliation that M («, r) is the unique
minimal surface in M x S(r) in the homotopy class of M («, r) up to translation.
Otherwise, there would be another such nMal surface A C M x S(r). Lift A to
A in the infinite cyclic covering space M x S(r) of M x S(r) corresBc_)@ng to the
subgroup 71 (M («, r)) and lift the “product” minimal El\m/tion to M x S(r). Note
that some of the minimal leaves of this foliation of M x S(r) are disjoint from A.

i

Since the minimal foliation of M x S(r) consists of compact leaves of the form
{L(t) | t € R}, there is a largest 7o such that L(79) N A # @. The maximum principle
for minimal surfaces now implies that L(#y) = A, which proves our assertion that A
is one of the translates of M(«, r) in M x S(r).
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A well-known application of the divergence theorem is that a compact leaf of a
codimension-one oriented minimal foliation is area minimizing in its integer homol-
ogy class. We sketch the argument for the sake of completeness. Let N be the unit
normal vector field to the minimal foliation and let L be a compact leaf. Suppose
2 is a cycle homologous to L that is not a leaf of the foliation and o is a chain
with dew = L — X. Since the foliation is minimal, the divergence of N is zero. So,
applying the divergence theorem, one obtains that the flux of N across L equals the
flux of N across X. Since the flux across L is its area and the flux of N across X is
less than or equal to its area, we obtain the desired result. This completes the proof
of Theorem 4.1. o

A basic ool for proving the Stability Theorem in [26] is the following proposition,
which implies that M («, 1) and M («, r2) can be differentiated by their fluxes when
r1 # rp. One reason that we include the proof of this proposition here, rather than
in [26], is that we need it in the construction of stable minimal graphs in M x R in
Section 2 (see the proof of Theorem 2.3).

Proposition 4.1. Fix any primitive homology class « € Hi(M). For everyr > (),
the surface M («, r) has positive flux F(«, r). Furthermore, F(«, r) is a continuous
strictly increasing function from RY to R,

Proof. Since « is fixed, we will suppress the index « in M («, r) and F(«, r). For a
convergent sequence r; — rg, consider the surfaces M (r;) C M x S(r;). Note that
in a natural way the metrics in S(r;) converge to the metric on S(rg), and so, we can
consider the surfaces M (r;) to be surfaces, not minimal, in M x S(rg). Since each
M (r;) minimizes its area in its homology class in the metric on M x S(r;), a limit of
these surfaces with bounded second fundamental form exists, which can be assumed
to be a C?-surface, and is again area-minimizing in its homology class. Hence, by
the uniqueness statement in Theorem 4.1, the limit surface is M (r¢) and since the
convergence is C 1 F(r;) - F(ro). This proves that F' is continuous as a function
of r. Next consider the sequence r, = rg — %0, where n is a positive integer. A
straightforward argument, using the continuity of F, shows thatif F(r,) < F(rg) for
all » and for all rg, then F is strictly increasing. Since our argument does not depend
on the value rg, we will assume for concreteness thatro =1 andr, =1 — %

We first prove the theorem in the easier-to-visualize special case where M is a
torus M = T = S! x S! = R?/Z? and where « is represented by S! x {0}; however,
we do not assume that the metric on T is the flat metric. (On the other hand, if T has
a flat metric, then the tori T(rn) defined below are linear and the strictly increasing
property of F'is clear; actually, itis this well-known fact which motivates the following
proof.) In this case, consider the torus 'JI‘(n) C T x R/Z that is the image of the map
f:RxR — R?/Z? x R/Z defined by f (01, 62) = (61, nfa, (n—1)62). Let T(n) be

the least-area torus in the homotopy class of T(n). Note that T'(n) lifts to M x S(n—1)
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and this lift is equal to the inverse image M (rp) of M(r,) in M x S(n — 1) under the
projection of the Z,-covering space M x S(n — 1) = M x S(ry); the reason for this
is that these two surfaces are homotopic and M (r;;) is the unique minimal surface
iINl its homotopy class. Since the curve on M (r;) for which we calculate flux lifts to
M (ry), the flux of T(n) is equal to the flux of M (r,) and it remains to prove that the
flux of T(n) is less than the flux of M (1). After a fixed vertical translation of T(n),
we may assume that M (1) and T(n) intersect transversely in a finite collection of
simple closed oriented curves I' = M (1) N T(n). The orientation on the components
of I' comes from the oriented intersection M (1) N T(n), where M (1) and T(n) are
both oriented by the projection to M x {0} and M x R is oriented by the orientation
of M x {0} given by the upward pointing unit normal in the direction % and with
the standard orientation on R also given by %. Thought of as a integral chain, I
represents the class «, since this is the case for the homotopic torus T\(n) and the
intersection pairing is well-defined on homology.

Recall thatif o C X1M X5 is an arc in the intersection of two oriented surfaces with
almost complex structures Jq, J in an oriented three-manifold, then o is oriented by a
tangent vector T (o) such that (J1(T (0)), Jo(T (0)), T (o)) represents the orientation
of the ambient space. With this in mind, let J; be the almost complex structure on
M (1) and J; be the almost complex structure on T(x) induced as graphs over M x {0}.
Let T'(¢) be the unit tangent vector field to I'(¢). Then, with respect to our orientations,

a d
<J1(T(t)), 5> > <Jz(T(t)), E>’

where (, ) is the metric on M x R. By the divergence theorem, the flux of % across
I'on M (1), T (n), respectively, can be found by integrating the left, right hand sides,
respectively, of the above inequality. Hence, the flux of M (1) is greater than the flux
of T(n). This completes the proof of the proposition in the case that M is a surface
of genus one and « is represented by S! x {0}.

Since any primitive homology class « in the first homology group of a surface
M =T of genus one can be assumed to be the class represented by S I« {0} (after
composing with a diffeomorphism of T), the proposition is proved in the genus one
case. But, the initial construction that we carried out in the case of genus one can be
easily adapted to the case where M has higher genus. This discussion completes the
proof of the proposition. O

The following theorem is Theorem 3.1 in [26]. It is the key first step in the proof
of the Stability Theorem in [26] and its proof takes up most of that paper. We will
need the statement of this theorem in the next section.

Theorem 4.2 ([26]). Suppose % is a non-compact orientable properly embedded
stable minimal surface with compact boundary in M x R. Then, either every end
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of X is asymptotic to an end of some “lift” or preimage M (e, r) of a fixed M(«, r)
described in Theorem 4.1 or some sequence of vertical translates of ¥ converges on
compact subsets of M x R ro I" x R, where U is a finite collection of pairwise disjoint
simple closed stable geodesics on M.

5. A finite number of ends

Recall that in Section 3, we proved that if X has bounded curvature, then it has a
finite number of ends. We will need this result and some of the techniques developed
in Section 3 to prove the similar result holds, when we drop the bounded curvature
hypothesis.

In this section, we will prove Theorem 1.3. Theorem 1.3 states that a properly
embedded minimal surface ¥ in M x R has a finite number of ends. This theorem is
an immediate consequence of the following more general result, where X is allowed
to have compact boundary.

Theorem 5.1. If ¥ C M x R is a properly embedded minimal surface with compact
boundary, then X has a finite number of ends.

For the proof of Theorem 5.1, we will need the following proposition on certain
geodesic laminations of surfaces. We give its proof at the end of this section.

Proposition 5.1. Suppose 'y C I'y C --- C 'y C -+, where Iy, is a finite collec-
tion of pairwise disjoint simple closed geodesics on a closed orientable Riemannian
surface M of genus g. Then, there is a bound on the lengths of the geodesics in
I' = U i, In particular, the closure T of T is a geodesic lamination of M
consisting of closed geodesics with uniformly bounded lengths.

We now proceed with the proof of Theorem 5.1.

Proof. We may assume that X is connected, is contained in M x [0, co) and 0% C
M x{0}. Assume that X has an infinite number of ends. We will derive a contradiction.
Note that, after possibly taking a four-sheeted cover of M x R and lifting X to this
cover, we may assume that ¥ and M are both orientable.

Since ¥ has an infinite number of ends, there exists a sequence b, — o0
such that M x {b,} intersects X transversely in a finite number of simple closed
curves and X(n) = X N (M x [b,, 00)) consists of N(n) connected components
X(1,n),..., 2(N(n),n) where N(n) > n+ 1.

Assertion 5.1. X can be chosen with an infinite number of ends and so that the
surfaces 2(1, n), ..., Z(N(n), n) are unstable for all ».
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Proof. First note that Corollary 1.3 implies that ¥ fails to have bounded curvature,
and so, by curvature estimates [43], ¥ is unstable.

Suppose now that X (i, n) C X (n) is stable for some i and n. After reindexing,
assume that 2 (i, n) = X (1, n). In this case, Theorem 4.2 implies that either every
end of X (1, n) is asymptotic to the top end of some translate of M («, r) or there is a
divergent sequence of translations of (1, n) that converge to I' x R, where I" is a
finite collection of simple closed stable geodesics on M. If every end of 2(1, n) is
asymptotic to some translate of M («, r), then the proof of Theorem 4.2 implies that
for all k, every end of a stable component 2 (i, k) is also asymptotic to a translate
of the same M (v, r). Let ¢ be either the length of the shortest simple closed stable
geodesic in M or the flux of M («, r), depending on which of the two cases occurs
for the end behavior of X(1, n). In particular, the number of components of %(n)
which are stable is bounded by [Flux (%) /¢], where [¢] denotes the largest integer less
than 7.

Now choose an ng so that the number of stable components of % (n¢) is maximal.
Since ¥ has an infinite number of ends, there is some component of X (ng), say
% (1, no), which has an infinite number of ends. By our choice of ng, every subend of
2 (1, no) is unstable. Now replace X by X (1, ng) translated downward by distance
by, to obtain the surface with the desired properties. This completes the proof of
Assertion 5.1. O

Assume now that the conclusions of Assertion 5.1 hold for ¥ and consider the
surfaces (1, 1), 2(2, 1), ..., 2(N(1), 1). Since M x {b1} is minimal and X (1) is
minimal and locally separating in M x [b1, 00), the standard barrier minimization
procedure described in [25] or [30] yields two properly embedded least-area ori-
entable minimal surfaces X(1, +) and (1, —), each with boundary equal to d 2(1).
Here, the + sign refers to the surfaces that arise in minimization process that takes
place on the side of X where the oriented normal points and the — sign refers to
the surfaces that arise in the minimization process on the other side. The way in
which we obtain the surfaces is as follows. We first produce stable minimal sur-
faces X(1, 1, +) and X (1, 1, —) as least-area surfaces in (M x [by, 00)) — 2 (1) with
boundary 33 (1, 1); this is done inductively component by component using old com-
ponents as new barriers. Continuing inductively produces both (1, 4+) and (1, —).
In this minimization process, a given component of X (1, 4-) or X (1, —) with the same
boundary as a component of (1) intersects X (1) only along its boundary, since ev-
ery component of X (n) is unstable. We remark that (1, 1, +) or (1, 1, —) may be
compact (in fact, contained in M x {b1}); this will happen when d%(1, 1) bounds in
M x {b1}. Notice that X(1, 1, +)U X(1, 1, —) bounds a domain R| C M x [b1, o0)
that contains (1, 1).

Once one has constructed the two properly embedded (disconnected) stable mini-
mal surfaces (1, +) and 2(1, —), then, using (1, +)U X(1, —) and X (2) as barri-
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ers, one can construct two properly embedded minimal surfaces (2, +) and X(2, —),
with boundary 9 ¥ (2) in the same manner as before. At this stage, we have produced
2(2,1,4)and X(2,1, =) in M x [bp,00) — [Z(1) U (1,1, +) U (1,1, —) U
22, 1HU---UXE(N(1), 1)] with boundary 3 %(2, 1). In this case, the components of
2 (2, &) are disjoint from the components of (1, £). Continuing inductively, one
obtains the stable surfaces (1, 4+), ¥(1, —), ..., X(n,+), X(n, —), ..., whose in-
teriors are disjoint from one another.

For ¢ > 0, let T (p, t) denote the downward translation (p, t) — (p,t — ¢). By
Theorem 4.2, there are two possible asymptotic structures for X(n, +) U X(n, —);
either all of the ends are asymptotic to translates of some M («, r) where « € H1 (M)
and r are both fixed, or under some vertical translations T¢(, ), the Te(, 1y (X (n, +) U
% (n, —)) converge as i — oo to I' x R, where I" is a finite collection of pairwise
disjoint stable simple closed geodesics in M. It follows that there exists a positive
increasing function f: N — R such that for each i as n — 00, Ty, (2 (i, L))
converges on compact subsets of M x R to a finite collection of vertical totally
geodesic annuli or to a finite number of translates of M («,r), where r and « are
fixed. We will prove the proposition in the case where the downward translations
of X(n, +) U X(n, —) converge to vertical totally geodesic annuli. The proof of the
case where the ends are asymptotic to ends of translates of M («, r) is quite similar,
and, at the end of this section, we will indicate how to modify the arguments in this
second case.

Assume now that the downward translations T, of X (n, +)U X(n, —) converge
to a collection of vertical flat annuli.

Assertion 5.2. Let i(n) = X(1,x)U---U X(n,x). Then, one can choose an
increasing function f : N — R so that the sequence 7'y () (f)(n)) converges smoothly
on subsets 9\f the form M X [—n, n] to a minimal lamination £ of M x R which is
a product £ x R, where £ is a geodesic lamination of M by closed geodesics of
uniformly bounded length. Furthermore, f* can be chosen so that each component of
Ty (Z(n))N(M x[—3, 3]) is anormal graph over one of the annuliin I" (n) x [-3, 3]
with sup norm less than % where I'(n) is the collection of pairwise disjoint geodesics
on M associated to the ends of f)(n) and function f(n).

Proof. From our previous discussion, a diagonal argument makes it clear that a func-
tion f(n) exists so that Tf(n)(fl(n)) converges to a vertical minimal lamination L.
By construction, I'(n) consists of a finite number of geodesics, since i(n) has only
a finite number of ends. Since I'(rn) C I'(n + 1), the closure TofI'= U;’;l I'(n)
is a geodesic lamination of M by Proposition 5.1. The assertion follows easily from
these observations. O

As in many of our proofs, we again would like to use the invariance of the flux of
% to prove that ¥ cannot have an infinite number of ends. Let [#] denote the greatest
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integer less than or equal to 7. Note that £ can have at most [Flux(X) /] ends where
the flux is greater than e. Thus, the theorem is a consequence of the next assertion.

Assertion 5.3. There exists an ¢ > 0 such that for k£ € N, there exists a K (k) € N,
such that X (K (k)) has at least kK components with flux at least &.

Proof. Recall that the '3 2(n) separate more and more of the ends of X as n — 0.
By Assertion 5.2, T ») (X (n)) N (M x [—3, 3]) consists of more and more annuli as
n — 00. These annuli are converging smoothly to the annuli in L x [—3, 3]. By
Assertion 5.2, there exists a leaf y C L such that for any fixed sufficiently small
5 > 0, and for W the §-regular neighborhood of ¥ in M and for X = W x [—3, 3],
it follows that

(1) the number of components of Tf(n)(fl(n)) N (M x [—3,3]) contained in X
becomes unbounded as n — 00;

(2) the number of components of T (X(n)) N (M x [-3,3]) contained in X
becomes unbounded as n — 0.

Claim: There exists a small positive § such that every compact connected minimal
surface £ in X with 0 E contained in both the components of W x {—3, 3} has flux
greater than 8. We prove this claim by contradiction; let E(n) be such surfaces whose
flux is less than %

Let E(n, %) = E(n) N (M x [%, -32—]) and let v (n) be a least-length level set of
E(n, %). Without loss of generality, we will assume that

Area<E(n) N <M X [h(;v(n)), %})) zArea(E(n) N <M X [%, h(y(n))]))‘ (1

With this assumption, we will make an analysis with the function¢ = 4 — %dz X —
[—3, 3]; in the case the opposite inequality holds, a similar analysis with the function
—h — %dzz X — [—3, 3] will yield the desired contradiction.

Let F'(n) C E(n) be the part of E(n) with boundary y (n) and ¢~ 1(2) and when
n is large and fixed, let F = F(n). For n large, note that ¢~ (2) = dF(n) — y (n)
has height approximately 2.

A straightforward calculation shows

1
EAFdZ =dAfpd + |Vpd)?.

Also, itis not hard to see that A rd is uniformly bounded in W for § less than some
fixed small 8. Note that Ap¢p = —dApd — |VEd |2. By the divergence theorem,

/ _dArd — |VrdP? :/ Ardp = Cr +/ Vih—dVed],  (2)
F F - 1(NF
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where Cr is a function of »n that can be estimated from below by —Flux(E(n)) —
f((n)L(y(n)); here L(y(n)) is the length of y(n) and f(n) is positive and tends
to zero as n — o0. Cf can be estimated this way because Cr = fy(n) Vo -n =
—Flux(E(n)) — /y(n) dVE@md - n, where n is the outward pointing conormal to F/,
and |dVEd| — Oasn — oo.

Next, note that for n large, the following holds for some positive K :
1 1
/ Ar¢p < —=Area(F') < —=K. 3)
F 2 2

To see this, first note that the area F'(n) is greater than some constant K independent
of n, by the montonicity formula for area. Also, Flux(E(n)) < % so the part of E(n)
that makes at least any fixed positive angle with the horizontal has area going to zero
as n — 00. Since A p¢ is approximately —1 when F is almost horizontal, then, for
n large, | 5 Ar¢ is approximately —Area(F'), and so, formula (3) holds for n large.
Since Flux(E(n)) < % then, for n large, the coarea formula and (1) imply,

1 1
Cr > - S)L(y(n)) > i 6 f(n)Area(F).

Since f(n) — 0, as n — 00, this inequality clearly contradicts equations (2) and (3).
We now briefly indicate how to modify the proof of Assertion 5.3 in the case that
Ty (2 (n)) converges to alamination £ of M x R by translates of M («, r) for some
fixed « and r. ’I\n this case, there exists an accumulation leaf L in £, similar to the
choice of y C L in the previous case, such that, after a possible small translation,

(1) thereis ane > Osuchthat A = L N (M x [—e, €]) consists of a finite number
of annuli whose tangent planes make an angle of at least & with the horizontal;
(2) if X is a small regula& neighborhood of A in M x [—eg, €], then the number of
components of Ty (X (n))N(M x [—e¢, £]) contained in X becomes unbounded
as n — oo;

(3) the number of components of Ty (X(n)) N (M x [—e¢,&]) contained in X

becomes unbounded as n — oc.
With a very small initial choice of ¢, multiply the metric on M x R by % to obtain
new surfaces in the almost flat thrge-ma~nif01d M x [-3, 3], where M is M expanded
by % and where the expanded set A C M x [—3, 3] is almost totally geodesic. Again,

we define X, ¢ =—h— %dz and carry out a similar analysis as before. This discussion
completes the proof of Theorem 5.1. O

We now give the proof of Proposition 5.1.

Proof. Arguing by contradiction, suppose that the proposition fails. In this case, one
can find an infinite collection I' = {y1, v2, ..., ¥4, ...} of distinct pairwise disjoint
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simple closed geodesics on M, where the length of y;, is at least 1 more that the length
of yni1.

If some y; is homotopically non-trivial, then the geodesic or metric completion
of M — y, is a compact surface of genus ¢ — 1 with two closed geodesics in its
boundary (in the case y;, does not separate) or consists of two compact surfaces of
positive genus less than g, each with a single closed geodesic in its boundary. After
attaching two Riemannian disks to the resulting surface, we obtain a new smooth
compact Riemannian surface (possibly disconnected) with one component containing
an infinite number of components of I' and this surface has less genus than the genus
of M. Hence, by induction on the genus of M, we may assume that every geodesic
vy in I" bounds a compact disk D, in M.

The Gauss—Bonnet formula implies that each of the disks D, has total curvature
2. Since the integral of the Gaussian curvature function on the region of M where
it is positive is a finite number, there is a bound on the number of such disks which
are pairwise disjoint. In particular, we see that, after replacing I by a subsequence,
either we have an infinite chain of the foom Dy ¢ D, € --- € D, C --- or
the form D1 D Dy D --- D D, D ---. If we have a chain of the second type,
then replace M by a smooth Riemannian surface of genus zero formed by attaching a
Riemannian disk D to Dy. By letting D} = D, D) = DU(D1 —Int(Dy)), ..., D, =
DU (D1 —Int(Dy)), ..., weseethat D C --- C D, C...,and so, we can always
assume that we have a chain of the form D; C --- C D, C ---.

The closure T of I" is a geodesic lamination in M. Since the lengths of the y,
diverge, there is a limit geodesic « in " of a subsequence of the y,. By our chain
condition on the disks D;,, the limit set L (I") is disjoint from I, and so, T is the union
of I' with L(I"). In particular, « is disjoint from I'.

Let p € « and identify a neighborhood of p with J x J, J = [—1, 1], so that
p = (0,0), J x {0} C «, and for some decreasing sequence y, € (0,1], y, — 0,
the segments J x {y,} are contained in I". Also, choose the parametrization so that
{0} x J is a geodesic of M, approximately orthogonal to the geodesic lamination.

Each disk Dy intersects J x [0, 1] in a finite number of bands, each being of
the form J x [a,b] C J x [0, 1]. Since the geodesics J x {y,} in I" converge to
J x {0}, there exists a disk Dy, such that Di, N (J x [0, 1]) contains at least one such
band and let By be the band in Dy, which is lowest in J x [0, 1]. Again, since the
geodesics J x {y,}in T converge to J x {0}, there exists another disk Dy, such that
Dy, N (J x [0, 1]) contains a band By below By and such that B; is the lowest such
band in Dy,. Since the disks {D,} form a chain, the disk Dy, C Dy,. Continuing
in this manner, we obtain an infinite ordered sequence of bands By, By, ..., By, ...
converging to J x {0}.

The geodesic {0} x J meets each band B; C Dy, in a geodesic arc §; that separates
Dy, into two closed subdisks, where we denote by D, the subdisk which is disjoint
from Dy, | (fori = 1, one can choose either subdiskls). By construction, the disks
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{D,/q, D,/Q, ceey D,’Cj , ... } are pairwise disjoint in M. Since the boundary of each of
these disks consists of two geodesic arcs with the sum of the exterior angles close to
7, the Gauss—Bonnet formula implies that the total curvature of each of these disks
is approximately 7. Hence, in each of these disks the part of the disk with positive
curvature has total curvature at least 7. But then the total curvature of the part of M
of positive curvature is infinite. This contradiction proves that there is a bound on the
lengths of the geodesics in the statement of the proposition and that the closure T" of
I" is a geodesic lamination of M with the same bound on the lengths of its geodesic
leaves. O

6. The unknotted theorem

We now prove Theorem 1.4 in the Introduction. Suppose S is a sphere endowed with
a Riemannian metric with no stable embedded closed geodesics. We first show that
is connected and has exactly two ends, one top end and one bottom end. Suppose this
were not the case and % had at least two top ends. By the arguments in Theorem 5.1,
there would exist a stable properly embedded minimal surface A C S x [0, oo) with
compact boundary separating the two top ends of . By Theorem 4.2, either an end
of A is asymptotic to the end of some M («, r) where « is a primitive homology class
in H7(S) or S has a stable embedded closed geodesic. Since both of these cases are
excluded, £ must have one top end and one bottom end.

We now prove thatif % has finite genus, then X is a Heegaard surface and unknot-
ted. In this case, X has two annular ends which we can represent by embeddings of the
form Ey, E_: S' x [0, c0) — S xR, where d £ is a simple closed curve in S x {t; }
for some large positive £y, and E (S' x {t}) € S x {t, +1}is asimple closed curve for
eachs > 0; asimilar statement holds for E_, where E_(S! x[0, 00)) C Sx(—o0, 1_]
and ¢ < ty. By elementary three-manifold theory, the ends Ey, E_ are standardly
embedded in S x R. It remains to show that & = X N (S x [t_, £;]) is a standardly
embedded cylinder connected sum with a standardly embedded surface of genus g,
where ¢ is the genus of ¥. Note that the height function /: ¥ — [z_, £, ] has only
critical points of negative index, since it is a harmonic function on . By the isotopy
algorithm given in [31], any two smooth embeddings of ¥ into S x [¢_, £4] with the
same boundary values are ambiently isotopic relative to their boundary, if / has no
index two critical points. Since one can attach trivial handles on a standard cylinder
C c S x [t_, t;] with the same boundary values as % in such a way that /z on the new
surface only has critical points of negative index, then the original ¥ C S x [1_, 4]
is unknotted in S x [z_, r1]. It follows that % is properly ambiently isotopic to the
boundary of the solid infinite cylinder D x R < S x R with g one-handles attached
in a standard way. This shows that % is not only a Heegaard surface but that it is also
unknotted.
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We now consider the case where X has infinite genus. There are two topological
possibilities for X, since there are exactly two different examples of orientable sur-
faces (X separates S x R and so is orientable) with infinite genus and two ends. We
now show how to embedd each of these surfaces in S x R so that it is a Heegaard
surface. First consider the cylinder C = S xR c S xR. Let Iy denote the
surface in S x R obtained by adding handles to C at the points S! x {n}, n € N, and
similarly define X7 C S x R. The surface X has one annular end and one end of
infinite genus, and X7, has two ends of infinite genus. Since a Heegaard surface of a
non-compact three-manifold has the same end structure as the three-manifold, every
Heegaard surface of S x R has two ends, which proves statement (2) in Theorem 1.4.
It remains to prove statements (1) and (3) when X has infinite genus.

It is a classical result of Haken [12] and Waldhausen [45] that Heegaard surfaces
in § x R of finite genus are standard; in other words, such a Heegaard surface H
of genus g is obtained as the boundary of D x R C S x R with a finite number of
handles attached in a standard way. Recently, Frohman and Meeks [10] were able to
generalize the classical techniques of Haken and Waldhausen to prove that Heegaard
surfaces in R3 are determined by their genus even when the genus is infinite. Recall
that a Heegaard surface is infinitely reducible, if in the complement of any compact
subdomain, there exists a proper infinite family of pairwise disjoint trivial handles
on the surface. The crucial step in the proof of Frohman and Meeks is to show
that a Heegaard surface of infinite genus in R? is infinitely reducible, and this same
argument can be applied in S x R, since each end of S x R is homeomorphic to the
end of R3. Thus, by the proof of uniqueness of Heegaard surfaces in R*, we obtain
the similar theorem in S x R. This proves statement (3) of Theorem 1.4 and it remains
to prove statement (1) when the minimal surface X has infinite genus.

Again, in the case ¥ C S x R has infinite genus, we apply the techniques in [10]
used to prove that a properly embedded minimal surface M in R® with one end is a
Heegaard surface of R3. We now show how to adapt the arguments in [11] and [10]
to our situation which is somewhat easier to control.

Let W be one of the closed complements of ¥ in S x R. We will show that
W is a handlebody. Assume that S x {0} intersects X transversely and let W(4) =
WN(Sx[0, 00))and W(—) = WN(S x (—o0, 0]). We will shortly show that W (+),
and similarly, W(—) is a handlebody. Assume that this result holds. We now prove
that W is a handlebody. Since W(+) is a handlebody with one end (¥ has one top
end), there exists adisk Dy C W(+), 9D C X, which separates W(+) N (S x {0})
from the end of W(+). Let Dy C W(+) be theNMeeks—Yau [30] solution to the
classical Plateau problem for 8D in W(4), i.e., Dy isa leas~t-area embedded disk
in W(+4) with boundary dD. By the maximum principle, D, N (S x {0}) = @.
Similarly, we obtain D_ C W(—)andlet W be the closure of the bounded component
of W — (D U D_). If W is not a handlebody, then, by the main theorem in [28],
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W contains a compact stable embedded minimal surface. This is impossible, since W
is contained isometrically in S x R and clearly W does not contain a minimal sphere
of the form S x {r}. It follows that Wisa handlebody, and so, W is a handlebody,
since it is the boundary connected sum of three handlebodies. It remains to prove
that W(+) is a handlebody.

In order to prove W(+) is a handlebody, it suffices to show that any smooth
compact subdomain A C W(4) can be separated from the end of W(4) by a finite
collection D (A) of pairwise disjoint disks. The proof of this reduction is a variant of
the argument given in the previous paragraph, which we now repeat. Suppose A(n)
is a smooth compact exhaustion of W(+4) with [W(4) N (S x {0})] € A(1l) and
let DH(A(n)) be the corresponding families of separating disks. Replace D(A(n))
by a collection of minimal disks of least-area in W(+) with the same boundaries
as in D(A(n)). By Meeks—Yau [29], this collection :lN)(A(n)) consists of pairwise

disjoint minimal disks. Note that since hl(aﬁ(A(n))) — 00 as n — o0, the maxi-
mum principle implies that 2|(D(A(n)) tends to infinity as well. Hence, we obtain
a new compact exhaustion of W(+) by domains A(n) which have mean convex
boundary. By the argument in the previous paragraph, A(n)isa handlebody, but the
same argument shows that the closures of the domains Z(n +1) — Z(n) are also
handlebodies. Hence, W (4) is a handlebody.

Suppose there were to exist a compact A C W (4-) which could not be separated
from the end of W(+) by a finite collection D (A) of pairwise disjoint disks. Then,
for some n > max(h|A), for W(n) = {x € W(+) | h(x) > n}, the compact set
W (n) N h~1(n) cannot be separated from the end of W (n) by a finite collection D of
pairwise disjoint disks (since we could take D (A) = D). Hence, it suffices to prove
that W(+) N (S x {0}) cannot be separated from the end of W (+) by a collection £D;
this is because W (+) is arbitrary and so we could have replaced X by a downward
translation of ¥ by n. For n € N, suppose that S x {n} intersects X transversely
and consider the compact exhaustion A(n) = W N (S x [0, n]) of W(+) and let
F(n) = A(n) N X. After a finite number of surgeries on F'(n) in A(rn), we obtain a
possibly disconnected incompressible surface F (n) C A(n) with aF (n) = 0F(n).
From the previous paragraph, we know that for n large at least one of the components
of F (n) contains at least one boundary component in S x {0} and at least one boundary
component in S x {n}; otherwise, we can find the required collection of disks &
separating W (+) N (S x {0}) from the end of W (+4). Let F (n) be a least-area surface
in W(+) in the isotopy class of F (n) and with aF (n) = aF (n). The third paragraph
of the proof of Theorem 3.1 makes it clear that the stable surfaces F(n) which have
local curvature estimates (from stability) must have local area estimates away from
their boundary. It follows that a subsequence of the F(n) NS x [1, c0) converges
on compact subsets to a non-compact properly embedded stable orientable minimal
surface F' in S x [1, 00) with compact boundary. As observed carlier, in the first
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paragraph of this section, such an F cannot exist. This contradiction proves that
W (+) is a handlebody, which completes the proof of Theorem 1.4. O

7. The bounded curvature theorem

In this section, we will prove the Bounded Curvature Theorem (Theorem 1.5) stated
in the Introduction. We first state a theorem that will be used to prove the Bounded
Curvature Theorem.

Theorem 7.1. If ¥ C M x R is a properly embedded minimal surface with compact
boundary and finite genus, then % has bounded curvature. In particular, if X is
a connected properly embedded minimal surface in M x R without boundary and
with finite genus, then X has finite topology, bounded curvature and linear area
growth.

Before proving the above Theorem 7.1, we show how the first three statements
in Theorem 1.5 in the Introduction follows from it. After we prove Theorem 7.1, we
will finish the proof of Theorem 1.5.

Proof of statements (1), (2) and (3) in Theorem 1.5. Statement (1) in Theorem 1.5
follows directly from the statement of Theorem 7.1. By Theorem 1.3, X has finite
topology, and hence, annular ends. Since X is a proper minimal surface, there is a
proper harmonic function (the height function) on each annular end, which implies
that ¥ has finite conformal type.

Recall the hypothesis in statement (2) of Theorem 1.5 that M have non-positive
curvature. Since the surface ¥ in M x R is minimal, it has non-positive Gaussian
curvature in this case. Assume now that M has non-positive curvature. Let £ C X
be an annular end of . Since X has bounded curvature and linear area growth, there
exists a sequence b, — 00, so that the sequence of translated surfaces 7;, (E) =
E(n), Ty, ((p, t)) = (p, t—b,), converges to a minimal annulus A properly embedded
in M x R with bounded curvature and linear area growth. But, since M has non-
positive curvature, the minimal annulus A also has non-positive curvature. Since A
is complete and has linear area growth, non-positive curvature, and finite topology,
then it has finite total curvature c(A) = 2w x(A) = 0. The proof that a complete
Riemannian surface ¥ with non-positive curvature and linear area growth has total
curvature 27 x (%) is well-known (see [33] or [34] for a short proof). Thus, A is a flat
totally geodesic annulus in M x R. Hence, A is either of the form A = y xR, where
y is an embedded geodesic in M, or M is a flat torus and A is a linear flat subannulus
in M x R. But, if M is a flat torus, it is known that the finite total curvature property
of ¥ implies that the Gauss map G: ¥ — S has finite degree and that X has finite
index. Thus, we may assume that A is of the form y x R and M is not a torus.
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Since M has non-positive curvature, y minimizes length in its homotopy class.
It follows that A is stable. Since M has non-positive curvature, it also follows that y
is the unique geodesic in its homotopy class unless a neighborhood of y is flat. Let
M x R be the covering space corresponding to 771 (A) and let Abealiftof A. Since A
is totally geodesic and the curvature of M x R is non-positive, the distance function
to A is convex. An application of the maximum principle, using this convex distance
function restricted to appropriate end representatives of the corresponding lift £ of
EtoM xR, implies that E is asymptotic to A. Thus, E contains a subend E’ which
can be expressed as a small graph over the stable totally geodesic A. Recall that a
minimal surface has finite index if and only if it is stable outside a compact set. Using
the fact that the curvature of M is non-positive, it is straightforward to prove that the
graph E’ is stable, and so, the complement of some compact subset of X is stable,
from which it follows that % has finite index. This completes the proof of statements
(1), (2), (3) of Theorem 1.5. O

Proof of Theorem 7.1. Let X be a properly embedded minimal surface with compact
boundary and finite genus in M x R. By Proposition 5.1, ¥ has a finite number
of ends, and so, each end of ¥ is an annulus. So, if ¥ does not have bounded
curvature, then one of the annular ends of X does not have bounded curvature. Thus,
we may assume that ¥ is an annulus with unbounded curvature and we will derive a
contradiction. Since i: ¥ — R is a proper harmonic function on X, after a possible
reflection of M x R across M x {0}, a translation and the removal of a compact subset
of %, we may assume that 0% is a simple closed curve in M x {0} and (M x {t}) N X
is a simple closed curve for + > 0. The arguments which we now use to complete
the proof are motivated by the proof of curvature estimates in [20] for two limit end
minimal surfaces of finite genus in R3.

Arguing by contradiction, suppose that X does not have bounded curvature and
p(n) € % are points where the Gaussian curvature K (p(n)) has absolute value at
least n. Let Tpy: M x R — M x R be the vertical downward translation by
h(p(n)) and consider the sequence of surfaces X(n) = Ty (X) in M x R. After
possibly choosing a subsequence, we may assume that 7T, (p(n)) converges to a
point p, € M x {0}.

We will first prove the theorem under the additional hypothesis that for every
p € M x R, there exists an ¢ > 0 such that the open ¢ ball of M x R centered at p
intersects > (rn) in components that are simply connected. Then the sequence X (n)
is by our hypothesis uniformly locally simply connected in the sense of Colding and
Minicozzi [2]. We will now discuss their theorem.

They prove a subsequence of the X (n) converges to a minimal lamination £ with
singular set S(L£). The singular set S(L£) contains those points ¢ which are limit
points of points of the sequence X (n) where the curvature is diverging. At such a
point ¢, there passes a smooth leaf L of &£, and there exists a double cone C with
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vertex at g, transverse to L at g. Near g, outside of C, each X (n) (in the convergent
subsequence) contains a two component multigraph, that is converging smoothly on
compact subsets of L — {g} to L — {g} as n — 00. Moreover the spacing between
the sheets of these multigraphs is going to zero as n — 00.

Now we use this discussion at the point ¢ = p,, defined previously. We will
prove next that the leaf L through p, is M x {0}. This will follow from the fact that
the tangent space of L is always horizontal. If not, then T;(L) is not horizontal for
some g € L, ¢ near g. Ina neighborhood of ¢ there are multi-sheeted graphs of X (n)
converging to a fixed compact neighborhood of g in L. The number of such sheets is
diverging as n — 0, and each such sheet has vertical flux uniformly bounded away
from zero. This contradicts the finite flux of X. Thus, L equals M x {0}.

We know S(L) N (M x {0}) is a finite set of points containing p,. Let C; be
a small vertical cylinder about each singular point p; in (L = M x {0}) N S(L).
Outside of the union Q of the C;, and near L, each X (n) is a two component high
sheeted, almost horizontal, multigraph we denote by G (n).

Using the cyclic covering space arguments in the proof of Theorem 3.1, one can
show that G(n) — Q embeds in a two component infinite cyclic cover of (M x {0}) —
Q. Since each of the boundary curves of a component of this surface goes to a
generator of Z under the associated represention o : w1 ((M x {0}) — Q) — Z and
the boundary of the component surface, which can be considered to be a commutator
in the fundamental group, goes to 0, then the number of components in Q is greater
than one.

Let ¢ be a point of S(L£) N L that is closest to p, on L. Let y be a geodesic
in L joining p to g. From the local picture of X (n) around p. and g, for n large,
of a double component multigraph near p, and g, it is straightforward to construct
a simple closed curve y (n) on X(n) that consists of two almost horizontal arcs in
successive sheets, which are graphs over the image of their projection to y, together
with two joining arcs near p,, and g whose lengths go to zero as n — oo (the argument
that the lengths of these arcs go to zero can be found in Assertion 1 at the end of the
proof of the curvature estimates in [20] and also follows from the statement of the
Lamination Metric Theorem in [36].) On the vertical cylinder C near p., %, meets
the ball bounded by C in a disk D, and 0 D,, consists of two double helices going
from the bottom of C to the top of C and two arcs (on the top of C and the bottom
of C) joining these double helices.

The curve y (n) enters C, near height zero, at a point of one of the two helices
on C, and then traverses D(rn) almost horizontally to leave C at a point of the other
helice on C. Then, y(n) is completed to a simple closed curve by doing the same
construction in the cylinder near g. Let I" be one of the helicoidal spirals on C N % (n)
going from the bottom of C to the top of C.

Notice that the height of y (n) is closer to O than the top and bottom of C. Since
the height function is harmonic, any minimal disk bounded by y (n) has height at
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most the height of y (n).

Finally observe that the intersection number of y (r) and I" is one by construction.
If ¥ (n) were homotopic to zero on X, it would bound a minimal disk on %, which
would have even intersection number with I', and so, y(n) is homotopically non-
trivial.

Since y(n) is a simple closed curve and is homotopically non-trivial on X (n)
which is an annulus, the flux of X (») is equal to the flux of V4 across y (n). But, by
construction, the flux of VA across y (n) approaches zero as n approaches infinity,
which gives the desired contradiction, under our additional hypothesis that X (#n) is
uniformly locally simply connected in the sense we described before.

The proof of the related curvature estimates in [20] is quite delicate; we will adapt
the arguments given there to our situation to prove our desired curvature estimates.
We now carry out the proof of the desired curvature estimates by proving the sequence
% (n) is uniformly locally simply connected in M x R.

Assertion 7.1. The sequence X (n) is uniformly locally simply connected in M x R.

Proof. In our recent paper [24], we generalize, to the three-manifold setting, some of
the key theorems of Colding and Minicozzi in [4], where they prove that a complete
embedded minimal surface of finite topology in R is properly embedded. In fact, it
follows immediately from the proof of Theorem 8.1 stated in Section 8 of this paper
(the proof appears in [24]), that if the sequence X (n) were not uniformly locally
simply connected at p, then there exists a sequence of homotopically non-trivial
loops y (n;) on some subsequence % (n;) with lengths converging to zero. However,
the fluxes of the X (n;) are a positive constant which is at most equal to the length of
any such y (n;), which gives a contradiction. Since this work is all very recent, we
now present our original proof that the short curves y (n;) exist.

After expansion of the metric on M by a fixed constant, we may assume that
the injectivity radius of M x R is greater than one. For p € M xRand r < 1,
let B(p, r) be the open geodesic ball of radius r centered at p. Define the function
fa: M xR — (0, 1] to be the radius of the largest ball B(p, r) C B(p, 1) such that
B(p,r) N Z(n) consists of only simply connected components. Note the closed ball
B( P, fn(p)) contains a non-simply connected component when f,(p) < 1. Thus,
when f;(p) < 1, there is a simple closed curve y (p, n) C X(n) N B(p, r) such that
v (p, n) does not bound a disk in = (r) N B(p, r).

Suppose now that the sequence X (r) is not uniformly locally simply connected in
M x R and p is a point such that lim,_, », f,(p) = 0. Let p(n) € B(p, 1) be points
where the functions % have their maximum values j(n); here, d: B(p, 1) — (0, 1]
is the distance function to dB(p, 1). Note that B(p, 1) C D x [h — 1, h + 1] where
h = h(p) and D is the unit geodesic disk centered at p in M x {h}. After fixing
the coordinates centered at p, we may consider the surfaces X(n) = Z(n) N\ B(p, 1)
to be surfaces in D x [—1,1] ¢ R? x R, where D is the unit disk in R2. In
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R? x R _we consider the homothetically scaled and translated surfaces S(n) =
Ty (B (n) = p(n).

We now check that the surfaces % (n) form a uniformly locally simply connected
sequence of planar domains in R®. After choosing a subsequence, suppose that
fulp)) < 55 I g € B(p(n), 3d(p(n)), then fu(q) = 3 fu(p(n). It follows
from our definitions that inside the ball B(n) centered at the origin of radius » in
R} =R? xR, i(n) intersects subballs of radius % in simply connected components.
This proves that the sequence i(n) forms a uniformly locally simply connected
sequence of surfaces in R3. It follows from the work of Colding and Minicozzi [2],
[5] that a subsequence of the X (n) converges to a minimal lamination £ of R3 with
singular set of convergence S(L£). We also refer the interested reader to our paper
[24] for details on this argument.

Let B(r) C R? denote the ball centered at the origin of radius r. Note that the
second fundamental forms of the (n) in the ball B(2) can not converge to zero as
n — 00, since fl(n) N B(1) is not simply connected. Thus, £ contains a smooth leaf
L that is not a plane. Since L is a leaf of a lamination, we know that L N B(r) has
bounded Gaussian curvature for all » > 0.

First consider the case where S(L£) = @, and let L be as above. By Theorem 1.6
in [27], L is properly embedded in R?, a halfspace in R? or in a slab in R3. Since L
is propetly embedded in a simply connected manifold, it is orientable. Since it is not
a plane, we conclude by curvature estimates [43] that it is not stable. It follows that
the convergence of portions of X(n) to L is of multiplicity one, otherwise one can
construct a positive Jacobi function on the limit L. Since the convergence of portions
of the X(n) to L is smooth with multiplicity one, a standard path lifting argument
implies that L has genus zero. As observed earlier, the annuli X (rn) are transverse
to the “horizontal” foliation of M x R. It follows that L is transverse to horizontal
planes, since it has an open Gauss map and is a limit of surfaces with open Gauss map
with the same property. We will show that there is a simple closed curve o on L with
non-zero vertical flux, which is a smooth limit of simple closed curves «(n) C X(n).
It follows, for n large, that & (n) represents a homotopically non-trivial curve on X (n).
But then, the corresponding curves «(n) on X (n) are homotopically non-trivial and
have length converging to zero, which contradicts that X () has fixed non-zero flux.
This contradiction proves that S(.L£) is non-empty. We now prove the existence of the
curves o(n), motivated by the proof of Assertion 2 in [20].

First suppose that L is properly embedded in R®. Since $(n)NB(1) is not simply
connected, L is not simply connected. Since L also has genus zero, L has more than
one end. If L has finite topology, then it has finite total curvature [7]. In this case, L
must be a catenoid [17] which is vertical, since it is transverse to horizontal planes.
But then, the waist circle of L is the desired curve «. Thus, L does not have finite
topology under the assumption of properness.
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So, L is proper and has infinite topology. In our case of genus zero, this means
that L has an infinite number of ends. Since L is properly embedded, the proof of
the ordering theorem [9] applies to show that given any two ends of L, there exists
an end of a plane or catenoid in R* — L that “separates” the two ends and there is
a natural linear ordering on the ends of L. The main theorem in [6] implies that the
middle ends of L in this ordering are annular ends. It follows from [7] that the middle
ends of L are asymptotic to ends of planes and catenoids. Since x3|L has no critical
points, the ends of L are asymptotic to horizontal planes. In particular, there exists
a horizontal plane that intersects L transversely in a finite positive number of simple
closed curves (actually just one) and we let @ be one of these simple closed curves.
This completes the proof of the existence of the desired «, which implies that L is
not properly embedded in R?.

Since L is not properly embedded in R?, Theorem 1.6 in [27] implies that L
has infinite topology. In our case, this means that L has an infinite number of ends.
Since L is properly embedded in a slab or halfspace of R® which is a geodesically
convex three-manifold, the proof of Theorem 1.6 in [27] and the proof of the ordering
theorem [9] together show that given any two ends of L, there exists an end of a
plane or catenoid in R? — L that “separates” the two ends and there is a natural linear
ordering on the ends of L. Now the argument procedes exactly as in the previous
paragraph to obtain the desired «. This implies that S(L£) is non-empty.

We now check that £ is a foliation of R? by horizontal planes with at least two
vertical line components in S(L£). In fact, by Lemma 1 in [21], £ is a foliation of R3
by horizontal planes with exactly two vertical line components. We sketch the proof
for the sake of completeness.

Since the Gaussian curvature of the sequence i(n) is unbounded in a neigh-
borhood of S(L£), then in some fixed ball centered at the origin, there exist points
p(n) € X(n) of large normalized curvature (see [27]). As shown in [27], after a
translation of X (n) by —p(n), followed by a homothety of X (n) by /K (p(n)),
where K (p(n)) is the absolute Gaussian curvature at p(n), we obtain a new sequence
of surfaces f(n) which converges to properly embedded simply connected surface
¥ in R3 which is transverse to horizontal planes (since the f(n) are). By the main
theorem of [27], ¥ is a vertical helicoid and it follows from [2] that £ is a foliation
by horizontal planes. By the main theorem in [35], S(L£) consists of a locally finite
collection of vertical lines.

If S(L) were to consist of a single line, then from the multisheeted graph picture of
S (n)in any large ball for n large, we would conclude that for n large, ¥ (n) intersects
the unit ball centered at the origin in a disk, which by our normalization is not true.
Thus, S(L£) consists of at least two vertical line components.

In this case, we obtain, for n large, a simple closed curve &(n) C i(n) which
consists of two almost-horizontal almost-straight-line arcs, one above the other, to-
gether with two short arcs near two singular points in S(L) (see the discussion of
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the uniformly locally simply connected case which appears before Assertion 7.1).
It follows that the corresponding curves «(xn) in X (n) are homotopically non-trivial
with lengths converging to zero as n — 00. As before, this situation contradicts the
fact that the flux of the ¥(n) is non-zero. This completes the proof of the assertion,
which also completes the proof of Theorem 7.1. O

Proof of statements (4) and (5) in Theorem 1.5. We now complete the proof of the
Bounded Curvature Theorem stated in the Introduction.

Consider a sequence X (n) of minimal annuli with curvature diverging to infinity.
We will prove that their fluxes converge to zero. After translation and choosing a
subsequence, we may assume that the curvatures are blowing up in arbitrarily small
balls in M x R centered at some point p € M x {0}. The proof of Theorem 7.1
applies and proves that the fluxes of the X(n) must be converging to zero. This
proves statement (4) in Theorem 1.5.

We now prove statement (5) of the Bounded Curvature Theorem. The first part
of this statement is that there exists an & > 0 such that when M is not a sphere and
¥ is a properly embedded unstable minimal annulus in M x R, then the flux of X is
greater than . Once we prove this, curvature estimates for stable minimal surfaces
and statement (4) of Theorem 1.5 imply that there is a uniform curvature estimate
for all properly embedded minimal annuli in M x R. Although we do not use it, we
remark that when M has genus greater than one, then the collection of stable properly
embedded minimal annuli have flux bounded from below by a positive constant.

Arguing by contradiction, suppose X(n) is a sequence of properly embedded
unstable minimal annuli in M x R such that the flux of X (n) is less than %

We first consider the case where the sequence of surfaces is uniformly locally
simply connected in M x R. From the proof of Theorem 7.1, we see that, after
translating the X (»n) and choosing a subsequence, the X(n) converge to a minimal
lamination £ of M xR with M x {0} as aleaf of .£ and witha point p, € S(L)NM x{0}
in the singular set. From the proof, we know that S(£) N (M x {0}) consists of a
finite number of points greater than 1, and outside solid cylinders C; centered at the
points p; € S(L)N (M x {0}) and near M x {0}, the surface X (n) is a highly sheeted
two-component multigraph. Moreover, each component of the multigraph embeds
in an infinite cyclic covering space 7 : N — ((M x {0}) — UJ; Gi).

Since the X (n) are annuli, for & small the two components of [X(n) N (M x
[—e,e]D] — Ui C; are disks, and so, N is simply connected. Since N is simply
connected, the fundamental group of (M x {0}) — |J; Ci is Z. In particular, there are
two points in S(L) N (M x {0}) and M is a sphere. Since we are assuming that M
is not a sphere, we obtain the desired contradiction.

We now know that the sequence % (n) is not uniformly locally simply connected
and, without loss of generality, we can assume that there exist points g, € X (n)
of diverging curvature that converge to a point p, € M x {0}. From the proof of
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Assertion 7.1, we may assume, after small translations, that there exists a sequence
y(n) = (M x {0}) N Z(n) of simple closed curves which have lengths going to zero
as n — o0. Since the curves y (n) are short, we may assume also that they bound
disks D, x {0} € M x {0}. Consider the threc-manifold N (n), which is the closure of
the component of (M x [0, 00)) — X (n) disjoint from the interior of D, x {0}. Since
we are assuming that M is not a sphere, y (n) is homotopically non-trivial in N (n).
Let A(n, i) be aleast-area annulus in N (n) with boundary y (n) and the simple closed
curve «(n, t) on X (n) NN (n) atheight 7. Let A(n) be a limiting stable annulus for
some subsequence of the A(n, t), t — 0.

Now consider A(n) to lie in M x R. By the Stability Theorem (Theorem 1.2),
either A(n) is asymptotic to an end of some M («, r) or under translation, the A(n)
produce a limit which is a vertical minimal annulus over a simple closed geodesic in
M x {0}. In the first case, we contradict that d A(n) is homotopically trivial. In the
second case, we contradict that the fluxes of the A(n) are converging to zero but the
flux of the limiting vertical annulus is strictly positive. These arguments complete the
proof of the first part of statement (5) of Theorem 1.5 concerning curvature estimates
for minimal annuli.

All of our arguments in the proof of the first part of statement (5) also apply
to minimal annuli with compact boundary. Since minimal annuli with bounded
curvature are quasiperiodic, it follows that the annular ends of a £ with finite topology
have curvature bounded by any constant greater than Cyy, and in particular by 2Cyy,
where we may assume Cyy 18 positive. o

Remark 7.1. As noted in statement (4) of Theorem 1.5, our curvature estimate is
uniform in the sense that the estimate is valid for a fixed bound of flux; the curvature
estimate we obtain for X only depends on a lower bound of the flux of the annulus
2. Similarly, the curvature estimates which only depend on the vertical flux can be
obtained under uniformly bounded deformations of the metric on M. The uniform
curvature estimate in terms of flux is quite important for studying moduli space
questions for minimal surfaces of genus zero in R? and minimal annuli in S x R,
where S is the unit sphere in R®. In particular, these curvature estimates imply
that minimal annuli in S x R have bounded curvature and linear area growth. As
explained in [22], these curvature estimates for minimal annuli can be used to prove
that minimal annuli in S x R with certain bounds on their horizontal (coming from the
Killing fields on S) and vertical fluxes are foliated by circles; hence, these examples
are in the family + described in Section 2.

Now we consider the case of Theorem 1.6 stated in the Introduction. The proof
of this theorem is based on the same type of arguments given in the proof of Propo-
sition 3.1; we will only briefly outline the idea of the proof. As in the proof of
Theorem 7.1, the basic idea is to prove, under the hypothesis of bounded genus in
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e-type horizontal “slabs” in M x R, that there exists a divergent sequence I'(n), I'(n)
consisting of a bounded number of simple closed curves in ¥ at approximate heights
by, which diverge to oo or —o0, such that I (r) is homologous in ¥ to X N (M x {0})
and such that the total length of I'(n) converges to zero. The existence of the I'(n)
follows from a careful analysis of the local geometry of a properly embedded minimal
surface in a Riemannian three-manifold near a point p, of large curvature when one
has a uniform bound on the genus of the surface in a neighborhood of p.. The local
description that makes this analysis possible can be found in [5], [20] or found from
a proof analysis of Theorem 7.1. In the construction of the I'(n), one also applies
arguments similar to those used in the proof of Theorem 3.1. This completes our
sketch of the proof of Theorem 1.6.

8. Concluding remarks and conjectures

In a recent paper, the authors have addressed the question of the role that properly
embedded plays in the theory of complete embedded minimal surfaces in M x R.
In the paper [24], we explain the structure of the closure of a complete embedded
minimal surface of finite topology in M x R, which may or may not be properly
embedded. For us, a complete embedded surface is an injective isometric immersion
of a complete surface.

Theorem 8.1 (Theorem 15 in [24]). Suppose X is a complete embedded minimal
surface of finite topology in M x R. Then:

(1) The closure of X is a minimal lamination of M x R.
(2) If M has a metric of positive curvature, then X is properly embedded in M x R.

(3) If M has a metric of non-negative curvature and X is not properly embedded,
then M is a flat torus and X is a totally geodesic submanifold.

In general, there exist many complete embedded minimal surfaces of finite topol-
ogy in M xR which are not proper; in fact, such complete embedded minimal surfaces
can even be found which are totally geodesic or which are graphs. By Theorem 8.1, a
complete embedded minimal surface of finite topology in M x R has locally bounded
curvature and is a leaf of a minimal lamination. We believe that a better result holds
for complete embedded minimal surfaces of finite genus and we make the following
conjecture and question.

Conjecture 8.1. If f: ¥ — M x R is a complete embedded minimal surface and
% has finite genus, then X has bounded curvature.
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Question 8.1. Suppose X is a complete embedded minimal surface in M x R. Must
it be the case that ¥ has a finite number of ends? If not, will it have a finite number of
ends under an additional hypothesis such as bounded curvature, finite genus, being
stable or at least must X have only a countable number of ends? Also, does X have
only a finite number of ends under some constraint on M such as having positive
curvature?

We mention here another important conjecture and an interesting question that
arises from our work.

Conjecture 8.2. Suppose S is the two-sphere endowed with a constant curvature
metric. Every properly embedded minimal annulus in S x R is foliated by circles of
varying radii, one in each level set sphere. It then follows that a properly embedded
minimal annulus in S x R is either a cylinder of the form y x R where y is a great
circle, a “helicoid”, one of the “unduloids” defined by Pedrosa and Ritore in [37],
or one of the other minimal annuli in the two-parameter family + defined in Section
2.2.

Question 8.2. If ¥ is a properly embedded minimal surface in M x R, then are the
annular ends of X asymptotic to the ends of periodic minimal annuli in M x R?
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