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A prime analogue of the Erdos—Pomerance conjecture for elliptic
curves

Yu-Ru Liu*

Abstract. Let £/Q be an elliptic curve of rank > 1 and b € E(Q) a rational point of infinite
order. For a prime p of good reduction, let g5 (p) be the order of the cyclic group generated by
the reduction b of b modulo p. We denote by w(gp(p)) the number of distinct prime divisors
of g»(p). Assuming the GRH, we show that the normal order of w (g, (p)) is loglog p. We also
prove conditionally that there exists a normal distribution for the quantity

@ (gp(p)) — loglog p
Jloglog p '
The latter result can be viewed as an elliptic analogue of a conjecture of Erdos and Pomerance

about the distribution of w (f, (n)), where « is a natural number > 1 and f,(n) the order of a
modulo .

Mathematics Subject Classification (2000). 11N37, 11G20.
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1. Introduction

Forn e N :={1,2,3,...}, let w(n) denote the number of distinct prime divisors
of n. The Turdn Theorem is about the second moment of w(n) [23]; it states that for
xeR,x>1,

Z(a)(n) — loglog x)2 < xloglog x.

n<x
Turdn’s result implies an earlier theorem of Hardy and Ramanujan [8], which states
that for any ¢ > 0

#{n < x | n satisfies |w(n) —loglogn| > eloglogn}

is o(x) as x — ©00. In other words, the normal order of w(n) is loglogn. The

significance of the ‘loglogn’ term is that it is about @) where p runs over

> p=n p
primes.

*Research partially supported by an NSERC discovery grant.
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The idea behind Turdn’s proof was essentially probabilistic. Further development
of probabilistic ideas led Erdos and Kac [5] to prove a remarkable refinement of
the Turdn Theorem, namely, the existence of a normal distribution for w(n). More
precisely, they proved that for y € R,

_2

—logl
w(n) —loglogn E

1 Y
Vloglogn Var /—oo

The theorem of Erdos and Kac opened a door to the study of probabilistic number
theory. In the early 1960s and subsequently the 1970s, the theory was refined by many
authors, culminating in a generalized Erdos—Kac theorem proved independently by
Kubilius [10] and Shapiro [20]. Their result is applicable to what are called ‘strongly
additive functions’. The interested reader can find a comprehensive treatment of it in
the monograph of Elliott [3].

We can also consider functions that are not strongly additive, say the Euler’s
p-function. Using the same principle of the work of Kubilius and Shapiro, the issue
of w(p(n)) devolves upon the estimation of the sums

Yoo@-1 ad Y o’ (p-1),

p=x p=x

1
lim —#[n < x| n satisfies
X—00 X

<v]=6m =

where p denotes a rational prime. Sums of this type were estimated by Haselgrove
[9] and Erdos and Pomerance [6]. They proved that

Za)(p — 1) =7 (x) loglogx + O(m(x))

p=x

and
Y o (p— 1) = m(x)(loglogx)* + O (m(x) loglogx),

p=x
where 7 (x) is the number of rational primes < x. Applying partial summation, we
can derive from the above equalities that

Z y = l(10g10g n)* + 0(loglogn)

p=n 2
and 5
-1 1
Z @lp=D _ ~(loglog n)> + O((loglog n)*).
p=n B
As a consequence we have the following result of Erdds and Pomerance [6], which
states that

1
lim —#{n <x | n satisfies
X—>00 X

o (p(n)) — 1(loglogn)?
%(log logn)3/2

<r}=6w.
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In [6], Erdos and Pomerance also proposed the following question. Let a be
a positive integer > 1. For any natural number n coprime to a, let f;(n) denote
the order of ¢ modulo n. Thus f,(n) is a divisor of ¢(n). Based on the belief
that the difference between w (¢(n)) and w(f,(n)) is ‘small on average’, Erdos and
Pomerance conjectured that

1 2
w(fa(n)) — 5(loglogn) » }

1
lim —#{n < x | n satisfies (a,n) = 1 and ;
Wi (loglog n)3/2

X—>00 X

_ w(a)G(y).
a

The conjecture remains open until today. Even a conditional result was only obtained
recently by Murty and Saidak [17] under the assumption of the GRH (i.e., the Riemann
Hypothesis for all Dedekind zeta functions of number fields). Later Li and Pomerance
[13] also provided an alternative proof of the same result. The difficulty of this
conjecture lies in the intervention of the distribution of primes in the non-abelian
extensions Q(¢,, ¥/a) where g varies over rational primes and ¢, is a primitive g-th
root of unity.

Let us recall that f,(n) is the least common multiple of {f,(p¥) | p¥ || n} where
pY is the exact power of p which divides n. Also f,(p") divides p”~! f,(p). Thus
similarly to the case of w(¢(n)), to study the conjecture of Erdos and Pomerance, it
is sufficient to estimate the sums

D wo(falp)) and > & (fa(p)).

p=x p=x

Under the assumption of the GRH, Murty and Saidak proved that

> o(fa(p)) = 7(x) loglogx + O(m(x))
p=x
and
> @ (falp)) = 7(x)(loglog x)* + O (7 (x) loglog x).

D=x

A conditional result of the conjecture follows.
In [17], Murty and Saidak also proved the following ‘prime analogue’ of the
Erdos—Pomerance conjecture:

@ (fa(p)) —loglogp _ }
J/1oglog p =7

1
lim —#{p < x | p satisfies (a, p) = L and
x—»u)n(x)

=G(y).
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In a sense, as we see from [17, §5, §7], there is not much difference between the study
of w(fy(n)) and w(f,(p)), as the main technical difficulty of both problems depends
on the study of @ (ia(p)), where ia(p) = (p — 1)/ fa(p).

The purpose of this paper is to formulate an analogous Erdos—Pomerance conjec-
ture for elliptic curves and provide a conditional proof of it. Let E/Q be an elliptic
curve of rank > 1. Let » € E(Q) be a rational point of infinite order. For a prime
p of good reduction, let g,(p) be the order of (b), the cyclic group generated by the
reduction b of » modulo p. The function g5 (p) can be viewed as an elliptic analogue
of f,(p). Thus, an analogous formulation of the conjecture of Erdos and Pomerance
for elliptic curves is that there exists a normal distribution for the quantity

w(gp(p)) — loglog P

J/loglog p

We prove the following result.

Theorem 1. Let E/Q be an elliptic curve of rank > 1 and b € E(Q) a rational
point of infinite order. For a prime p of good reduction, let (b) be the cyclic group
generated by the reduction b of b modulo p and gy(p) its order. Assuming the GRH,
we have

Z (@(gn(p)) —log logx)2 &« 7(x)loglog x.
p of gogdS r)éduction

As a direct consequence of Theorem 1 we have
Corollary 2. Assuming the GRH, the normal order of w(gp(p)) is loglog p.

The following theorem is an analogous result of Murty and Saidak for elliptic
curves.

Theorem 3. Let E/Q, b, and g, (p) be defined as inTheorem 1. Lety € R. Assuming
the GRH, we have

. . . (gp(p)) —loglog p
lim #{ < is of good reduction and < }
x—>00 77(x) p=x|p © . JToglog p =7

=G(y).
Thus, we obtain an elliptic analogue of a conjecture of Erdos and Pomerance in
terms of primes.

Acknowledgment. I would like to thank W. Kuo and R. Murty for many helpful
discussions related to this work. I also would like to thank D. Mckinnon for his
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comments about this paper. Special thanks go to the referee for the careful reading
of the paper and many valuable suggestions.

Notation. For x € R, x > 0, let f(x) and g(x) be two functions of x. If g(x)
is positive and there exists a constant C > 0 such that | f(x)] < Cg(x), we write
either f(x) < g(x) or f(x) = O(g(x)). If both f(x) and g(x) are positive,
we usef(fx())x g(x) to denote that f(x) = O(g(x)) and g(x) = O(f(x)). If

limy_ o o — 0, we write f(x) = o(g(x)). Also, we use Q and I_E'p to denote some

fixed algebraic closures of Q and I, respectively.

2. Preliminaries

We first recall some theorems about elliptic curves that will be needed later. Let E/Q
be an elliptic curve of rank > 1. For a prime / € N, we denote by E[/] the /-torsion
points. By adjoining to Q the coordinates of the /-torsion points, we obtain Q(E[I]),
a finite Galois extension of Q. Since

EINZE(Z/1Z) x (Z]1Z)
(see [21, Corollary 6.4]), by choosing a basis, we have a natural injection
@;: Gal(Q(E[I])/Q) < GLy(Z/1Z).
In the following discussion we will abuse our notation by identifying an element
y € Gal(Q(E[!])/Q) with its image D;(y) € GLy(Z/IZ).

Leth € E(Q) be a rational point of infinite order. We denote by =D the set of
elements v € E(Q) such that

flv=v+v+---+v=>0b.
—_— ——

I times

Define L; = Q(E[!],1~'b), which is a finite extension of Q(E[/]). We have the
following theorem.

Theorem 4 (Bachmakov [1]). For a prime l, the Galois group Gal(L; /Q(E[l])) can
be identified with a subgroup of E[l] and is equal to E[l] for all but finitely many L.

The group G1.»(Z/1Z) acts naturally on E[!] by matrix multiplication. We denote
this action by * and we see that it induces a semidirect product E[l] x GLy(Z/IZ).
Let G; be the Galois group Gal(L;/Q). From Theorem 4, for all but finitely many /,
we have

G = E[l] x Gal(Q(E[1])/Q),
which is a subgroup of E[l] x GLy(Z/IZ).
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An element (1, ) € Gy acts on E[l] and 171 as follows: let vy € ["'h be a
fixed element; for u € E[l]and v € [~ we have

o (r,¥) u:=y *xu.

e (r,y)-vi=vo+y*(—vo)+T.
Notice that since [[lv = [llvg = b, (v — vg) € E[l]. Thus, y * (v — vg) is well
defined. Also, since both (v — vg) and t are in E[/], for v € 1=1b, we have

[((r. ¥) - v) = (oo = b.

Thus, (7, y) is a well-defined action on the set /~'b. Moreover, for v € [71h, we
have

(r, y)-v=v ifandonlyif (y —I)*x(vo—v)=r,
where [ is the 2 x 2 identity matrix.

Let p be a prime of good reduction. We denote by E the reduction of E modulo p.
Let E (F,) be the set of rational points of E defined over the finite field F,. Let
b € E(Q) be a rational point of infinite order and bekE (IF,) the reduction of b
modulo p. Let (b) be the cyclic group generated by b, which is a subgroup of E (Fp).
We denote by gy, (p) the order of (b). Thus g»(p) is a divisor of #E(IF,,). We write

#E(F,) = gp(p) - in(p),

where i} (p) is the index of (b) in E(F,). Let A be the discriminant of E. For p{/A,
Lang and Trotter [12] gave a condition on the Frobenius element (t,, ¥p) € G;in
order that! | iy (p). We review their arguments below.

Notice that ! | i, (p) implies that | #E (IFp). Since

try,=p+1—#EF,) (mod )

and
dety, = p (mod [)

(see [22,p. 172]), if I | #E(F ), we have
1 —try, +dety, =0 (mod [).

Thus y, € Gal(Q(E[/])/Q) € Gl,(Z/IZ) has an eigenvalue 1.
We consider first the case when y, = I. We recall that the cyclic group generated

by 7, x — x? is dense in Gal(IF‘p/]Fp). The group Gal(]Fp/]Fp) actsonw € E(I_E'p)
coordinatewise. Thus for w € E (I_Fp) we have

np-w=w ifandonlyif w e EF),).
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Let w; € E(Q(E[!])). The Frobenius element y, € Gal(Q(E[!])/Q) acts on w
coordinatewise. This action is compatible with 7, in the following sense: let wy €

E (I_E‘p) be the reduction of w1 modulo p; we have
Vp Wl =Tp - W1.

Thus for y, = I we have

Wy =Yp W1 =T7p - Wi.

It follows that w1 € E (IFp). Let E[1] denote the reduction of E[I] modulo p. Since
E[l] € E(Q(E]!])), the above argument shows that

EF,) 2 E[l1 = (Z/IZ) x (Z/1Z), provided that p {IA

(see [21, Corollary 6.4]). Consider the subgroup (b) in E(F,). Since (b) is cyclic, it
can not contain two (Z/1Z) factors. Thus, at least one of (Z/IZ) factors of E )

is contained in E(F,)/(b). Since i5(p) is the order of E(F,)/(b), we have ! | iy(p).
We conclude that for y, = 1,1 is a divisor of i (p).

On the other hand, if y,, has an eigenvalue 1 and y,, # I, E (IF,) cannot contain a

(Z/1Z) x (Z/IZ) factor. Hence, the [-torsion points of E (IF,), which is the kernel of
the map y, — I : E[l] — E[I], form a cyclic subgroup. In other words, the /-primary

part of E(F,) is of the form Z/1*Z for some « € N. Write
EF,) = Z/1"Z x H,

where H is an abelian group with (|H|, [) = 1. We will abuse our notation by
identifying an element in E(F,) with its image in Z/I“Z x H. For b € E(F,),
without loss of generality, we can assume that either b = (0, 1) or b = (I#, h) where
he Hand g > 0.

Case 1. Suppose b = (0, k). Since (|H|, [) = 1, the element b; = (0,17 'h) €
E(F,) is well defined and [/1b; = b.

Case 2. Suppose b = (1P, h). If p = 0, the order of the cyclic group (b) is
divisible by 1%, i.e., [ tip(p). Hence, if I |ip(p), it implies that 8 > 1. Choosing
by = (1P~1,171h) € E(F,), we have [I]b; = b.

We conclude that if y, has an eigenvalue 1, ¥, # 1 and [ |ip(p), there exists
bjeE (IF») such that [[1b; =b. Letb; € E (@) such that the reduction of »; modulo
pis by. Since [[1b; = b, it follows that b; € [~'b. Moreover, since b; € E(F,), we
have

(tpa '.Vp) by = by,
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which is equivalent to
(vp — 1) x (vo — b1) = 7p,
ie., tp € Im(y, — I).
Define a subset S; of G; as follows: an element (7, y) of G; belongs to S if it
satisfies one of the two following conditions:

1 y=1Ior
(2) y hasaneigenvalue 1,ker((y —I): E[I] — E[l])iscyclic,and t € Im(y —I).

Notice that S; is a union of conjugacy classes of G;. Combining all the above discus-
sions, we obtain the following result of Lang and Trotter.

Theorem 5 (Lang and Trotter [12]). Let iy (p) be the index of the cyclic group (b)in
E (). Foraprimel € N, p{IA, the following two statements are equivalent:

(1) 1]is(p).
Q) (tp. ¥p) € S1.

Another important ingredient of the proof of Theorems 1 and 3 is the Chebotarev
density theorem. Let L/Q be a finite Galois extension of degree ny and discrim-

inant dz. We denote by G the Galois group of L/Q and C a union of conjugacy
classes of G. Let o, € G be a Frobenius element. Define

me(x, L/Q) =#{p < x| pis an unramified prime in L/Q and o, < C}.
We have

Theorem 6 (Lagarias and Odlyzko [11], Serre [19]). Assuming the GRH for the
Dedekind zeta function of L, we have

IC] .. 1(log|dy]
nc(x,L/Q):ﬁ11x+0(|C|x2(gniLL+logx>>,

where lix = [} 140

The following theorem is useful for estimating the error term in the Chebotarev
density theorem.

Theorem 7 (Serre [19]). Let L/Q be a finite Galois extension of degree ny and
discriminant dy. We have

nr

= > logg <logldr| < (np—1) Y logg+nzlogng,

g ramified g ramified

where the sum is over all primes q that are ramified in L.
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3. Prime divisors of i;(p)

We recall that i, (p) is the index of (b) in E (IF»). In this section, we consider the
number of distinct prime divisors of i, (p). The following lemma is essential for the
proof of Theorems 1 and 3. We use the notation " to denote the sum over primes
of good reduction.

Lemma 8. Assuming the GRH, we have

> @Hin(p)) < ().

p=x

Proof. Lety = x% with 0 < 8 < 1 (a choice of 8 will be made later). Define a
truncation function wy, of  as follows:

wy(ip(p)) =#{l <y |lisaprimeand ! |iy(p)}.
For a prime p < x, since
ip(p) <HEF,) < (p+2/p+1) <3x,

it follows that
o (ip(p)) = wy(ip(p)) + O(1).

Hence we have

3 oM in(p) = Y @y i (p) + 0D)) < 3 wd(iy(p)) + O (x))

P=X P=X P=x
= ¥ X 1+ X 1+0(w)
hh<y DpP=x I<y p=x
llgélz hiblip(p) lip(p)

where /1, [2, and [ are rational primes. Consider the sum

Y

I<y p=x
Nip(p)

Applying Theorems 5, 6 and 7 for all but finitely many primes [, under the GRH we
have

#{p < x | p satisfies llib(P)}

=lix- %JrO(ISzI xt. ( Z 10gq++lognz+10gX)),

g ramified

where the sum is over all primes ¢ that are ramified in L; and n; = |Gy|.
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In the case of elliptic curves without complex multiplication (non-CM) Serre [18]
proved that for all but finitely many primes /,

Gal(Q(EI!])/Q) = GL2(Z/1Z).
Hence, for all but finitely many /, we have
|G| <1° and |S;| =<I*.

In the case of elliptic curves with complex multiplication (CM), from [7, p. 35-37],
we have
|G| < I* and |S)| =< I2.

Itis well known that ¢ is ramified in L; if and only if ¢ | [ A (see [2]). Hence, assuming
the GRH, we have

1 1
> Z 1< Z( - +0 (1*x2 log(l6xA))> < 7(x) + O(x2F3+9),
I<y P=x i<y
lip(p)
where € > 0 is arbitrarily small. Choosing § = ﬁ, we have

33 <.

I<y p=x
lip(p)

> X

hbh=<y p=x
Li#lL hblis(p)

Consider the sum

The group homomorphisms
E[lllz] — E[ll] DeS E[lz] and GLQ(Z/lllQZ) — GLQ(Z/hZ) X GLQ(Z/QZ),

which are induced by reduction modulo /1 and [, respectively, are indeed isomor-
phisms. Moreover, these maps are compatible with the actions defined in Section 2.
Since |S7|/|G1| < 1/1%, by Theorems 35, 6 and 7 we have

' Y i Y (W)2+0((1112)4x%1og(z?1§m)))

l1,bh<y DP=x l1,h<y
I1#l hblip(p) h#D

& 7(x) + O (x3T100Fe),

where &8 — 0 as x — 0. Choosing § = 21—1 we have

33 1«

Ii,h<y pP=x
li#£lh hblis(p)
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It follows that ,
> @ ip(p)) < 7(x).

p=x

This completes the proof of Lemma 8. o

4. A Turan analogue of @(gp(p))

In this section, we provide a proof of Theorem 1 which states that under the GRH,
we have

Z/ (@(gv(p)) —loglog x)2 &« 7(x)loglogx.

p=x

Our proof is a combination of Lemma 8 with the following theorem.

Theorem 9 (Miri and Murty [16], Liu [14]). Let E/Q be an elliptic curve. We have
(assuming the GRH if E is non-CM)

3 (0 GE(F,)) —loglogx)® < m(x)loglog x.

P
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Since

#E[F,) = gp(p) - in(p),

we have _ _
w#HE[F)) > w(gr(p) = o#HEW,)) — w(ip(p)).
It follows that

3 (0(es(p) —loglogx)* = 3 (0#E(F,) + O(wlis(p))) — loglogx)*

p=x p=x

< Z/ (0 #E(Fp)) —loglog X)2 + Z/ @*(ip(p)).

p=x p=x

Combining Lemma 8 with Theorem 9 we obtain that under the GRH,

Z/ (@(gv(p)) —loglog x)2 <« 7(x)loglogx.

p=x

This completes the proof of Theorem 1. O
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5. An Erdis—Kac analogue of w (g5 (p))

In this section, we give a proof of Theorem 3. More precisely, under the GRH we
prove that there exists a normal distribution for the quantity

w(gp(p)) —loglog p
JIoglog p )

Our proof is dependent on the following theorem.

Theorem 10 (Liu [15]). Let E/Q be an elliptic curve. We have (assuming the GRH
if E is non-CM)

. . . a)(#E(Fl,)) —loglog p
xli)n;o o #{ p<x | p 1is of good reduction and glogp = V}

=G(y).
Proof of Theorem 3. As in the proof of Theorem 1, we have

w#E(F,)) —loglog p _ @(gp(p)) —loglog p

J1oglog p - J/loglog p
- w#E(F,)) —loglog p _ o(ip(p)
= JIoglog p Jloglogp’

Forany ¢ > 0 and «, 8 € R with @ < B, define the set

(ip(p)) >8}
Jloglogp — )7

S(e,a, B) = {p ] p is of good reduction, @ < p < B, and

Let N (¢, @, p) be the cardinality of S(e, «, f). We have
N(e, 0,x) < 7(v/x) + N(e, /x, x).

Notice that
Y oupn= Y. olisp) = N V. x) - ey/loglogx — log2.
p=x PES(e,4/x,%)

Since (i (p)) = w(ip(p)), Lemma 8 implies that

(x)

N v ," B B
(&, 4/%, %) K Toshors

= o(n(x)).

It follows that
N(e,0,x) = o(n(x)).
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Thus for y € R we obtain

@(gp(p)) —loglogp _ y]
J1oglog p -

#i p<x | p 1is of good reduction and

< #[ p < x| p is of good reduction and

w@ﬂ%»—@bmg_mmm><}
Joglog p Jloglogp ~ 7

< #{ p<x | p is of good reduction and

w#E(F,)) — loglog p
AN <y +s} + o (x)).

Also we have

w(gp(p)) —loglogp _ y}
Jloglog p
w#E(F,)) —loglog p - y]
JToglog p - F

Combine all of the above results with Theorem 10. As x — oo, for all ¢ > 0 we
obtain

#{ p < x| p is of good reduction and

> #{ p < x| p is of good reduction and

G(y) < lim
X

#{ p<x | p 1s of good reduction and
—00 77(xX)

@(gp(p)) —loglogp _
J/loglog p -
Since G(y) is a continuous function, for any & > 0 we have
G(y +¢)=G(y) + O(e).
Let ¢ — 0. It follows that under the GRH,

v} =G+,

. : , w(gp(p)) — loglog p
lim #{ < is of good reduction and £ }
x—00 77(x) p=x ‘ P 8 J/loglog p =7
=G(y).
This completes the proof of Theorem 3. o
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