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The Weinstein conjecture for planar contact structures in dimen-
sion three

Casim Abbas* Kai Cieliebak and Helmut Hofer*

Abstract. In this paper we describe a general strategy for approaching the Weinstein conjecture
in dimension three. We apply this approach to prove the Weinstein conjecture for a new class of
contact manifolds (planar contact manifolds). We also discuss how the present approach reduces
the general Weinstein conjecture in dimension three to a compactness problem for the solution
set of a first order elliptic PDE.
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1. Introduction

The following considerations are part of the program initiated in [9] and extended
in [10] of proving the general Weinstein conjecture in dimension three. The key
observation in [9] was the equivalence between the assertion of the Weinstein conjec-
ture and the existence of a non-constant holomorphic curve for a suitable nonlinear
Cauchy—Riemann type equation. As discussed in [10], this equivalence has its lim-
itations. However, it was suggested that a suitable modification of the holomorphic
curve equation should be the key to a proof of the general Weinstein conjecture in
dimension 3. In the current joint work of the authors, the proof of the general We-
instein conjecture in dimension three has been reduced to a compaciness question of
certain moduli spaces for the generalized holomorphic curve equation. As we know
from Giroux’s work, any (co-oriented) contact structure is supported by an open book
decomposition. In our approach, the compactness problems only arise if the pages
of the open book decomposition are non-planar (i.e., of positive genus). If the pages
are planar these difficulties do not arise. In this paper we describe our approach for
this particular case.

1.1. Versions of the Weinstein conjecture. Before we give more details we start by
providing the necessary background. Consider a closed three-manifold M equipped
with a contact structure £. In this paper we assume all contact structures to be
cooriented, i.e., & = ker(A) is defined by a contact 1-form A. We denote the associated
Reeb vector field by X;. Recall that the (generalized) three-dimensional Weinstein
conjecture states the following, see [20]:

Conjecture (A. Weinstein, 1978). Every Reeb vector field X on a closed three-
dimensional manifold M admits a periodic orbit.

In fact, Weinstein added the hypothesis that the first cohomology group H'(M: R)
vanishes, but there is no indication that this additional hypothesis is needed. More-
over, Weinstein made his conjecture for Reeb vector fields on odd-dimensional man-
ifolds of arbitrary dimensions. We point out at there are strong indications that in fact
a stronger form of the Weinstein conjecture is true, which we again formulate in the
three-dimensional case:

Strong version of the Weinstein conjecture. For every Reeb vector field X on a
closed three-dimensional manifold M there exist finitely many periodic orbits (x;, 7),
i =1,...,n, so that the first homology classes [x1], ..., [x,] induced by the loops
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xi: R/(T;Z) — M sumup to O:
n
> xil=0.
i=1
Here the periods 7; > 0 need not to be the minimal periods.

We will say that the (strong) Weinstein conjecture holds for a contact form i if
the associated Reeb vector field satisfies the conclusion of the (strong) Weinstein
conjecture.

1.2. Generalized holomorphic curve equations. We write 7: TM — & for the
projection along X,. Fix a complex structure J on & such that dA(-, J-) defines
a positive definite metric on £&. We will call such complex structures compatible
(with dx). Let us begin with an assertion reducing the Weinstein conjecture to the
study of the following nonlinear first order elliptic system. The solutions of interest
are 5-tuples (S, j, I', i, y) consisting of a closed Riemann surface (S, j), a finite
subset I' C S, a proper map i = (a,u): S — R x M, where S = S\ T, and a
one-form y on S so that

molTuoj=JomoTu onS’,
(u*ryoj=da+y onS,

dy =d(yoj)=0 onS,
E(@@) < .

(1.1)

Here the energy E (%) is defined by

E(it) = sup / i d(pn),
pel JS

where X consists of all smooth maps ¢: R — [0, 1] with ¢’(s) > O forall s € R.

solutions of the system (1.1) energy curves.

The following theorem, which is an easy modification of a result by Hofer [9],
[10], shows that the Weinstein conjecture is equivalent to an existence result for a
generalized holomorphic curve (we restrict ourselves to the case of three dimensions
in the following discussion):

Theorem 1.1. Let (M, X) be a closed three-dimensional manifold equipped with a
contact form ;. Then the associated Reeb vector field has periodic orbits if and only
if the associated PDE-problem (1.1) has a non-constant solution.

Note, however, that a nontrivial solution need not to have any puncture due to the
harmonic perturbation y . If the Riemann surface (S, j) occurring in (1.1) is a sphere
it follows immediately that y = 0, and the generalized equation reduces to the usual
equation for punctured holomorphic curve in symplectizations.
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1.3. Open book decompositions and the main result. An open book decomposi-
tion of a closed 3-manifold M is a pair (L, pr) consisting of a fibered link L C M
(the binding) and a fibration pr: M \ L — S whose fibers pr‘l(t) (the pages) are
the interiors of smooth compact embedded surfaces in M bounded by L.

Definition 1.2. Following [7], we say that a contact structure & on a closed 3-manifold
M is supported by an open book decomposition (L, pr) if there exists a contact form A
defining & so that:

+ The form dx induces an area form on each leaf F of pr.

+ The form A defines a volume form on L inducing the orientation as boundary of
(F,dhr).

We will call A a Giroux form associated to (L, pr) and denote such forms by Agiroux-

Remark 1.3. (1) The definition implies that each component of L is a periodic orbit
of the Reeb vector field associated to the Giroux form. We call the components of
L the binding orbits. Note that any Reeb orbit which is not a binding orbit hits any
page in forward and backward time.

(2) A given Giroux form can be modified near the binding L to have additional
properties. For example, we can arrange that each binding orbit has a neighborhood
isomorphic to that of a periodic orbit in the round sphere S*. Alternatively, we can
arrange that the binding orbits are nondegenerate elliptic periodic orbits (see [1]).

(3) Multiplying a Giroux form by some positive number we obtain another Giroux
form.

Giroux’s fundamental result is the following, see [7], [8].

Theorem 1.4. Any (co-orientable) contact structure on a closed 3-manifold M is
supported by an open book decomposition.

Definition 1.5. Let us call an open book decomposition planar if its pages have
genus zero. Call a contact structure planar if it is supported by a planar open book
decomposition.

The main result in this paper is the following:

Theorem 1.6 (Strong Weinstein Conjecture for Planar Contact Structures). Ler & be
a planar contact structure on an oriented closed three-manifold M. Then the strong
version of the Weinstein conjecture holds for any contact form defining &.

In view of this theorem and the results of [9], the Weinstein conjecture is now
established for every contact form defining a contact structure & on a closed oriented
3-manifold M if at least one of the following conditions is met:
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(1) The contact structure & is overtwisted ([9]).
(2) The second homotopy group of M is nontrivial ([9]).
(3) The contact structure & is planar (present paper).

Remark 1.7. (1) Recent progress in the understanding of contact three-manifolds,
most notably an important result by Eliashberg [4], has led to serious advances in the
study of the “planarity question”. Indeed, in a recent paper [5], J. Etnyre shows that
not all contact structures are planar. He also shows that every overtwisted contact
structure is planar, so case (1) above is a consequence of case (3). The Weinstein
conjecture remains open for tight contact forms on closed 3-manifolds with vanishing
second homotopy group for which the underlying contact structure is not planar.

(2) It was pointed out by J. Emyre that one can modify our proof in the pla-
nar case by putting on top of our construction Eliashberg’s symplectic cobordism [4].
Then one can work with honest spheres rather than punctured spheres. The proof then
has to make use of positivity of intersections, adjunction formula, self-intersection in-
dex, automatic transversality, and the compactness results for punctured holomorphic
curves in [2]. Our arguments may be viewed as relative versions of these concepts.

The use of Eliashberg’s cobordism would somewhat simplify the arguments in the
planar case if one does not like to work with non-compact curves. However, an index
calculation shows that Eliashberg’s construction does not help to prove the Weinstein
conjecture in non-planar cases, whereas our constructions are designed precisely for
this case. The only problem at the moment is the lack of a compactness proof for the
generalized equation (1.1), although we are making progress on this question.

Acknowledgement. The third author would like to thank Richard Siefring for helpful
discussions on intersection questions which simplified some of our arguments.

2. Recollections on finite energy spheres

In this section we collect some facts about solutions of the PDE (1.1). Most of the
results needed are scattered in the literature. Some of them need additional explana-
tions and are further discussed. Throughout, M is a closed oriented 3-manifold, &
is a contact structure defined by a contact form A, J is a compatible complex mul-
tiplication on &, and 7w : TM — £ is the projection along the Reeb vector field X;.
From now on, we will restrict ourselyves to planar curves, i.e., the surface S in (1.1) is
diffeomorphic to the sphere. Then the harmonic form y vanishes and the PDE (1.1)
reduces to

Tuoj=JomwoTu,

w*r)oj =da, 2.1)

E(u) < 0.
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A solution (S, j, I', &) of equation (2.1) is called a (special) finite energy sphere.
Equation (2.1) can be written in a more concise form as follows. Associate to J the
almost complex structure J on R x M defined by

d

- ~ 0 -
Jeg i =J: , J==X,, JX) =——,
e § =& o A 2 o

where  denotes the coordinate on R. Note that J is R-invariant and compatible
with the symplectic form d (e” 1) in the sense that d(r"A)( -, J ) defines a Riemannian
metric. Then equation (2.1) is equivalent to

Tioj=JoTa, E(i) < oo.

We also need (o consider a generalization of equation (2.1). Let AT, A~ be two contact
forms defining the same contact structure & such that

At =t

for a function f* > 1 on M. Pick a positive function f on R x M and a constant
R > 0 such that % > (0 and

fT(x) forr> R,
fr,x) =

1 forr < —R.
Note that wy = d(e” fA7) is a symplectic formon R x M. Let J be a compatible
almost complex structure on R x M. This means that w (-, J-) defines a Riemannian
metric. Moreover, we assume that

Fe Jt on[R,0) x M,
~|J- on(—oc0,—R]x M,

where J* are the R-invariant almost complex structures associated to complex mul-
tiplications J*: & — & compatible with A*. We now study smooth maps i: S —
R x M satisfying

Tioj=JoTa, E@) < . (2.2)

Here the energy E (i) is defined by

E(ﬁ):sup/sﬁ*d(rﬂfk"),

pex

with ¥ as before. We call solutions of equation (2.2) generalized finite energy spheres.



Vol. 80 (2005) The Weinstein conjecture for planar contact structures in dimension three 777

2.1. The Reeb flow near a periodic orbit. Let x be a periodic Reeb orbiton (M, 1)
of period T. Denote by ¢ : M — M the Reeb flow, thus ¢7(x(0)) = x(0). The lin-
earized Reeb flow along x givesrise to afamily of linear maps ®; : £y0) — &x(r) Which
preserve the symplectic form dile. We call x nondegenerate if Or: vy — &x(0)
does not have 1 in its spectrum. Then two cases can occur. Either both eigenvalues
are real, then we call x hyperbolic, or both are non-real, then x is called elliptic.
Closely related to the linearized Reeb flow is the asymptotic operator along x

An = —-J(x)(Vin —V,;X;) 2.3)

acting on sections n(¢) = n(t + T') of the bundle x*&. Its kernel corresponds to
eigenvectors of &7 with eigenvalue 1, so in the nondegenerate case the kernel is
trivial. Moreover, eigenfields of A have no zeroes. Fix a trivialization of the bundle
x*&. Inthis trivialization each eigenfield of the self-adjoint operator A has a winding
number which depends only on the eigenvalue, see [11] for details. The winding
number increases with the eigenvalue, and each winding number occurs for precisely
two eigenvalues (counted with multiplicities). Denote by «(x) the winding number
corresponding to the largest negative eigenvalue. If x is nondegenerate and elliptic
both eigenvalues with winding number «(x) are negative and the Conley—Zehnder
index of x (in the given trivialization, see [11]) is given by

pn(x) =2a(x) + 1.

We will also need a weighted version of this relation. For a weight § < 0 which is
not an eigenvalue define the weighted Conley—Zehnder index by

Pw(x) 1= 2at(x) + 1,

where «y (x) is the winding number corresponding to the largest eigenvalue < §.
Note that o, (x) and py (x) are the winding number corresponding to the largest
negative eigenvalue, respectively Conley—Zchnder index, of the weighted asymptotic
operator Ay == A — 6.

2.2. Asymptotics near a puncture. Next we describe the behavior of solutions
of (2.1) near a positive puncture. The reference for this section is [14]. Let x be a
periodic Reeb orbit of period 7 > 0. Denote by v > 0 the minimal period and by
k € Nits covering number, so that 7 = kt. In suitable local coordinates in a tubular
neighborhood U of x the contact form is given by

A= f{dV +xdy)

where (9, x, y) € S! x R? with S = R/Z. Here the periodic orbit x corresponds
tos > (kt,0,0) € S x R2, and f > 0 is a function satisfying f(,0,0) = v and
df (9,0,0) = 0.
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Leti = (a, u): [0, 00) x S! — R x M be asolution of (2.1) such that u(s, -) — x
and a(s,) — +oo0 as s — o00. After replacing [0, c0) x st by [R, o0) x st
for a sufficiently large R, we may assume that the image of u is contained in a
neighbourhood U S x R? above. Hence we can write

u(s, ) = (a(s, 1), (s, 1), z(s, 1))

in the coordinates above, with z = (x, y) € R2. The following asymptotic behaviour
was established in [14].

Theorem 2.1. Suppose that x is nondegenerate of period T and covering number k.
Then there exist constants ag, V9 € R and d > 0 such that

|8'B[a(s, )—Ts — a0]| < Cﬁe_ds,
|08 19 (s, 1) — kt — Oo]| < Cpe™*

Jor all multi-indices B, with constants Cg depending on B. Moreover, ifthe z-part does
not vanish identically we have the asymptotic formula for the transversal approach
to x(t):

So MO0 104y 1 r(5,1)] € R,

where 3Pr (s, t) — Oass — oo, uniformlyint forall derivatives. Here 1.: [sq, 00) —
R is a smooth function satisfying

z(s, 1) = e

Als) > A <0 ass — 40,

where A < 0 is an eigenvalue of the asymptotic operator A along x defined in the
previous section and e(t) = e(t + 1) # 0 is an eigenfield to A.

In particular, this implies that u: S — M admits a continuous extension i to the
circle compactification S of its domain S. The behaviour near a negative puncture (at
which @ — —o0) is similar. In the following we will only need positive punctures.
Note that equation 2.2 agrees with equation (2.1) for |r| > R, so Theorem 2.1 also
applies to generalized finite energy spheres.

2.3. Linear Fredholm theory. Following [17], we introduce a special class of linear
Fredholm operators over a punctured Riemann sphere (S, j). They act on sections of
a trivial complex line bundle V = § x R? with fibrewise complex structure i = i(z),
z € S. Denote by A — S the bundle of complex antilinear bundle homomorphisms
TS — V. Let C be a smooth section in the bundle Homp (V, Ag) — S of real
bundle homomorphisms V — Ag. We call C admissible if at every puncture the
following holds. (We assume all punctures to be positive, although for this subsection
this makes no difference). Let (s, #) be polar coordinates such that s — oo at the
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puncture. Then there exist smooth loops of complex structures i (r) on R? and
2 x 2-matrices Ct(¢) such that

i(s,t) > it(@), C(s,1)- ai - CT ()
A

in C® as s — oo. The matrices C* () are symmelric with respect to the metrics
a)(', i+(t)‘), where  is the standard symplectic form on R?. Moreover, we require
that the asymptotic operator

) an
Aty = —l+(t>§ — Ct (1)

acting on smooth functions r: S' — R has trivial kernel. Thus the equation A*n =
0 defines a path of symplectic 2 x 2-matrices ®; such that &9 = Id and &1 does not
have 1 in its spectrum. Denote by u* the Conley—Zehnder index of this path.

We associate to an admissible C the operator L¢: QO(V) — Q9(Aq)

Lev:=Tv+ioTvoj+Cv

acting on sections of the bundle V' — S. Let#I" be the number of (positive) punctures
of S and

pLe):=) uf
J

the sum of the Conley—Zehnder indices at the punctures. The following result was
proved in [17].

Proposition 2.2. The operator L associated to an admissible C defines a Fredholm
operator L¢: E — F between suitable Sobolev (or Holder) completions of Q°(V)
and Q°(4o) of index

ind(L¢c) = u(Le)+2 —#I.

The arguments in [14] show that elements in the kernel of L¢ have asymptotics
at a puncture analogous to the &-component z in Theorem 2.1.

Corollary 2.3. A nontrivial element v in the kernel of L ¢ has the following asymptotic
behaviour in polar coordinates near a puncture:

o(s, 1) = MO o) 115, 1)] € R,

where 3Pr (s, t) — Oass — oo, uniformlyint forall derivatives. Here: [sg, 00) —
R is a smooth function satisfying

Als) > A <0 ass - 40,

where A < 0 is an eigenvalue of the asympiotic operator AY at the puncture and
e(t) =e(t+ 1) #0is an eigenfield to A.
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Let us discuss the effect of exponential weights. By Corollary 2.3, a nontrivial
element in the kernel of L¢ approaches zero at the j-th puncture with an exponential
rate given by an eigenvalue A; < 0 of the asymptotic operator Aj.'. For weights
Aj < 8; < O that are not eigenvalues, denote by Ly, Fy the weighted Sobolev
spaces of sections converging to zero at the punctures with exponential rates

8; or faster. Thus Ey, is the space of sections n in V. — S such that ny, € E,
where 7, i defined by multiplying n by a positive smooth function which agrees
with %% near the j-th puncture, and F,, similarly. Define the weighted Fredholm
index indy (L) as the index of the linear Fredholm operator L¢: Ey, — Fy. Note
that n — ny defines an isomorphism Ey, — E (and similarly for ') which conju-
gates the operator Lc: Ew — Fy to the operator Lc,: E — F associated to an
admissible Cy,. A simple computation shows that the asymptotic operators of Cy, are
precisely the weighted asymptotic operators (cf. Section 2.1) at the punctures. Hence
by Proposition 2.2,

indy (Lc) = ind(L¢,) = pw(Lc) +2 —#I, 24

where uw (Lc) 1s the sum of the weighted Conley—Zehnder indices at the punctures.

Next consider a nontrivial element v in the kernel of L. By Corollary 2.3, it
converges to zero at the j-th puncture from the direction of some eigenvector ¢; of
the asymptotic operator A;'R Denote the winding number of ¢; by wj' and define the
winding number of v by

wind(v) := Z w;.".
The asymptotics of v and the similarity principle imply (cf. [17])

Lemma 2.4. Let v be a nontrivial element in the kernel of Lc. Then v has only
Jinitely many zeroes, each zero has positive multiplicity, and their algebraic sum
equals wind(v).

2.4. Nonlinear Fredholm theory. Next we recall the Fredholm theory for equa-
tion (2.2). The basic references are [17] for the embedded case (which is all we
need), and [3] for the general case. Letu = (a,u): S—>RxMbea generalized
finite energy sphere with asymptotic orbits x;. From now on we assume that all the
punctures are positive (i.e., a — +00) and all the asymptotic orbits are distinct,
simple and nondegenerate elliptic. Denote by u; and «; their Conley—Zehnder in-
dices, respectively winding numbers of the largest negative eigenvalue, with respect
to trivializations induced by a trivialization of u*& over S. So we have

Hj :2(Xj-‘r1.

Denote by p(a) := Y wj the Conley—Zehnder index of i and by #I" the number of
(positive) punctures of S.
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Denote by M the moduli space of solutions of equation (2.2) with #I" positive
punctures and asymptotic orbits x ;.

The space M can be described as the zero set of the nonlinear Cauchy—Riemann
operator defined by (2.2) on a suitable Banach manifold of maps § — R x M times
the moduli space My 4 of #I" points on the sphere. Its linearization at # is a linear
Fredholm operator D: E x T My s — F between Banach spaces. Here E and F
are suitable Sobolev completions of the space of sections, respectively (0, 1)-forms,
in the pullback bundle #* T (R x M). According to [17] for embeddings i, and [3] in
general, the Fredholm index of D is given by

ind(it) = pu(i) — 2 + #T. 2.5)

If & is an embedding there is an alternative description developed in [17]. Write
nearby curves as graphs of sections in the complex normal bundle N — Sto C = ii($)
inR x M. Equation (2.2) translates into a Monge—Ampere type equation for sections
of N whose linearization D¥ at the zero-section is the projection of D onto N. Set
wN@ =Y uﬁv , where the normal Conley—Zehnder indices

M?’:2a§v+1

are computed with respect to trivializations induced by a trivialization of the normal
bundle N — S. Note that in view of the asymptotics (Theorem 2.1) the bundles u*&
and N agree near the punctures. Comparing these bundles over S yields the following
relation between the Conley—Zehnder index and the normal Conley—Zehnder index,
see [14]:

w(it)y = u™N (i) + 4 — 24T (2.6)

It allows us to express the index of # in terms of the normal Conley—Zehnder
index:
ind(i) = puN(it) + 2 — #T. (2.7)

On the other hand, the operator DY is an admissible operator of the form consid-
ered in Section 2.3 (see the proof of Lemma 2.5 below), and by Proposition 2.2 its
index is given by the right-hand side of equation (2.7). This must of course be the
case because D and DV both describe nearby solutions of the same equation (2.2).
The following lemma is implicit in [17].

Lemma 2.5. Let i be an embedded solution of (2.2) with only positive punctures
asymptotic to elliptic Reeb orbits x ;. Let v be a section in the normal bundle N — S
whose graph describes a solution of (2.2) near i. Then v satisfies a linear equation
Lsv = 0, where C is an admissible operator on N in the sense of Section 2.3.
Moreover, the asymptotic operators of C at the punctures agree with the asymptotic
operators at the periodic orbits x; as in (2.3).
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Proof. Let us sketch the proof. Denote coordinates on S by z and on R? by x. Pick
a trivialization N = S x R? as provided by Theorem 4.7 in [17]. Write the almost

complex structure in this trivialization as
J= (i ?) :TSXR2—>TS’><]R2,

where the components of J depend smoothly on (z, x). Since the zero section S x{0}
is J-holomorphic, we have

for complex structures j on $ and i on R? and homomorphisms A(z): R? — T;S.
According to Section 5 in [17], the section C in the bundle Homp (N, A¢) — S
defined by

oA . 2
C@hi= (G- 0h) o jz0, heR,
is admissible and the corresponding operator
wi— Lew=Tw+ioTwoj+Cw

agrees with the normal linearized Cauchy—Riemann operator DY at ii. In particular,
the asymptotic operators of C at the punctures agree with the asymptotic operators
at the periodic orbits x ;.

By hypothesis, the graph gr(v) of v satisfies the equation

Ter(v) + J(gr(v)) o Tgr(v) o j =0

for some complex structure j on S. The S—component of this equation yields j(z) =
j(2) + A(z, v) o Tv; its R2-component is

Tv+i(z,v)oTvoj+A(z,v)oj=0.

Define the complex structures 7(z) := i (z, v(z)) on R? and the section C in the
bundle Homg (N, Ag) — S by

A LVEIN . 2
C(oh .:/0 (5o ro@)h) o jdr, heR:

Then the equation for v can be viewed as a linear equation as in Section 2.3,
LéUZTU—l—lAOTUOJA—f—CA'U:O‘

Note that near a puncture v(s, ) — 0in C® as s — 00, 0 c approaches C at the
punctures. This implies that C is admissible with the same asymptotic operators as
C and the lemma follows. o
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Finally, let us discuss the effect of exponential weights. By Theorem 2.1, u(s, )
approaches x; () normally with an exponential rate given by an eigenvalue A; < 0
of the asymptotic operator at x;. For weights A; < §; < 0 that are not eigenvalues,
denote by My, the space of solutions in M which normally approach the x; at the
(positive) punctures with an exponential rate 8 ; or faster. By construction, the solution
u belongs to My,. Define the weighted Fredholm index indy, (i) as the index of the
linear Fredholm operator D : E,, — F, between suitable weighted Sobolov spaces
describing nearby solutions in M,,. An argument as in Section 2.3 shows (see [17],
Section 6)

indy () = ind(Dy,) = uw(a) — 2 +#I. (2.8)
Similarly, the relations (2.7) and (2.6) carry over to the weighted case.

2.5. Algebraic invariants. In this section we use the algebraic invariants from [12]
to single out a 2-parameter family of solutions by putting suitable exponential weights.
Letii = (a,u): S — R x M be a (special or generalized) finite energy sphere with
asymptotic orbits x;. As in the previous section, suppose that all the punctures are
positive and all the asymptotic orbits are nondegenerate and elliptic with Conley—
Zehnder indices pt; = 2a; + 1. By Theorem 2.1, the solution u approaches x; from
the direction of some eigenvector e; of the asymptotic operator. Denote the winding
number of ¢; with respect to a trivialization of #*& by w; and define the asymptotic
winding number of i by

winds () := Z wj.

Since u approaches x; from the direction of an eigenvector to a negative eigenvalue
at a positive puncture, we have

wj <.

Let 7 := ) («; — w;) be the difference between the actual winding numbers at
the punctures and the maximal possible ones.

Now assume that z is a special finite energy sphere. Then, according to [12],
the section 7w o T'u of the bundle Homc (TS, u*£) satisfies a linear Cauchy-Riemann
type equation as in Section 2.3 (this is not true for generalized finite energy spheres).
The z-part in Theorem 2.1 cannot vanish identically because if it did then z would be
a covering of the cylinder over x; and thus have negative punctures (Theorem 6.11.
in [12]). By the similarity principle, 7w o Tu can only vanish in finitely many points.
The winding number windy (1) is then defined as the sum of the indices of the zeroes
of this section. It is a nonnegative integer which measures how often u is tangent to
the Reeb vector field and is related to the asymptotic winding number by the formula
(see [12])

wind, (1) = windeo (1) — 2 4 #1. (2.9)
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Combining formulae (2.9) and (2.5), we find

2t =2 (aj —w;)
= Qaj+1) —#T' — 2windu (it)
= u(it) — #T — 2windeg (i)
= p(it) — 2windy (i) — 4 + #I"
= ind(@i) — 2 — 2wind, (i1).

Now pick weights §; < O just above the larger eigenvalue corresponding to w;.
Denote by oﬂf the winding number corresponding to the largest eigenvalue smaller
than §; < 0. Then a;’.’ = w; and the sum (1) of the corresponding weighted
Conley—Zehnder indices satisfies

o (@) = 22047 + #I
=2 w; + #T
=—21+2) a;+#T
= p(a) — 2.
The weighted Fredholm index (2.4) becomes

indy (1) = pow (i) — 2 +#I
= ind (i) — 27
= 2 + 2wind, (i1).

In particular, if u is embedded and transverse to the Reeb vector field the winding
number wind; (77) vanishes and thus indy (71) = 2.
So we have shown

Lemma 2.6. Letii = (a,u): S — R x M be a special finite energy sphere having
only positive punctures. Suppose that all the asymptotic orbits are nondegenerate
elliptic and that u is embedded and transverse to the Reeb flow. Then we can intro-
duce exponential weights at the punctures such that i belongs to the space My of
solutions with these weights, and the Fredholm index of u with these weights satisfies
indy (@) = 2.

2.6. An implicit function theorem. Now fix a collection of distinct nondegenerate
simple elliptic orbits x; and weights §; < 0. Consider the space M of generalized
finite energy spheres with positive punctures asymptotic to the x; with exponential
decay 8; or faster. The following result describes the local structure of the set M.
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Theorem 2.7. Assume that C = i(S) € My, is embedded and has weighted Fredholm
indexindy, (it) = 2. Then neighbouring solutions in My, forma smooth 2-dimensional
family of mutually disjoint embedded curves.

Proof. The argument is similar to that given in the proof of Theorem 2.7 in [18]. As
in Section 2.4, we write neighbouring solutions in My, as graphs of sections of the
complex normal bundle to C. They satisfy a Monge-Ampere type equation whose
linearization DV : E,, — F,, at the zero section is a Cauchy—Riemann type operator
as in Section 2.3 between suitable Sobolev spaces with weights §;.

Consider a nontrivial element / in the kernel of DY. By Corollary 2.3, / ap-
proaches zero at the j-th puncture exponentially from a direction e;(¢), where e; is
an eigenfield of the asymptotic operator at x;. According to Lemma 2.4, # has a
winding number

wind(h) =Y " w;,

where w; is the winding number of ¢, : S! — R?\ {0} with respect to a trivialization
of the normal bundle N. Let

p () =2 ay(xp)+1

be the weighted normal Conley—Zehnder index at x;, where o) (x;) is the maximal
winding number of an eigenfield of the asymptotic operator A; associated to an
eigenvalue < §;. Since & belongs to the Sobolev space with weights §;, we have

w; < (Xévv (Xj).
With & (@) := 3" & (x;) and the weighted version of formula (2.7), this implies

2wind(h) = Y " 2w;
j

<Y e (xj) + 11— T
J

= (i) — 4T
= indy(i1) — 2
=0

This shows that nontrivial elements in the kernel of D are nowhere vanishing. It
follows that the kernel can be at most two-dimensional, since otherwise we could
construct a nontrivial element in the kernel with a zero. Since indy (1) = 2, we
conclude that the operator DY is surjective. Thus My is a smooth 2-dimensional
manifold near C.
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It remains to prove that neighbouring elements C’ # C in My, do not intersect C.
As in Section 2.4, describe C” as the graph of a nonvanishing section v of the normal
bundle to C. By Lemma 2.5, v satisfies a linear Cauchy—Riemann type equation
L v = 0, where the admissible section C has the same asymptotics as DV. Hence
the winding number of v satisfies

wind(v) = Y " w;.

Now the computation above shows wind(v) = 0. Hence v has no zeroes, which
precisely means that its graph does not intersect C. O

Definition 2.8. For C € M we denote by a(C) € R the minimum of the R-value
of the projection C — R.

Theorem 2.7 has the following immediate corollary.

Corollary 2.9. For C € My as in Theorem 2.7 there exists a C' € My, with
a(C"y < a(C).

2.7. Intersections. Consider a connected component M2, of M, containing an em-
bedded solution Co of index 2. By Theorem 2.7 and positivity of intersections
(see [6]), this implies that M?V is a smooth 2-dimensional manifold and all ele-
ments in M& are embedded. Moreover, nearby distinct elements in M\?, are disjoint.
The following result shows that any two (not necessarily nearby) elements are either
identical or disjoint.

Proposition 2.10. Two elements C, C' in Mev are either identical or disjoint.

Proof. First note that two distinct C, C’ € Mg, intersect only in finitely many points.
To see this, write C’ near the j-th puncture as the graph of a nontrivial section v;
in the normal bundle to C. By Lemma 2.5 and Lemma 2.4, v; has only finitely
many zeroes. Thus we have a well-defined algebraic intersection number int(C, C).
Recall from [6] that each intersection point contributes positively to int(C, C’) and
intersection points persist under small perturbations.

Now suppose that C, C’ in MS, are neither identical nor disjoint, hence
int(C, C’) > 0. Pick a continuous path (C;)p<r<] in Mg, withCy = Cand C; = C'.
For small 7, we have int(C, C;) = 0 by Theorem 2.7. We define

o:=inf{0 <7 <1 |int(C, C;) > 0} € (0, 1).

Since intersections persist under perturbations, we must have int(C, C,) = 0. Let
1. C C be the (finite) set of intersections between C and C; on the surface C. Now
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observe that for every neighborhood U of the set of punctures on C there is an e > 0
such that
I, cU forall0 <1 < 10+e.

For otherwise we would find a sequence t, > 1o with 7, — 7¢ and intersection
points z, € C N Cy, with z, ¢ U. But then the z,, would converge to an intersection
point z € C N Cy,, contradicting int(C, Cyy) = 0.

As above, write C; for > 0 near the j-th puncture as the graph of a section vjf.
in the normal bundle to C which approaches zero exponentially from the direction of
an eigenfield 6; of the asymptotic operator at x;. Denote by wind(e?) the winding
number of e§ in a trivialization of the normal bundle, and by «; the maximal winding
number of an eigenvalue below the weight §;. Define an integer valued function i (t)
by

N
i(t) =int(C, Cy) — Z[wind(u;) —aj].
j=1

If z is small the Implicit Function Theorem 2.7 yields wind(vJ’.) = o jandint(C, C;) =
0, hence i(t) = 0. We will show that i(r) = O for all T < 79 + & for some & > 0.
Since ijl[wind(vp —aj] <0, this thenimplies int(C, C;) <Oforallt < t9+e,
contradicting the choice of 7.

Fix a sufficiently small neighbourhood U = U;U; of the set of punctures on C.
After trivializing the normal bundle of C, the restriction of each v§ to U ; can be

viewed as a complex valued function on [0, oo) x S! which satisfies a linear Cauchy
Riemann type equation as in Lemma 2.5. Dividing v§ by a suitable smooth positive
function ,8]’. and compactifying the infinite half cylinder to [0, 1] x Sl, we obtain
functions
w?: [0,1]x 8 — C
with
wind(w}(l, ~)) = wind(e?).

These functions are continuous in t on the open half-cylinder [0, 1) x S'. For &
sufficiently small we have I, C U forall 0 < t < 19 + &, hence wind(w]’.(O, ))
is well-defined and independent of = € (0, 7o + €). As the zeros of w§ correspond
to the intersection points of C and C; and their degrees equal the local intersection
number, we have

wind(wh(1,)) = > deg(z) = wind(w}(0, ).
{zw? (2)=0}

We conclude that the left hand side is independent of t € (0, tg + ¢), and summing
over j yieldsi(r) =0forallr € (0,79 + ¢). O
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3. Proof of the main result
In this section we shall prove the main result, Theorem 1.6.

3.1. Finite energy foliations for Giroux forms. We start by explaining a result
by Abbas [1] about turning leaves of an open book decomposition into solutions of
equation (2.1).

Letus call two solutions (S, j, I', &) and (57, j/, I/, &@’) of (2.1) equivalent if there
exists a biholomorphic map ¢: (S, j) — (5, j/) mapping I" to '/ (preserving the
enumeration) so that i’ o¢p = 1. From now on a solution of our differential equation is
an equivalence class [, j, I, #]. Note that we have a natural R-action on the solution
set by associating to ¢ € R and [S, j, I, i#] the new solution

C—l—[S,j,F,ﬁ] ::[S,j,F,(a+c,u)], ﬁ:(a’l't)'

Given [S, j, I, ], we denote by C the image of . Since all the maps # of interest to
us will be somewhere injective one can show that knowing C we can reconstruct the
underlying equivalence class [S, j, I', i#]. A crucial concept for our discussion is the
notion of a finite energy foliation ¥ .

Definition 3.1. A smooth foliation £ of R x M is called a finite energy foliation if
every leaf F is the image of an embedded solution [S, j, I', &] of (2.1),

F=i(s),

and with every leaf ' € ¥ also ¢ + F € ¥ for every ¢ € R, i.e., the foliation is
R-invariant.

Finite energy foliations are known to be a useful tool in studying the dynamics
of Reeb vector fields as well as topological applications, see [18], [16], [13]. The
following theorem is proved by Abbas in [1].

Theorem 3.2. Assume that M is a closed three-manifold equipped with a planar
contact structure & and a Giroux form AGiroux With nondegenerate closed Reeb orbits.
Let J be any compatible complex multiplication on &. Then there exist an open book
decomposition (L, pr) for & with Giroux form Agiroux and a finite energy foliation ¥
of R x M with the following properties.

o The cylinders over the binding orbits in L are leaves of ¥, called the trivial
leaves.

» Every nontrivial leaf is the image of a finite energy sphere with only positive
punctures. These punctures are in 1-1 correspondence with, and asymptotic to,
the binding orbits.
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o The projection to M of any nontrivial leaf can be compactified (by the binding
orbits) to a page of the open book decomposition (L, pr).

Remark 3.3. (1) The open book decomposition (L, pr) in the theorem may differ
from the planar open book decomposition we started with.

(2) Theorem 3.2 can be proved along the following lines, using the compactness
theorem for symplectic field theory [2].

The first step consists of modifying a leaf ug of the given planar open book
decomposition (Lo, pry) near its punctures so that there is a suitable function ag
such that g = (ao, uo) solves the differential equation near the punctures. This is
achieved by choosing J : § — & near the binding L and the complex structure j near
the punctures in a very special way so that solutions can be written down explicitly.
We then look for a global solution & = (a, u) to the equation u*A o j = da of the
form u = ¢y (ug), where f is a suitable real valued function on the closed surface S
(a sphere in our case) and where ¢; denotes the flow of the Reeb vector field. This
amounts to solving an inhomogeneous Cauchy Riemann equation for the function
a — ap + if on the sphere, which is possible because on the sphere 9 is surjective.
The first part of (2.1) involving 7 o Tu can then be used to define a z—dependent
complex structure J T on & so that

nTu(z)oj = J+(z, u(z)) onTu(z).

A cobordism argument similar to the one in Section 3 of this paper can then be
used to deform the parameter dependent complex structure J T into one which does
not depend explicitly on z, say J~. We pick a complex structure J = J(z,a,u),
(z,a,u) € SxRxM,onR x M suchthat J = J* fora > 1and J = J~ fora <0,
and we study the corresponding PDE (2.2). There is an implicit function theorem and
the compactness result [2] can be applied. Assume that iy = (ag, ug) is a sequence
of solutions such that
infa, — r € R.

Although there is no statement corresponding to Theorem 3.4 in this paper, a solution
where the infimum equals r can still be found (the part in the cobordism of the
broken punctured holomorphic curve in the limit). An argument similar to the one in
Section 3.4 of this paper produces a finite energy solution & = (a, u) to the PDE in the
negative part (R x M, J~) with only positive punctures such that # is an embedding
transverse to the Reeb vector field. The collection L of positive punctures of # may
differ from the binding L¢ of the original open book decomposition. It is then shown
that there is a compact 1-dimensional family of such solutions which form an open
book decomposition with binding L.

We will refer to the nontrivial leaves in Theorem 3.2 as Abbas solutions.



790 C. Abbas, K. Cieliebak and H. Hofer CMH

3.2. A cobordism. Supposenow thaté is supported by a planar open book decompo-
sition. Let AGiroux be an associated Giroux form with nondegenerate elliptic binding
orbits. We are interested in the Reeb flow of a different contact form A defining &.
Multiplying the Giroux form by some positive constant, we may assume that

AGiroux = f+ <A

for a function f+ > 1 on M. Pick R > 0 and J as in the beginning of Section 2 (with
At = AGiroux and A~ = 1) and consider the PDE (2.2) for generalized finite energy
spheres. Observe that any Abbas solution is, after translating it by a sufficiently
large positive constant, a solution of (2.2). Denote by 4 the collection of all images
of Abbas solutions which are contained in [R, o0) x M. Of course, any two such
solutions are either disjoint or identical, and the space # is connected.

Let A = ii(S) be an Abbas solution. Pick weights §; as in Lemma 2.6 so that A
has weighted Fredholm index indy (A) = 2. Denote by M, the space of solutions of
equation (2.2) with positive punctures asymptotic to the binding orbits of Agjroux and
with weights § ;. Note that since all Abbas solutions have the same winding numbers
at the punctures, we have A C M,,. Let Mg be the connected component of My
containing #.

3.3. A compactness statement. Assume for the moment that A is nondegenerate.
Then we have the following compactness result for Mg,.

Theorem 3.4. Assume that » is nondegenerate. Let Cy = iix(S) be a sequence in
Mg, so that a(Cy) — r € R. Then, after passing to a subsequence, there exists an
element C € Mg, so that for suitable parametrizations iy — i in Cyy.. Moreover,
a(C) = limg_ 0 a(Cy).

Proof. We apply the compactness theorem for symplectic field theory [2]. After
passing to a subsequence, the Cj converge to a broken punctured holomorphic curve
of type (k~|k°|k*). This means that the limit curve has kt > O components in
the symplectization (R x M, Jt) of the positive end, k= > 0 components in the
symplectization (R x M, J ~) of the negative end, and = {0, 1} components in the
cobordism (R x M, f). Froma(Cy) — r € R we conclude that k~ = Oand k¥ =1,
so the limit curve is of type (0| 1]k +). If k* = 0 the assertion of the proposition follows
from the definition of convergence in [2]. Thus suppose that k™ > 1. Then the top
layer is a (not necessarily connected) curve solving the homogeneous J T -problem.
By the stability requirement in [2], this layer contains at least one component C that
is not a cylinder over a closed Reeb orbit. Let & be a parametrization of C. Note
that # must be somewhere injective since the positive asymptotic limits are simply-
covered (they are binding orbits of the open book decomposition). Therefore, u is
not a branched covering of a cylinder over a closed Reeb orbit, and hence C has to
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intersect a nontrivial leaf of the Abbas foliation. On the other hand, C cannot be
identical to such a leaf since it has at least one negative puncture. From the definition
of convergence and positivity of intersections it follows that there is a sequence of
Abbas solutions Ay € « such that C;x N Ax # @ and Cr # Ay for large k. Since
A C MO, this contradicts Proposition 2.10. O

3.4. Conclusion. The planar Weinstein conjecture is now proved as follows. We
keep assuming that A is nondegenerate. First note that

inf a(C)=—o0.
CceMy,

Indeed, arguing indirectly, suppose the left-hand side defines a real number r. Take
a sequence Cy € Mev with a(Cy) — r. By Theorem 3.4, after taking a subsequence,
we find a C € MY, with

a(C) = lim a(Cy) = inf a(C’).
k—o0 CleMl,

By Corollary 2.9, there exists a C’ € M?V with a(C") < a(C), giving a contradiction.
The proof is now completed by taking a sequence Cy € Mg, with

a(Cy) — —o0.

We apply again the compaciness theorem for symplectic field theory [2]. After passing
to a subsequence, the Cj converge to a broken punctured holomorphic curve of
type (k_ |k0|k+). From a(Cy) — —oo we conclude k_ > 1 (and consequently
k® = 1). By the definition of convergence in [2], the lowest layer of the limit curve
contains a non-constant (special) finite energy sphere C for (M, x,J™) having only
positive punctures. At the punctures, Cis asymptotic to periodic Reeb orbits x; of
the contact form A. By construction, their homology classes [x ;] satisfy >x i1=0,
where we sum over all the punctures. This proves Theorem 1.6 in the case that A is
nondegenerate.

If 2 is degenerate we can take a sequence f &) : M — (0, 00) of smooth functions
converging in C™ to the constant function f (x) = 1 so that the contact forms f )2
are nondegenerate. By the result in the nondegenerate case, we find for every k a
finite set of periodic Reeb orbits xﬁ.k) for £% x whose homology classes sum up to
zero. By the proof of the compactness theorem in [2], the number of orbits for each
k is bounded by a constant independent of k. So after passing to a subsequence, we
may assume that their number is constant. Then by the Arzela-Ascoli theorem, after
passing to a subsequence, the xgk) converge in C™ as k — oo to periodic Reeb orbits
for the contact form A. Clearly, the homology classes of the x; sum up to zero. This
concludes the proof of Theorem 1.6.
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