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Spectral convergence of manifold pairs

Karsten Fissmer and Ursula Hamenstidt*

Abstract. Let (M;, A;); be pairs consisting of a complete Riemannian manifold M; and a
nonempty closed subset A;. Assume that the sequence (M;, A;); converges in the Lipschitz
topology to the pair (M, A). We show that there is a number ¢ > 0 which is determined by
spectral properties of the ends of M; — A; and such that the intersections with [0, ¢) of the spectra
of M; converge to the intersection with [0, ¢) of the spectrum of M. This is used to construct
manifolds with nontrivial essential spectrum and arbitrarily high multiplicities for an arbitrarily
large number of eigenvalues below the essential spectrum.

Mathematics Subject Classification (2000). 58J50.

Keywords. Laplace operator, spectrum, Lipschitz convergence, spectral convergence, multi-
plicities.

1. Introduction

In this note we investigate the spectrum of the Laplacian acting on square integrable
functions on a complete Riemannian manifold which is not necessarily of finite vol-
ume. Our main goal is to understand how this spectrum varies as we vary our manifold
continuously with respect to the Lipschitz topology for metric pairs.

Here we mean by a metric pair a pair (M, A) which consists of a metric space
(M, d) and a nonempty closed subspace A C M. For a number R > 0 denote by
B(A, R) the open R-neighborhood of A in M. The Lipschitz topology for metric
pairs is defined as follows (compare [G]).

Definition. A sequence of metric pairs (M;, A;) converges to the metric pair (M, A)
in the Lipschitz topology if there is a sequence of numbers R; — ©0, a sequence
of numbers ¢; — 0 and for each i a (1 4 &;)-bilipschitz homeomorphism F; of
B(A, R;) C M onto a neighborhood of B(A;, R;) in M; which maps A to A;. We
call the sequence {R;}; convergence inducing.

*Research partially supported by SFB 256 and by SFB 611.
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If the closed sets A; C M; and A C M consist of single points then we also
speak of the Lipschitz topology of pointed metric spaces and Lipschitz convergence
of pointed metric spaces (see [G]).

In the sequel we only consider metric pairs (M, A) consisting of a not necessarily
connected complete Riemannian manifold M and a closed subset A of M which
intersects every connected component of M. We call such a pair (M, A) a manifold
pair.

For every complete Riemannian manifold (M, g), the spectrumof the Laplacian A
acting on square integrable functions is a closed subset o (M) of the half-line [0, c0).
The set o (M) is the disjoint union of the essential spectrum oess(M) and the discrete
spectrum odisc(M). The essential spectrum is a closed subset of o (M). The discrete
spectrum consists of the eigenvalues of finite multiplicity; they are isolated points
ino (M). If M is closed and connected then the essential spectrum of M is empty
and o (M) consists of an increasing sequence 0 = A; < Ay < --- of nonnegative
numbers converging to oo.

If (M;, g;) are diffeomorphic closed Riemannian manifolds which converge as
i — o0 in the Lipschitz topology to a closed Riemannian manifold (M, g) then
the spectra of M; converge to the spectrum of M. However, spectra do not always
converge. Namely, consider a sequence (M;, p;); of pointed closed connected mani-
folds which converge in the pointed Lipschitz topology to a complete connected
non-compact manifold (M, p) of finite volume.

Let v > 0 be a lower bound for the essential spectrum of M and assume that
M admits at least k > 0 eigenvalues counted with multiplicities which are smaller
than v. In [CC1] and [CC2], Colbois and Courtois show that the first k eigenvalues
of M; converge to the first k eigenvalues of M if and only if there is a convergence
inducing sequence R; — oo and a sequence r; — o0 such that for sufficiently large
the smallest Rayleigh quotient of M; — B(p;, R; —r;) isnot smaller than v. Recall that
the smallest Rayleigh quotient 141 (€2) of an open subset €2 of a Riemannian manifold
(M, g) is defined to be the infimum of all quotients R(f) = [ g(df,df)/ [ f* over
all nontrivial smooth functions f with compact support in €2.

We adapt this idea to our more general situation using the following definition.

Definition. Let (M;, A;) be a sequence of metric pairs converging in the Lipschitz
topology to the metric pair (M, A) with a convergence inducing sequence R; — ©0.
A family of open subsets €2; C M; — A; is called escaping if there is a sequence
ri — oo such that 2; contains M; — B(A;, R; —r;).

We use here the notion of Colbois and Courtois in [CC2] even though our definition
slightly differs from theirs and our escaping sets do not necessarily “escape” in an
intuitive sense.

Denote by L2(M) the Hilbert space of square integrable functions on a Rieman-
nian manifold M and let H'(M) be the Hilbert space of square integrable functions
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on M with square integrable differential. Let (M;, A;) be a sequence of manifold
pairs converging to (M, A) with convergence inducing sequence {R;}; and
(1 + &;)-bilipschitz embeddings F; of (B(A, R;), A) into (M;, A;). We say that
a sequence of functions f; € L*(M;) converges effectively to a function f € L>(M)
if fyr_Bia; &) f? — 0Oand if moreover Joamyfio Fi — f)? > 0asi — c0. We
show

Theorem A. Let (M;, A;) be a sequence of manifold pairs which converges in the
Lipschitz topology to the manifold pair (M, A). Let Q; C M; be an escaping family
of sets and let v < liminf;_, o £1(2;). Then the sets o (M;) N [0, v) converge as
i — o0 in the Hausdorff topology for closed subsets of [0,v) to o (M) N [0, v).
Moreover, every function f € HY (M) whose spectral measure is supported in [0, v)
is an effective limit of functions f; € HY(M;) whose spectral measures converge
weakly to the spectral measure of f.

For closed pointed Riemannian manifolds (M;, p;) which converge to a complete
manifold (M, p) of finite volume we can combine our Theorem A with standard
compactness results for solutions of elliptic equations to conclude that up to passing to
asubsequence, eigenfunctions on M; for small eigenvalues converge to eigenfunctions
on M.

One can also ask about convergence properties for sequences of eigenfunctions
on our manifolds M; for eigenvalues which are uniformly bounded but bigger than
v = liminf;_, » p1(€2;) for every escaping family of sets 2; C M;. By the results
of Colbois and Courtois, such functions might not be visible in the spectrum of the
limit manifold M. In some special cases, suitable renormalizations of these functions
viewed as functions on larger and larger subsets of M converge up to passing to a
subsequence locally uniformly to an eigenfunction on M which however is in general
not square integrable. In Section 3 we look at a rather special class of examples where
such a convergence can be deduced.

Namely, let N be a closed two-sided hypersurface in a closed manifold M. Then
N has a tubular neighborhood U which is diffeomorphic to N x (—1, 1). We consider
a family g, of Riemannian metrics on M which depend smoothly on s € (0, 1] and
which are warped product metrics on U = N x (—1, 1). More precisely, we assume
that there is a smooth family % (s € [0, 1]) of smooth Riemannian metrics on N
and a smooth function p: (0, 1] x [—1, 1] — (0, c0) such that the restriction of gs
to N x (—1, 1) is of the form g; = ﬁdﬂ + p(s, Dhs (s € (0,1]). Ass \( 0
these metrics converge uniformly on compact subsets of N x ([—1,0) U (0, 1]) to
a complete metric gg. We assume that the metrics g; can be extended to smooth
Riemannian metrics on M — U which depend smoothly on s € [0, 1]. We assume
moreover that p(s, ) \{ 0 as (s, ) — (0,0).

The following observation extends a result of Judge [J] with a similar but somewhat
shorter proof. For its formulation, we mean now by an eigenfunction a solution of
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the differential equation A — A = 0 for some A € R which is not necessarily square
integrable.

Theorem B. Lers; C (0, 1] be a sequence converging to 0 and let f; be an eigen-
Sunction on (M, gs;) with respect to an eigenvalue x;. If the sequence A; converges
fo some & > O then after passing to a subsequence and possibly a renormalization
the functions f; converge uniformly on compact subsets of M — N to a nonzero
eigenfunction for go with respect to the eigenvalue ».

We also give an example which illustrates that the limit function is in general not
square integrable, even if the curvatures and the volumes of all the metrics g are
uniformly bounded.

In Section 4 we construct manifolds of bounded nonpositive sectional curvature
and with controlled spectral properties.

Theorem C. For everyn > 2,k > 0, m > O there is a smooth Riemannian man-
ifold M of dimension n and curvature contained in [—1, 0] and with the following
additional properties.

(1) The essential spectrum oess(M) of M is not empty and M has infinitely many
eigenvalues below oess(M).

(2) For 2 < j < k the multiplicity of the j-th eigenvalue of the Laplacian is at
least m.

In the case n = 2 we can choose M to have constant curvature —1.

Our construction can also be used to obtain for any n > 2 and for given k > 0,
m > 0 a compact n-dimensional manifold of nonpositive curvature with the property
that for 2 < j < k the multiplicity of the j-th eigenvalue is at least k. However, in
this case a much stronger result is due to Colin de Verdiere [CV2]. He showed that
for every closed manifold M of dimension at least 3 and an arbitrary finite sequence
of nonnegative numbers of the form 0 = Ao < A1 < --- < Ay, (m > 0) there is a
Riemannian metric on M whose i-th eigenvalue (0 <i < m) is just A;.

2. Proof of Theorem A

This section is devoted to the proof of Theorem A. We continue to use the assumptions
and notations from the introduction. In particular, we denote by (M, g) a complete
Riemannian manifold and by A a nonempty closed subset of M.

For functions f, h on (M, g) denote by (f, h)2 = |, e J 1 their L?-inner product
andlet (V f, Vi), = [,, &(V f, Vh) bethe L?-inner product of their gradients. Write
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also || £l = +/(f, f2and |V f|| = /(V £, V f)2. We denote by H (M) the Hilbert
space of square integrable functions on M with square integrable differential with
the inner product ( f, h)2 + (V f, Vh)2. For every nonzero function f € Hl(M) the
Rayleigh quotient of f is defined by R(f) = IV A/ N2

We begin our argument with a general estimate of Rayleigh quotients for suitably
chosen functions on M.

Lemma 2.1. For e > 0 there is a number § = §(¢) > 0 with the following property.
Let M be a complete Riemannian manifold, let U,V be open subsets of M with
disjoint closures and let u, v be smooth functions on M with compact supports in
U, V. If R(u+v) < u1(V) — g and | R(u + v) — R(u)| < 8 then ||v])* < &|lul?
and ||V v||* < e(|Vul* + 2¢|u?).

Proof. Let u, v be as in the lemma. Since v is supported in V we have R(v) >
u1(V) > Ru + v) +¢.
Write
a=|Vul®, b=lul®, c=Vol? d=vl*

Since the supports of « and v are disjoint we have || u+v||?> = b+d and |V (u4v)|?> =

a + ¢ and consequently % =RW) > Ru+v)+e= ZTJrg + &. This implies that

lv|? d a+4+c¢ a R+ 9) — R
& =&—< — = u v) — u).
lul2 b  b4+d b

Thus if | R () — R(u + v)| < 8(¢) = &* then our above inequality shows that
ll* < ellull*.
Using again that the supports of «# and v are disjoint we obtain from this that

IVul* + Vol Rw) IVoll?

2
Ru)+¢e° > Ru—+v) > A+e)ull? ~ 14e  A+8e)|ul?

and therefore )
Vo]l
[l ]|?

eR(u) +&2(1+¢) >

and ||[Vv|? < &||Vu > + £2(1 + &)||u||>. This shows the lemma. O

For a closed subset A of a complete Riemannian manifold M and a number r > 0
let as before B(A, r) be the open r-neighborhood of A in M. In the sequel we always
assume without further mentioning that the boundaries of our sets B(A, r) are smooth.
This can be achieved with a small deformation of B(A, r) near its boundary. We also
write M = B(A, 00).

The next lemma is a technical tool which allows us to find for every function
f € HY(M) with controlled Rayleigh quotient a function f’ € H'(M) which is
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close to f and to which Lemma 2.1 can be applied. In a less explicit form, this
lemma was used by Colbois and Courtois [CC2].

Lemma 2.2. For C > 0, p > O there is a number Ry = Ro(C, p) > 0 as follows. If
f e HY (M) is such that | f||*> = 1 and R(f) < C then there is a function u = u(f)
with the following properties.
(1) u has values in [0, 1] and |Vu| < 1 pointwise.
(2) u = u1+u where uy is supported in B(A, Ro) and the support of uy is disjoint
from the support of uy and contained in M — A.

3)
/M(<f —FuR IV — Fwl?) < p.

Proof. Using the notations from the lemma, choose anumber k > 0 such that kp /4 >
14 C. Notice that k only depends on p, C. Form < kdefine E,, = {x | dist(x, A) €
[6m, 6m + 6)}. Then B(A, 6k 4 6) — B(A, 6) is the disjoint union of the k spherical
shells E,,.

Let f € H' (M) besuchthat || f]|*> = 1and |V f]|> < C. Then [ |V f|*+ f? <

C + 1 and therefore, by our choice of k, there is some m € {1, ..., k} such that
/E IV IR+ /2 < p/a.

For this number m < k, choose a smooth function z1: R — [0, 1] which is
supported in (—o0, 6m +2), equals 1 on (—oo, 6m] and whose gradient is pointwise
bounded in norm by 1. Similarly, let 72 : R — [0, 1] be a smooth function which is
supported in (6m + 4, 00), equals 1 on [6m + 6, c0) and whose gradient is pointwise
bounded innorm by 1. Define u; = u;(dist(A, -)) and u = u; +uy. For Ry = 6k+6
the function u1 is supported in B(A, Rp). The support of u, is contained in M — A
and it is disjoint from the support of u1.

The function 1 — u is supported in the shell E,, and it satisfies |1 — u| < 1,
V(1 —u)|| <1 pointwise. Therefore we have

/(f—fu)2=/ f2<1—u>2s/ 2 < p/4
M E,, En

and

/MIIV(f—fu)||2=/ I =WV + £V — )2

Em

5/E IVFI? 4201 — ) fe(V £, V(1 —u)) + f2

<plA+ 2/E FIVFI < 3p/4.
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In other words, our function « has the required properties. O

For an open subset Q of M with smooth boundary we denote by H'(€2) the closure
in H' (M) of the space of smooth functions with compact support in 2. Then H'! ()
is a closed linear subspace of H!(M).

The self-adjoint extension of the Laplacian Ag on 2 with Dirichlet boundary
conditions is the self-adjoint operator of the quadratic form (f, u) — (V f, Vu)s.
The domain of A(}” is the Hilbert space H(2). We denote by o () C [0, 00) the
spectrum of Ag.

The next lemma is the key technical result needed for the proof of Theorem A.

Lemma2.3. Fore > 0,C > 0, x € (0,¢&/2) there is anumber R = R(e, C, x) >0
and a number v = v(g, C, x) > 0 such that the following is satisfied. Let M be
a complete Riemannian manifold and let A C M be a closed set. Then there is a
continuous linear map L+ H' (M) — H'(M) with the following properties.

(1) The range of L is contained in HY(B(A, R)).

(2) L extends continuously to L3(M), and (La, B)2 = (a, LB)» forall a,B €
L*(M).

3) If » < min{pu (M — A) —¢,C}, r € [R, o0] and if the spectral measure of
f € HY(B(A,r)) is contained in [» — v, A+ v] then | f — Lf|* < x| f1* and
IV(LF) = VFI? < xIVFI~

Proof. Let M be a complete Riemannian manifold and let A C M be a closed set.
The proof of our lemma is divided into three steps.

Step 1. We claim that for every § € (0, 1), C > 0O there is anumber 8 = (5, C) > 0
with the following property. Let f € H L(M) be a normalized function with R( f) <
min{u (M — A),C} — 6. Let p € (0, %) be an arbitrary number which is small

enough that %rg — C < §/2 and let u = u1 + uy be the function constructed in

Lemma 2.2 for f and the constants C, p/2 > 0; then f(fu1)2 > B.
Namely, by Lemma 2.2 we have ||| f11> — [| ful*| + IV £II* = IV(fw)]?] < p
and therefore since f is normalized and u# < 1 we obtain that

IVFIZ—p IVAI?+p
—_— < R —_—
TR T

By our choice of p and the fact that R(f) < C we conclude that | R (uf) — R(f)| <
8/2 and hence R(uf) < min{u1 (M — A), C} — 5/2. Now

R(f)—p =

IV I 4 IV w2 I
lur fII + lluz f11

R(uf) =
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and consequently since u f is supported in M — A we obtain that

2 _ 2
min{u; (M — A), C} —8/2 > IV N7 + p1 (M — A)lluz f |

s FIZ+ ez f T2
_ (M = Al |
= Tt FIE+ ua f 12

and hence
llur £1I* > 8lluz £1I*/2C.

The existence of a constant 8 = SB(§, C) as stated above now follows from the fact
that fluy £ 1> + lu2f* = 1—p = 1 — § by Lemma 2.2.

Step 2. Lete > Oandlet x < /2. Let C > 1,1et § = §(x/2C) < x/2 be as in
Lemma 2.1 and let 8 = B(8, C) < 1 be the constant from Step 1 above. Notice that
B only depends on ¢, x, C. Choose p € (0, min{y /2, 58/4(3 + C)}) small enough
that %"5 — C < §/4. Let Ry = Ro(C, p) be the constant from Lemma 2.2 for p;
notice that Ry only depends on &, x, C. Letr € [Ro+ 2, oo] and for simplicity write
Q = B(A,r).

We use the spectral theorem in the following form (see [D]). There is a finite
measure p on o (2) x N and a unitary operator U : L3(Q) — L*o(Q) x N,du)
as follows. Define hi(s, n) = s; then f € L?(Q) is contained in the domain of
Ag if and only if RU(f) € L?(6(Q) x N,duw), and if this is the case we have
UAU~YUf) = hU(f). The spectral measure of such a function f is supported in
aninterval [A—«, A+« ]if and only if the function U f is supportedin [A —«, A4« ] x N,
Since (u,q) — (Vu, Vg), is the quadratic form of A;Z/Z this implies that for every
g € HY(Q) we have

(V£ V)2 = A(f. )2l = ‘ / UL Uq)dp — / (Uf)(Uq)du‘

<k

/ (Uf)(Uq)du’ — e (f. )2

Using this inequality for u = f we obtain in particular that the Rayleigh quotient
of f is contained in the interval [A — «, A + «]. Moreover, if f and ¢ are contained
in the domain of Ag and if their spectral measures are supported on disjoint subsets
of o (2) then we have (f, q)2 = (Vf, Vg)2 = 0.

Leta < min{uy (M —A), C}—eandlet f € H'() beanormalized function with
spectral measure contained in [ — 8./B/4, A+ 5/B/4]. Then the Rayleigh quotient
of f is not bigger than A + 8/4 < min{u (M — A), C} —38/4. Letu = ug + us be
the function for f as in Lemma 2.2; then as in Step 1 above we obtain that

IVFI? —p IVFI?+p
P R - v -
TN T
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and therefore by our choice of p we have |R(uf) — R(f)| < §/4 and, in particular,
R(uf) € A—38/2,x+5/2] C (0, u1(M — A) —¢/2].

On the other hand, from the properties of the spectral measure for f and the fact
that f is normalized we infer that

‘/g(vf, Vi) —x/w‘ < 5/Blv /4

for every smooth function ¢ on € with compact support. For ¢ = u1f € H(Q)
and with the notation from the proof of Lemma 2.2 above this means that

< 8y/Bllur £11/4.

‘/nwlfn%/E g(V(f(1 —up)), V(ur f)) —}»/lllfz

Moreover we have ||u1 f|| > /B by the choice of B and Step 1.
Now the intersection of the supports of #1 and 1 — u; is contained in E,, and

consequently | [ ¢(V(f(1 —u1)), Var ) < [z IVFI*+ f2+2F1VFI < 3p
and hence we conclude as in Step 1 that

‘/ I Vuy 11 —x/wlf)z

<3p+ x/E (1 —up)ur f2 + 8y/Bllur f11/4

< B+ 1)p+5yBllurfll/4
< G40+ 8lufIP/4 < /(ulf)2/2-

For the last of these inequalities, recall that A < C, p < 8/4(3 + C) and hence
B+rMp<B4+C)p<dp/d<s$ f(ulf)2/4 by the choice of B.

In particular, the Rayleigh quotient R (u1 f) is contained in [A — §/2, A + §/2]
and |R(u1 f) — R(uf)| < 8.

Now we can apply Lemma 2.1 to the functions 1 f and u> f and deduce that

luf —ur f1I* < xlur f12/2C < x/2

and

IV(uf —ur HIF < xIVur fII7/2C < x/2

and therefore also [lu1 f — f|I*> < x and ||[V(u1 f — £)||*> < x. As a consequence,
wehave [ poa g f* < x and Jar—Ba.ry) IV£I? < x.
Step 3. Letv: M — [0, 1] be a smooth function with support in B(A, Ry + 2) and

which is constant 1 on B(A, Rp). We may choose our function in such a way that its
gradient Vv is pointwise bounded in norm by 1. For a function f € H'(M) define
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Lf = vf. Then L: H'(M) — H'(M) is clearly linear, extends continuously to

L3(M) and satisfies (Lo, B)2 = (o, LB), for all «, B € L%(M). Since |v| < 1 and

|Vu|| < 1 pointwise the map L is continuous. More precisely, we have || Lf — f]|> <
2

fM—B(A,RO) J* and

Ivis ViR < 't IV 512
B(A,Ro+2)—B(A,Ro) M—B(A,Rqg)
This together with Step 2 above shows the second and the third part of our lemma.
We are left with showing that the image of H' (M) under the map L is contained
in H'(B(A, Ry + 2)). For this observe that for every smooth function f on M with
compact support the function L f is smooth and compactly supportedin B(A, Ry+2).
Since compactly supported smooth functions are dense in H'(M) and since L is
continuous, functions with compact support in B(A, Ry + 2) are dense in the range
of L. This shows the lemma. o

Corollary2.4. Fore > 0, C > 0and é < e/2 there are numbers p = p(e, C,8) > 0
and k =« (g, C, 8) < 8/2 such that for every complete Riemannian manifold M and
every closed subset A C M the following holds.

(1) Let » € [0, min{uu; (M — A), C}—elNo (M) and let f € HY (M) be a function
whose spectral measure is supported in [, — «, . + «]. Then there is a function
fe H! (B(~A, p)) with spectral measure supported in [, — 8, A + 8] and such
that || f — f1I* < 8I.f1%.

(2) Let » € [0, min{u1 (M — A), C} — el No(B(A, p)) and let f € HY(B(A, p))
be a function whose spectral measure is supported in [ — k, A+ «). Then there
is a function f e HY (M) with spectral measure supported in [A — 8, L+ 8] and
such that || f — FII* < 8|1 £ 1%

Proof. Lete € (0,1],8 < g¢/2 and let C > 1. Define «x = 83/(C 4+ 1) and let
p = R(g/2,C, k%) beasinLemma 2.3. Denoteby L: H'(M) — H'(B(A, p)) the
linear map from Lemma 2.3.

Let v = v(e/2,C, k%) < «/2 be as in Lemma 2.3 and let . € o (M) N
[0, min{x1 (M — A), C} — ¢]. Let f be a normalized function on M with spectral
measure supported in [A — v, A + v]. Then the Rayleigh quotient of f is not bigger
than A 4+v < min{u1 (M — A), C} —¢/2. Moreover, since f is normalized we obtain

that
‘/g(Vf,Vu)—k/uf

for every smooth function # on M with compact support.
By construction of the operator L, the function Lf lies in the domain of A4 ).
Moreover by Lemma 2.3 we have ||[Lf — f|I*> < «2||f||> and [|[V(Lf — )|? <

< 2v]jul|
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2|V £12. Using the spectral theorem for the operator A g4,y acting on L2(B(A, p))
with Dirichlet boundary conditions we obtain that the function Lf admits an L>-
orthogonal decomposition Lf = « + ¢ + B where the spectral measure of « is
supported in [0, A — 8%], the spectral measure of 8 is supported in [A + 8, c0) and the
spectral measure of ¢ is supported in [A — 82, A + 8]. Since |Lf — f|1> < «2|| £
by construction, for the first part of our lemma it is enough to show that the square
norms of « and B are bounded from above by a fixed multiple of §.
For an estimate of |j«||2, observe that

IIallzz/a(Lf) =/af+/a(Lf—f)§/af+/cllall

since f is normalized by assumption and therefore using the fact that R(f) =
IV £]I* < C we obtain

=8l > IVa|* = / g(Va, V(Lf)) > f g(Va, V) — k|| VallIV £]]
z/\/af—fc(llall +VC|IVal) > rllel® — «llell(t 4+ 2+ C).

This shows that ||| < 2k(C+1)/8% < & by our choice of « and the factthat A < C.
On the other hand, the square norm of S can be estimated as follows. By con-
struction and Lemma 2.3 we have

A+ +1) = A+ ANV = IV
= |Val* + IVel? + VB
> (=)ol + + 8812

Since [|¢]I2 + 1B = IILfII* — |l«l|* = 1 — k% — ||||* > 1 — 28% we obtain from
this that
A+ 6D+ x) = (1— 287 — 8%) + 8|81

and hence 8[| 8]|% < k + «(h 4+ k) + 82 4+ 282(x — 8%) and ||B]|* < 8(3 4+ 2A). This
estimate concludes the first part of our corollary.

To show the second part of the corollary, notice that we may always increase
p without changing our estimates and therefore we may assume that the first part
of our corollary is valid for p and the constants ¢ > 0, C > 0, 82 > 0. Letk =
(e, C,8%) < 8%/8 be the constant from the first part of our corollary. Let A &
o(B(A, p))N[0, min{u1 (M —A), C}—elandlet f € H'(B(A, p)) be anormalized
function with spectral measure supported in [A —«, A+«]. Then f as a function from
HY(M) admits an orthogonal decomposition f = « + ¢ + S such that the spectral
measure of « is supported in [0, A — 282], the spectral measure of ¢ is supported in
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[A — 282, A + 8] and the spectral measure of 8 is supported in [A + 5, 00). As above
it is now enough to control the square norms of « and 8.

For this we use our above strategy and show first that || 8| < 38+ ||« ||*(A—2582) /5.
Namely, notice that the functions «, ¢, 8 are L?-orthogonal and also orthogonal with
respect to the inner product of H'(M). Thus the Rayleigh quotient R(f) of our
function f can be estimated as

At > R = IVl + IVel? + IVBI? = (= 28D [lell* + (L + 8118112
Since 1 — [|«||® = ||¢||*> + || B]|*> we obtain from this that
A= (1= llal?)(x —28%) + 8118112

andhence 8| 8|2 < k+282+(r—2582)||«||? from which our above claim is immediate
(recall that « < 8* by assumption).

We are left with estimating ll||2. Forthislet L: HY (M) — HY(B(A, p)) be the
operator as in Lemma 2.3. Since the spectral measure for f as a function on B(A, p)
is contained in [A — «, A + «] we deduce from Lemma 2.3 that ||Lf — f|* < 82.

The function « can be decomposed into a finite orthogonal sum of functions with
spectral measure supported in a subinterval of [0, 2 — 262] of length smaller than .
We apply the first part of our corollary to these functions and obtain a decomposition
La = §1+ & where the spectral measure of ¢ is supported in [0, A — 821 and we have
le2l|? = ||[La — ¢1]|* < 82||«||>. However the spectral measure of f as a function
in HY(B(A, p)) is supported in [A — «, A 4 «] and therefore ¢; is orthogonal to f.
Thus (L, f)2 = (&, f) < élle]l. On the other hand, (Lo, f)» = (o, Lf); =
(@, f2 + (a0, Lf — f)2 > llal® = 8)l«]|. Together with the above this shows that
28| > ||l||> which is only possible if ||c||> < 48%. Then ||8]|> < (4 + A) which
finishes the proof of the corollary. ]

Now we are ready to show the main result of this section.

Proposition 2.5. Let (M;, A;) be a sequence of manifold pairs which converges in the
Lipschitz topology to the manifold pair (M, A) with convergence inducing sequence
R; — oo. Assume that there is an escaping family of sets Q; C M; such that
liminf; o p1(2;) > ¢ > 0. Let o(M;) C [0, 00) be the spectrum of M; and let
o (M) be the spectrum of M. Then the following is satisfied.

(1) The sets o (M;) N[0, ¢) converge in the Hausdorff topology for closed subsets
of [0, ¢) to o (M) N [0, ¢).

(2) Every function f € HY(M) with spectral measure supported in [0, ¢) is an
effective limit of a sequence of functions f; € H'(M;) with spectral measures
supported in [0, c).
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(3) For every & € [0, c) N ogisc(M) and every eigenfunction f with eigenvalue
A there is a sequence of eigenfunctions f; on M; with respect to eigenvalues
Ai € odisc(M;) N [0, ¢) which converge effectively to f.

Proof. With the assumptions in the statement of the proposition, let R; — o0
be a convergence inducing sequence for our convergent sequence (M;, A;) of
manifold pairs. We choose an escaping family of sets €2; with the property that
liminf; , o p1(€2;) > ¢ > 0. Furthermore, there is a sequence r; — oo such that
Qi DM — B(A;, R —ry).

Foreach R > 0 the Laplacian acts on the Hilbertspace H' (B(A, R)). AsR — o0
its spectrum o (B(A, R)) converges in the Hausdorff topology for closed subsets of
[0, o0) to the spectrum o (M) of M. Since there is a (1 + &;)-bilipschitz map F; of
B(A, R;) onto a neighborhood of B(A;, R;) in M;, this means that as i — oo the
spectrum of the Laplacian on B(A;, R;) converges in the Hausdorff topology to the
spectrum of M.

Lete > Oand foré > Olet p = p(e/2,¢c,8) be as in Corollary 2.4. If i is
sufficiently large then we have p1(€2;) > ¢ —&/2and R; —r; > p. By Corollary 2.4,
the intersection o (M;) N[0, c—¢] is contained in the §-neighborhood of o (B(A;, R;)),
and o (B(A;, R;)) N[0, ¢ — ¢] is contained in the §-neighborhood of o (M;). Since
& > 0and § > O were arbitrary we conclude that as i — oo (and possibly after
passing to a subsequence) the spectrum of M; converges in the Hausdorff topology
to a closed subset B of [0, oo) with the property that B N [0, ¢) = o (M) N[0, ¢).
This shows the first part of our proposition.

To show the second part, let f be a function on M with spectral measure supported
in [0, ¢ — £]. We have to show that f is an effective limit of functions on M; whose
spectral measures converge to the spectral measure of f. But this follows once again
from Corollary 2.4. Namely, every function f on M with spectral measure contained
in [0, ¢ — ¢] can be approximated in 075 by functions supported on B(A, R) for
larger and larger R and with spectral measure as elements of H'(B(A, R)) supported
in [0, c —&/2]. On the other hand, for every « > 0, every function on B(A, R) whose
spectral measure is supported in [0, ¢ — ¢/2] admits an orthogonal decomposition
into finitely many functions whose spectral measures are supported on intervals of
length smaller than «. If ¢ € H'(B(A, R)) is such a function and if i > 0 is large
enough that R; > R then we can apply Corollary 2.4 to the function ¢ o Fi_1 on M;
to obtain the required approximation.

We are left with showing the third part of our proposition. For this let f be an
eigenfunction on M with eigenvalue A € [0, ¢). Then there is a number § > 0 such
that the space of functions with spectral measure supported in [A — §, A 4 8] is finite
dimensional. Our above argument immediately implies that for sufficiently large ¢
the dimension of the space of functions on M; with spectral measure supported in
[A—38/2, A+ 5/2] is finite as well. This completes the proof of our proposition. O
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For an integer £ > 1 and a nonempty open subset €2 of a Riemannian manifold
the k-th Rayleigh quotient i (€2) of Q is defined to be the infimum of all numbers
a > (0 with the following property. There are k smooth functions fi, ..., fi with
compact support in € which are orthonormal with respect to the L2-inner product
(f, h)y = f y Jhon M and such that their gradients V f; satisfy the inequality

80 = [ 1941/ [ 72 <a.

As an immediate consequence of Proposition 2.5 we obtain

Corollary 2.6. Let (M;, A;) be a sequence of manifold pairs converging to the
manifold pair (M, A) and let Q; C M; — A; be a sequence of escaping sets. If
M inf; o0 141 () > min oess (M) then pr(M;) — pui(M) for every k > 1.

Proof. Letvg € [0, co] be the minimum of the essential spectrum of M. If vy = o0
then our corollary is immediate from Proposition 2.5, so we may assume that vy < 0.
Using again Proposition 2.5 it is enough to show that lim sup;_, ., #x(M;) < vo for
every fixed k > 0. Since vy is contained in the essential spectrum of M there is for
every k and every & > 0 an orthonormal family fi, ..., fi of functions in L*(M)
with support in a fixed compact ball B C M and Rayleigh quotients R(f;) <
vo + &. For ¢ sufficiently large the set B is contained in the domain of our (1 + &;)-
bilipschitz map F;. Since ¢; — 0 (i — o0) this means that for large i we can find
an orthonormal family f/, ..., fi of functions on M; with R(f}) < vo + 2¢. This
shows that lim sup; _, o, px (M;) < vg. O

We conclude this section with an example which illustrates how our Proposi-
tion 2.5 can be applied. We consider non-clementary torsion free Kleinian groups,
i.e. finitely generated torsion free discrete subgroups of the isometry group PSL(2, C)
of hyperbolic 3-space H* which do not contain an abelian subgroup of finite index.
The limit set A of such a Kleinian group I' is the smallest closed I"-invariant subset of
the ideal boundary of H?. The closure in H of the convex hull of A is invariant under
the action of I" and projects to the convex core C(M) of M = H?/T. A sequence
{I';1}; of Kleinian groups converges algebraically to a Kleinian group I' if for almost
every i there is an isomorphism p; : I' — I'; such that p; (¢) — ¢ for every fixed
¢ € I'. The sequence {I';} converges geometrically to I' if the quotient manifolds
M; = H?/T; converge in the pointed Lipschitz topology to M = H>/T. The se-
quence {I'; } converges strongly to I if they converge algebraically and geometrically
toTI.

A torsion free Kleinian group I' is called geometrically finite if the volume of the
one-neighborhood of the convex core of H3/T" is finite. We then call the quotient
manifold H? / I" geometrically finite as well. Generalizing earlier work of Comar and
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Taylor [CoT], Canary and Taylor show in [CT] that the bottom of the spectrum of
geometrically finite hyperbolic 3-manifolds is continuous with respect to the strong
topology. We state a slight extension of their main result as a corollary and show how
it can be deduced from Proposition 2.5 and an observation of McMullen.

Corollary 2.7. Let {I';} C PSL(2, C) be a sequence of Kleinian groups which con-
verges strongly to a geometrically finite Kleinian group I'. Then the intersection
with (0, 1) of the spectrum of T3/ T; converges in the Hausdorff topology to the
intersection with (0, 1) of the spectrum of H? /T

Proof. Let I';, T be as in the corollary. We write M; = ]H[3/F,~ and M = ]HI3/ I.
Let C(M;) be the convex core of M;, and for & > 0 let M;~* denote the e-thin part
of M; where the injectivity radius is less than e. The truncated core is defined by
C.(M;) = C(M;) — M*. The truncated core of every geometrically finite manifold
is compact.

Now if I'; — I strongly and if I is geometrically finite then the same is true
for almost all of the groups I'; [T]. Moreover, by Theorem 4.1 of [MM], for each
& > 0 the truncated cores C.(M;) of the manifolds M; converge strongly to the
truncated convex core C.(M) of M. This means that for the (1 4 &;)-bilipschitz
homeomorphisms F;: B(x, R;) C M — F;(B(x, R;)) C M; as in the definition of
geometric convergence and for large enough i the truncated core C,(M;) is contained
in the &;-neighborhood of F;(C.(M)).

Now it is well known (and explicitly explained in [H]) that for sufficiently small &
and for every 8 > 0 there is a number R > 0 such that for every geometrically finite
manifold N the smallest Raleigh quotient of N — B(C.(N, R)) is not smaller than
1 — é. Thus we can apply Proposition 2.5 for A = C,.(M) and deduce that indeed
the intersection of the spectrum of M; with (0, 1) (which consists of finitely many
eigenvalues, compare [H]) converges in the Hausdorff topology to the intersection
with (0, 1) of the spectrum of M. In particular, the bottom of the spectrum of M;
converges as i — o< to the bottom of the spectrum of M. O

3. Development of cusps

In this section let always M be a closed manifold of dimensionn > 2 andlet N € M
be a smooth closed 2-sided hypersurface in M. Then there is a tubular neighborhood
U of N which is diffeomorphic to N x [—1, 1].

For s € [0, 1] choose a smooth Riemannian metric #; on N which depends
smoothly on s and let p: (0, 1] x [—1, 17U {0} x ([—-1,0) U (0, 1]) — (0, o0) be
a smooth function. Using the metrics p(s, t)hy; on N we define for each s > 0
a smooth metric gs on N x [—1,1] by g5 = p—}r—;dtz + p(s, )hg. As s \ O these
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metrics converge uniformly on compact subsets of N x ([—1, 0)U(0, 1]) to a complete
metric go. We assume that the metrics gs can be extended to smooth Riemannian
metrics on M — U which depend smoothly on s € [0, 1]. We denote these metrics
again by gs, and we write M, for the manifold M with the metric g5 (for s = 0 we
replace M by M — N). We allow M — N to be disconnected.

Lemma 3.1. The manifold pairs (Mg, My — U) converge as s — 0 to the manifold
pair (Mo, My — U).

Proof. By construction, the distance in My between the subsets My — U and N x
([—4,0) U (0, 8]) goes to infinity as § \( 0. Since by our hypothesis the metrics
p(s, t)hg on N converge as s \ 0 locally uniformly in t € [—1,0) U (0, 1] to the
metrics p(0, t)ho our lemma follows. O

Example 3.2. Let M be a smooth connected noncompact orientable n-dimensional
hyperbolic manifold of finite volume. Then M has a finite number k > 1 of standard
cusps. These cusps are given by a two-sided closed embedded hypersurface N C M
which consists of k connected components and divides M into a manifold M and
the cusps E1, ..., Ex. The metric 2 on N induced from the hyperbolic metric is flat
and therefore N is a finite quotient of a collection of k tori of dimension n — 1. The
union Uf.‘zl E;ofourends E1, ..., Ej is diffeomorphic to N x [0, co) and carries the
warped product metric dt> 4 e~ h.

Choose a fixed smooth convex function «: R — (0, o) with the property that
a(t) = e ' fort <0, a(t) = e~ ! for large 7 and such that ¢’ > —« and o’ < «. For
each fixed s € (0, 1] define a new metric g; on N x [0, 00) by g; = dt® + s?a(t +
log s)%h. Then the metric g, coincides with the hyperbolic metric on N x [0, —log 5]
and extends to a complete smooth metric on all of M which coincides with the
hyperbolic metric on M. We denote this metric again by g;. The sectional curvature
of gsiscontainedin [—1, 0]. Thereis anumber rp > Onotdepending on s such that the
restriction of g5 to N x [—log s+ 19/2, 00) is the flat product metric e L1s2h x [0, 00).

Write E; = N x (—logs + 79, 00). We can glue two copies of M — E; along
the boundary with the natural isometry between the two boundary manifolds N x
{—log s+ 70} to obtain a compact connected Riemannian manifold M. This manifold
contains two isometric copies of M and a totally geodesic embedded flat hypersurface
which corresponds to the boundary components of the ends E;. If we denote by A, the
union of our two copies of M in M, thenas s \, 0 the manifold pairs (M;, A;) converge
in the Lipschitz topology to the disconnected hyperbolic manifold pair (Mg, Aop)
which consists of two copies of the pair (M, M). We call such a converging sequence
of manifolds a standard cusp convergence. With respect to a suitable parametrization
of the cylinders My — As in M, our family of metrics can be represented as a 1-
parameter family of warped product metrics of the above form.
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Recall that the bottom of the spectrum of a standard hyperbolic cusp of dimension
n equals (n — 1)%>/4. From Proposition 2.5 we therefore obtain that as s \ 0 the
intersection with (0, (n — 1)2/4) of the spectrum of M; converges to the intersection
with (0, (n — 1)2/4) of the spectrum of My. Since M) is disconnected and each of
its two components is of finite volume, the eigenvalue 0 of Mg has multiplicity 2 and
therefore the second eigenvalue of the manifolds M converges as s \, 0 to 0.

Assume from now on that the second eigenvalue of the metric p (s, 1) hs on N goes
to oo as (s, 1) — (0,0). Since the metrics %, are defined for every s € [0, 1] this is
equivalent to requiring that our function p extends continuously to 0 at (0, 0). Notice
that the volume of My may be infinite.

Let vy (1) be the volume element of the metric p(s, t)hs on N. For s € [0, 1] let
W, c HY(M,) be the closure in H'(M,) of the space of smooth functions f on M
which satisfy fN><{t} fdvs(t) =0forallt € [—1/2, 1/2]. Denote by p the volume
element of the metric gz on M. In the sequel we write f |V f|12d s to denote the
integral of the square norm of the differential of f with respect to the metric g;.

Lemma 3.3. For every e > 0, ¢ > 0 there exists a number § = 5(g, ¢) > O with the
following property. Lets < 6 and let f € W be a function with

/ IV £ Pdps < c / Fadps.
Nx[=1/2,1/2]

Then we have

/ Fdus < el FIP-
Nx[=5,5]

In particular, the Hilbert space Wy ¢ H'(My) is compactly embedded in L*(M).

Proof. Let na(s, t) be the second Rayleigh quotient of the metric p (s, t)hs; on N.
By our assumption we have p (s, f) — o0 as (s, £) — (0, 0) and therefore for every
k > 0 there is a number v = (k) € (0, 1/2) such that puy(s, ) > kforalls < 7,
all r with || < 7.

Now if f € W; then for every t € [—1/2, 1/2] the restriction of f to N x {t} is
orthogonal to the constant functions. Moreover the measure p can be represented
in the form dv,(t) x «(s, t)dt for a smooth function « > 1. Consequently for s <
we have

1/2
/ IV £ 12dps > / ( / Mz(s,t)fzdvs(t)>dt
Nx[=1/2,1/2] —12\J N1}

= k/ f2d.us-
Nx[-1,7]
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It fo[—l/z 121 IV £1I2dus < ¢ [ f2du for some ¢ > 0 then we deduce from this
that fNX[_T - f2dus < £ [ f2dpg which shows the first part of our lemma. Com-

pactness of the embedding W, ¢ H'(M,) — L?*(M,) then follows from standard
compactness results. O

The following proposition generalizes an earlier result of Judge [J] and shows our
Theorem B. Its proof uses the ideas of Judge [J], with our simple Lemma 3.3 as the
main new ingredient. We include the (rather short) proof for the sake of completeness.
In contrast to Section 2 we now mean by an eigenfunction a solution of an equation
A — A = 0 for some A € R which is not required to be square integrable.

Proposition 3.4. Assume that p(s, 1) (O as (s,1) — 0. Let ¢ > 0 and let {s;}; C
(0, 1] be a sequence converging to 0. Let f; be an eigenfunction on My, with respect
fo an eigenvalue A; < c. Then up to passing 1o a subsequence and renormalization,
the functions f; converge locally uniformly on M — N fo a nonirivial eigenfunction
f on Mo with respect to the eigenvalue g = lim;_, o A;.

Proof. Define a linear projection Py: L>(U ¢ M) — L*(U C M;) by
Psf(x,t):/ Sdvs(1).
N x{t}

In other words, P f is the function which is obtained by integration of f along the
manifolds M x {t} with respect to the volume form of the metric p (s, ) k.

For i > 0 let f; be an eigenfunction on M, with respect to the eigenvalue A;.
We assume that these eigenvalues are bounded from above by some ¢ > 0. Let
8 =68(1/2, 2¢) be as in Lemma 3.3. Using an idea of Judge [J] we define

Pl e {ﬁ(x,w, it Il = 5,
(fi — Ps; fi)(x, 1), otherwise.
To simplify our notation we assume that the functions f are normalized; this only
depends on the normalization of f;.

Let «: (—1,1) — [0, 1] be a smooth function supported in [—3/4, 3/4] with
a(t) = 1fort € [—5/8,5/8] and define u;(x, 1) = fi(x,t) — () Py, fi(x,1). By
our normalization assumption the LZ-norm of the function «; is not bigger than 1,
moreover u; is contained in Wy, .

We claim that the L%-norm of the gradient of #; is bounded independent of i. To
see this recall that our metrics gs are warped product metrics on N x [—1, 1] and
therefore for each fixed s € (0, 1], t € (—1, 1) and every smooth function ¢ on M,

we have fN><{t} gs(V(p — Psp), V(Psp))dvs(t) = 0. Namely, since our metric is
a warped product the normalized volume forms of the metrics o (s, t)h; on N are
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independent of ¢+ € (—1, 1). This implies that the gradient V(P;¢) of Psp is of the
form V(Psp)(x,t) = {(t)% where ¢ only dependson f and V(¢ — Psp) = X + x %
where fN><{t} xdvs(t) = 0and X is tangent to the first factor foliation of N x [—1, 1].

Letg: (—1,1) — [0, 1] be a smooth function with compact support which equals
1 on [—3/4,3/4]. Define v;(x, t) = B(t)(f; — Py, fi)(x, t); then lv;I> < 1. Since
/i 1s an eigenfunction with respect to the eigenvalue A;, by the definition of v; and
the above we have

ki = i / vinidps, = A / vi fidps; = /gsi(Vvi, V fi)d s,
(1)
> / IV = P folPdps, = / IVai P d .
Nx[=3/4,3/4] Nx[-5/8,5/8]

Notice that this estimate relies in a crucial way on the fact that the normalized volume
element of p(s, 1)k, is independent of ¢.

On the other hand, let ﬁ : [—1,1] — [0, 1] be a smooth function supported in
[—1,1/2]1U[1/2, 1] which is constant 1 on [—1, —5/8]1 U [5/8, 1]. Write v(x, 1) =
B(t) fi(x, ). As before we deduce that

A > A / B, Flihy, = / IV fi 12,
M—Nx[-5/8,5/8]

Now for 5/8 < |t] <1 we have

d
Vui(x, 1) =V fi(x, 1) — a/(t)PsifiE —a(OV (P fi)

and therefore there is a constant « > 0 not depending on i such that

f Va2,
M—-Nx[-5/8,5/8]

<af IV il +a frdps,
M—Nx[-5/8,5/8] Nx[-1,-5/8]U[5/8,1]

From this and inequality (1) above we conclude that the L?-norm of the gradient of
u; 1s bounded independent of i.

We claim that after passing to a subsequence the functions u; converge in the
space of locally square integrable functions on My to a function ug with lluoll?> =
lim;_, o ||u;]|> < 1. This is obvious if the L?-norms of the functions u; converge to
0asi — oo, so assume that there is some ¢ > 0 such that ||u; ||*> > ¢ for all i. Since
the L?-norm of the gradient of «; is bounded independent of 7, the Raleigh quotients
of u; are bounded independent of ;. Lemma 3.3 then shows that after passing to a
subsequence we may assume that the functions «; converge locally in L?(Mo) to a
function ug with [|ug|? = lim;_, oo [|ui]?.
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Next we observe that after passing to a another subsequence we may assume
that the restrictions to N x ([—1, —8] U [8, 1]) of the functions ﬁ — u; converge in
L*(Mo) to a function x. Again this is obvious if the L?-norm of fi — u; tends to
0 with ;. Otherwise observe that the function f, — u; can be viewed as a function
on [—1,—-8]UI[8,1]. Its L2-norm with respect to a measure which is uniformly
equivalent to the standard Lebesgue measure is at most 1. Our above consideration
implies that the L-norms of the derivatives of f; — u; are bounded 1ndependent of i.
Thus we obtain convergence from compactness of the embedding HY(D) — L¥(I)
for a compact interval I C R. In particular, the functions f, converge in L3(My) to
the function ug + x.

Consider again inequality (1) above. By Lemma 3.3 and our choice of § we
either have ||u;||> < 1/2or | N x[t.5] utdps, < [u?dpug /2 for all sufficiently large
i. In both cases we conclude that fo[—a,a] u?dusi < 1/2 for large i. Thus our
function uo necessarily satisfies | N [=8,0)0(0,6] u(z)d o < 1/2. Since the function yx
is supportedin M — N x [—4, 8] and ||x + uo||* = 1 we conclude that after passing
to a subsequence the restrictions to M — N x [—4, 8] of the functions f; converge in
L%(My) to a function fp with || fol|? € [1/2, 1].

The function f; is a solution of an elliptic equation with smooth coefficients.
With respect to the reference metric go on M — N x (—§/2, 5/2) the C?%-norms of
these coefficients are uniformly bounded. Since the LZ-norms of the restrictions to
M;, — N x[—4é, 8] of the functions f; are uniformly bounded as well, standard elliptic
theory implies that for every ¢ > 0 there is a constant c(¢) > 0 which bounds the
C?-norm of the restriction of f; to M — N x [—8 — &, 8 + &]. Thus after passing to
a subsequence the functions f; converge locally uniformly on M — N x [—4, §] to
Jo. This implies that for A9 = lim;_, », A; the function f is a nontrivial solution of
the differential equation Ay — xo = 0.

Our above argument also shows that the function fj is the restriction to M — N x
[—4, 8] of an eigenfunction on My which is a locally uniform limit of a subsequence
of our functions f;. Namely, for k£ > —log é + log2 define

: —k

£ itat) = {ﬁ(x,n, if ] = 27%,
(fi — Ps; fi)(x, 1) otherwise

and write a; = 1/|| fi’kH. For each fixed i the sequence {q; i }r i monotonously
decreasing. As before we conclude that after passing to a subsequence the restrictions
ofarfixrtoM — N x (% g% converge locally uniformly to a solution fo,k #£0
of the equation Ay — A9 = 0. Its restriction to M — N x [—27k 2-k necessarily
coincides with a nonnegative multiple of fo x—1. Since no nontrivial solution of the
equation Ag — A9 = 0 can vanish on a nontrivial open set the restriction of our
function to M — N x [—27% 27%] is in fact a positive multiple of fo,k—l. With a
standard diagonal sequence argument we conclude from this that after passing to a
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subsequence our eigenfunctions f; converge locally uniformly to an eigenfunction
fo on My. O

The following example shows that the limit function obtained in Proposition 3.4
is in general not square integrable, even if the curvature of all our manifolds as well
as their volumes are uniformly bounded.

Example 3.5. Consider a closed hyperbolic surface S of genus 2 which consists of
two bordered tori 77, T> glued at the boundary. Choose a simple closed geodesic y
on T7 which cuts 77 into a pair of pants. We denote by g, the hyperbolic metric on
S which we obtain by leaving the torus 7> and the twist parameters for the glueings
fixed and replacing the torus 77 by a torus for which the length of the geodesic y
equals s. For a fixed point ¢ € T the pointed surfaces ((S, gs), ¢) degenerate as
s\ 0 to a twice punctured hyperbolic torus (Sp, go) with two finite volume cusps.
The essential spectrum of Sp is bounded from below by 1/4 and the second Rayleigh
quotient 2 (Sp) of Sp is positive. The metrics g are warped product metrics in a
tubular neighborhood of y.

Choose anumber & > 0 such that there is a smooth nontrivial compactly supported
function f on the interval (0, k) satisfying fok f =0and fok(f’)2 < p2(So) fok f2/2.
Fora > 0 and t € [0, k] denote by C, . the cylinder S1 x [0, ] with the metric
a*ds®+dt* (where ds? is the length element of total length 1 on S). Foreverya > 0
the function f canbe viewed as a function on the cylinder C,,_; which only depends on
the second coordinate. We have fca,k f =0and fca,k IV £ < /LZ(SO)/CaYk F=12
foralla > 0.

For s € (0, 1] and v € [0, k] we replace the metric g, near y by a metric gs .
which is obtained from g, by cutting S open along y and inserting the cylinder Cj .
We slightly modify the resulting metric near the boundary of Cj ; in such a way that
we obtain a smooth metric g . depending smoothly on s,  and such that g, 0 = gs.
We may assume that there is an tubular neighborhood Z ~ S' x [—1, 1] about y in
S such that the restrictions of the metrics g, . to Z are warped product metrics. The
metrics can be constructed in such a way that their curvature is contained in [—1, 0]
and that their volumes are uniformly bounded.

For fixed s > 0, the second Rayleigh quotient of g, depends continuously on
T € [0, k]. For t = k this Rayleigh quotient is not bigger than u2(Sp)/2. Moreover,
if s is sufficiently small then the second Rayleigh quotient of g, o equals at least
312(Sp) /4 [CC2]. Thus there is some 7 (s) € [0, k] such that this Rayleigh quotient
equals exactly 2(Sp)/2. We may assume that t(s) depends continuously on s.
Define hy = gs,:(s)- Then there is an eigenfunction ¢s on (S, hs) with respect
to the eigenvalue w2(Sp)/2. Moreover the metrics /i, satisfy the assumptions in
Proposition 3.4.

By Proposition 3.4, after renormalization and passing to a subsequence we may
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assume that the eigenfunctions ¢, converge uniformly on compact sets to an eigen-
function ¢ on Sy with respect to the eigenvalue 12(Sp)/2. But then ¢ can not be
square integrable.

Remark. The considerations in Example 3.5 can also be used to construct for every
noncompact hyperbolic surface S of finite volume and every A € (0, u2(S)) an
eigenfunction ¢ on S with respect to the eigenvalue A. This function ¢ is not square
integrable.

4. Manifolds with controlled spectral properties

In this section we apply the results from Section 2 to construct complete Riemannian
manifolds of an arbitrary dimension » > 2, with curvature in the interval [—1, 0],
infinite volume, nonempty essential spectrum, infinitely many eigenvalues below
the essential spectrum and with arbitrarily large multiplicities of an arbitrary finite
number of eigenvalues. In the case n = 2 we can choose our manifolds to be of
constant curvature —1.

Our manifolds will be constructed from building blocks which consist of complete
manifolds of curvature contained in [—1, 0] with a fixed even number 2k > 2 of
standard constant curvature cusps as in Example 3.2. We describe these building
blocks in the next lemma which is a modified version of Example 4.1 of [BCD].

Lemma 4.1. For everyn > 2, k > 1 there is a complete n-dimensional Riemannian
manifold X of infinite volume with the following properties.

(1) The curvature of X is contained in [—1, 0].
(2) X has 2k standard cusps of curvature —1 which are mutually isometric.

(3) The essential spectrum oess(X) of M is not empty, and there are infinitely many
different eigenvalues below ess(X).

Proof. LetI” C SO(n, 1) be a non-uniform lattice. Then Vo = H"/I" is a hyperbolic
manifold of finite volume with at least one end C. This end is a standard cusp.

The group I' is residually finite and therefore there is a finite covering V; of Vy
such that the cusp C has at least 2k preimages in V7. We choose 2k of these preimages
andlabel themby Cq, ..., Co. If Cq, .. ., Cyi are the only cusps of V] then we define
No= V1.

Otherwise, i.e. if V1 has additional cusps, then we modify the metric on each of
these additional cusps as in Example 3.2. These cusps then become flat cylinders
which we cut along a totally geodesic hypersurface. We obtain a manifold V{ with 2k
cusps and a finite number of totally geodesic boundary components. Choose a second
copy V{" of V| and glue V|’ to V| along corresponding boundary components. The
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resulting manifold V; is connected, its curvature is contained in the interval [—1, 0]

and it has precisely 4k mutually isometric ends which are the cusps Cy, ..., Cyi of
V1 and the corresponding cusps C{, ..., C5, of V/". Since the cusps C7’ are mutually

isometric we can replace them as before by isometric cylindrical ends which we cut
and glue in pairs to k compact handles. We obtain a manifold Ny with precisely 2k
ends. It carries a complete Riemannian metric of finite volume with curvature in the
interval [—1, 0] in such a way that each of its ends is isomeitric to a fixed standard
cusp of constant curvature —1.

Let Fy be the free group with k generators y1, ..., yx. We label each of the
2k ends of Ny by one of elements y1, ..., ¥, yl_l, e £ 8 5 yk_l of IFj,. Fors > 0
replace the standard cusps of Ny by a compact end with boundary equipped with
the metric g; from Example 3.2. The resulting manifold N, has 2k totally geodesic
boundary components which we label as before by the generators of Fj. Choose
one copy of N; for every element of Fy and label it by this group element. Glue
the boundary component with label y; of the copy of Ny with label ¢ € Fj to the
boundary component with label yi_l of the copy of N, with label y; ¢ with the obvious
isometry. We obtain a smooth manifold M with a complete Riemannian metric g;
of curvature contained in [—1, 0] and which depends smoothly on s € (0, 1]. The
free group [} acts freely and properly discontinuously on M by right translations
on the labels of our basic building blocks. The metrics g are invariant under this
action. The quotient (M, g;)/ Fy is compact and can be obtained from N; by glueing
pairwise the boundary components.

Since (M, gs) admits a free and properly discontinuous isometric action of Fj
with a compact quotient, the discrete spectrum of (M, gs) vanishes and its essential
spectrum is bounded away from O (see the discussion in Example 4.1 of [BCD]).
The bottom vy of this essential spectrum depends continuously on s and goes to O as
s — 0.

Following [BCD] we fix a number v > 0 such that v; < (n — 1)2/4 and a
sequence 7; C (0, 7) suchthat r; < 7; and vy, < vy fori < j. We use this sequence
to construct inductively our building block.

There is a natural word norm on the group Fj, defined by our choice of generators.
For m > 1 we denote by B(m) the connected submanifold of M which consists of
precisely those copies of our manifold Ny which are labeled by elements of Fy of
word norm at most m. Then B(m) is a smooth submanifold of M with boundary.
Each of its boundary components is totally geodesic with respect to gs. The set B(0)
is just the copy of Ny which corresponds to the unit element in Fj.

In our first step we determine a number m1 > 0 such that there is a function
on (M, g¢) which is supported in B(mi — 1) — B(1) and with Rayleigh quotient
R (Y1) < vg,. Modify the metric of B(m1) near the boundary so that the new metric
coincides with g;; on B(m1 — 1) and with g, near the boundary. Glue the resulting
manifold along its boundary to (M, g,) — B(m1). We obtain a new manifold M.
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Since the essential spectrum of any Riemannian manifold does not change under a
compactly supported change of the metric, the bottom of the essential spectrum of
M7 equals v,. But the Rayleigh quotient of the function ¢r; on B(m1 — 1) C M 118
smaller than v, and hence M 1 has an eigenvalue below its essential spectrum.

We can now iterate this construction. In our i-th step we begin with a metric
gi on M which coincides with the metric g;; on M — B(m;) for some m; > 0 and
such that there are i functions on (M, g;) with pairwise disjoint support contained in
B(m; —1) — B(1) and with Rayleigh quotients smaller than v;,. There are at least i
distinct eigenvalues below the essential spectrum. Choose a function ;41 supported
on B(m;y1 — 1) — B(m;) for some m;;q1 > m; with Rayleigh quotient smaller than
vy ;. As before we change the metric outside B(m; 1) o gy, to obtain anew metric
gi+1 which admits at least i 4 1 distinct eigenvalues below the essential spectrum.

We can repeat this construction infinitely often to obtain a complete manifold X
with infinitely many eigenvalues below the essential spectrum. The lower bound vg
of the essential spectrum of Xy is strictly smaller than (n — 1)2/4.

Remove B(0) from X¢ and replace it by a manifold with 2k standard cusps. We
claim that the complete Riemannian manifold X which we obtain in this way has
the properties stated in our lemma. To see this recall that the bottom of the essential
spectrum of a standard hyperbolic cusp equals (n — 1)?/4 > vy. Since the essential
spectrum of a complete Riemannian manifold equals the essential spectrum of its
ends, the bottom of the essential spectrum is vg. The functions on Xy which we
constructed above are supported outside B(1) and hence can be viewed as functions
on X. This implies that there are infinitely many distinct eigenvalues below the bottom
of the essential spectrum on X.

Using pairs of pants as in [BCD] it is clear that for n = 2 we can choose our
manifold to have constant curvature —1. o

Consider now an arbitrary finite group I'. We call I' admissible if I' can be
generated by elements of order at least 3. A set of generators yq, ...,y of I' is
called admissible if it consists of elements of order at least 3, contains with each
element also its inverse and is minimal with this property.

Let G be the Cayley graph for I" with respect to our generators. Then G is a finite
connected graph whose vertices correspond to the elements of I'. By our choice of
generators the graph G 1is simple (i.e. no multiple edges and no loops) and 2k-regular
[dH]. Two vertices a, b € I" of G are connected by an edge if and only if there is
some i such that b = y;a. Right multiplication in I" induces an action of I" as a group
of automorphisms of G which is transitive on the vertices.

Assume that y2; = V2;11 for1 <i < k. Let X be a manifold as in Lemma 4.1
with 2k standard cusps. We label each of these cusps by one of our generators y;
of I'. For a k-tuple a = (s1, ..., st) € [0, 11% we construct a complete Riemannian
manifold M (a) as follows: Choose |I'| copies of X and label each of these copies
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with a different element of I'. For 1 < i < k replace the standard cusps of X
which are labeled by y2;_1, ¥2i by a compact end with boundary equipped with the
metric g;,. The boundary components of the resulting manifold correspond to our
generators yi, .. ., y2r. Glue the boundary component y; of the copy of X with label
Yr € T to the boundary component yi_l of the copy of X with label y; ¢ by the obvious
isometry as before. We obtain a complete Riemannian manifold M (s1, . .., sg) which
consists of |I'| copies of X glued at their boundaries. It contains a distinguished
collection of totally geodesic embedded hypersurfaces, and its curvature is contained
in [—1, 0]. The essential spectrum of M (s1, ..., sg) is bounded away from 0 and
there are infinitely many eigenvalues below the essential spectrum. The manifold
M (0) consists of |I'| copies of X. We call the manifold M (s1, ..., st) a I'-graph
manifold, and its metric a (s1, ..., sg)-graph metric.

Lemma 4.2. For eacha € [0, 11% the group T acts freely and isometrically on M(a).
For every fixed g > 1 the assignment a € [0, 1JE—s g (M(a)) is continuous.

Proof. Every element of I" acts on the Cayley graph G by an automorphism which
permutes the edges with a given label. Foreacha € [0, 1]¥ this automorphism induces
an isometry of our manifold M (a) which permutes our copies of X and preserves
each of the k collections of hypersurfaces corresponding to one of our generators or
its inverse. Since the action of I' on G is free the same is true for the action of I' on
M (a). Continuity of the assignment a € [0, 11F — Hq(M(a)) is immediate from
Corollary 2.6. O

Let again I' be an admissible finite group with an admissible set y1, . .., y2r of
generators and corresponding Cayley graph G. By definition, this set of generators is
minimal with the property that it consists of elements of order at least 3 and contains
with each clement its inverse. Thus if we fix some: < 2k and if we delete all the edges
in G which are either labeled by y; or by ;vi_l then the resulting graph is disconnected.

Recall that for every complete Riemannian manifold which has eigenvalues below
the essential spectrum the multiplicity of the smallest eigenvalue is one. Following
the basic idea of [BC] we use isometric actions of finite groups to construct complete
manifolds of bounded curvature with infinitely many eigenvalues below the essential
spectrum and such that the multiplicity of the second eigenvalue is bigger than 1.

Lemma 4.3. Let ' be an admissible group with an admissible set of generators
V1, -« s Vak. Let m > 2 be the minimal dimension of a nontrivial irreducible orthog-
onal representation of . Then for every a € (0, 11¥ which is sufficiently close to 0,
the multiplicity of the second eigenvalue of the T"-graph manifold M(a) is at least m.

Proof. By our assumption, for each a € [0, 1]¥ the quotient M(a)/T is a complete
manifold, and the projection M (a) — M (a)/ I is asmooth g-sheeted covering where
g is the cardinality of I".
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The pair y»;_1, y2; of generators of I' defines a I'-orbit of edges in the Cayley
graph G. If s; > 0 then this orbit of edges corresponds to a ["-orbit of totally geodesic
embedded closed hypersurfaces in M (a) which projects to a closed totally geodesic
embedded non-separating hypersurface in M(a)/I". As s; (O this hypersurface in
M (a)/T degenerates to a pair of cusps.

For eacha € (0, 1]* the manifold M (a) is connected. The bottom of the spectrum
of M (a) is not contained in the essential spectrum and therefore it is an eigenvalue of
multiplicity 1. The isometric action of I" on M (a) induces an orthogonal representa-
tion of I' on the corresponding eigenspace. Since the dimension of this eigenspace is
1, this representation is trivial and every eigenfunction with respect to this eigenvalue
is I'-invariant and projects to an eigenfunction on M (a)/I". In particular, the smallest
eigenvalue of M (a) coincides with the smallest eigenvalue of M (a)/T.

Now let a = (0, 52, ..., s;) € [0, 17 where s; > 0 fori > 2. By minimality
of our set of generators for I', M (a) consists of at least two isometric components
which are permuted by the action of the group I'. Thus the multiplicity of the smallest
eigenvalue of M (a) (which equals the number of connected components of M (a)) is
at least 2.

By Theorem A from the introduction, as s \, O the small eigenvalues of Q(s) =
M(s, s2, ..., si) converge to the small eigenvalues of M (a). The multiplicity of the
first eigenvalue of Q(s) is 1 and hence for sufficiently small s the second eigenvalue of
Q () is strictly smaller than the second eigenvalue of M (a)/I'. Then aneigenfunction
for this eigenvalue can not be I'-invariant. This means that the natural orthogonal
representation of I' on the eigenspace of Q(s) with respect to the second eigenvalue
does not contain a trivial component and the dimension of this eigenspace equals
at least the minimal dimension of a nontrivial irreducible orthogonal representation
of I'. This finishes the proof of our lemma. O

We can now iterate this construction as follows. Assume that I' is a finite group
which contains a nested sequence I' > H; > - .- > Hp, of admissible subgroups H;.

Define a set of generators yi, ...,y of I' to be (I', Hy, ..., Hy)-admissible if
the following is satisfied.

(1) Foreveryi < m thereissome j(i) < ksuchthat yi, ..., y2;() 1s an admissible
set of generators for H;.

(2) For each i the subgroup of I' which is generated by those of our generators
which are not contained in H; intersects I; only in the unit element.

We call (I', Hy, ..., Hy) an admissible sequence of groups if it admits a
(I', Hy, ..., Hy)-admissible set of generators and if moreover for every i > 1 the
group H; 1 is a proper normal subgroup of H;. We do not require that /{; is a normal
subgroup of I

Now let (I', Hy, ..., Hy) be an admissible sequence of groups. For a given
choice of a basic manifold X with 2k standard cusps as in Lemma 4.1 we constructed



Vol. 80 (2005) Spectral convergence of manifold pairs 751

above from the Cayley graph of an (I', Hy, ..., Hy)-admissible set yi, ..., y2r of
generators a connected smooth manifold M which admits a natural free action of I" by
diffeomorphisms and a natural family of I"-invariant metrics. We call our manifold
M a (T, Hy, ..., Hy)-graph manifold.

Corollary4.4. Let (I', Hy, ..., Hy) be an admissible sequence of groups. Letq > 2
be the minimal dimension of an irreducible orthogonal representation of I" whose
restriction to Hy is non-trivial. Then there is a family of (I', Hy, ..., Hy)-graph
manifolds for which the multiplicity of the j-th eigenvalue for j = 2,...,m is at
least q.

Proof. Let M bea (I', Hy, ..., Hy)-graph manifold. The group I" acts on M freely
as a group of diffeomorphisms and M — M /I' = My is a |I'|-sheeted covering.
Every complete metric on My lifts to a I'-invariant complete metric on M.

Let y1, ...,y be a (I', Hy, ..., Hy,)-admissible set of generators for I'. Let
£ < k be such that the set y1, . . ., y2¢ generates Hi. Denote by E the subgroup of I'
generated by y2¢41, ..., y2k. Then E is an admissible finite group which intersects
H, trivially. The Cayley graph G’ of E with respect to the generators y2¢41, - - ., Y2k
is a connected subgraph of G. If we remove from G all the edges corresponding to

the generators yy, ..., y2¢ then the resulting graph consists of | Hy| disjoint copies
of G'.

Fix some sg > 0 and for (s1, ..., sy) € [0, 11" let Q(sq, .. ., s5) be the I'-graph
manifold M(a) where a = (ay, ..., ai) is the k-tuple defined as follows: For each

J leti < j be such that the generator y; is contained in the group H; but not in
the group H; 11 (where we put Hy = I') and define a; = s;. The group H acts on
Q(s1, ..., sn) as a group of isometries. The manifold Q(0, . .., 0)/H; is connected.

Now apply the considerations in the proof of Lemma 4.4 to the graph manifolds
0Q(s,0,...,0). Since the subgroup of I" generated by those elements of y1, ..., 2
which are not contained in Hj intersects H» trivially, the covering Q(0, ..., 0)/H>
of Q(0,...,0)/H; with deck group Hi/H> is disconnected and for s > O the
covering Q(s,0,...,0)/Hy of Q(s,0,...,0)/H; with deck group H;/H; is
connected. By the considerations in the proof of Lemma 4.4, for sufficiently small

s the quotient Q(s,0,...,0)/H, is a complete connected manifold with Hy/H,-
invariant metric for which the second eigenvalue is strictly smaller than the second
eigenvalue of Q(s, 0, ..., 0)/H;. Proceeding inductively we obtain in m — 1 steps a

(I', Hy, ..., Hy)-graph manifold of the form Q(s1, ..., sy ) such that the j-th eigen-
value for 2 < j < m is strictly smaller than the second eigenvalue of the quotient
Q(s1, ..., 8y)/Hy. This then implies that the restriction to H; of the representation
of I" on each of the corresponding eigenspaces is nontrivial. This shows the corollary.

O
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It remains to find admissible finite groups I" with arbitrarily long nested sequences
of admissible subgroups H; and for which the smallest dimension of an irreducible
representation which is nontrivial on Hj is arbitrarily large. This is satisfied for the
groups which were already considered by Burger and Colbois [BC].

Namely, let p > 3 be an odd prime and for some n > 1 let IF, be the field with
q = p" elements and multiplicative group F; = IF, — {0}. For a divisor r of n write
m = (p" —1)/(p" — 1) and define

Gq’m:{<o&0m f) ‘ae]F;, ,b’e]Fq}.

Then G, ,, is the semi-direct product of IF, with the cyclic group A, ,, = {a™ | a €
7} of order p" — 1 which acts on F, by multiplication. Its commutator subgroup

H; is the cyclic group
1

of order ¢ which can naturally be identified with the additive group IF,.

Let & be a generator of the cyclic group Fy. Then the dimension of F, as a vector
space over the field IF,[§"] equals n/r. Choose a basis g1, ..., gn/r C IFy for this
vector space. For each i the element g; € IF, generates a cyclic subgroup of IF, ~ H;
which is invariant under the action of the group A, ,,. The flag of n/r linear subspaces
of IF, determined by this basis defines a nested sequence H,,, < --- < Hj of normal
subgroups of Hj, and g1, gl_l, ey 8n/go gn_/lq, EM ETMisa (Gym, Hi, ..., Hy)-
admissible set of generators for I".

Now since Hp equals the commutator of G, every character of G, (i.e. a
one-dimensional unitary representation of G ) factors to a character of G, /Hj.
On the other hand, it is well known [M] that the dimension of every irreducible
representation of G, , which is not a character is at least (¢ — 1)/m. Thus by
Corollary 4.5 the group Gy, gives rise to manifolds for which the j-th eigenvalue
for 2 < j < n/r has muliplicity at least (g — 1)/m. Since n/r and (g — 1)/m can
be chosen arbitrarily large our Theorem C from the introduction follows.
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