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Invariant *-products on coadjoint orbits and the Shapovalov
pairing

A. Alekseev and A. Lachowska

Abstract. We give an explicit formula for invariant *-products on a wide class of coadjoint orbits.
The answer is expressed in terms of the Shapovalov pairing for generalized Verma modules.

1. Introduction

The problem of constructing a *-product on a manifold M with given Poisson structure
was formulated in [BFFLS]. In the case of symplectic manifolds the existence of *-
products was established in [DL] and in a more geometric fashion in [F]. For a

general Poisson manifold the existence of *-products was proved in [K]. While
general existence results are now available, giving explicit formulas for *-products
remains a difficult task. The first formula of this type was given by Moyal in [M] in the

case of a constant Poisson bi-vector on R". Further examples that one can consider
are linear Poisson brackets on the dual g* of the Lie algebra g, and nondegenerate
Poisson brackets on coadjoint orbits in g*. The *-products on g* were constructed,
for example, in [G]. It is a natural idea to construct *-products on coadjoint orbits

by restriction from g*. However, in [CGR] it was proved that for g semisimple, a

smooth *-product on g* does not restrict to coadjoint orbits.

Examples of *-products on some simple coadjoint orbits (CP" and symmetric

spaces) can be found in [BBEW], [T]. We shall concentrate on constructing
*-products on M invariant with respect to the transitive G-action. In the case of
G GL(ra) this problemhas been addressed in [DM1]. Invariant *-products on minimal

nilpotent coadjoint orbits of simple Lie groups were constructed in [ABC] and

[AB]. In these works the locality axiom (stating that the *-product should be defined

by a bi-differential operator) is relaxed. In the case of g semisimple constructions of
*-products on coadjoint orbits of semisimple elements were suggested in [A] using
the deformation quantization with separation of variables of [Ka], and in [DM2] using
the methods of category theory.

Our main result is an explicit formula for invariant *-products on coadjoint orbits

G/H, for which the corresponding Lie algebras g and h (or their complexifications)
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fit into a decomposition q n+ © f) © n_ (see Section 2.2 for the precise statement of
assumptions). Examples include: the space IR2" with constant nondegenerate Poisson
bracket (a coadjoint orbit in the dual of the Heisenberg algebra), coadjoint orbits
of semisimple elements in semisimple Lie algebras, as well as infinite dimensional
examples such as coadjoint orbits in the dual to the Virasoro algebra. Our construction
is motivated by the fusion techniques of [EV].

Acknowledgements. We received a lot of help from S. Parmentier, who participated
in this project in its early stages. We are grateful to S. Gutt, P. Etingof, V. Rubtsov,
D. Sternheimer, X. Tang, B. Tsygan and P. Xu for the interest in our work and for
useful discussions. This work was supported in part by the Swiss National Science

foundation and by the Erwin Schrödinger Institute for Mathematical Physics.

2. Preliminaries

In this section we formulate the problem of finding invariant *-products on homogeneous

spaces, and we state the assumptions, which allow us to solve it in an explicit
form.

2.1. Invariant *-products on homogeneous spaces. Let M be a manifold. Recall
that a* -product on M is defined by a formal power series B ^^qÄ"^« in Ä, where
the coefficients are complex bi-differential operators on M with Bo 1 and Bn e

Diff2(M). The *-product is then given by the formula /*g := fg+J2T=i hnBn(f, g)
for /, g g C^iM). The main condition imposed on B is that the *-product be

associative, that is, / * (g * h) (/ * g) * h for all /, g,h g Cœ(M).
Let G be a connected Lie group and let H c G be a closed Lie subgroup of

G. Denote the corresponding Lie algebras by q and respectively. The quotient
M := G/H carries a transitive action of G. There is an induced G-action on functions

on M, and on differential and poly-differential operators. A *-product on M is called
invariant if it is defined by an invariant formal bi-differential operator B. That is, all
bi-differential operators Bn have to be G-invariant.

Recall that the space of invariant differential operators on M G/H can be

expressed as follows: Diffo(M) (Uq/Uq l))H. Here Uq is the universal enveloping
algebra of q, Uq ¦ Ij is the left ideal generated by c Q C Uq. The algebra Uq carries
a natural adjoint action of H c G, and since Ad# (f)) f), this action factors to the

quotient Uq/Uq ¦ f). The //-invariant part (Uq/Uq ¦ fy)H has an algebra structure
induced by the one of Uq. In a similar fashion, the space of invariant Af-differential

operators on G/H is given by

Diffg(M) {{Uq/Uq ¦ t))®N)H,
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where the invariant part is taken with respect to the diagonal //-action on
(Uq/Uq ¦ [})®N. Formal bi-differential operators which define invariant *-products
on M take values in the space

B e ((Uq/Uq ¦ f))®2)ff[[Ä]].

Remark 2.1. As opposed to Diffg (M), the space Diff^(M) for JV > 1 has no natural

algebra structure.

Let A : Uq -> Uq ® Uq be the standard coproduct of Uq. That is, A is an algebra
homomorphism such that A(x) l®x+x®lforallx e q. Let/?, C e Diff^(M)
({Uq/Uq\))®2)H Then the expressions ((A ®1)5)(C®1) and ((1® A)5)(1®C)
define unique elements of Diff^(M) ({Uq/Uq ¦ f})®3) In more detail, let

B, C g Uq ® Uq be representatives of the classes B, C e (Uq/Uq ¦ f})02. The

classes of ((A ® l)B)(C ® 1) and ((1 ® A)5)(l ® C) in (Uq/Uq ¦ f})®3 are H-
mvariant and independent of the choice of representatives.

The associativity of an invariant *-product defined by a formal bi-differential
operator B is expressed by the following equality of invariant formal 3-differential

operators in ((Uq/Uq ¦ I))®3)" [[h]]:

((A ® 1)5) (5 ® 1) ((1® A)5)(l®5). (1)

Remark 2.2. If H is a connected Lie group one can replace the condition of Ad#-
invariance of B by an algebraic condition of invariance with respect to the adjoint
action of It is also a natural context when the Lie algebra q is infinite dimensional
and the corresponding Lie group may not be available.

Remark 2.3. In the case of f) =0, equation (1) was considered by Drinfeld in [Dr];
here a family of solutions of (1) was constructed in terms of the Campbell-Hausdorff
series for the Lie algebra q.

2.2. Assumptions on g and i). Examples. Here we list assumptions imposed on
the Lie algebra q and its Lie subalgebra which allow to construct explicit solutions
of equation (1).

• The Lie algebra q is Z-graded, q 0, eZ q;, such that each graded component
has finite dimension. The adjoint action of H on q preserves this grading. Let
\) flo and denote n+ 0i>o g-,, n_ 0i<o g-,.

• There exists a character / : go -* C such that the pairing n+ x n_ ->¦ C defined

by u, v *--* xdu> v]o) for u e n+, v e n_ is nondegenerate. Here i h- io
denotes the projection onto the zero graded component flo- Such a character is

called nonsingular.
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Remark 2.4. If H is connected, the requirement that H preserves the grading is

automatically satisfied.

Remark 2.5. The second assumption implies that flo 7^ 0.

Example 2.6. Assume that fl is quadratic. That is, there is a nondegenerate ad(fl)-
invariant symmetric bilinear form Q : g x g --* C of degree zero. In this case, go is a

finite dimensional quadratic Lie algebra with invariant bilinear form, the restriction
of Q to go. Let 3(ßo) be the center of go. Every element z g 3(flo) defines a character

Xz of flo, Xz(x) Q(z,x). An element z g 3(flo) is called nonsingular if the

map (u, v) *--* x.z([u, v]o) g C defines a nondegenerate pairing between the graded

components fl,- and fl_,- for all i. If j(flo) is nonempty and contains a nonsingular
element, then the set of such elements is Zariski open in 3 (flo).

Example 2.7. Let g be a semisimple complex Lie algebra, \) be a Cartan subalgebra of

g, FI {a, }™^ s be (some choice of) the set of simple roots. The principal grading
on g is the unique grading such that f) flo and all root vectors corresponding
to simple roots have degree 1, eai g g\. Any regular character / oft) defines a

nondegenerate pairing n+ x n_ —>¦ C.

This construction applies verbatim to any Kac-Moody algebra.

Example 2.8. Let g be a semisimple complex Lie algebra, and let z G fl be a semisim-

ple element. Let flz be the centralizer of z and let f) be a Cartan subalgebra of fl such

that z g f) C gz. Define the unique grading on fl such that flo flz and for all simple
roots in Sz := {a;, eai £ gz} one has eai G g\. The Lie algebra p+ flo © n+ is a

parabolic subalgebra of fl with the Levi subalgebra gz, corresponding to the subset

Sz c n. The center 3(flo) C f) consists of the elements orthogonal to Sz. Denote by
R the set of roots of fl and by Rz c R the set of roots of gz. Then the nonsingular
elements of 3 (flo) that define a nondegenerate bilinear pairing between n+ and n_ are
those having nonvanishing scalar product with all elements of R \ Rz. They form a

Zariski open subset of 3(flo)• hi particular z is a central nonsingular element in 3(flo)•

If z is a regular semisimple element of fl we return to Example 2.7.

Example 2.9. Let fl Hn be the Heisenberg Lie algebra generated by c and by
pi,qi,i I, ,n, with the only nonvanishing Lie brackets [p;, qj] S;jc. Define
the grading by setting deg(/?,•) 1, deg(qi) — 1 and deg(c) 0. Then flo Cc,
and any / g (flo)* such that / (c) ^ 0 is a nonsingular character.

Example 2.10. Let fl Vir be the Virasoro algebra with gn CLn, n g Z, n ^ 0

and flo CLo©Cc with the Lie bracket [Ln, Lm] {n — m)Ln+m + 6n+m^ÏLjfLt.
Let x G flg be defined so that x(Lo) A, /(c) c for some A, c g C. Then /
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defines the pairing (Ln, L_„) 2nA + rL^fLc which is nondegenerate for all pairs

A, c g C with A + ^r-c £ 0 for all n e Z>0.

2.3. Relation to coadjoint orbits. Let q* := ©ieg ß* be the (graded) dual of the

Lie algebra g. It carries a natural coadjoint action of g. An element / e qI c q*
defines a point in g*. Our second assumption is equivalent to saying that flo is the

coadjoint stabilizer of /.
Assume that g is finite dimensional. Then there is a connected simply connected

Lie group G with Lie algebra g and with a natural coadjoint action of G on g*. Denote
the stabilizer of / by Go C G. It is a closed subgroup of G with Lie algebra go- A
coadjoint orbit of / under the G-action is a homogeneous space M G/Go. Our
construction of invariant *-products applies if the adjoint action of Go preserves the

grading. If Go is connected, this condition is automatically satisfied. In particular,
this is always the case when g is a semisimple Lie algebra.

If Go is disconnected let H be the connected component of the unit element. Then

our method applies to G/H, which covers the coadjoint orbit G/Go-
Let G be a real Lie group and g be the corresponding real Lie algebra. Since the *-

products are usually defined on the space of complex valued functions, it is sufficient
that the assumptions of the previous section be satisfied for the complexified Lie
algebra qc. For this reason, in the rest of the paper we assume that g is a complex
Lie algebra.

Recall that the coadjoint orbits carry an invariant symplectic form which is
constructed as follows. Identify TeH(G/H) n_©n+ and define co(u, v):=— /([«, v]).
By the assumptions, this bilinear form establishes a duality between n_ and n+. Let
u\ and v\ be a pair of dual bases in n_ and n+, respectively. Then the inverse of œ is

the invariant Kirillov-Kostant-Souriau (KKS) Poisson bi-vector on G/H, which is

equal to J2i ui A vi at eH- An additional constraint which is often imposed on the

bi-differential operator B is that the skew-symmetric part of B\ be equal to a given
Poisson bi-vector. In our case, this condition reads

B\-B\= ^m; A vu (2)
i

where B[ is a bi-differential operator obtained by exchanging two copies oiUg/Ug-fy
in the tensor product. Geometrically, n_ and n+ define two distributions in T(G/H).
If we deal with a real Lie group G and the conditions of the previous section are
satisfied for the real Lie algebra g, these distributions give rise to transverse Lagrangian
polarizations on the orbit. In general, we get transverse complex polarizations.
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3. Generalized Verma modules and the Shapovalov pairing

In this section we recall the notion and basic properties of the Shapovalov pairing and

of the associated canonical element in the tensor product of two opposite generalized
Verma modules. The details on the generalized Verma modules can be found, for
instance, in [Di].

3.1. Generalized Verma modules. Letp+®i>oß; andp_ ©,<ofli- A central
character / of go can be given a p±-module structure by letting n± act trivially on it.
Define the generalized Verma modules by

In Example 2.7 we recover the Verma module over g of highest weight /, and in
Example 2.8 we recover the scalar generalized Verma module induced from the parabolic
p+. By general properties of the induction, M+ is isomorphic to C/n_ as a C/n_-
module generated by vx =1®/. Similarly, M ~ Un+ as a Un+ -module generated

by vx. Both Verma modules inherit natural gradings from C/n+, C/n_.

Suppose that M is a Z-graded U(g)-module, and V is any U (g)-module. Then

we define the completed tensor product M <g> V YlieZ^' <S> ^ as a Z-graded
[/(ß)-module where elements of U(g) act by comultiplication. In particular, if both

M and JV are Z-graded [/(ß)-modules, then M <8> A^ has two Z-gradings. Often it is

convenient to preserve both gradings, M <8> N ]"[¦ ¦ M, ® Nj, where the elements

may have infinite length.
Fix a nonsingular character / of flo- For any X e C we consider a rescaled

character xx '¦= h-x and define a pairing between C/n_ and C/n+which depends on the

parameter k. Write U(g) U(go)®(n-U(g)®U(g)n+) and let 0: U(g) -> U(g0)
be the projection of an element in U(g) to the first summand along the second. For

any x g C/n_, y g Un+ we set

where S: Uq -> Uq is the antipode of Uq. That is, S is the unique anti-automorphism
of Uq such that S(x) —x for all x g g.

Let M+ Indyp xi and M~À Ind^jJ x-i be the generalized Verma modules.

The pairing -, •)>. gives rise to a pairing between M+ and M~À. Namely, fix
generating vectors vx 1 ® Xx & M+ and u_>. 1 ® x-x & MZk and let

(xvk,yv_k) := (x,y)k.

This pairing is called the Shapovalov pairing between the generalized Verma modules.

It is C/fl-invariant in the following sense: (au, v) (u, S(a)v) for u e Mk and
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v g MZk- The modules Mk and M~À are irreducible if and only if ¦, ¦)>. : t/n+ x
Un- --* C is nondegenerate. Indeed, if x ¦ vk lies in a proper submodule of Mk and

x g Un- has maximal degree in this submodule, then {x,y)x =0 for all y G Un+
by the U(q)-invariance of the pairing, and conversely.

Proposition 3.1. Let x be a nonsingular character o/qo. Then the pairing

(-, -)k: Un-®Un+ -> C

is1 nonsingular for almost all X g C.

of. Let {m,} be a homogeneous basis in n_, x a nonsingular character, and let
{vi} the dual basis in n+ with respect to the pairing (u,v) —/([«, u]o)- Choose an

order of the elements u\ in each graded component of n+, and enumerate the set {m, }

by increased grading. Then we have a PBW-type basis in U(n±). In particular, in
each graded component (C/n_)_n, n g Z+, there is a basis {xk}k_l of monomials

in {ui}. It can be ordered so that the number of factors in x^n) is greater than or

equal to that in x^"-1 whenever I < j. For each element x(kn) us^usk22... u^ set

y^ vk\vkl ¦ ¦ ¦ vkr¦ ^e elements {y^} f°rm a basis in (Un+)n. The number

dk Ylr;=i si is called the length of xk Let X g C and consider the N x N matrix

Mn(X) (xk y\ )x- Its elements are polynomials inÀ. The following statements

are easy to check:

(a) The order of the polynomial (x£n), yj^ )k cannot exceed the length of the shortest

of the two monomials xk y\

(b) For two monomials xk )y of the same length dk, (xk y\ x
is a polynomial

of order strictly less than dk unless / k. If / k, then xk and yk have the

same number of factors which are dual to each other with respect to the -, -)

pairing.

(c) We have

^* + Pk(k),
1=1

where i\ is a polynomial of order less than dk.

The above implies that we can write

Mn(X) Dn(X)C(\ + O(\/X)), (3)

where Dn(X) is a diagonal matrix with [Dn(X)]kk (TYî=1(s;)^Xdk, the matrix C



802 A. Alekseev and A. Lachowska CMH

is constant lower triangular with units in the diagonal, and 0(1/A) is a matrix whose
entries are polynomials in I/A without a constant term. The determinant of M"(A) is

a polynomial in A of order Ylk=\ d-k with nonzero leading coefficient. Therefore, the

matrix Mn (A) is invertible for all but a finite number of values of A £ C. The union of
zeros of M "(A.) for all n is a countable subset of C. This completes the proof.

3.2. Canonical element F\. Let A £ C such that the pairing -, ¦)>. be nonsingular.
Denote by Fx £ Ux\— ® C/n+ the canonical element corresponding to the pairing. It
has the form Fx £ 1 + (C/n_)<o ® (t/n+)>o- Let M+ <g> MZX be a completed tensor
product of two irreducible generalized Verma modules with generating vectors vx
and v-x- Then Fx{vx® v_x) is the canonical element with respect to the Shapovalov
pairing. In particular it is Ug-invariant. Choose a generating vector v £ Vo in the

trivial Uq module Vo C. Then v i-> Fx{vx ® t>_jO defines a C/ß-homomorphism
Vo -> M+ ® *CÀ.

Proposition 3.2. The element Fx is a meromorphic function of A which is holomor-

phic at A oo. The residue of Fx at A 0 w given by the formula

Res>.=o Fx ^2 Ui ® Vi £ ti_ <8> n+ c C/n_ <8> Un+. (4)

Proof. Using the bases {x£ } and {y^" } from the proof of Proposition 3.1 one can
write the element Fx in the following form:

n=0 «

Decomposition (3) implies that the matrix elements (M" (A))^1 are rational functions
of A, holomorphic at A oo. Hence, each bi-graded component of Fx is a rational
function of A holomorphic at A oo, which amounts to saying that Fx is meromorphic
and regular at A oo.

To compute the residue of Fx note that for the matrix C of (3) one has C« 8m

for k, I with <4 à\ 1. This implies the same property for the inverse matrix
C^1 <5« for £, / with dk di I. We write

ResÀ=0(M"(A))-1 =ResÀ=0

This formula shows that the residue vanishes unless dk 1. Then, since C"1 is

lower triangular with <i/ < d^ for I > k one has <i; 1 as well. Hence, the only
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matrix elements which have nonvanishing residues are the diagonal entries k I

with dk 1, in which case the residue is equal to one. Since the elements with d 1

are basis elements in n_ and n+ we obtain (4), as required.

Remark 3.3. Formula (3) implies that the coefficient {Mn(X))lkl of the element

xf* ® yf* in Fx is a rational function in A of order less than or equal to —dk. By
exchanging the roles of k and / we see that in fact the order is < — max(<4, d{).

Remark 3.4. In case when g is finite dimensional, let dmax g Z+ be such that

(n+); 0 for all / > dmeiX. Then we have the following estimate for the length dk

of monomials in the basis of (Un+)n: dt > \-r— 1. Therefore in the Taylor series inL «max J

I/A for the coefficients of the matrix (M"(A))~1 the leading term is of order greater
than or equal to [-^-1. The coefficients of a given order m in I/A can appear only in-* L «max -I " * l l j
matrices (M"(A))~1 with« < m<imax. Since each graded component of t/n+ is finite
dimensional, Fx has only finitely many bi-graded components with coefficients of a

given order in I/A.

4. Solutions of the associativity equation

In this section we relate the Shapovalov pairing with the associativity equation (1)
for the pair q,[) := qç,. In the proof of the associativity equation we shall use

C/fl-homomorphisms from generalized Verma modules to various completed tensor

products. Our argument uses the method introduced in [EV]; a detailed exposition
can be found in [ES].

4.1. C/0-homomorphisms of generalized Verma modules. One useful property of
C/fl-homomorphisms is given by the following proposition.

Proposition 4.1. Let M+ be an irreducible generalized Verma module with generating

vector vx. Suppose that for a UQ-module V, there exists a U^-invariant element

z g M+ ® y such that z g vx®vu + (C/n_)<o ¦ vx ® y for a certain w g V. Then

such element is unique.

Proof. Assuming that an invariant element exists, we will construct it inductively
starting from the summand vk ® w. Let {yu} and {x^} be the bases in (C/n+)>o and

C/n_ <o which consist of the elements of the bases in each graded component of Un+
and Un- constructed in the proof of Proposition 3.1, and ordered by the increased

grading. Then we can write z vx ® w + J2k xkv}. ® wk for some elements wu G V.
By assumption we have A(yt)z 0 for all k > 0. Let y\ be a basis element of
degree 1. ThenA(;y/)z vk ®yiw + J2k yixkVx ®u>k + J2kxkv}. ®yiwk- Since Mk
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is irreducible, by construction of the basis there is only one x/ (of degree 1) such that

yixivx vx, and therefore the element wi — yiw e V is uniquely determined.
Now suppose all elements wk are known for xk of degree less than s. Let yi be a

basis element of degree s, then A(yi) yi ® 1 + 1 ® yi + J2n anyn ® y'n where {yn}
and {y'n} are elements of the same basis of (C/n_)<o of degree less than s and {an}
are complex coefficients. We have

yiwk + ^2an^2ynxkvk ® y'nwk =0.

Since Mx is irreducible, for each yn there exists only one element xn of the basis of
degree less than s, such that ynxnvx vx- Similarly, for yi there is only one element

xi of degree s such that yixivx vx. We obtain the equality

any'nwn + C/(n_)u>. ® V 0.

The elements wn corresponding to xn of degree less than s are already known. This
determines uniquely the element

The proof is completed by induction.

Remark 4.2. In case when V V is a finite dimensional module, ® is the usual

tensor product, the statement follows from the Frobenius reciprocity of the induction:

Homt7fl(Vo, M+ ®V)= UomUs(MZx, V) Hom^(*_,., V).

Therefore, the space of C/ß-homomorphisms Vb —? M^ ® V coincides with the space
of (Un-)-invariant vectors in V with the action of Uqo given by the character x-x-

Proposition 4.3. Let A : q -* q be a Lie algebra automorphism of q preserving the

grading. Then the element Fx is invariant with respect to the natural action of A on
Un- ® Un+.

Proof. Since A preserves the grading, the element A(Fx)(vx ® V-X) G M+ ® MZk
is of the form vk ® v-x + (C/n_)<o ¦ vx ® (Un+)>o ¦ v-x. Since A is a Lie algebra
automorphism, A(Fx)(vx ® V-X) is C/fl-invariant. Hence, by Proposition 4.1 one has

A(Fx)(vx ® v-x) Fx{vx ® V-X), which implies A{FX) Fx.
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Remark 4.4. Assume that q can be integrated to a Lie group G, and H c G is a

subgroup with Lie algebra qo such that Ad# preserves the grading. Then the element
Fx is Ad# -invariant.

Proposition 4.5. Let X e C be such that the module M+ is irreducible and denote

p: Uq —* Uq/Uq ¦ qo the natural projection. Then

(1 ® p ® 1) [(A ® l)Fx(Fx ® 1)] (1 ® p ® 1) [(1 ® A)Fi(l ® Fi)] (5)

m C/n_ <8> Uq/Uq ¦ flo <S> C/n+.

Remark 4.6. In case when q is semisimple and flo is its Cartan subalgebra, equation

(5) is a projection from U (q) ®3 to C/n_ ® C/fl/ C/fl ¦ flo <S> Un+ of the dynamical cocycle
equation which was considered in [EV], [EE] and [ESS]. The element satisfying such

a condition is called a dynamical twist and is used further to construct solutions of
the dynamical Yang-Baxter equation.

For the trivial representation Vq of U(qq) define Vo Ind^jr-, Vo- Choose a

nonzero vector v e Vo and denote v := 1 ® v the generating vector in Vo.

Lemma 4.7. Let X e C be such that the module M+ is irreducible.

(a) There exists a unique U(Q)-homomorphism

F+ : M+ -> M+ ® Vo

such that

FÀ+(uÀ) G vx ® v + (C/n_)<0 vx®Uqv.
Explicitly,

(b) Similarly, there exists a unique UQ-homomorphism

such that for a fixed vector v e Vo

FÀ~(u_>.) G v ® u_À + C/fl ¦ v ® (C/n+)>o ¦ u_a..

Explicitly,

FIAv-x) Fx(v®v_x).
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Proof Consider the first statement. The element Fx {vx® v) is Un+ -invariant because

of the C/fl-invariance of the Shapovalov's pairing and the C/n+-invariance of vx. The

subalgebra Uqo acts on Fx(vx ® v) by the character xx- Therefore, by the universal

property of the generalized Verma module, there is a homomorphism Fx+ : M+ —>¦

M+ ® Vo mapping the generating vector vx to Fx vx ® v The proof of the uniqueness
for a given choice of v g Vo coincides verbatim with the proof of Proposition 4.1.

The second statement is proved similarly.

Lemma 4.8. Let X g C be such that M+ is irreducible. The two morphisms of
UQ-modules

Vo —>¦ M, ® M > M, ® Vo ® MA —A A —A

and

Vo —>¦ M,+ ® M~, > M,+ ® Vo ® M~,A —A A —A

coincide.

Proof. Both homomorphisms map u to u>. ® ù ® u_>. + (C/n_)<o • vx ® C/(fl) - ù ®
(C/n+)>o ¦ u-a.. Such a homomorphism is unique by Lemma 4.7.

Proof of Proposition 4.5. Written in terms of Fx € 5Z/ (f^n+)—/ ® (C/n_)z, theequal-
ity of the two homomorphisms in Lemma 4.8 gives the statement of the theorem.

4.2. Invariant »-products. Denote by n : Uq®2 -> (Uq/Uq ¦ flo)02 the natural

projection. The following theorem is the main result of this paper.

Theorem 4.9. Let x be a nonsingular character of qo and Fx be the corresponding
canonical element in C/n_ ® Un+. Then the element B := n(Fn-\) takes values in

((Uq/Uq ¦ flo)®2)S°[[fi]] and satisfies the associativity equation (1).

Proof. Recall that Fx is a meromorphic function of k holomorphic at À oo.
Therefore Fß-\ is holomorphic at zero and defines a formal power series Fh-\ G

(Un- ® Un+)[[h]] with projection B := tt(Fh-i) g (Uq/Uq ¦ QO)02[[h]]. The

C/fl-invariance of the Shapovalov pairing implies the flo-invariance of n(Fx) and as

a consequence the ßo-invariance of B.

Projecting equation (5) to (Uq/Uq ¦ qo)®3 yields the associativity equation for
n(Fx). Since the latter is holomorphic at infinity, the associativity equation for B
follows.

Remark 4.10. As usual, assume that q can be integrated to a Lie group G and flo can
be integrated to a subgroup H c G such that Ad# preserves the grading. Then n(Fx)
is an element in ((Uq/Uq ¦ flo)02) IW] which satisfies the associativity equation.
Hence it defines an invariant *-product onG/H.
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Remark 4.11. In a recent paper [DM2], a categorical approach to constructing
dynamical twists is developed. It allows the authors to obtain a quantization of function
algebras on semisimple coadjoint orbits for q reductive and flo its Levi subalgebra.
The difference between the approach of [DM2] and the one chosen in the present
paper is that we do not use finite dimensional representations of Uq and harmonic
analysis on G/H.

Proposition 4.12. Let {w,} and {u,} be dual bases in n_ and n+ with respect to the

pairing —/([ -, ]o)- Then the element B has the form

b \ + h

Proof. By Proposition 3.2 the first two terms in the Taylor expansion of F-k at X oo

are as follows:
Fk 1 + X~l J2 ui ® vi + O(X~2).

Replacing X l h> h and applying projection n yields the result.

Remark 4.13. The skew-symmetric part of the first order term in h in the Taylor
expansion of B defines an invariant bi-vector on M G/H. Its value at eH g M is

given by YTi=\ ui A "*» which is exactly the KKS bi-vector on the coadjoint orbit.

—nRemark 4.14. By Remark 3.3 the elements x^ ® yi which occur with a factor X

in the element Fk have the property <4, d\ < n. Hence, the bi-differential operators
Bn in the *-product n{Fh-\) have the order < n in each factor. Such *-products
are called natural. In [GR] it is shown that a natural *-product induces a symplectic
connection on the underlying manifold M. In the case of coadjoint orbits considered
in this paper such a connection is defined by a flo-invariant complement to ßo in Q,

n+ 0 n_ c Q.

Example 4.15. Let q Hn be the Heisenberg algebra defined in Example 2.9, and

let x : e ^ » e C be a nonsingular character, w ^ 0. Then the matrix of the

Shapovalov pairing in each graded component (£/(n_)_jt, U(n+)k) is diagonal, with
matrix elements

where k k\ -\ h kn. The corresponding inverse element F-k is given by

^
à nkl nk"/? p
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Using the product structure of C/n_ ® Un+ one can write the answer for B in the

following compact form:

B exp y^ qi ® pi).
f=l

This gives a *-product on the coadjoint orbit G /Go M2" of the Heisenberg group
acting on g*. It is a 'normal ordered' version of the Moyal product [M].

Example 4.16. Let q sl(2, C) with generators e, f, h and Lie brackets [e, f]
h, [h, e] 2e, [h, f] -If. Then fl0 Ch and x(h) z £ C, z ^ 0 defines

a nonsingular character. The element B associated to sl(2, C) and / is given by the

formula

00 r (-l)n
\fn®en. (6)

Remark 4.17. By the theorem of Cahen, Gutt and Rawnsley [CGR], in the case when

q is semisimple, there are no *-products on q* with the first order term given by the

KKS Poisson bi-vector which restrict to the coadjoint orbits. This is illustrated by
the above example: starting from the second graded component, the expression (6)
for the *-product is singular at z 0.

Remark 4.18. Set G SU(2). Then the stabilizer of a nonsingular character / e q*
is isomorphic to Go U(l). The homogeneous space M G/Gç, S2 is the

underlying manifold for the *-product constructed above. In this case an explicit
formula for the *-product similar to (6) appeared before in physics literature (see [P],
[N] and [HNT]).

Example 4.19. Let Vir be the Virasoro algebra defined in Example 2.10 and /
a nonsingular character. We will use the notation of 2.10 to give an explicit
expression for the element B, corresponding to Vir and x, up to the second graded

component. The character / being nonsingular implies in particular that A^O and

A := -32A3 - 4A2c ^ 0. Denote B := 20A2 - 2Ac, and set D A + hB. Then

- h2 r^j L2! ®L2 + h2 IAl L2! ® Lj + (C/n_)<_3 ® (f/n+)>3.
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