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The theory of minimal surfaces inMxR
William H. Meeks and Harold Rosenberg*

Abstract. In this paper, we develop the theory of properly embedded minimal surfaces in M x R,
where M is a closed orientable Riemanman surface. We construct many examples of different
topology and geometry. We establish several global results. The first of these theorems states

that examples of bounded curvature have linear area growth, and so, are quasipenodic. We then

apply this theorem to study and classify the stable examples. We prove the topological result
that every example has a finite number of ends. We apply the recent theory of Colding and

Minicozzi to prove that examples of finite topology have bounded curvature. Also we prove the

topological unicity of the embedding of some of these surfaces.
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1. Introduction

In the present paper, we begin the development of a general theory for properly
embedded minimal surfaces S in a Riemannian three-manifold of the form Mxl,
where M is a closed orientable Riemannian surface. The theorems stated in this
Introduction form the main body of this emerging theory. We state once more for
emphasis that in all of these theorems and throughout this paper, M will denote a

closed orientable Riemannian surface. We will consider only non-compact minimal
surfaces S. For, if S is compact, then S M x {t} for some (eR, since the height
function onMxR, restricts to a harmonic function on S which has a maximum on
S, and hence is constant.

In Section 2, we shall construct a multitude of examples of S in M x R of varying
topology and geometry, comparable to the rich family of classical doubly periodic
minimal surfaces in M2 x R considered to be properly embedded minimal surfaces S

*This material is based upon work by the NSF under Award No. DMS - 0405836. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily
reflect the views of the NSF.
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in the quotient Txl, where T is a flat two dimensional torus. In S x R, where S is

the two-sphere of constant curvature one, we have helicoids obtained by spinning a

geodesic of S x {0} while rising in the R factor at a speed proportional to the constant
rate of spinning. The surfaces of revolution in S x R are the unduloids, which behave

qualitatively like the Delaunay unduloids of constant mean curvature \ in R3. We
construct a two-parameter family A of properly embedded minimal annuli in S x R,
containing the helicoids and the unduloids, and each of these annuli meets the level
set spheres S x {t} in circles with varying radii. The annuli in A are parametrized
by the same family of elliptic functions as the Abresch two-parameter family [1] of
constant mean curvature \ periodic annuli in R3 foliated by planar lines of curvature
(the larger principal curvatures). We also construct many other interesting S of finite
topology inMxR, including an infinite number of complete minimal graphs over
non-isotopic domains in M, when the genus of M is greater than one (see Theorem 2.3

in Section 2).
Our first main theoretical result deals with surfaces with bounded curvature.

Theorem 1.1 (LinearArea Growth Theorem). If S is a properly embedded connected

non-compact minimal surface in M x R ofbounded curvature, then S has linear area
growth, in the sense that given any t > 1, then c\t < Area(S n (M x [—t, t])) < C2t,

for some positive constants c\, C2. Here c\ depends only on M and C2 depends on
M, an upper and lower bound of the flux of the harmonic height function h : S —>¦ R
across a level set ofh, an upper bound on the absolute Gaussian curvature o/S and

on the homology class represented by the cycle T,n (M x {0}) in Hi (M x {0}).

An immediate corollary of Theorem 1.1 is the following:

Corollary 1.1. If S is a properly embedded minimal surface of bounded curvature
in Mx| then T, has a finite number of ends.

Note that if S separates MxK, then S n (M x {0}) represents the zero homology
class in H\{M x {0}), and so, in this case the constant C2 in the above theorem

depends only on M, curvature estimates for S and a lower bound for the flux of S.
In particular, if M is a two-sphere, then we get this simpler estimation for C2.

Every sequence of properly embedded minimal surfaces in a Riemannian three-

manifold, which satisfy uniform local area and local curvature estimates and such that
each surface in the sequence intersects some compact domain, has a subsequence that

converges to a properly embedded minimal surface with the same uniform local area
and local curvature estimates (see for example [27] and [38]). A simple consequence
of this compactness result and Theorem 1.1 is that every non-compact properly
embedded minimal surface inMxl with bounded curvature is quasipenodic in the

following sense. A properly embedded surface S in a Riemannian three-manifold
./V is quasiperiodic, if there exists a discrete infinite closed subset S {Tn \ n g N}
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of the isometry group of JV such that T„(S) converges on compact subsets of ./V to a

properly embedded surface.

Corollary 1.2. If S is a properly embedded non-compact minimal surface ofbounded
curvature in M x R then S is quasiperiodic. In fact, any sequence of vertical
translations o/EmMxl contains a convergent subsequence to another properly
embedded minimal surface with the same bound on its curvature.

In Section 4, we study stable minimal surfaces inMxi By the curvature
estimates of Schoen [43], every properly embedded stable minimal surface inMxK
has bounded curvature. (Schoen's theorem states that any immersed complete stable

orientable minimal surface in a homogenous regular three-manifold has uniform
curvature estimates away from its boundary. Thus, if it has empty boundary, then it
has bounded curvature. In our case, if S were non-orientable, stable and properly
embedded inMxl, then small balls inMxl intersected with S are compact surfaces

that separate the ball, and so, Schoen's curvature estimates imply S has bounded

curvature.) Therefore, every properly embedded non-compact stable minimal surface

in M x R is quasiperiodic. This quasiperiodicity property will be essential in proving
the following theorem, which we refer to as the Stability Theorem and whose proof
appears in [26]. This result is Theorem 1.1 in [26]. This major result classifies all
the non-compact properly embedded orientable stable minimal surfaces into three

categories: they are surfaces of the form yxl where y is a simple closed stable

geodesic in M, minimal graphs over domains in M x {0}, or the periodic multigraphs
M(a, r) described in Theorem 4.1. The proof of the Stability Theorem is based in
part on the theoretical results we obtain in Sections 3 and 4 of this paper.

Theorem 1.2 (Stability Theorem (Theorem 1.1 in [26])). Suppose that S is a
connected properly embedded stable orientable minimal surface in Mxl Then, S is

one of the surfaces described in (l)-(4) below.

(1) T, is compact and T, M x {t}for some t e R.

(2) S is of the form yxl, where y is a simple closed stable geodesic in M.

(3) S is periodic under some vertical translation by height r, and so has a quotient
S in M x S(r), where S(r) is a circle of circumference r. In this case, for every

p g M, {p} x S{r) intersects S transversely in a single point and the orbit of
the natural action ofS(r) on M x S(r) gives rise to a product minimal foliation
ofM x S{r). In particular, S is homeomorphic to M and is area minimizing in
its integer homology class.

(4) S is a graph over an open connected subdomain of M bounded by a finite
number of stable geodesies, with each end o/S asymptotic to the end of one of
the flat vertical annuli described in (2).
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(5) The moduli space of examples described in (3) in the case M is orientable is

naturally parametrized by P(H\(M)) x M.+, where P(H\(M)) consists of the

primitive {non-multiple) elements in the first homology group ofM.

Corollary 1.1 states that a properly embedded minimal surface of bounded
curvature inMxR must have a finite number of ends. In Section 5, we prove that the

bounded curvature hypothesis on the surface can be dropped and one still obtains the

finite number of ends conclusion.

Theorem 1.3 (Finiteness of Ends Theorem). If S is a properly embedded minimal
surface in Mxl, then T, has a finite number of ends.

Corollary 1.3. If S is aproperly embedded minimal surface offinite genus in M :

then S is conformally a closed Riemann surface punctured in afinite number ofpoints.

The above Finiteness of Ends Theorem appears to be the only interesting general

result which restricts the topological structure of a properly embedded minimal
surface S in M x R. However, for particular metrics on M, one can obtain deeper
results on the topology and on the embedding of S in M x R. The next theorem,
whose proof appears in Section 6, gives an important example of such a result.

Recall that a handlebody is a three-manifold with boundary that is homeomorphic
to a closed regular neighborhood of a connected properly embedded one dimensional
CW complex in IR3 and that a surface S in a three-manifold N3 is a Heegaard surface

if it separates N3 into closed complements which are handlebodies. Rosenberg [41]
proved that a properly embedded minimal surface in S x R must have exactly two
ends, where S is the two-sphere endowed with a metric of positive Gaussian curvature.
The next theorem gives a deep generalization of this result to a larger class of metrics

on S.

Theorem 1.4 (Unknotted Theorem). Suppose S is a two-sphere endowed with a
Riemannian metric with no stable simple closed geodesies. Then:

(1) If His a non-compact properly embedded minimal surface in SxK, then S is

a Heegaard surface for Xxt
(2) Every Heegaard surface for S x R has two ends, and if S is a connected

orientable surface with two ends, then S embeds in S x R as a Heegaard
surface.

(3) Heegaard surfaces of S x R are unknotted, in the sense that if two such sur¬

faces M\, Mi are diffeomorphic, then there exists an orientation preserving
diffeomorphism f e Diff (S x R) such that /(Mi) M%.
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We next focus our attention on the case when the properly embedded minimal
surface E in M x R has finite genus. By Theorem 1.3, such a surface E has a finite
number of ends, and so, each end of E is an annulus and E has finite topology. We
then use this finite topology property of E to prove that E has bounded curvature, and

so, by Theorem 1.1, S has linear area growth. The proof that E has bounded curvature
uses some of the recent results of Meeks, Perez and Ros [20] on the local structure
of properly embedded minimal surfaces with bounded genus in three-manifolds in a

neighborhood of a point of large curvature. Their results in turn depend on recent
curvature estimates of Colding and Minicozzi [2], [3], [5], work of Meeks [35], and

results of Meeks and Rosenberg in [27]. With some further geometric analysis, we
obtain the following two theorems in Section 7.

Theorem 1.5 (Bounded Curvature Theorem). Suppose E is a properly embedded

minimal surface offinite genus in Mxi Then:

(1) E has bounded curvature. Hence, by Theorem 1.1, it has linear area growth
and by Corollary 1.3 it has finite conformai type.

(2) If M has non-positive curvature, then E has finite index with respect to the

stability operator and total curvature c(E) 2tt/ (E).

(3) If M has non-positive curvature and M is not a torus, then each end of E is

asymptotic to y x R, where y is a stable embedded geodesic in M. When M is

aflat torus, then each end ofE is asymptotic to the end of a totally geodesic flat
annulus in Mxi

(4) If E(n) is a sequence of properly embedded minimal annuli in M x R with
diverging curvature, then the fluxes of the E{n) converge to zero. {Here, the

flux of E(n) refers to the flux of the gradient of the harmonic height function
h:E->R across a level set ofh.)

(5) Suppose M is not topologically the two-sphere. Then, there exists an e > 0

such that if E is a properly embedded unstable minimal annulus in Mxl, then

the flux ofE is at least equal to e. In particular, there exists a positive constant
Cm so that any properly embedded minimal annulus in M x R has absolute
curvature bounded by CM- When E is a properly embedded minimal surface of
finite topology in MxK, then outside ofa compact set it has curvature bounded

by 2CM.

Theorem 1.6. Suppose E is a properly embedded minimal surface in MxR. If there

exists an e > 0, such that for every a e R, the genus ofE n (M x [a — e, a + e]) is

bounded independent of a, then E has linear area growth.

At the end of the paper, we include a section on concluding remarks and conjectures.
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The theorems stated in this Introduction are strong results on the geometric behavior

of minimal surfaces S of finite topology inMxR, which significantly generalize
our earlier theorems [23], where M T is a flat two dimensional torus. One of the

main theorems in [23] is that such a S has bounded curvature and total Gaussian

curvature c(S) 27r/(S), where /(£) is the Euler characteristic of S; thus, S
has finite total curvature if it has finite topology. This finite total curvature property
for finite topology S leads to strong restrictions on the geometry and the topology of
such surfaces and forces each annular end of S to be asymptotic to the end of a flat
annulus inTxM.

Later Meeks (see Theorem 5.2 in [32]) generalized these results in [23] by proving
that any properly embedded minimal surface S in T x R has a finite number of ends

and by proving that if the genus of S is finite, then S has finite topology and linear
area growth. Meeks' Theorems identified properly embedded minimal surfaces in

Txlof finite total curvature with those surfaces of finite genus. In particular, if
S has genus zero, then S has finite total curvature. This result, together with some
other constraints finite total curvature planar domains inTxt satisfy [23], was
then applied by Lazard-Holly and Meeks [16] to prove the deep result: A genus
zero quotient of a properly embedded doubly-periodic minimal surfaces in R3 is the

quotient of one of the classical doubly-periodic examples defined by Scherk [42] in
1835 (also see [15]).

The authors would like to thank Joaquin Perez for his careful reading of a

preliminary version of this manuscript and for his numerous and detailed suggestions
for improving it. We would like to thank him as well for making the Figure 1 in
Section 2.

2. Constructing examples of finite topology

In this section, we will cover some methods that have proven useful in constructing
properly embedded minimal surfaces S in M x R of finite topology. First, note that
the height function h : S —>¦ R is harmonic, and so, by the maximum principle, if S
is compact, then it is a level set surface of the form M x {t} for some leM. Since

MxR has two ends, a non-compact S must have at least two ends, again by a simple
application of the maximum principle. Thus, the simplest non-compact examples are

minimal annuli AcMxl Since h : A --* R is proper on each end of A, A can be

conformally parametrized by S(r) x R where h 1(t) S(r) x {t} and S(r) is the

circle of circumference r, where r is the flux of A (the flux of A is defined in the first
paragraph of Section 3 and is just the flux of the gradient of h across any level set). In
particular, A intersects each level set M x {t} transversely in a simple closed curve.

2.1. A minimax construction for minimal annuli in S x R. The simplest non-

compact properly embedded minimal annuli in M x R are the totally geodesic annuli
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obtained as y x R, where y is a simple closed geodesic on M. If y is an unstable

geodesic, then frequently there exists a one-parameter family A(t) of periodic
properly embedded minimal annuli that are unstable (infinite index) and are small

(horizontal) graphs over yxl. In [37], Pedrosa and Ritore described analytically
what these annuli are in the case that M is a two-sphere S endowed with a constant
curvature metric and they called them unduloids. One can also define helicoids [41]
in S xR; they are obtained by rotating a great circle on S at a constant rate in the t

parameter about an axis passing through a pair of antipodal points on the rotated great
circle. Our first step in constructing other properly embedded minimal annuli in S x R
is the following lemma, whose proof we postpone to the end of the subsection.

Lemma 2.1. Let S denote the unit two-sphere in R3. Let a denote the great circle
on S which is the intersection of S with the x\x^-plane and leta(0) a x {0}. For 9,

0 < 9 < h, let a{9) denote the great circle obtained by rotating a counterclockwise

by angle 9 around the positively oriented x^-axis. For t > 0, let a(9,t) denote the

great circle a{9) xjfjc^xi Define the helicoid W(9, t) \J {a(f, s) | 0 <
s < t} with boundary a(0) and a{9, t). For 9 fixed and for t sufficiently small such

that W(9, t) is strictly stable, there exists an embedded index one minimal annulus

A{9,t) c S x [0, t] with d(A(9,t)) <x(0) U a{9, t), which is not a helicoid and
such that the interior of A{9, t) is disjoint from W{9, t). Furthermore, A{9, t) has

the symmetries of the union of its boundary circles.

Let A(9, t) be one of the compact minimal annuli in the previous lemma. This
annulus is part of the periodic minimal annulus A (9, t) in S x R obtained as the orbit
of the subgroup of the isometry group of S x R generated by reflection across each

of the boundary curves of A{9, t); note that the reflection across a c S x {0} is the

composition of reflection across S x {0} composed with the reflection in the vertical
annulus a x R. Also, A(9, t) is invariant under reflection across yxR, where y is

the equator in S, and it is invariant under reflection across a great circle in S x {|}.
We now check that for t sufficiently small, A(9, t) is not an unduloid and not a

helicoid. Since A{9,t) contains the non-parallel great circles a(0) and a{9, t), it is

not an unduloid. A(9, t) is not a helicoid, since the level curves in the interior are

not geodesies; they are disjoint from the geodesic level curve of W(0, t) at this level.
This completes the proof of the next theorem, where t t (9) is chosen small enough
so that W(9, t) is strictly stable.

Theorem 2.1. For every 9, 0 < 9 < n, there exists a positive number t(9) such

that for all 0 <t <t{6), there exists a properly embedded minimal annulus A{9, t),
which is not an unduloid or a helicoid, and which is the lift ofa compact minimal torus
in (S x R)/r(9, t), where x{9,t) is the screw motion symmetry which acts on S by
rotation around the x^-axis by angle 29 and on R by translation by It. Furthermore,
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A(6,t) is invariant under reflection across a vertical annulas ofsymmetry and under

reflection across a great circle in S x {^}.

It turns out that Lemma 2.1 and Theorem 2.1 hold for other metrics on a sphere
S2. We briefly explain this construction for these metrics.

Assume that S2 is equipped with a metric invariant under an S1 action with two
fixed points p, q e S2. Let yPA be a least length geodesic arc on S2 joining p to q
and let y'pq be the rotation Rn of yVA by angle it. Identify S2 with S2 x {0} and

consider the simple closed geodesic y yPA U ypq. Let G be the associated Sl

action on S2 x R and note that G is a subgroup of the larger group G x R of isometries
of S2 x R, where R acts on S2 x R by vertical translation. It is straightforward to
check the orbit Sg(y), under any of the one-parameter screw motion subgroups Sg

inGxR, gives rise to a minimal "helicoid" in S2 x R foliated by geodesies. Also
note that the helicoid Sg (y is invariant under the isometry which is the composition
of (x, t) Mi* (Rjt(x), —t), which one can consider to be rotation around y. Similarly,
Se{y) is invariant under rotation around any of its horizontal geodesies. With little
change, the proofs of Lemma 2.1 and Theorem 2.1 generalize to produce a related

one-parameter family of embedded minimal annuli. If, in addition, one assumes that
the metric on S2 is invariant under a reflectional symmetry that interchanges p and q,
then the annuli produced by this method can be chosen to have the related reflectional

symmetry in S2 x R.
We now give the proof of Lemma 2.1.

Proof. Let p{9, t) (cos (-f) sin (-^), 0). Fix 9 and assume that t is chosen

so that W(6, t) is stable. Let D denote the disk on S x {0} which bounds a(0) and

is disjoint from p(6,0) and let E be the disk on S x {t} which bounds a(t,6) and

is disjoint from p(6, t). Note that there exists a one-parameter family of embedded
annuli in S x [0, t] — W(6, t) with boundary a(0) U a(6, t) which are topologically
parallel to W(6, t) and join the integral currents W(6, t) and DUE; these annuli

can also be chosen to have all the symmetries of a(0) U a(6, t). Let B be the ball
in S x [0, t] bounded by W(6, t) U D U E. In B the union <x(0) U a(6, t) bounds
both the stable helicoid W(6, t) and the stable surface D U E. As we just observed,
these stable surfaces can be joined by a continuous family of embedded annuli with
boundary a(0) U a(6, t). A standard minimax argument (see, for example, [28] and

[39]) implies that a(0) U a{9, t) is the boundary of an index-one embedded minimal
annulus A(6, t) c S x [0, t] — W(6, t). Since the deformation family of embedded
annuli can be constructed to have the symmetries of a (0) U a (6, t), the results in [39]
imply A(6,t) can be chosen to have the symmetries of a(0) U a(6, t).

2.2. The two-parameter family A, of embedded minimal annuli in S x R foliated
by circles. All of the minimal annuli described in the previous subsection are in
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fact in the family A, which we will define and discuss here. We now describe the

two-parameter family A of minimal annuli in S x R. These minimal annuli include
the unduloids, the hehcoids and their deformations, which we think of as Riemann

type minimal surfaces [19] in S x R.
Constant mean curvature tori M in M.3 give rise to minimal annuli in S x R as

follows. The Gauss map / of a constant mean curvature torus is a harmonic map
to S. Its holomorphic Hopf quadratic differential is:

9/
dx

9/
dy

2

-21
dx '

dy
7,2

where z x + iy is a global holomorphic coordinate on the torus. Since M is a torus,
this is constant:

Q(f) c-dz2.

After a linear change of coordinates, we can assume that the constant c is one. Then
the map

F: S1 xR^ SxR, F(x,y) (f(x,y),y)
is a conformai harmonic map, i.e., a minimal surface. The Delaunay surfaces (/ is

periodic, as defined on a torus) yield the unduloids in S x R and the nodoids yield
the helicoids in S x R under this correspondence by F.

Abresch studied the family of Wente tori (constant mean curvature \ in R3),
where one family of principal curvature lines are planar [1]. More generally, he

studied constant mean curvature surfaces parametrized by R2, with the coordinate
axes x and y yielding the (smaller and larger) principal lines of curvature.

Those tori whose small curvature lines, k\, are planar were found among the

solutions of the system:

A« + sinh(ft)) ¦ cosh («) 0

sinh(ft)) ¦ co — cosh(ft)) • co to 0.

Here ' and ' denote the derivatives with respect to x and y, respectively. We remark
that Q(f) dz2 for these surfaces.

Abresch classified all real analytic solutions a> : R2 ->¦ R of the above system in
terms of elliptic functions. He then went on to study the system which corresponds to
the larger curvature lines A.2 being planar curves. It follows that the Gaussian image
of each such A.2 line is contained in a circle of S. These examples are solutions of the

following system (I):

A« + sinh (ft)) ¦ cosh (ft)) 0

(I)
cosh(ft)) ¦ ft) — sinh(ft)) • co co 0.
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We remark that Q(f) —dz2 when / is the Gauss map of this Abresch family.
Abresch classifies all solutions of this system as well (it is analogous to the first
solution space), and shows that the associated constant mean curvature surfaces do

not close up in IR3, and so, do not yield Wente tori. However, the solutions of system (I)
do yield minimal immersions F : S1 x R —>¦ Sxl. Laurent Hauswirth [13] observed
that the second equation of system (I) is precisely the condition that the level curves
of F be circles. We define A to be the family of these minimal surfaces, induced

by solutions of (I). If / denotes the Gauss map of a constant mean curvature surface

solution of (I), then the minimal surface (x, y) *--* (f(x, y), x) in S x R is foliated
by circles in level set spheres. We now discuss these surfaces from another point of
view.

2.3. The existence of minimal annuli inMxl, foliated by circles in a space
form M. Hauswirth [13] observed that the classical Shiffman Jacobi function
(defined below) for minimal surfaces in IR3 (transverse to the planes IR2 x {t}) generalizes
to M x R, where M is a space form of constant curvature. Shiffman [44] used this
Jacobi function to prove that a compact minimal annulus in IR3 with boundary circles
in horizontal planes is foliated by circles in horizontal planes; hence, by Riemann

[40], the compact annulus is contained in a periodic minimal surface of genus zero
defined in terms of elliptic functions. This same argument works to prove that our
examples in the previous subsection are foliated by circles, using the fact that the basic

compact annular pieces are bounded by circles and have index of stability one. This

technique also yields another way to generate Riemann type examples of minimal
surfaces in¥xl, which we now describe.

Let A be a compact minimal annulus inMxK with boundary curves in M x {t\}
and M x fe} with t\ < t%. Let S(r) denote the circle of circumference r. Assume

S(r) x [t\, t2] is a conformai parametrization of A with h(x,t) t and where r is the

flux of h. Let k{9, t) be the corresponding geodesic curvature function of the level

set curve at height t. Then,
die

S k

is a Jacobi function on A, where X(6, t) is the conformai factor or speed of the level
set curve at the parameter values (0,t). If the boundary curves of A are chosen to be

circles and A is strictly stable, then the Shiffman function has zero boundary values

on A, and so, vanishes on A. This means that A is foliated by circles. In the case

M is S, then, by analytic continuation, we obtain a periodic minimal surface A. In
fact, we obtain all the examples in A in this way. In the case M M2, we obtain a

A which is a catenoid or one of the Riemann examples.

Let H be the hyperbolic plane. Now suppose one considers a small stable part
of a catenoid inixl bounded by a circle in H x {0} and a circle in H x {t}.
Translate sideways slightly the circle in H x {t}. Then, there is a new annulus A(t,s)
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bounded by the two new circles and, using the Shiffman function, we see that it is

foliated by circles. Notice that A{t,s) has a vertical plane of symmetry coming from
the symmetry of its boundary circles. Now A{t,s) can be extended to a minimal
surface B(t, s) in some open neighborhood of A(t, s) since dA(t, s) is analytic.
Clearly, B(t, s) is also foliated by circles. Thus, there is a maximal open minimal
annulus A(s) foliated by circles, and containing A(t, s). A simple maximum principle
argument (using complete catenoids as barriers) shows the asymptotic boundary of
A(s) is non-empty. Hence, dA(s) consists of two horocycles C\ and C2. Assuming
C2 higher than C\, A(s) extends above C2 by level curves of constant curvature less

than one, i.e., equidistant curves. These curves eventually become a geodesic yi.
Similarly, extending A (s) below C\ by equidistant curves, we arrive at a geodesic y\.
Now rotate about y\, and /2 and continue to obtain a complete embedded Riemann

type minimal surface inHxl.

2.4. Connected sum construction. We now present a simple connected sum
construction for creating properly embedded minimal surfaces of finite topology from
old ones. Suppose S is a properly embedded minimal surface of finite topology in
Mi x R and such that there exists a disk D\ c M\ such that (D\ x R) n S 0. First
take the connected sum of M\ with another surface M2; M\ # M2 equals the disjoint
union of Mi — D\ and M2 — D2 glued together along their boundary curves where

D2 is a disk in M2. Next extend the Riemannian metric on M\ — D\ <z M\# M2 to
all of Mi # M2; then we can view S as being a minimal surface in (Mi # M2) x R.
For example, consider a Scherk doubly-periodic surface of genus zero EcTxi
Then, using this connected sum construction, we can consider S to be a minimal
surface in (T # T) x R with a metric of non-positive curvature on T # T.

2.5. Construction of minimal annular graphs inMxi. We now describe a

method for constructing a connected annular minimal graph G in M x R. By the

Stability Theorem (Theorem 1.2 stated in the Introduction), any such graph G must
have a finite number of top ends which are asymptotic to the top ends of Ft x R,
where Ft {«(1), a(T)} is a finite collection of pairwise disjoint stable simple
closed geodesies on M. Let Fb {ß(l), ¦ ¦ ¦, ß{B)} be the family of geodesies

corresponding to the bottom ends of G. Since the total flux of the top ends of G is

equal to the total flux of the bottom ends of G, then

n=\ n=\

where / refers to the length of the geodesic. It follows from this formula that for an

M with a generic metric every minimal graph inMxl must have some top end

and some bottom end asymptotic to the same yxi, since for a generic metric one
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does not have such a rational relationship for the lengths of distinct closed geodesies.

However, for some special metrics on M it is possible to construct such graphs where
the geodesies in Ft are disjoint from the geodesies in Fß. We now make one such

construction.
Consider any Riemannian metric on the topological annulus S1 x [—1, 1] that is

invariant under the reflection R, (p,t) *--* (p, —t), and such that there exists a least

length simple closed geodesic a in S1 x [—1,1] with the length of a less than the

length of S1 x {0}. Suppose a is also chosen to be such a geodesic such that a is

closest to S1 x {0}. Since R(a) is disjoint from a, a and R(a) bound a new annulus
A c S1 x [—1, 1]. Consider the curves a(t) a x {t} and ß(t) R(a) x {—t}.
Let S(0 be the area-minimizing surface in A x [—t, t] with boundary a(t) U ß(t).
A simple application of the maximum principle (Rado's theorem) implies that S(f)
is the unique compact minimal surface in A x [—t,t] with boundary S(f) and that

S(0 is a graph over the annulus A. Since S(f) is invariant under the isometry
(p, s) i-> (R(p), -s), S(0 n(A x {0}) S1 x {0}. It now follows rather easily,

using that S1 x {0} is longer than a and that S(f) is area-minimizing, that the graphs
S (0 converge to a graph G over A with top end asymptotic to a x [0, oo) and bottom
end asymptotic to R(a) x (—oo, 0].

The general importance of the example discussed in the previous paragraph is that
it guarantees the existence of minimal annular graphs in those M x R where such a

metric on S1 x [—1,1] isometrically embeds in M. Therefore, a simple consequence
of this result is the following theorem.

Theorem 2.2. Suppose R: M -> M is an orientation reversing isometry of an
orientable surface ofpositive genus with a fixed point component which is a strictly
unstable geodesic. Then M x R admits an annular minimal graph.

2.6. Existence of non-isotopic minimal graphs inMxl. As we observed in the

previous subsection, for a generic metric on M, there do not exist connected minimal
graphs where the multiplicity of the geodesies corresponding to the annular ends of
the graphs is one. In the case M has genus zero, this presents a genuine obstruction
to finding minimal graphs. Also, if M is a torus with a flat metric, then there do not
exist any minimal graphs. However, for any compact orientable Riemannian surface

M of genus greater than one, there exist infinitely many minimal graphs inMxK,
where some closed geodesic corresponding to a top end also corresponds to a bottom
end. For example, for a generic metric on M, there exists a unique embedded closed

geodesic F of least length which does not separate M. For such a Riemannian surface,
there exists a complete minimal graph G over M — F that is unique up to vertical
translation (see the proof of the next theorem).

Theorem 2.3. If M is orientable of genus at least one and M is not a torus
endowed with a metric which admits an infinite collection ofdistinctfoliations by closed
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geodesies, then there exists an infinite number ofnon-isotopic domains in M bounded

by geodesies which minimize length in their homotopy class and such that there exist

proper minimal graphs over these domains.

Proof. We will apply the existence theorem, Theorem 4.1 in Section 4, to obtain

our graphs. The reader should consult Section 4 to see the definition of M (a, r) c
M x S(r), where S(r) is the circle of circumference r and a e H\ (M) is a primitive
(non-multiple) homology class. We recall the essentials on the construction of these

interesting surfaces. The homology class a can be represented by a simple closed

curve ä with a product annular regular neighborhood A ä x [—e, e] c M with
boundary circles a_e, as. Consider M to be the level set surface M x {0} for angle
9 0 G S(r); here 0 denotes the identity element in S(r) R/rZ. Next consider
the annulus G c M x S(r) which is a linear graph of slope j^ over A in M x S(r),
where we consider the circle S(r) to be a vertical line segment of height r with the

top and bottom points identified. A piecewise smooth surface M (a, r) is obtained by
replacing the annulus A on M x {0} by G. The surface M (a, r) is then an embedded
surface of least-area in the homotopy class of this surface in M x S{r)}, which

by Theorem 4.1 is unique up to translation. See Figure 1 for an indication of the

construction of M (a, r).

Of-,

Figure 1. The surface M {a, r), where M has genus two.

The minimal surface M (a, r) in M x S(r) is a graph over M x {0}. Assume for
the moment that the genus of M is greater than one. In this case, we may assume,
after a possible translation in M x S(r), that M (a, r) has a horizontal tangent space
at height 0 (since the foliation of M (a, r) induced by intersecting with the M x {t}
must have a singularity). Let F(r) be the minimal foliation of M x R obtained
from translates of lifts M(a, r) of M(a, r) to M x R. By letting r; --* oo and

taking a limiting subsequence, we may assume that M (a, r\) converges to an area

minimizing surface S 1 which is a leaf of a limit foliation F of the F (r, Note that
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F (r,) is invariant under vertical translation and so is its limit 3r. Since the fluxes of
the M (a, r\) are bounded from below by the flux of M (a, r\) (see Proposition 4.1)
and there is a uniform curvature estimate for stable minimal surfaces inMxl,
Theorem 1.1 implies that every leaf of F is properly embedded. Since r; --* oo,
Proposition 4.1 implies that the leaves of F are not periodic, and so, by the Stability
Theorem (Theorem 1.2), any component of S(l) containing a nonvertical tangent
space at some point is a graph over its projection to M x {0}. The Stability Theorem
also implies that any leaf of F with some vertical tangent space is a vertical annulus

over a stable embedded geodesic in M x {0}. By our choice of translation of M (a, r),
S (1) has a horizontal tangent space at some point in M x {0}, and so, the component
of S(l) containing this point must be a graph.

Now let C(l) be the union of the components of S(l) containing critical points
of A. Since h : C(l) -> R has at least one critical point in each component, C(l) is a

graph over a subdomain À C 1 c M x {0} with each component of A C 1 having
negative Euler characteristic. If / À C 1 ^2g—2, then, after different translations

of M (a, r\ in M x S(ri we can obtain a new limit surface S (2) with h : S (2) —>¦ R
having at least one critical point and such that for the new set C(2), A(C(2)) is

disjoint from A(C(1)). Continuing in this manner, we eventually obtain disjoint
domains A(C(1)), A(C(2)), A(C(«)) in M x {0}, such that every component
of these domains has negative Euler characteristic and such that

Mx{0}-Qa(C(0)
1=1

consists of components which are compact annuli or which are stable simple closed

geodesies. By construction, the primitive homology class a can be represented by
a finite sum of the boundary curves of the domains A(C(f where each boundary
curve is oriented and appears at most once in this sum for each such domain. It follows
that such a decomposition A(C(1)), A(C(«)) of M x {0}, defined up to isotopy
in M x {0}, can only give rise to a finite number of primitive homology classes,

since there are only a finite number of combinations of the boundary curves. Since
there are an infinite number of primitive homology classes in H\ (M x {0}), there
exists an infinite number of non-isotopic domains in M bounded by stable geodesies,
which admit proper minimal graphs asymptotic to ends of flat annuli over these stable

geodesies. This proves the theorem in the case the genus of M is greater than one.

Now assume that M has genus one. Let a be a primitive homology class in H\ (M)
such that M is not foliated by simple closed geodesies that represent a. As before,

we have associated foliations !F(n) and a limit foliation F. As before, F consists of
leaves which are graphs over annuli or which are vertical annuli over simple closed

geodesies in M x {0}. It also follows that for any leaf of F which is a graph over an
annulus on M, each of its boundary curves represents a. Thus, since we are assuming
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that M x {0} cannot be foliated by simple closed geodesies which represent a, then

F contains a leaf which is an annular graph over an annulus À (a) c M x {0}. Since

H\ (M) has an infinite number ofdifferent primitive elements, M must have an infinite
number of non-isotopic annular domains which admit proper minimal graphs. This
completes the proof of Theorem 2.3.

2.7. A heuristic approach for constructing Scherk towers. We now consider a

possible final method for constructing minimal surfaces of finite topology in a general

Mxl; this proposed method is based on the desingularization procedure developed
by Kapouleas [14] to approximate two transversely intersecting properly embedded

non-degenerate minimal surfaces in a Riemannian three-manifold. For example,

suppose F is a collection of K strictly stable pairwise disjoint geodesies in M. Let
S be a finite collection of surfaces of the form S {M x {t\},..., M x {tn}}.
Then, for k sufficiently large, the method of Kapouleas suggests that there exists

a sequence of properly embedded minimal surfaces S (k) of genus k and with 2K
vertical annular ends such that as k -> oo, T,(k) converges to S U (F x R). The
construction of S (k) first entails replacing a small neighborhood of F in S n (F x R)
by a Scherk necklace, and then producing a small graph over this surface which is

minimal. These S(£) would then have index of stability approximately equal to k.

Another variant of this heuristic method is to assume that S is empty but allow F to
contain intersecting embedded geodesies and then desingularize F x R by periodic
properly embedded minimal surfaces, in much the same way that Scherk's singly-
periodic minimal surfaces desingularize two intersecting planes in R3. It would be

nice to know if either of these heuristic methods can be made rigorous.

3. The linear area growth theorem

In this section, we will assume that M is a compact orientable Riemannian surface of
genus g and that S is a properly embedded orientable minimal surface with compact
boundary and bounded curvature contained inMxt. Our goal is to prove that S has

linear area growth, from which it easily follows that the surface has a finite number
of ends. An important tool for proving these results is the flux of S, which we now
define.

Definition 3.1. Given a properly immersed minimal surface S in M x R without
boundary, we define iheflux of S to be the flux of VA across S n (M x {0}), where
h: S —>¦ R is the harmonic height function h (p, t) t. Since/? is a proper harmonic

function, the flux F(S) of S is the flux of Vh across any level set of h, not just the

level set at height zero.

Theorem 1.1 in the Introduction is a simple consequence of the statement and
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proof of the next theorem, which is the main result of this section.

Theorem 3.1. Suppose that S is a connected properly embedded minimal surface
with absolute curvature bounded by a constant Kq in M x [0, oo) and S has compact
boundary 3ScMx {0}. Then:

1 S has linear area growth in the sense thatfor every e > 0, there exist a constant
C(e) such that the area oj"S in M x [a, a + e] is less than C(e) for all positive a.

The constant C{e) depends on M, the flux F(S) and the homology class of
[9S] eHi(Mx {0}).

(2) If the tangent planes to S make an angle of less than j with the horizontal, then
T, has one end and an end representative £(S) such that the vertical projection
n : E{Y) -^illxjO) embeds as the end of a connected infinite cyclic covering
space n : M —* M x {0}. In particular, SS represents a non-zero primitive
homology class in Hi (M x {0}).

(3) There exists a positive constant FM depending only on M such that if the flux
F(S) < Fm, then the tangent planes to S make an angle of less than j with
the horizontal. In particular, S is stable when F(S) < FM-

(4) For every positive e less than one andfor every positive number F, there exists a

positive number A{e, F) depending only on M such that if the flux F(S) < F
and for some a > 1, the area ofY,n (M x [a, a + e]) is greater than A(e, F),
then the tangent planes to T, make an angle less than j with the horizontal.

By the monotonicity formula for area, the area of a compact minimal surface with
boundary in a ball in M x R of radius e and centered at a point on the surface has

area greater than e2 for e small and fixed. Since M x R has two ends and each end

representative of S has area at least e2 in either Mx [a, a+e] or Mx [—a, —a+e] fora
large, then statement 1 of the above theorem implies that if S has an infinite number
of ends, then it does not have bounded curvature. Thus, the following corollary holds.

Corollary 3.1. If S is a properly embedded minimal surface with bounded curvature
and compact boundary in Mxl, then T, has a finite number of ends.

We first prove a proposition concerning connected infinite cyclic covering spaces
of M that will be useful in the proof of Theorem 3.1, as well as in the proofs of some
of our later theorems.

Proposition 3.1. Suppose p\\ M\ ->¦ M and P2: M2 -> M are two connected

infinite cyclic covering spaces of a closed oriented surface M of genus g. Then,

these covering spaces are isomorphic in the sense that there exists a diffeomorphism

f : M -> M such that f o pi : M\ —>¦ M lifts to p2 : M2 -> M.
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Proof. Since p\ : M\ --* M is an infinite cyclic covering space, it corresponds to
the kernel of a surjective representation a : n\ (M) --* Z. Since Z is abelian, a
factors through the projection n\{M) -> n\{M)/C H\{M), where C is the

commutator subgroup of n\ (M) and where H\ (M) is the first homology group of M.
Let <r : Hi (M) -> Z be the representation induced by ct

We now give a description of all such representations in terms of primitive (non-
multiple) classes in H\{M). Let ß be a primitive class in H\{M). Since ß is a

primitive class, Theorem 1 in [18] implies that we can represent ß by a simple closed

curve ß on M. Consider the surface M — ß, and the associated compact oriented
surface M-, which is the compact surface of genus g — 1 obtained by attaching copies

of ß on each end of M — ß. M^ is oriented from the orientation induced from M.
We label the boundary curves of M^ by {ß+, ß_} with ß+ being the boundary curve
whose orientation agrees with the orientation of ß in M.

Since H\{M^) I?g~l and under the inclusion map one can consider H\{M^)
to be a subgroup of H\{M), we can consider H\{M) Z © H\(M-r), where (1,0)
is represented by a simple closed curve a that intersects ß transversely in a single
point with +1 intersection number. Consider the surjective quotient homomorphism
ctt: H\{M) ->¦ Z Hi{M)/H\{M-). This representation turns out to be independent

of the choice of simple closed curve representative for ß ; in other words, we get
a well-defined surjective homomorphism o^ : H\ (M) —>¦ Z, which is just the primitive

cohomology class in H1 (M) corresponding to ß via Poincaré duality. Since
the Poincaré dual of a primitive element in Hl{M) is a primitive homology class,

we see that every connected infinite cyclic covering space of M can be realized by a

'aß : H\(M) -> Z for some unique primitive class ß G H\ (M).
Suppose that ß\, ß2 are two primitive homology classes represented by simple

closed curves ß\, ß2, respectively. By the classification of surfaces, there exists an

orientation preserving diffeomorphism / : M- -> M- preserving the + and -
boundary curves and the identification map on each of the boundaries that give back
the surface M. In particular, / induces an orientation preserving diffeomorphism

f : M —* M such that f\ß\\ß\ --* ß2 in an orientation preserving manner and

f{M — ßi) M — /?2xBy construction, /+(ker(o^j)) ker(o^2). By elementary
covering space theory, / lifts to the associated covering spaces, and so, the covering
spaces are isomorphic. This completes the proof of Proposition 3.1.

For our later applications, we will need a geometric picture of an infinite cyclic
covering space that arises in the proof of Proposition 3.1 for a fixed primitive homology

class ß g Hi (M), which is represented by a simple closed curve ß. Let M^ be

the compact surface defined in the proof of Proposition 3.1. For every« g Z consider

Mß(n) M- x {n} with associated boundary curves ß+(n) and ß-(n). Consider
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the space Mß IJneZ M-An) I ~, where ~ means that we identify points of ß+(n)
with the corresponding ß points on ß-(n + 1). Then, there is a natural projection

Ttß\ Mß -> M, which is the infinite cyclic covering space of M associated to the

primitive homology class ß. For later purposes, note that the curve ß+(l) separates
the two ends of Mß. Also, note that if F is a possibly disconnected finite collection of
oriented simple closed curves that separate the two ends of Mß and are the oriented

boundary of one of these ends, then, up to changing the orientation of F, F is homologous

to ß+{\), and so, projects to a (possibly disconnected) representative for ß.

Further, note that Z acts naturally on Mß as a group of covering transformations,
where the generator r satisfies x{MAn)) MAn + 1).

Proof of Theorem 3.1. For every a e (0, oo), let Ta: M x [0, oo) —>¦ M x R be the

translationalisometryTa((jo, 0) (p,t—a). Suppose now that S fails to have linear
area growth in M x [0, oo). In this case there exists a sequence of bn --* oo such

that the area of Tjn(S) inMx[-^,|] is greater than«. We define S(«) 7&n(X!).
Since the curvature of E(«) in M x R is bounded and S is minimal and embedded,

a subsequence of the S(«) converges to a minimal lamination «CofMxIR (see for
example [27] or [38]).

We assert that X contains M x {0} as a leaf. Suppose for the moment that there is

a leaf of X which intersects M x {0} and is not equal to M x {0}. Every such leaf of X
intersects M x {0} transversely at some point. Since the area of S (n) n (M x [—^, ^])
goes to infinity, we may assume, after possibly going to a subsequence, that there
exists a leaf LofX which is either a limit leaf or has infinite area multiplicity as a limit
of the S («). Furthermore, L can be chosen so that there is a point p e L n (M x {0})
where the tangent plane to L is not horizontal. For some small geodesic ball B in
MxR centered at p of radius r, the tangent planes to X n B make a positive angle of
at least 9q with the horizontal. The point p can also be chosen so that, after choosing
a subsequence, the area of S (n) in B is at least n and the tangent planes to S (n) in B
make an angle of at least 6>o/2 with the horizontal. It follows that the fluxes of the

S (n) across M x {0} are unbounded. But, the flux of S (n) is equal to the flux of S,
which gives a contradiction and thereby proves our assertion.

In the case M is topologically a two-sphere, the proof of statement (1) of the

theorem is now very simple and we explain it before proceeding. Note that a standard

monodromy argument shows that when M is simply connected, then the unbounded

sheeting nearby M x {0} implies that one can lift M x (0) to the nearby leaves, so

the S(«) would be compact. This contradiction proves that if the area of S in some

region M x [a, a + e] is sufficiently large, then the genus of M is not zero.
Recall that we have shown that the surface M x {0} is one of the leaves of X.

Since S(ra) has bounded curvature, there exists an e > 0 such that every component
of A(ra) S(ra) n (M x [—e, e]) is almost horizontal for n large. Furthermore,
for n large, there are a finite number N(n) of components of A(n), each of which
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has boundary in both components of d(M x [—e, e]) by the maximum principle for
harmonic functions. Let S(ra, e, 1), S(ra, e, 2), S(ra, e, N(n)) be a listing of the

components of A(n).
The choice of e can be made to depend only on the bound Ko for the curvature

of S and on the surface M. An effective version of this property is the following
for e sufficiently small. Suppose JV is an embedded compact minimal surface in
M x [—4e, 4e] with boundary in M x {—4e, 4e} with fixed flux and curvature bounded

by Kq. If the area of N n (M x [—e, e]) is sufficiently large (relative to its flux), then
the angle that the tangent planes to JV make with the horizontal in M x [—2e, 2e] is

less than ^. From this point on in the proof of the theorem, we will assume that e

is chosen small enough so that this horizontal property holds for such N. We note
that this additional assumption on e does not affect the proof of the statement of
Theorem 3.1. Also, note that the choice of j is arbitrary and can be replaced by any
small 5 > 0, if one is willing to choose e sufficiently small and then assume that the

area of JV is sufficiently large relative to its flux.
We summarize part of this discussion in the next assertion.

Assertion 3.1. Suppose JV is a compact embedded minimal surface in M x [—4e, 4e]
with absolute curvature at most Kq and dN c M x {±4e}. For small e > 0, there
exists an _/V(e) > 0 depending on the flux of Af such that if the area of ATl(Mx[-£, e])
is at least N(e), then the tangent planes to N n (M x [—2e, +2e]) make an angle of
less than ^ with the horizontal.

Let F(S) be the flux of S, and define the number F(n) e (0, F(S)] to be

the maximum of the fluxes of the components S(ra, e, 1), S(«, e, N(n)) across

M x {0}. Since the flux of S is positive and equals the sum of the fluxes of
S(ra, e, 1), S(«, e, N(n)), the first statement in Theorem 3.1 will follow by
contradiction, once we show that the positive integers N(n) are uniformly bounded and

that lim„^oo F{n) 0.

In order to prove that linin^oo F(n) 0, it suffices to prove that there exists a

simple closed C1-curve y on M x {0} such that for each i, 1 < i < N(n), there

exist simple closed C1 -curves y (n, i) c S (n, e, i) which converge C1 toy and such

that y(n,i) is homologous to S(ra, e, f) n (M x {e}) in S(«, e, f). The reason that
this suffices is that the lengths of the y {n, i) are then uniformly bounded. Hence, as

n --* oo, the y(ra, f) are converging C1 to y c M x {0} and the tangent plane to
S(ra) along y(«, f) is converging to the horizontal, and so, the flux across y {n, i) is

converging to zero. By our homology condition, it follows that the flux of S(ra, e, f

goes to zero as well. The proof of the boundedness of the N{n) and the existence of
the curves y(n,i) will occupy several pages.

For the remainder of the proof fix a collection <S {a\, ß\, ag, ßg} of
oriented simple closed curves on M meeting at a single point, which generate a basis

of Tt\ (M). At times we will also consider <S to lie in M x {0}.
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We know that for large n, S (n, e, i is a high order multigraph (with boundary)
which submerses by the projection nn : S(n, e, i) --* M x {0}, nn((p, t)) (p, 0).
By embeddedness of S, given y g <S, (y x R) n S(«, e, f) either contains some

components which are closed curves close to M x {0} or contains some components
which are arcs close to M x {0} which spiral around y c M x {0} and have end

points on distinct components of 3(M x [—e, e]), but not both possibilities. Finally,
note that since S is non-compact, at least one of the basis curves for the fundamental

group gives rise to spirals.

From this picture, we assert that one can construct an associated infinite cyclic
covering space nn : M —>¦ M x {0}. To see this, first consider the holonomy representation

an on the standard basis <S8 of tz\ (M, po) acting on the vertical fiber over some
base point po e M x {0}, starting at some po e Tt~l{po) with h(po) close to zero.
The fiber n~1(po) has a natural indexing by a finite interval of integers I(n) c Z,
where the ordering is by relative heights and with the index of po corresponding
to 0. Since the surfaces S(«, e, i) are high sheeted and almost flat near po, we may
assume, after taking a subsequence, that I(n) c /(« + £) for all positive integers «
and k and that U«eN ^(w) ^- For w larêe» me inclusion of the simply connected

abstract geodesic completion W of the fundamental domain W of M x {0} bounded

by U/=i aj u ^/> lifts to S(ra, e, f) with base point po lifting to po- In particular,
we can define for each a^ or ßk an integer on{ak) or <7n(ßk) in /(«) C Z. This map
induces a homomorphism. Considering /?o to be the zero element in the image Z of
ct„ : jt\ (M x {0}) -^ Z, let 7rn : M —>¦ M x {0} be the covering space corresponding
to the kernel of o. Here, of course, po depends on n and i and we choose po so that

as n --* cxd, the height of po converges to zero.

We now make an important comment to help orient the reader on our basic strategy.
This strategy is to show that the number of spirals in S (n) n (y x [—e, cxd], where y
is one of the fixed basis curves for the fundamental group, is bounded independently
of n. This result easily implies that the N{n) are uniformly bounded and only a finite
number of different infinite cyclic covering spaces îfn can arise.

The components of A(n) are cyclically ordered in the following sense. Suppose
W\ and W[ in S(«, e, 1) are two consecutive lifts of the fundamental region W

M x {0} — <S8 with the second lift above the first. Then, we can order vertically,
by their relative heights over W\, the other components of A («), so that there exist

unique lifts W2 C S(ra, e, 2), WN(n) c S(ra, e, A^(«)) of V7 to the subregion of
W x R between Wi and W{. By the holonomy representation discussed before, we
see that this ordering is independent of the choice of the lift W\.

It is now clear that the holonomy representation giving rise to the associated

infinite cyclic covering space is the same for all the N{n) components in A(n).

We will now prove the statements (2), (3), (4) and then we establish statement (1).
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Proof of statement (2). Suppose that the tangent planes to S make an angle of less

than j with the horizontal. We orient S by the pull back of the orientation of M
under the vertical projection i:E^Mx {0}.

We first observe that S does not separate M x [0, oo). To see this, recall that

for some y e S, (y x [0, oo)) n S contains a positive finite number of infinite
spirals beginning at SS. Since S is oriented by its projection to M, the spirals in
(y x [0, oo)) n S are oriented in a consistent manner, i.e., they are oriented by the

oriented intersection (y x [0, oo)) n S, which coincides with the orientation they
inherit from the projection n. It follows that the signed intersection number of y with
SS in M x {0} is equal in absolute value to the non-zero number of these spirals.
Thus, 9 S does not separate M x {0}, and so, S does not separate M x [0, oo).

Let y ' be a simple closed curve in M x {0} such that y ' intersects 9 S transversely
in a single point. Note that (y' x [0, oo)) n S contains exactly one spiral component.
On the other hand, each end of S intersects y ' x [0, oo) by the j hypothesis. Hence,
S has exactly one end.

We now check that S has an end representative which embeds the infinite cyclic
covering space îf : M --* M x {0}, associated to the holonomy representation of the

submersion i:E^Mx {0}. This will complete the proof of statement (2).

Let ß be the homology class associated toîr:M^Mx{0) given in the proof
of Proposition 3.1. By the proof of this proposition, if ß is a simple closed curve

representative for ß, then ß lifts to M. Furthermore, any closed curve in M — ß lies
in the kernel of the representation and hence lifts toîr:M->Mx{0}, where we
consider M—ß to lie in M x {0}. Since M—ß has diameter bounded by some positive
constant C and n : S —>¦ M x {0} is a submersion that shrinks the lengths of tangent
vectors by at most 4=, we can lift M — ß to S if we begin the lift at any point of height
at least -JÏC. From the discussion following the proof of Proposition 3.1, it is clear
that the end £ of S can be represented by the union of all the closure of these lifts
and E corresponds to an end of the infinite cyclic covering space 9c : M ->¦ M x {0}.
Statement (2) now follows.

Proof of statement (3). We now give the proof of statement (3) in Theorem 3.1. Note
that since S is a surface with curvature bounded by Ko, there exists a S > 0 such

that every point p G S with tangent plane TpT, making an angle of at least j with
the horizontal has a small intrinsic S -neighborhood of area greater than some positive
constant and on this neighborhood the tangent planes to S make an angle of at least

j with the horizontal. Furthermore, the cross sectional length of the intersection of
this neighborhood of p with the level set surface M x {h(p)} has length bounded
from below by another constant. In particular, the flux of such a surface S is bounded
from below by a constant that only depends on M and Kq. This completes the proof
of statement (3).
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Assertion 3.2. There is a bound on the number of components N(n) and there are

only a finite number of different possible representations an : n\ (M x {0}) —>¦ Z.

Proof. Assume to the contrary that there are an infinite number of different
representations an or that the N{n) are unbounded. After choosing a subsequence and

a rearrangement of <S8, we may assume that an{[a\\) > n, or an([a\]) > 1 and

N(n) > n.
Let pn: T,(n) n M x [s, e] -> M x {0} be the associated vertical projection.

Let E be a regular annular neighborhood of a\ in M x {0}. Since cr„([ai]) >
n, or CTn([ai]) > 1 and N(n) > «, p~l(E) consists of at least « spiraling strip
components. The areas of the S(«) n (M x [—e, e]) are unbounded as « -> oo,
since p~l(E) H M x [—e, e] contains at least n components each with area at least

t), where r\ depends only on E and e. By Assertion 3.1, this unbounded area property
implies that the tangent planes to S (n) n (M x [—2e, 2e]) make an angle of less than

^ with the horizontal.
Thus, for some fixed n sufficiently large, the tangent planes to S(«) n (M x

[—2e, 2e] make an angle of less than ^ with the horizontal. Furthermore, for this

large value of n, the number of spirals of £(«) n (ai x [—2e, 2e]) is the same as the

number of spirals of S(ra) n (ai x [—e, e]), which creates large area in the region
M x [0, 2e]. So, we can apply the previous argument to conclude that the number of
spirals in S(ra) n («i x [—e, 3e]) is the same number. Continuing, we see that for all

a > 0, the number of spirals of S (n) n («i x [a — e, a + e]) is constant. However, the

number of these spirals is equal to ani{[a\\) ¦ N{n') for some divergent sequence of
values a ani, which diverges as n' ->¦ oo by our hypothesis in the first paragraph of
this proof. This contradiction proves that there are only a finite number of different

possible representations an and the numbers N{n) are bounded.

By the above assertion, after choosing a subsequence, we can and will assume
from this point on in the proof that the representation on o, is independent ofn.

With these preliminaries in place, we now show how to construct the curves

y(i, n) c S(ra, e, i) which we discussed at the beginning of the proof and which

converge smoothly to a curve y c M x{0}. Recall, from the proof of Proposition 3.1,

the special curve ß for a cyclic covering space 9c : M ->¦ M with representation

a : Tt\ (M) -> Z. The simple closed curve ß is defined by having the property that

the connected surface M — ß lifts to M. Now choose y to be ß. Clearly, there are

lifts y(n,i) c S(ra, e, f) of y converging smoothly to y. It remains to prove that

y(n, i) is homologous to S(ra, e, f) fl (M x {e}).
To do this, we will show that y{n,i) separates S(ra, e, f) n (M x {—e}) from

S(«, e, f) n (M x {e}). Choose a lift M — y of M — y to S(ra, e, f) whose closure is

in the ^ neighborhood of M x {0}. NotethatM - y separates (M-y) x [—e, e] into
a top and a bottom component. From the cyclic covering space picture of S(ra, e, f
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near this lift, it is clear y(n, i) c d(M — y) separates E(n, e, f n (M x {—e}) from
S(«,e, i)n(M x {e}).

Now let A be the component of E(n, e, f) bounded by y(n, f) and S(«, e, i) n
(M x {e}). À gives the required homology. As remarked at the beginning of the proof
of the theorem, this last result completes the proof that S has linear area growth.

Proof of statement (4). Arguing by contradiction, assume that statement (4) fails to
hold. Let E(n) be a sequence of surfaces satisfying the hypothesis of the theorem
where F(S(«)) < F and such that the area A(«) of A(«) S(n)n(Mx [a,a + e])
is greater than n, for some a > 1, but some tangent plane of S(ra) makes an angle
greater than ^ with the horizontal. The proof ofAssertion 3.2 implies that there exists

a bound on the number N{n) of components of A(n) and on the size of the set of
associated holonomy representations for these components (we bound the number of
spirals over a basis for the fundamental group). By statement (3), the flux of each

S {n) is bounded from below by a positive Fm- The proof that we just carried out to
show that S has linear area growth, then contradicts that A (n) > nand.F(X!(n) > Fm

Proof of statement (1). We have already shown that S has linear area growth. Letting
F F ('S), statement (4) implies that if the area of S is greater than A{e, F), then
the tangent planes of S make an angle of less than ^ with the horizontal. Assume the

area is greater than A (e, F). It follows from the proof of statement (2) that S embeds

as the end of an infinite cyclic cover of M x {0} with the projection map agreeing
with the vertical projection of S to M x {0} and A(a) Sn (M x [a, a + e]) is

connected.

Let y be a simple closed curve of least length which represents the primitive
homology class [SU] G H\(M). Let y denote the lift of y to A (a). Since the flux
of VA across y equals F S our previous arguments imply that there exists a bound

C(e) for the area of A (a), which only depends on the length of y, which in turn
only depends on the homology class [dT,]. This estimate completes the proof of the

theorem.

4. Stable minimal surfaces inMxK

Some of the stable minimal surfaces that can arise in M x R are actually periodic
multigraphs, which just means they are lifts of compact embedded "graphical" minimal

surfaces in M x S(r), where S(r) is a circle with circumference r. The following
is a description of the moduli spaces of these special minimal surfaces.

Theorem 4.1. Let M be a compact orientable Riemannian surface of genus g. For
each primitive homology class a e Hi (M) and each r e R+, there exists a compact
embedded minimal surface M (a, r) c M x S(r) of genus g such that its preimage
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or "lift" M (a, r) to M x R, together with the vertical projection to M x {0}, is

the oriented infinite cyclic covering space of M associated to a. Furthermore, all
vertical translations of M (a, r) yield a product minimal foliation of M x S{r) and
M (a, r) is the unique minimal surface in its homotopy class up to translation. Also,
M (a, r) minimizes area in its integer homology class.

Proof. Let 0 G S(r) R/rZ denote the identity element in S(r). For a primitive
class a g H\(M x {0}), it is easy to construct an embedding M (a, r) of M into
M x S(r) which satisfies the following:

(1) M (a, r) is a graph over M x {0} under the natural projection ir:Mx S{r) ->
M x {0}.

(2) If ß is a simple closed curve with aC\[ß] +l, then the lift ß of ß to M (a, r)
represents the oriented class ([ß], 1) in H\(M x S(r)) H\(M) x H\(S(r)).

(3) M (a, r) H M x {0} is a simple closed curve which represents the homology
class a.

For an indication of exactly how to construct M{a,r), see the proofs of Theorem

3.1 and Proposition 3.1 in Section 3, or perhaps the construction is most easily
seen from the discussion at the beginning of the proof of Theorem 2.3 and the related

Figure 1. Also, note that our a corresponds to the homology class in the choice of
the curve ß given in the proof of Proposition 3.1.

Let M{a, r) be a minimal surface of least-area in the homotopy or the isotopy
class of M (a, r) in M x S(r). The existence of M (a, r) follows from the results in
[8] or [28] and the fact that M (a, r) is an incompressible surface in M x S{r). By
applying standard surface replacement arguments as first described by Meeks and

Yau in [29], one sees that any two distinct such least-area surfaces in the homotopy
class of M(a, r) are disjoint. Therefore, vertical translations of M (a, r) are disjoint
from M (a, r), and so, one obtains a foliation of M x S(r) with leaves isometric to
M (a, r) and which topologically is a product foliation.

It follows from the existence of this minimal foliation that M (a, r) is the unique
minimal surface in M x S{r) in the homotopy class of M{a, r) up to translation.

Otherwise, there would be another such minimal surface À c M x S(r). Lift A to

A in the infinite cyclic covering space M x S(r) of M x S(r) corresponding to the

subgroup Tt\{M{a, r)) and lift the "product" minimal foliation to M x S(r). Note

that some of the minimal leaves of this foliation of M x S(r) are disjoint from A.

Since the minimal foliation of M x S(r) consists of compact leaves of the form
{L(t) | t G R}, there is a largest to such that L(to) flA/0. The maximum principle
for minimal surfaces now implies that L(to) A, which proves our assertion that A
is one of the translates of M (a, r) in M x S(r).
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A well-known application of the divergence theorem is that a compact leaf of a

codimension-one oriented minimal foliation is area minimizing in its integer homol-

ogy class. We sketch the argument for the sake of completeness. Let JV be the unit
normal vector field to the minimal foliation and let L be a compact leaf. Suppose
S is a cycle homologous to L that is not a leaf of the foliation and œ is a chain
with dco L — S. Since the foliation is minimal, the divergence of JV is zero. So,

applying the divergence theorem, one obtains that the flux of JV across L equals the

flux of JV across S. Since the flux across L is its area and the flux of JV across S is

less than or equal to its area, we obtain the desired result. This completes the proof
of Theorem 4.1.

A basic tool for proving the Stability Theorem in [26] is the following proposition,
which implies that M (a, r\) and M (a, ri) can be differentiated by their fluxes when

n ^ n- One reason that we include the proof of this proposition here, rather than
in [26], is that we need it in the construction of stable minimal graphs in M x R in
Section 2 (see the proof of Theorem 2.3).

Proposition 4.1. Fix any primitive homology class a e H\ (M). For every r > 0,

the surface M (a, r) has positive flux F (a, r). Furthermore, F (a, r) is a continuous

strictly increasing function from R+ to R+.

Proof. Since a is fixed, we will suppress the index a in M(a, r) and F (a, r). For a

convergent sequence r, —>¦ ro, consider the surfaces M(r\) c M x S{r{). Note that
in a natural way the metrics in S(rj) converge to the metric on S(ro), and so, we can
consider the surfaces M (ri) to be surfaces, not minimal, in M x S(ro). Since each

M(rt) minimizes its area in its homology class in the metric on M x S(n), a limit of
these surfaces with bounded second fundamental form exists, which can be assumed

to be a C2-surface, and is again area-minimizing in its homology class. Hence, by
the uniqueness statement in Theorem 4.1, the limit surface is M (ro) and since the

convergence is C1, F(r{) --* F(ro). This proves that F is continuous as a function
of r. Next consider the sequence rn ro - ^, where n is a positive integer. A
straightforward argument, using the continuity of F, shows that if F(rn) < F(ro) for
all n and for all ro, then F is strictly increasing. Since our argument does not depend

on the value ro, we will assume for concreteness that ro 1 and rn 1 - \.
We first prove the theorem in the easier-to-visualize special case where M is a

torus M T S1 x S1 M.2/I? and where a is represented by S1 x {0}; however,

we do not assume that the metric on T is the flat metric. (On the other hand, if T has

a flat metric, then the tori T(ra) defined below are linear and the strictly increasing

property of F is clear; actually, it is this well-known fact which motivates the following
proof.) In this case, consider the torus T(ra) c T x R/Z that is the image of the map

/: R xR^K2/Z2xK/Z defined by f (61,62) (6\, nd2, (n-l)62). LetT(n)be
the least-area torus in the homotopy class of T(«). Note that T(«) lifts to M x S(n — 1
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and this lift is equal to the inverse image M{rn) of M{rn) in M x S(n — 1) under the

projection of the Zn-covering space M x S(n — 1) —>¦ M x 5'(rn); the reason for this
is that these two surfaces are homotopic and M{rn) is the unique minimal surface

in its homotopy class. Since the curve on M{rn) for which we calculate flux lifts to

M{rn), the flux of T(ra) is equal to the flux of M{rn) and it remains to prove that the

flux of T(ra) is less than the flux of M(l). After a fixed vertical translation of T(n),
we may assume that M(1) and T(«) intersect transversely in a finite collection of
simple closed oriented curves F M (1) n T(n). The orientation on the components
of F comes from the oriented intersection M(1) n T(n), where M(l) and T(n) are
both oriented by the projection to M x {0} and M x R is oriented by the orientation
of M x {0} given by the upward pointing unit normal in the direction ^ and with
the standard orientation on R also given by Jy. Thought of as a integral chain, F

represents the class a, since this is the case for the homotopic torus T(ra) and the

intersection pairing is well-defined on homology.
Recall that if a c S i n S2 is an arc in the intersection of two oriented surfaces with

almost complex structures J\, J2 in an oriented three-manifold, then a is oriented by a

tangent vector T{a) suchthat {J\{T{a)), J2{T{a)), T{a)) represents the orientation
of the ambient space. With this in mind, let J\ be the almost complex structure on
M(1) and J2 be the almost complex structure on T(«) induced as graphs over M x {0}.
Let T(t)be the unit tangent vector field to F (t). Then, with respect to our orientations,

where > is the metric onMxl. By the divergence theorem, the flux of Jj across
F on M(1), T{n), respectively, can be found by integrating the left, right hand sides,

respectively, of the above inequality. Hence, the flux of M (1) is greater than the flux
of T(ra). This completes the proof of the proposition in the case that M is a surface

of genus one and a is represented by S1 x {0}.
Since any primitive homology class a in the first homology group of a surface

M T of genus one can be assumed to be the class represented by S1 x {0} (after

composing with a diffeomorphism of T), the proposition is proved in the genus one

case. But, the initial construction that we carried out in the case of genus one can be

easily adapted to the case where M has higher genus. This discussion completes the

proof of the proposition.

The following theorem is Theorem 3.1 in [26]. It is the key first step in the proof
of the Stability Theorem in [26] and its proof takes up most of that paper. We will
need the statement of this theorem in the next section.

Theorem 4.2 ([26]). Suppose T, is a non-compact orientable properly embedded

stable minimal surface with compact boundary in M x R Then, either every end
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o/S w asymptotic to an end of some "lift" or preimage M (a, r) of a fixed M (a, r)
described in Theorem 4.1 or some sequence ofvertical translates o/S converges on

compact subsets ofM x R fo F x R, w/iere F w a finite collection ofpairwise disjoint
simple closed stable geodesies on M.

5. A finite number of ends

Recall that in Section 3, we proved that if S has bounded curvature, then it has a

finite number of ends. We will need this result and some of the techniques developed
in Section 3 to prove the similar result holds, when we drop the bounded curvature
hypothesis.

In this section, we will prove Theorem 1.3. Theorem 1.3 states that a properly
embedded minimal surface S in M x R has a finite number of ends. This theorem is

an immediate consequence of the following more general result, where S is allowed
to have compact boundary.

Theorem 5.1. If S c M x R is a properly embedded minimal surface with compact
boundary, then T, has a finite number of ends.

For the proof of Theorem 5.1, we will need the following proposition on certain

geodesic laminations of surfaces. We give its proof at the end of this section.

Proposition 5.1. Suppose F\ c F2 C - - - C F„ c - - -, where Tn is a finite collection

ofpairwise disjoint simple closed geodesies on a closed orientable Riemannian

surface M of genus g. Then, there is a bound on the lengths of the geodesies in
F USi r?- In particular, the closure F of F is a geodesic lamination of M
consisting of closed geodesies with uniformly bounded lengths.

We now proceed with the proof of Theorem 5.1.

Proof. We may assume that S is connected, is contained in M x [0, oo) and 3E c
M x {0}. Assume that S has an infinite number of ends. We will derive a contradiction.
Note that, after possibly taking a four-sheeted cover ofMxl and lifting S to this

cover, we may assume that S and M are both orientable.
Since S has an infinite number of ends, there exists a sequence bn --* oo

such that M x {£>„} intersects S transversely in a finite number of simple closed

curves and S(«) En (M x [bn, oo)) consists of N(n) connected components
«),..., S(AT(«), n) where N(n) > n + 1.

Assertion 5.1. S can be chosen with an infinite number of ends and so that the

surfaces S(l, «),..., S(iV(ra), n) are unstable for all n.
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Proof. First note that Corollary 1.3 implies that S fails to have bounded curvature,
and so, by curvature estimates [43], S is unstable.

Suppose now that SO, n) c S(«) is stable for some i and n. After reindexing,
assume that S(f, n) S(l, n). In this case, Theorem 4.2 implies that either every
end of S (1, n) is asymptotic to the top end of some translate of M (a, r) or there is a

divergent sequence of translations of S(l, n) that converge to T x 1, where F is a

finite collection of simple closed stable geodesies on M. If every end of S(l, n) is

asymptotic to some translate of M (a, r), then the proof of Theorem 4.2 implies that
for all k, every end of a stable component SO, k) is also asymptotic to a translate
of the same M(a,r). Let e be either the length of the shortest simple closed stable

geodesic in M or the flux of M {a, r), depending on which of the two cases occurs
for the end behavior of S(l, n). In particular, the number of components of S(«)
which are stable is bounded by [Flux(S)/e], where [t] denotes the largest integer less

than*.
Now choose an no so that the number of stable components of S (no) is maximal.

Since S has an infinite number of ends, there is some component of S (no), say

S(l, no), which has an infinite number of ends. By our choice of no, every subend of
S(l, no) is unstable. Now replace S by S(l, no) translated downward by distance

bno to obtain the surface with the desired properties. This completes the proof of
Assertion 5.1.

Assume now that the conclusions of Assertion 5.1 hold for S and consider the
surfaces S(l, 1), S(2, 1), S(iV(l), 1). Since M x {bi} is minimal and S (1) is

minimal and locally separating in M x [b\, oo), the standard barrier minimization
procedure described in [25] or [30] yields two properly embedded least-area
orientable minimal surfaces S(l, +) and S(l, -), each with boundary equal to 3S(1).
Here, the + sign refers to the surfaces that arise in minimization process that takes

place on the side of S where the oriented normal points and the — sign refers to
the surfaces that arise in the minimization process on the other side. The way in
which we obtain the surfaces is as follows. We first produce stable minimal
surfaces S(l, 1, +) andS(l, 1, -) as least-area surfaces in (M x [b\, oo)) — S(l) with
boundary 9 S 1, 1 ; this is done inductively component by component using old
components as new barriers. Continuing inductively produces both S 1, +) and S 1, -).
In this minimization process, a given component of S (1, +) or S(l, —) withthesame
boundary as a component of S(l) intersects S(l) only along its boundary, since

every component of S (n) is unstable. We remark that S (1, 1, +) or S (1, 1, -) may be

compact (in fact, contained in M x {b\})\ this will happen when 3S(1, 1) bounds in
M x {b\}. Notice that S(1, 1,+)US(1, 1, -) bounds a domain R\ c M x [b\, oo)
that contains S(l, 1).

Once one has constructed the two properly embedded (disconnected) stable minimal

surfaces S(l, +) andS(l, -), then, using S(l, +)US(1, -) andS(2) as barn-



Vol. 80 (2005) The theory of minimal surfaces in M x R 839

ers, one can construct two properly embedded minimal surfaces S (2, +) andS(2, —),

with boundary 9 S (2) in the same manner as before. At this stage, we have produced
S(2, 1, +) and S(2, 1, -) in M x [fc2, oo) - [S(l) U S(l, 1, +) U S(l, 1, -) U

S (2, 1)U- -US(iV(l), 1)] with boundary 911(2, 1). In this case, the components of
S(2, ±) are disjoint from the components of S(l, ±). Continuing inductively, one
obtains the stable surfaces S(l, +), S(l, —),..., S(«, +), S(«, —),..., whose
interiors are disjoint from one another.

For c > 0, let Tc(/?, f) denote the downward translation (p, t) *--* (p,t — c). By
Theorem 4.2, there are two possible asymptotic structures for S(ra, +) U S(ra, —);

either all of the ends are asymptotic to translates of some M (a, r) where a e H\ (M
and r are both fixed, or under some vertical translations rc(ni), the Tc(nj) (S («, +) U

S(ra, —)) converge as i ^ oo to T x I, where F is a finite collection of pairwise
disjoint stable simple closed geodesies in M. It follows that there exists a positive
increasing function /: N -> R such that for each i asn ^ oo, T/(„)(S(f, ±))
converges on compact subsets of M x R to a finite collection of vertical totally
geodesic annuli or to a finite number of translates of M (a, r), where r and a are

fixed. We will prove the proposition in the case where the downward translations
of S(ra, +) U S(ra, —) converge to vertical totally geodesic annuli. The proof of the

case where the ends are asymptotic to ends of translates of M (a, r) is quite similar,
and, at the end of this section, we will indicate how to modify the arguments in this
second case.

Assume now that the downward translations 7/(„) of S (n, +) U S (n, — converge
to a collection of vertical flat annuli.

Assertion 5.2. Let S(ra) S(l, ±) U --- U S(ra, ±). Then, one can choose an

increasing function/: N -> R so that the sequence T/(„)(S(«)) converges smoothly
on subsets of the form M x [—n, n] to a minimal lamination X of M x R which is

a product <£ x R, where X is a geodesic lamination of M by closed geodesies of
uniformly bounded length. Furthermore, / can be chosen so that each component of
T/(„)(S(«))n(Mx[—3, 3] is a normal graph over one of the annuli in F («)x[—3, 3]

with sup norm less than \, where F («) is the collection of pairwise disjoint geodesies

on M associated to the ends of S(«) and function /(«).

Proof. From our previous discussion, a diagonal argument makes it clear that a function

f(n) exists so that T/(„)(S(«)) converges to a vertical minimal lamination X.
By construction, F(n) consists of a finite number of geodesies, since S(ra) has only
a finite number of ends. Since F(n) c T(n + 1), the closure F^ of F |J£Li T(«)
is a geodesic lamination of M by Proposition 5.1. The assertion follows easily from
these observations.

As in many of our proofs, we again would like to use the invariance of the flux of
S to prove that S cannot have an infinite number of ends. Let [t] denote the greatest
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integer less than or equal to t. Note that S can have at most [Flux(S)/e] ends where
the flux is greater than e. Thus, the theorem is a consequence of the next assertion.

Assertion 5.3. There exists an e > 0 such that for k e N, there exists a K (k) e N,
such that T,(K(k)) has at least k components with flux at least e.

Proof. Recall that the S(«) separate more and more of the ends of S as n -> oo.

By Assertion 5.2, 7/(n) (S («)) n (M x [—3, 3]) consists of more and more annuli as

« -> oo. These annuli are converging smoothly to the annuli in L x [-3, 3]. By
Assertion 5.2, there exists a leaf y c L such that for any fixed sufficiently small
5 > 0, and for W the <5-regular neighborhood of y in M and for X W x [—3, 3],
it follows that

(1) the number of components of 7/(„)(£(«)) n (M x [—3, 3]) contained in X
becomes unbounded as n -> oo;

(2) the number of components of 7/(„)(!!(«)) n (M x [-3, 3]) contained in X
becomes unbounded as n --* oo.

Claim: There exists a small positive <5 such that every compact connected minimal
surface E in X with dE contained in both the components of W x {—3,3} has flux
greater than 8. We prove this claim by contradiction; let E(n) be such surfaces whose
flux is less than \.

Let £(«,*) £(«) n (M x [5, |]) and let y(n) be a least-length level set of
E(n, *). Without loss of generality, we will assume that

Area(£(n)n \M x %(n)), - J J >Area(£(n) n (m x -,h(y(n)) )Y (1)

With this assumption, we will make an analysis with the function 0 h — Id2 : X —>¦

[-3, 3]; in the case the opposite inequality holds, a similar analysis with the function
—h — \d2: X —>¦ [—3,3] will yield the desired contradiction.

Let F(n) c E(n) be the part of E(n) with boundary y(n) and <fi~1(2) and when

n is large and fixed, let F F{n). For n large, note that 0~1(2) 3F(«) - y («)
has height approximately 2.

A straightforward calculation shows

-AFd2 =dAFd+\VFd\2.

Also, it is not hard to see that Apdis uniformly bounded in W for 8 less than some
fixed small 8q. Note that Ap<f> —dApd — \Vpd\2. By the divergence theorem,

f -dAFd - \VFd\2 f AF</> CF+ f \VFh - dVFd\, (2)
Jf Jf J<t>-i(2)nF
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where Cp is a function of n that can be estimated from below by —Flux(E(n)) —

f(n)L(y(n)); here L(y(n)) is the length of y(n) and f(n) is positive and tends

to zero as n -> oo. Cp can be estimated this way because Cp fy(n) V<fi ¦ V

—Flux(£(«)) — f dVp(n)d ¦ r], where r\ is the outward pointing conormal to F,
and \dVE(n)d\ -> 0 as n -> oo.

Next, note that for « large, the following holds for some positive K:

f AF4> < -^Area(F) < -\k. (3)
Jp I I

To see this, first note that the area F{n) is greater than some constant K independent
of n, by the montonicity formula for area. Also, Flux(£(«)) < ^, so the part of E(n)
that makes at least any fixed positive angle with the horizontal has area going to zero

as n —>¦ oo. Since Ap(f> is approximately —1 when F is almost horizontal, then, for
n large, fF Ap4> is approximately —Area(.F), and so, formula (3) holds for n large.

Since Flux(£(«)) < ^, then, for « large, the coarea formula and (1) imply,

Cf > f(n)L(y(n)) > 6 ¦ /(n)Area(F).

Since /(«) -^ 0, as n --* oo, this inequality clearly contradicts equations (2) and (3).
We now briefly indicate how to modify the proof of Assertion 5.3 in the case that

Tf(n) (S («)) converges to a lamination X of M x R by translates of M (a, r) for some
fixed a and r. In this case, there exists an accumulation leaf L in X, similar to the

choice of y c L in the previous case, such that, after a possible small translation,

(1) there is an e > 0 such that A L n (M x [—e, e]) consists of a finite number
of annuli whose tangent planes make an angle of at least e with the horizontal;

(2) if X is a small regular neighborhood of A in M x [—e, e], then the number of
components of 7/(„) (S (n)) n (M x [—e, e]) contained in X becomes unbounded
as n ->¦ oo;

(3) the number of components of T/(„)(S(«)) n (M x [—e, e]) contained in X
becomes unbounded as n ->¦ oo.

With a very small initial choice of e, multiply the metric on M x R by | to obtain

new surfaces in the almost flat three-manifold M x [—3, 3], where M is M expanded
by | and where the expanded set A c M x [—3, 3] is almost totally geodesic. Again,

wedefmeX, <p —h — ^d2 and carry out a similar analysis as before. This discussion

completes the proof of Theorem 5.1.

We now give the proof of Proposition 5.1.

Proof. Arguing by contradiction, suppose that the proposition fails. In this case, one

can find an infinite collection F {y\, /2, •••,/«,•••} of distinct pairwise disjoint
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simple closed geodesies on M, where the length of yn is at least 1 more that the length
Of Yn+L

If some Yn is homotopically non-trivial, then the geodesic or metric completion
of M — Yn is a compact surface of genus g — 1 with two closed geodesies in its

boundary (in the case yn does not separate) or consists of two compact surfaces of
positive genus less than g, each with a single closed geodesic in its boundary. After
attaching two Riemannian disks to the resulting surface, we obtain a new smooth

compact Riemannian surface (possibly disconnected) with one component containing
an infinite number of components of F and this surface has less genus than the genus
of M. Hence, by induction on the genus of M, we may assume that every geodesic
Yn in F bounds a compact disk Dn in M.

The Gauss-Bonnet formula implies that each of the disks Dn has total curvature
2n. Since the integral of the Gaussian curvature function on the region of M where

it is positive is a finite number, there is a bound on the number of such disks which
are pairwise disjoint. In particular, we see that, after replacing F by a subsequence,
either we have an infinite chain of the form Di c Ö2 C ¦ ¦ ¦ C Dn C ¦ ¦ ¦ or
the form Di d D2 D • • • D Dn D • • • If we have a chain of the second type,
then replace M by a smooth Riemannian surface of genus zero formed by attaching a

Riemannian disk D to D\. By letting D[ D,D'2 DU(Di -Int(D2)), D'n

D U {D\ — ini(Dn)),..., we see that D[ c - -- C D'n c and so, we can always
assume that we have a chain of the form D\ c • • • C Dn C • • •

The closure F of F is a geodesic lamination in M. Since the lengths of the yn

diverge, there is a limit geodesic a in F of a subsequence of the yn. By our chain
condition on the disks Dn, the limit set L(F) is disjoint from F, and so, F is the union
of F with L(F). In particular, a is disjoint from F.

Let pea and identify a neighborhood of p with / x /, / [-1,1], so that

p (0, 0), / x {0} c a, and for some decreasing sequence yn £ (0, 1], yn --* 0,
the segments / x {yn} are contained in F. Also, choose the parametrization so that

{0} x / is a geodesic of M, approximately orthogonal to the geodesic lamination.
Each disk D^ intersects / x [0, 1] in a finite number of bands, each being of

the form / x [a, b] c / x [0,1]. Since the geodesies / x {yn} in F converge to

/ x {0}, there exists a disk D^ such that D^ n (/ x [0,1]) contains at least one such

band and let B\ be the band in Dux which is lowest in / x [0,1]. Again, since the

geodesies / x {yn} in F converge to / x {0}, there exists another disk D^ such that

Dk2 n (/ x [0,1]) contains a band 52 below B\ and such that B2 is the lowest such

band in D^. Since the disks {£>„} form a chain, the disk D^ C D^. Continuing
in this manner, we obtain an infinite ordered sequence of bands B\, B2, ¦ ¦ ¦, Bn,

converging to / x {0}.
The geodesic {0} x / meets each band 5; c Dkt in a geodesic arc <5, that separates

Dkt into two closed subdisks, where we denote by D'k the subdisk which is disjoint
from Dfc._j (for I 1, one can choose either subdisks). By construction, the disks
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{D'k D'k D'k_, ...} are pairwise disjoint in M. Since the boundary of each of
these disks consists of two geodesic arcs with the sum of the exterior angles close to

n, the Gauss-Bonnet formula implies that the total curvature of each of these disks
is approximately n. Hence, in each of these disks the part of the disk with positive
curvature has total curvature at least |-. But then the total curvature of the part of M
of positive curvature is infinite. This contradiction proves that there is a bound on the

lengths of the geodesies in the statement of the proposition and that the closure V of
F is a geodesic lamination of M with the same bound on the lengths of its geodesic
leaves.

6. The unknotted theorem

We now prove Theorem 1.4 in the Introduction. Suppose S is a sphere endowed with
a Riemannian metric with no stable embedded closed geodesies. We first show that S
is connected and has exactly two ends, one top end and one bottom end. Suppose this

were not the case and S had at least two top ends. By the arguments in Theorem 5.1,
there would exist a stable properly embedded minimal surface A c S x [0, oo) with
compact boundary separating the two top ends of S. By Theorem 4.2, either an end

of A is asymptotic to the end of some M (a, r) where a is a primitive homology class

in H\ {S) or S has a stable embedded closed geodesic. Since both of these cases are

excluded, S must have one top end and one bottom end.

We now prove that if S has finite genus, then S is a Heegaard surface and unknotted.

In this case, S has two annular ends which we can represent by embeddings of the

form E+,E_: S1 x [0, oo) -^SxR, where dE+ is a simple closed curve in S x {t+}
for some large positive t+, and E+ S1 x {t}) c S x {t++1} is a simple closed curve for
eachf > 0; a similar statement holds for E-, where E-iS1 x[0, oo)) c Sx(—oo, t-]
and t_ < t+. By elementary three-manifold theory, the ends E+, E- are standardly
embedded in S x R. It remains to show that E S n (X x [L, t+]) is a standardly
embedded cylinder connected sum with a standardly embedded surface of genus g,
where g is the genus of S. Note that the height function h: T, -> [t-,t+] has only
critical points of negative index, since it is a harmonic function on S. By the isotopy
algorithm given in [31], any two smooth embeddings of S into S x [f_, t+] with the

same boundary values are ambiently isotopic relative to their boundary, if h has no
index two critical points. Since one can attach trivial handles on a standard cylinder

CcSx [t_, t+] with the same boundary values as S in such a way that h on the new
surface only has critical points of negative index, then the original S c S x [t-, t+]
is unknotted in S x [t-,t+]. It follows that S is properly ambiently isotopic to the

boundary of the solid infinite cylinder DxRcXxl with g one-handles attached

in a standard way. This shows that S is not only a Heegaard surface but that it is also

unknotted.
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We now consider the case where S has infinite genus. There are two topological
possibilities for S, since there are exactly two different examples of orientable
surfaces (S separates S x R and so is orientable) with infinite genus and two ends. We

now show how to embedd each of these surfaces in S x R so that it is a Heegaard
surface. First consider the cylinder C S1xM.cSxM.. Let Spj denote the

surface in S x R obtained by adding handles to C at the points S1 x {n}, n g N, and

similarly define Hz C S x R. The surface Sn has one annular end and one end of
infinite genus, and Sz has two ends of infinite genus. Since a Heegaard surface of a

non-compact three-manifold has the same end structure as the three-manifold, every
Heegaard surface of S x R has two ends, which proves statement (2) in Theorem 1.4.

It remains to prove statements (1) and (3) when S has infinite genus.

It is a classical result of Haken [12] and Waldhausen [45] that Heegaard surfaces

in S x R of finite genus are standard; in other words, such a Heegaard surface H
of genus g is obtained as the boundary oföxKcSxl with a finite number of
handles attached in a standard way. Recently, Frohman and Meeks [10] were able to
generalize the classical techniques of Haken and Waldhausen to prove that Heegaard
surfaces in M? are determined by their genus even when the genus is infinite. Recall
that a Heegaard surface is infinitely reducible, if in the complement of any compact
subdomain, there exists a proper infinite family of pairwise disjoint trivial handles

on the surface. The crucial step in the proof of Frohman and Meeks is to show

that a Heegaard surface of infinite genus in R3 is infinitely reducible, and this same

argument can be applied in S x R, since each end of S x R is homeomorphic to the

end of R3. Thus, by the proof of uniqueness of Heegaard surfaces in R3, we obtain
the similar theorem in S x R. This proves statement (3) of Theorem 1.4 and it remains
to prove statement (1) when the minimal surface S has infinite genus.

Again, in the case Ec^xl has infinite genus, we apply the techniques in [10]
used to prove that a properly embedded minimal surface M in R3 with one end is a

Heegaard surface of R3. We now show how to adapt the arguments in [11] and [10]
to our situation which is somewhat easier to control.

Let W be one of the closed complements of S in S x R. We will show that
W is a handlebody. Assume that S x {0} intersects S transversely and let W(+)
Wn(Sx [0, oo)) and W(-) Wn (S x (-co, 0]). We will shortly show that W(+),
and similarly, W(-) is a handlebody. Assume that this result holds. We now prove
that W is a handlebody. Since W(+) is a handlebody with one end (S has one top
end), there exists a disk D+ c W(+), dD+ c S, which separates W{+) n {S x {0})
from the end of W(+). Let D+ c W(+) be theJVIeeks-Yau [30] solution to the

classical Plateau problem for dD+ in W(+), i.e., D+ is a least-area embedded disk
in W(+) with boundary dD+. By the maximum principle, D+ n (S x {0}) 0.

Similarly, we obtain D_ c W(-) and let W be the closure of the bounded component
of W — (D+ U D_). If W is not a handlebody, then, by the main theorem in [28],
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W contains a compact stable embedded minimal surface. This is impossible, since W

is contained isometrically in S x R and clearly W does not contain a minimal sphere

of the form S x {t}. It follows that W is a handlebody, and so, W is a handlebody,
since it is the boundary connected sum of three handlebodies. It remains to prove
that W(+) is a handlebody.

In order to prove W(+) is a handlebody, it suffices to show that any smooth

compact subdomain À c W(+) can be separated from the end of W(+) by a finite
collection £> A) of pairwise disjoint disks. The proof of this reduction is a variant of
the argument given in the previous paragraph, which we now repeat. Suppose A(ra)
is a smooth compact exhaustion of W(+) with [W(+) n (S x {0})] c A(l) and

let <0(A(«)) be the corresponding families of separating disks. Replace £>(A(n))
by a collection of minimal disks of least-area in W(+) with the same boundaries

as in £>(A(n)). By Meeks-Yau [29], this collection £>(A(n)) consists of pairwise

disjoint minimal disks. Note that since A|(3,0(A(«))) -> oo as n -> oo, the maximum

principle implies that h\(£)(A(n)) tends to infinity as well. Hence, we obtain
a new compact exhaustion of W(+) by domains A(ra) which have mean convex

boundary. By the argument in the previous paragraph, A(ra) is a handlebody, but the

same argument shows that the closures of the domains A(« + 1) — A(«) are also

handlebodies. Hence, W(+) is a handlebody.

Suppose there were to exist a compact A c W(+) which could not be separated
from the end of W(+) by a finite collection <0(A) of pairwise disjoint disks. Then,
for some n > max(/z|A), for W(n) {x e W(+) \ h(x) > «}, the compact set

W(ra) n /î"1 {n) cannot be separated from the end of W{n) by a finite collection £> of
pairwise disjoint disks (since we could take <0(A) <©). Hence, it suffices to prove
that W(+) n (S x {0}) cannot be separated from the end of W(+) by a collection <© ;

this is because W(+) is arbitrary and so we could have replaced S by a downward
translation of S by n. For n e N, suppose that 51 x {n} intersects S transversely
and consider the compact exhaustion A(«) V7 n (51 x [0, «]) of W(+) and let
F(n) A(b) fl S. After a finite number of surgeries on F(n) in A(«), we obtain a

possibly disconnected incompressible surface F{n) c A(«) with 9.F(n) dF{n).
From the previous paragraph, we know that for n large at least one of the components
ofF(n) contains at least one boundary component in S x {0} and at least one boundary
component in S x {«}; otherwise, we can find the required collection of disks <©

separating W(+) n (S x {0}) from the end of W(+). Let F(«) be a least-area surface

in W(+) in the isotopy class of F(ra) and with 9i7(n) dF{n). The^third paragraph
of the proof of Theorem 3.1 makes it clear that the stable surfaces F(n) which have

local curvature estimates (from stability) must have local area estimates away from
their boundary. It follows that a subsequence of the F(n) n S x [1, oo) converges
on compact subsets to a non-compact properly embedded stable orientable minimal
surface F in S x [1, oo) with compact boundary. As observed earlier, in the first
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paragraph of this section, such an F cannot exist. This contradiction proves that

W(+) is a handlebody, which completes the proof of Theorem 1.4.

7. The bounded curvature theorem

In this section, we will prove the Bounded Curvature Theorem (Theorem 1.5) stated

in the Introduction. We first state a theorem that will be used to prove the Bounded
Curvature Theorem.

Theorem 7.1. IfT, c M x R is a properly embedded minimal surface with compact
boundary and finite genus, then S has bounded curvature. In particular, if S is

a connected properly embedded minimal surface in M x R without boundary and
with finite genus, then T, has finite topology, bounded curvature and linear area
growth.

Before proving the above Theorem 7.1, we show how the first three statements
in Theorem 1.5 in the Introduction follows from it. After we prove Theorem 7.1, we
will finish the proof of Theorem 1.5.

Proof of statements (1), (2) and (3) in Theorem 1.5. Statement (1) in Theorem 1.5

follows directly from the statement of Theorem 7.1. By Theorem 1.3, S has finite
topology, and hence, annular ends. Since S is a proper minimal surface, there is a

proper harmonic function (the height function) on each annular end, which implies
that S has finite conformai type.

Recall the hypothesis in statement (2) of Theorem 1.5 that M have non-positive
curvature. Since the surface S in M x R is minimal, it has non-positive Gaussian

curvature in this case. Assume now that M has non-positive curvature. Let E c S
be an annular end of S. Since S has bounded curvature and linear area growth, there
exists a sequence bn --* oo, so that the sequence of translated surfaces Tbn(E)
E{n),Tbn{{p, t)) (p, t—bn), converges to a minimal annulus A properly embedded

inMxl with bounded curvature and linear area growth. But, since M has non-
positive curvature, the minimal annulus A also has non-positive curvature. Since A
is complete and has linear area growth, non-positive curvature, and finite topology,
then it has finite total curvature c(A) 2tt/(A) 0. The proof that a complete
Riemannian surface S with non-positive curvature and linear area growth has total
curvature 2tt/ (£) is well-known (see [33] or [34] for a short proof). Thus, A is a flat
totally geodesic annulus inMxl. Hence, A is either of the form A y x R, where

y is an embedded geodesic in M, or M is a flat torus and A is a linear flat subannulus

inMxi. But, if M is a flat torus, it is known that the finite total curvature property
of S implies that the Gauss map G : S ->¦ S2 has finite degree and that S has finite
index. Thus, we may assume that A is of the form yxl and M is not a torus.
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Since M has non-positive curvature, y minimizes length in its homotopy class.

It follows that A is stable. Since M has non-positive curvature, it also follows that y
is the unique geodesic in its homotopy class unless a neighborhood of y is flat. Let
M x R be the covering space corresponding to n\ (A) and let A be a lift of A. Since A
is totally geodesic and the curvature of M x R is non-positive, the distance function
to A is convex. An application of the maximum principle, using this convex distance
function restricted to appropriate end representatives of the corresponding lift E of
ËtoMxR, implies that E is asymptotic to A. Thus, E contains a subend E' which

can be expressed as a small graph over the stable totally geodesic A. Recall that a

minimal surface has finite index if and only if it is stable outside a compact set. Using
the fact that the curvature of M is non-positive, it is straightforward to prove that the

graph E' is stable, and so, the complement of some compact subset of S is stable,

from which it follows that S has finite index. This completes the proof of statements

(1), (2), (3) of Theorem 1.5.

Proof of Theorem 7.1. Let S be a properly embedded minimal surface with compact
boundary and finite genus inMxl By Proposition 5.1, S has a finite number
of ends, and so, each end of S is an annulus. So, if S does not have bounded

curvature, then one of the annular ends of S does not have bounded curvature. Thus,
we may assume that S is an annulus with unbounded curvature and we will derive a

contradiction. Since h : S -> R is a proper harmonic function on S, after a possible
reflection ofMxl across M x {0}, a translation and the removal of a compact subset

of S, we may assume that 9 S is a simple closed curve in M x {0} and (M x {t}) n S
is a simple closed curve for t > 0. The arguments which we now use to complete
the proof are motivated by the proof of curvature estimates in [20] for two limit end

minimal surfaces of finite genus in M.3.

Arguing by contradiction, suppose that S does not have bounded curvature and

p(n) g S are points where the Gaussian curvature K(p(n)) has absolute value at

least n. Let Tp(n) : M x IR ^ M x 1 be the vertical downward translation by
h{p{n)) and consider the sequence of surfaces S(ra) TP(„)(S) inMxK. After
possibly choosing a subsequence, we may assume that Tp(n)(p(n)) converges to a

point /?* G M x {0}.
We will first prove the theorem under the additional hypothesis that for every

p g M x R, there exists an e > 0 such that the open e ball ofMxK centered at p
intersects S(«) in components that are simply connected. Then the sequence S(ra)
is by our hypothesis uniformly locally simply connected in the sense of Colding and

Minicozzi [2]. We will now discuss their theorem.

They prove a subsequence of the S («) converges to a minimal lamination X with
singular set S(X). The singular set S(X) contains those points q which are limit
points of points of the sequence S(ra) where the curvature is diverging. At such a

point q, there passes a smooth leaf L of X, and there exists a double cone C with
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vertex at q, transverse to L at q. Near q, outside of C, each S(«) (in the convergent
subsequence) contains a two component multigraph, that is converging smoothly on

compact subsets of L - {q} to L - {q} as n -> oo. Moreover the spacing between
the sheets of these multigraphs is going to zero as n --* oo.

Now we use this discussion at the point q p*, defined previously. We will
prove next that the leaf L through p* is M x {0}. This will follow from the fact that
the tangent space of L is always horizontal. If not, then Tq(L) is not horizontal for
some q g L,q near q. In a neighborhood of q there are multi-sheeted graphs of S(«)
converging to a fixed compact neighborhood of q in L. The number of such sheets is

diverging as n --* oo, and each such sheet has vertical flux uniformly bounded away
from zero. This contradicts the finite flux of S. Thus, L equals M x {0}.

We know S(£) n (M x {0}) is a finite set of points containing p*. Let Q be

a small vertical cylinder about each singular point p\ in (L M x {0}) n S(X).
Outside of the union Q of the Q, and near L, each S(«) is a two component high
sheeted, almost horizontal, multigraph we denote by G(n).

Using the cyclic covering space arguments in the proof of Theorem 3.1, one can
show that G(n) — Q embeds in a two component infinite cyclic cover of (M x {0}) —

Q. Since each of the boundary curves of a component of this surface goes to a

generator of Z under the associated represention a : n\((M x {0}) — Q) --* Z and

the boundary of the component surface, which can be considered to be a commutator
in the fundamental group, goes to 0, then the number of components in Q is greater
than one.

Let q be a point of S(£) n L that is closest to p* on L. Let y be a geodesic
in L joining p* to q. From the local picture of S(«) around p* and q, for n large,
of a double component multigraph near p* and q, it is straightforward to construct
a simple closed curve y{n) on S(«) that consists of two almost horizontal arcs in
successive sheets, which are graphs over the image of their projection to y, together
with two joining arcs near p* and q whose lengths go to zero as n ->¦ oo (the argument
that the lengths of these arcs go to zero can be found in Assertion 1 at the end of the

proof of the curvature estimates in [20] and also follows from the statement of the

Lamination Metric Theorem in [36].) On the vertical cylinder C near /?*, S„ meets
the ball bounded by C in a disk Dn and dDn consists of two double helices going
from the bottom of C to the top of C and two arcs (on the top of C and the bottom
of C) joining these double helices.

The curve y(n) enters C, near height zero, at a point of one of the two helices

on C, and then traverses D{n) almost horizontally to leave C at a point of the other
hélice on C. Then, y(n) is completed to a simple closed curve by doing the same

construction in the cylinder near q. Let V be one of the helicoidal spirals onCnS(n)
going from the bottom of C to the top of C.

Notice that the height of y («) is closer to 0 than the top and bottom of C. Since
the height function is harmonic, any minimal disk bounded by y(n) has height at
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most the height of y (n).
Finally observe that the intersection number of y (n) and F is one by construction.

If y (n) were homotopic to zero on Sn, it would bound a minimal disk on Sn which
would have even intersection number with F, and so, y(n) is homotopically non-
trivial.

Since y(n) is a simple closed curve and is homotopically non-trivial on S(ra)
which is an annulus, the flux of S («) is equal to the flux of VA across y («). But, by
construction, the flux of Vh across y(n) approaches zero as n approaches infinity,
which gives the desired contradiction, under our additional hypothesis that S(ra) is

uniformly locally simply connected in the sense we described before.
The proof of the related curvature estimates in [20] is quite delicate; we will adapt

the arguments given there to our situation to prove our desired curvature estimates.

We now carry out the proof of the desired curvature estimates by proving the sequence
S(n) is uniformly locally simply connected inMxR.
Assertion 7.1. The sequence £(«) is uniformly locally simply connected inMxR.
Proof. In our recent paper [24], we generalize, to the three-manifold setting, some of
the key theorems of Colding and Minicozzi in [4], where they prove that a complete
embedded minimal surface of finite topology in IR3 is properly embedded. In fact, it
follows immediately from the proof of Theorem 8.1 stated in Section 8 of this paper
(the proof appears in [24]), that if the sequence S(«) were not uniformly locally
simply connected at p, then there exists a sequence of homotopically non-trivial
loops y(rij) on some subsequence £(«?) with lengths converging to zero. However,
the fluxes of the £ («?) are a positive constant which is at most equal to the length of
any such y (ni), which gives a contradiction. Since this work is all very recent, we
now present our original proof that the short curves y («,-) exist.

After expansion of the metric on M by a fixed constant, we may assume that
the injectivity radius of M x R is greater than one. For p g M x R and r < 1,

let B{p, r) be the open geodesic ball of radius r centered at p. Define the function

/„ : M x R -> (0, 1] to be the radius of the largest ball B{p, r) c B{p, 1) such that

B{p, r) n £(«) consists of only simply connected components. Note the closed ball
B(P> fn(,P)) contains a non-simply connected component when fn{p) < 1. Thus,

when fn(p) < 1, there is a simple closed curve y(p, n) c S(ra) n B(p, r) such that

y(p, n) does not bound a disk in S(ra) n B(p, r).
Suppose now that the sequence S («) is not uniformly locally simply connected in

M x R and p is a point such that limn^oo fn(p) 0. Let p(n) e B(p, 1) be points
where the functions 4- have their maximum values ß(n); here, d : B(p, 1) -* (0, 1]

is the distance function to dB(p, 1). Note that B(p, 1) c D x [h — 1, h + 1] where
A h(p) and D is the unit geodesic disk centered at p in M x {/?}. After fixing
the coordinates centered at/?, we may consider the surfaces S(«) S(«)fliJ(p, 1)

to be surfaces inflx [-1,1] c M2 x R, where D is the unit disk in R2. In
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R2 x R we consider the homothetically scaled and translated surfaces £(«)

We now check that the surfaces S (n) form a uniformly locally simply connected

sequence of planar domains in R3. After choosing a subsequence, suppose that

fn(p(n)) < ^. If q € B(p(n), \d{p(n))), then fn(q) > \fn(p(n)). It follows
from our definitions that inside the ball B{n) centered at the origin of radius n in
M3 M2 x R, £(«) intersects subballs of radius \ in simply connected components.
This proves that the sequence S(n) forms a uniformly locally simply connected

sequence of surfaces in M3. It follows from the work of Colding and Mimcozzi [2],
[5] that a subsequence of the S («) converges to a minimal lamination X of R3 with
singular set of convergence S(X). We also refer the interested reader to our paper
[24] for details on this argument.

Let B{r) ci3 denote the ball centered at the origin of radius r. Note that the

second fundamental forms of the S(«) in the ball 5(2) can not converge to zero as

n -> oo, since S(ra) n 5(1) is not simply connected. Thus, X contains a smooth leaf
L that is not a plane. Since L is a leaf of a lamination, we know that L n B(r) has

bounded Gaussian curvature for all r > 0.

First consider the case where S{X) 0, and let L be as above. By Theorem 1.6

in [27], L is properly embedded in M3, a halfspace in M3 or in a slab in M3. Since L
is properly embedded in a simply connected manifold, it is orientable. Since it is not
a plane, we conclude by curvature estimates [43] that it is not stable. It follows that
the convergence of portions of S(ra) to L is of multiplicity one, otherwise one can
construct a positive Jacobi function on the limit L. Since the convergence of portions
of the S(ra) to L is smooth with multiplicity one, a standard path lifting argument
implies that L has genus zero. As observed earlier, the annuli S(«) are transverse

to the "horizontal" foliation ofMxl. It follows that L is transverse to horizontal
planes, since it has an open Gauss map and is a limit of surfaces with open Gauss map
with the same property. We will show that there is a simple closed curve a on L with
non-zero vertical flux, which is a smooth limit of simple closed curves a(n) c S(ra).
It follows, for« large, thata(ra) represents a homotopically non-trivial curve on S («).
But then, the corresponding curves a(n) on S(ra) are homotopically non-trivial and

have length converging to zero, which contradicts that S(ra) has fixed non-zero flux.
This contradiction proves that S(X) is non-empty. We now prove the existence of the

curves a{n), motivated by the proof of Assertion 2 in [20].

First suppose that L is properly embedded in M3. Since S (n) n 5( 1 is not simply
connected, L is not simply connected. Since L also has genus zero, L has more than

one end. If L has finite topology, then it has finite total curvature [7]. In this case, L
must be a catenoid [17] which is vertical, since it is transverse to horizontal planes.
But then, the waist circle of L is the desired curve a. Thus, L does not have finite
topology under the assumption of properness.
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So, L is proper and has infinite topology. In our case of genus zero, this means
that L has an infinite number of ends. Since L is properly embedded, the proof of
the ordering theorem [9] applies to show that given any two ends of L, there exists

an end of a plane or catenoid in IR3 — L that "separates" the two ends and there is

a natural linear ordering on the ends of L. The main theorem in [6] implies that the

middle ends of L in this ordering are annular ends. It follows from [7] that the middle
ends of L are asymptotic to ends of planes and catenoids. Since x^\L has no critical
points, the ends of L are asymptotic to horizontal planes. In particular, there exists

a horizontal plane that intersects L transversely in a finite positive number of simple
closed curves (actually just one) and we let a be one of these simple closed curves.
This completes the proof of the existence of the desired a, which implies that L is

not properly embedded in R3.

Since L is not properly embedded in IR3, Theorem 1.6 in [27] implies that L
has infinite topology. In our case, this means that L has an infinite number of ends.

Since L is properly embedded in a slab or halfspace of IR3 which is a geodesically
convex three-manifold, the proof of Theorem 1.6 in [27] and the proof of the ordering
theorem [9] together show that given any two ends of L, there exists an end of a

plane or catenoid in IR3 — L that "separates" the two ends and there is a natural linear
ordering on the ends of L. Now the argument procèdes exactly as in the previous
paragraph to obtain the desired a. This implies that S(X) is non-empty.

We now check that X is a foliation of R3 by horizontal planes with at least two
vertical line components in S(X). In fact, by Lemma 1 in [21], X is a foliation of R3

by horizontal planes with exactly two vertical line components. We sketch the proof
for the sake of completeness.

Since the Gaussian curvature of the sequence S(«) is unbounded in a

neighborhood of S(X), then in some fixed ball centered at the origin, there exist points
p{n) g S(ra) of large normalized curvature (see [27]). As shown in [27], after a

translation of S(ra) by —p(n), followed by a homothety of S(ra) by +JK{p{n)),
where K (/?(«)) is the absolute Gaussian curvature at p{n), we obtain a new sequence
of surfaces £(«) which converges to properly embedded simply connected surface

S in R3 which is transverse to horizontal planes (since the £(«) are). By the main
theorem of [27], S is a vertical helicoid and it follows from [2] that X is a foliation
by horizontal planes. By the main theorem in [35], S(X) consists of a locally finite
collection of vertical lines.

If S X were to consist of a single line, then from the multisheeted graph picture of
S(«)in any large ball for n large, we would conclude that for n large, S («) intersects
the unit ball centered at the origin in a disk, which by our normalization is not true.

Thus, S{X) consists of at least two vertical line components.
In this case, we obtain, for n large, a simple closed curve a(n) c S(«) which

consists of two almost-horizontal almost-straight-line arcs, one above the other,
together with two short arcs near two singular points in S(X) (see the discussion of
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the uniformly locally simply connected case which appears before Assertion 7.1).

It follows that the corresponding curves a(n) in S(ra) are homotopically non-trivial
with lengths converging to zero as n -> oo. As before, this situation contradicts the

fact that the flux of the S(«) is non-zero. This completes the proof of the assertion,
which also completes the proof of Theorem 7.1.

Proof of statements (4) and (5) in Theorem 1.5. We now complete the proof of the

Bounded Curvature Theorem stated in the Introduction.
Consider a sequence S (n) of minimal annuli with curvature diverging to infinity.

We will prove that their fluxes converge to zero. After translation and choosing a

subsequence, we may assume that the curvatures are blowing up in arbitrarily small
balls inMxl centered at some point p g M x {0}. The proof of Theorem 7.1

applies and proves that the fluxes of the S(«) must be converging to zero. This

proves statement (4) in Theorem 1.5.

We now prove statement (5) of the Bounded Curvature Theorem. The first part
of this statement is that there exists an e > 0 such that when M is not a sphere and

S is a properly embedded unstable minimal annulus inMxR, then the flux of S is

greater than e. Once we prove this, curvature estimates for stable minimal surfaces

and statement (4) of Theorem 1.5 imply that there is a uniform curvature estimate
for all properly embedded minimal annuli inMxR. Although we do not use it, we
remark that when M has genus greater than one, then the collection of stable properly
embedded minimal annuli have flux bounded from below by a positive constant.

Arguing by contradiction, suppose S(ra) is a sequence of properly embedded
unstable minimal annuli inMxR such that the flux of S (n) is less than ^.

We first consider the case where the sequence of surfaces is uniformly locally
simply connected inMxl. From the proof of Theorem 7.1, we see that, after

translating the S(ra) and choosing a subsequence, the S(ra) converge to a minimal
lamination<£of MxIRwithMx{O}asaleafof Xandwithapoint/?* G S(£)C\Mx{0}
in the singular set. From the proof, we know that S(£) n (M x {0}) consists of a

finite number of points greater than 1, and outside solid cylinders C, centered at the

points pi G S(X)n(M x {0}) and near M x {0}, the surface S («) is a highly sheeted

two-component multigraph. Moreover, each component of the multigraph embeds

in an infinite cyclic covering space n : N -> ((M x {0}) - IJ, Q).
Since the S(«) are annuli, for e small the two components of [£(«) n (M x

[—e, e])] — |J; C\ are disks, and so, JV is simply connected. Since JV is simply
connected, the fundamental group of (M x {0}) — IJ, C; is Z. In particular, there are

two points in S(£) n (M x {0}) and M is a sphere. Since we are assuming that M
is not a sphere, we obtain the desired contradiction.

We now know that the sequence S(«) is not uniformly locally simply connected

and, without loss of generality, we can assume that there exist points qn g S(«)
of diverging curvature that converge to a point p* G M x {0}. From the proof of
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Assertion 7.1, we may assume, after small translations, that there exists a sequence
y(n) (M x {0}) n S(ra) of simple closed curves which have lengths going to zero
as n -> oo. Since the curves y{n) are short, we may assume also that they bound
disks Dn x {0} c M x {0}. Consider the three-manifold N(n), which is the closure of
the component of (M x [0, oo)) — S (n) disjoint from the interior of Dn x {0}. Since

we are assuming that M is not a sphere, y(n) is homotopically non-trivial in N(n).
Let A{n, i) be a least-area annulus in N{n) with boundary y («) and the simple closed

curve a(n, t) on S(«) n dN(n) at height f. Let A(n) be a limiting stable annulus for
some subsequence of the A(n, t), t --* oo.

Now consider A(n) to lie inMxi By the Stability Theorem (Theorem 1.2),
either A{n) is asymptotic to an end of some M{a,r) or under translation, the A{n)
produce a limit which is a vertical minimal annulus over a simple closed geodesic in
M x {0}. In the first case, we contradict that dA{n) is homotopically trivial. In the

second case, we contradict that the fluxes of the A(n) are converging to zero but the

flux of the limiting vertical annulus is strictly positive. These arguments complete the

proof of the first part of statement (5) of Theorem 1.5 concerning curvature estimates

for minimal annuli.

All of our arguments in the proof of the first part of statement (5) also apply
to minimal annuli with compact boundary. Since minimal annuli with bounded

curvature are quasiperiodic, it follows that the annular ends of a S with finite topology
have curvature bounded by any constant greater than CM, and in particular by 2CM,
where we may assume Cm is positive.

Remark 7.1. As noted in statement (4) of Theorem 1.5, our curvature estimate is

uniform in the sense that the estimate is valid for a fixed bound of flux; the curvature
estimate we obtain for S only depends on a lower bound of the flux of the annulus
S. Similarly, the curvature estimates which only depend on the vertical flux can be

obtained under uniformly bounded deformations of the metric on M. The uniform
curvature estimate in terms of flux is quite important for studying moduli space
questions for minimal surfaces of genus zero in IR3 and minimal annuli in S x R,
where S is the unit sphere in R3. In particular, these curvature estimates imply
that minimal annuli in S x R have bounded curvature and linear area growth. As

explained in [22], these curvature estimates for minimal annuli can be used to prove
that minimal annuli in S x R with certain bounds on their horizontal (coming from the

Killing fields on S) and vertical fluxes are foliated by circles; hence, these examples
are in the family A described in Section 2.

Now we consider the case of Theorem 1.6 stated in the Introduction. The proof
of this theorem is based on the same type of arguments given in the proof of Proposition

3.1; we will only briefly outline the idea of the proof. As in the proof of
Theorem 7.1, the basic idea is to prove, under the hypothesis of bounded genus in
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e-type horizontal "slabs" inMxR, that there exists a divergent sequence F (n), T(n)
consisting of a bounded number of simple closed curves in S at approximate heights
bn which diverge to oo or —oo, such that F(n) is homologous in S to S n (M x {0})
and such that the total length of F(n) converges to zero. The existence of the F(n)
follows from a careful analysis of the local geometry of a properly embedded minimal
surface in a Riemannian three-manifold near a point p* of large curvature when one
has a uniform bound on the genus of the surface in a neighborhood of /?*. The local

description that makes this analysis possible can be found in [5], [20] or found from
a proof analysis of Theorem 7.1. In the construction of the F(n), one also applies

arguments similar to those used in the proof of Theorem 3.1. This completes our
sketch of the proof of Theorem 1.6.

8. Concluding remarks and conjectures

In a recent paper, the authors have addressed the question of the role that properly
embedded plays in the theory of complete embedded minimal surfaces inMxi
In the paper [24], we explain the structure of the closure of a complete embedded

minimal surface of finite topology inMxi, which may or may not be properly
embedded. For us, a complete embedded surface is an injective isometric immersion
of a complete surface.

Theorem 8.1 (Theorem 15 in [24]). Suppose S is a complete embedded minimal
surface offinite topology in Mxi Then:

(1) The closure o/S is a minimal lamination of M xl
(2) IfM has a metric ofpositive curvature, then S is properly embedded in Mxl
(3) If M has a metric of non-negative curvature and S is not properly embedded,

then M is aflat torus and S is a totally geodesic submanifold.

In general, there exist many complete embedded minimal surfaces of finite topology

inMxi which are not proper; in fact, such complete embedded minimal surfaces

can even be found which are totally geodesic or which are graphs. By Theorem 8.1, a

complete embedded minimal surface of finite topology inMxM has locally bounded

curvature and is a leaf of a minimal lamination. We believe that a better result holds
for complete embedded minimal surfaces of finite genus and we make the following
conjecture and question.

Conjecture 8.1. If/iS^MxIRisa complete embedded minimal surface and

S has finite genus, then S has bounded curvature.
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Question 8.1. Suppose S is a complete embedded minimal surface inMxK. Must
it be the case that S has a finite number of ends? If not, will it have a finite number of
ends under an additional hypothesis such as bounded curvature, finite genus, being
stable or at least must S have only a countable number of ends? Also, does S have

only a finite number of ends under some constraint on M such as having positive
curvature?

We mention here another important conjecture and an interesting question that
arises from our work.

Conjecture 8.2. Suppose S is the two-sphere endowed with a constant curvature
metric. Every properly embedded minimal annulus in S x R is foliated by circles of
varying radii, one in each level set sphere. It then follows that a properly embedded

minimal annulus in S x R is either a cylinder of the form yxR where y is a great
circle, a "helicoid", one of the "unduloids" defined by Pedrosa and Ritore in [37],
or one of the other minimal annuli in the two-parameter family A defined in Section
2.2.

Question 8.2. If S is a properly embedded minimal surface in¥xl, then are the

annular ends of S asymptotic to the ends of periodic minimal annuli in¥xR?
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