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On the I'-cohomology of rings of numerical polynomials and E
structures on K-theory

Andrew Baker and Birgit Richter*

Abstract. We investigate I"-cohomology of some commutative cooperation algebras E, E as-
sociated with certain periodic cohomology theories. For KU and E (1), the Adams summand at
a prime p, and for KO we show that I'-cohomology vanishes above degree 1. As these cohom-
ology groups are the obstruction groups in the obstruction theory developed by Alan Robinson
we deduce that these spectra admit unique E, structures. As a consequence we obtain an E,
structure for the connective Adams summand. For the Johnson—Wilson spectrum E (n) with
n = 1 we establish the existence of a unique E, structure for its I,-adic completion.

Mathematics Subject Classification (2000). Primary 55P43, 55N15; Secondary 13D03.

Keywords. Structured ring spectra, ['-cohomology, K -theory, Johnson—-Wilson spectra.

Introduction

In homotopy theory it is often not sufficient to have homotopy ring structures on
a spectrum in order to construct for instance homotopy fixed points under a group
action or quotient spectra. For this, it is necessary to have ring structures which are
not just given up to homotopy but where these homotopies fulfil certain coherence
conditions. We will prove the existence and uniqueness of certain £, structures, i.e.,
structures on spectra which encode a coherent homotopy commutative multiplication.

In [31], [32], Alan Robinson developed a purely algebraic obstruction theory for
E structures on homotopy associative and commutative ring spectra. The device
for deciding whether a spectrum possesses such a structure is a cohomology theory
for commutative algebras, I'-cohomology. When applied to the cooperation algebra
E.E of aring spectrum F, the vanishing of these cohomology groups implies the
existence of an E« structure on £ which extends the given homotopy ring structure.

*The authors would like to thank the Isaac Newton Institute, the Max-Planck-Institut fiir Mathematik and the
Department of Mathematics in Bonn for providing stimulating environments in which this work was carried out
and also John Greenlees, Alain Jeanneret, Alan Robinson and Stefan Schwede for helpful comments.
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We will apply Robinson’s obstruction theory to complex K-theory KU, its
p-localization KU (), its Adams summand E (1), with

p—2

KU~ \/ Z¥E),
=0

and to real K -theory KO. Our main topological result is
Theorem. There are unique E structures on KU, the Adams summand E (1) and KO.

This process can then be refined to give E, structures on the connective covers.
For the higher Johnson—Wilson spectra E (n) with n > 1 we will consider the /,;-adic
completion.

The existence of E structures on KU and KO was already known: E structures
for the connective versions ku and ko were constructed in [26, Chapter VIII], and the
techniques of [17, VIII] lead to E~ models for KU and KO. Recently, Joachim [22]
has described such a structure for KO in the context of symmetric spectra. But as far
as we know the uniqueness of these structures has not previously been documented.
The existence and uniqueness for E(1) appears to be new. We also show that the
connective Adams summand ¢ at an odd prime p admits an E, structure; on the p-
completion £ ;,‘ an E, structure was earlier constructed by McClure and Staffeldt [27].
In subsequent work we have shown that the E structures on ku, ko, £ and E; are
unique.

By [18], [29] it is known that the Lubin—Tate spectra E; have unique E struc-
tures. In particular, £y = KU, has a unique E structure. The work of Hopkins
and Miller [28] and Goerss and Hopkins [18] establishes A, and E structures
on the Lubin-Tate spectra E, and identified the homotopy type of the space of A
(resp. E~) maps between any two of these spectra. With the help of these results
the homotopy action of the Morava-stabilizer group on E, could be rigidified to an
action of Morava-stabilizer group on E, by A (resp. Eso) maps.

The existence of unique E« structures on K U; and E (1); follow directly from
the calculation of continuous I"'-cohomology. In[19, §1], Hovey and Strickland asked
whether the I,-adic completion of E(n), E/(n\) has E~ structures.

Theorem. For all n > 1 and all primes p, f(;) possesses a unique Eo structure.

We give an elementary proof of this which relies on Robinson’s obstruction the-
ory [31]; the result for E, then follows using ideas of [34]. However, so far we
have not been able to extend this result to E(n) itself since the I'-cohomology of
E(n),E(n) appears to be very non-trivial in positive degrees for n > 1.
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Notation and tools. All otherwise unspecified tensor products are taken over Z or
a localization at a prime p, Z,). We denote by Z,, Q, and Z the rings of p-adic
integers, p-adic rationals and profinite integers respectively, while @ =7 Q. For
an arbitrary unital commutative ring R we denote the rationalization of R by Rg.

In the body of this paper we will repeatedly use properties of I'-cohomology. For
the reader’s convenience we recall some of its crucial features here.

+ Given a commutative k-algebra A, I'-cohomology of A with coefficients in an
A-module M, HT'*(Alk; M), is defined in [31] as the cohomology of the de-
rived A-homomorphisms from a certain chain complex of A-modules C FAlk),
to M.

+ This way of defining I"'-cohomology ensures that each short exact sequence of
A-modules
0-M —M-—M -0

leads to a long exact sequence of I'-cohomology groups. It is also clear that in
good cases there is a universal coefficient spectral sequence

ER* = Ext* (H,(Alk; A), M) = HT™* (Alk; M).

Here HI',(A|k; A) denotes the homology of C' (A|k),.

+ In [33, 6.8], it is shown that I"-cohomology vanishes if A is étale over k, and
that I'-cohomology satisfies Flat Base Change and has a Transitivity Sequence.

+ Last but not least, if A is a k-algebra and Q < k, then the I'-cohomology of A
with coefficients in M coincides with André—Quillen cohomology AQ*(Alk; M);
for details see [33, 6.4].

Convenient and concise sources for the definitions of André—Quillen homology
and cohomology are [25], [36] where they are denoted D, ( ) and D*( ).

The main techniques we use for the K -theoretic examples involve the passage
to a continuous version of I'-cohomology which we introduce in Section 2, and a
description of the I"'-cohomology groups of the relevant cooperation algebras in terms
of I'-cohomology groups of colimits of étale algebras at each prime (which turn out
to vanish) and I'-cohomology groups of algebras which are rationally smooth and can
be calculated. At the technical heart of our arguments for the K -theoretic examples
is Theorem 5.1.

1. Linear compactness and cohomology

The results in this section and Section 2 will play a crucial role in our proof of
Corollary 5.2 when we calculate the I"-cohomology of numerical polynomials and
more generally for the proof of Theorem 5.1, where Corollary 1.3 and Proposition 1.4
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will help us to identify certain I'-cohomology groups of complete algebras with
inverse limits of I"'-cohomology groups of quotient algebras.

Let k be a commutative Noetherian ring and let m <I k be a maximal ideal. We
topologize k with respect the m-adic topology where the open neighbourhoods of 0
are the ideals m* <1k for k > 0. In the following we will assume that k is Hausdorft
with respect to this m-adic topology, i.e., that

(mf=0. 1.1

>0

For each k > 0, m* is a finitely-generated k-module, while m* /m**! is a finitely-
generated k/m-module which is therefore an Artinian k/m-module.

Now let A be a commutative unital k-algebra. The ideals m*A = Am* < A also
generate a topology on A which is Hausdorff if

[ Am* =o0. (1.2)

k=0

Then the unit homomorphism k — A is automatically continuous and if A is
augmented over k then the augmentation is also continuous. Furthermore, (A, k) is
a topological algebra over the topological ring k. We say that (A, k) is Hausdorff if
both (1.1) and (1.2) hold.

If (A, k) is a Hausdorff topological algebra, then the m-adic completion of (A, k)
is (A, k), where

A =lim AmkA, K, = lim k/mk.

We say that (A, k) is m-adically complete if Ajy = A and ki = k. When m is clear
from the context we will sometimes simplify notation by writing (A, k) = (A k).
If (A, k) is augmented over k then (A7, k) is augmented over k..

Recall from [15], [21], [37] the property of a topological left module M over a
topological algebra (A, k) being linearly compact:

o If {x; + N, }rea is a collection of cosets of closed submodules N, € M such
that every finite collection of the cosets x; + N, has non-trivial intersection,
then

ﬂ X + N A ;é .

rEA

We will make repeated use of the following vanishing resultof [21, p. 57, théoreme 7.1]
for the higher derived functors of the inverse limit for inverse systems of linearly com-
pact modules.



Vol. 80 (2005)  I'-cohomology of rings of numerical polynomials and E«, structures 695

Theorem 1.1. Let {M;};c; be an inverse system of linearly compact A-modules and
continuous A-linear maps. Then for all s > 0 we have

lim* M; = 0.
1

Recall that a topological k-module M is topologically free on a countable basis
{bi}i>1 if for each element x € M and k > 1, in M /m¥M considered as a k/mX-
module, there is a unique (finite) expansion

BN
izl

withr; € k /mk and where l7i ceM /mk M is the residue class of b;. As a consequence,
x has a unique expansion as a limit sum

X :Ztibi
izl

where ; — 0 as i — o0; this means that for each k, there is an n; such that for
i > n; we have f; € mk. The linear topology on M has basic open neighbourhoods
of 0 of the form m* M. Now the Noetherian condition on k implies that

mkM:{Zt,-bi:ti em",ti—>0asi—>oo}. (1.3)

i>1
For two topological left R-modules L and M over a commutative topological ring

R, we let
Hompg(L, M) C Homg(L, M)

be the submodule of continuous R-module homomorphisms.

Proposition 1.2. Suppose that M is a finitely generated k-module which is complete
and Hausdor(f with respect to the m-adic topology. If L is a k-module which is
complete with respect to the m-adic topology and topologically free on a countable
basis then Ftom (L, M) is a linearly compact k-module.

Proof. Assume first that L is Hausdorff with respect to the m-adic topology. Note
that

FHomy(L, M) = Homy (L, lilgnM/mkM) = lim #omy. (L, M /m*M).

If {£;};>1 is a topological basis for L, then using the Noetherian condition on k we
find that the basic neighbourhoods of 0 in L are the submodules m¥L. € L. From
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this we find that
Homi (L, M/m*M) = Homy, o (L/m L, M /m*M)
= Homy, o (L/m L, M/m*M)
= [ ] Homy e ((le/m*)b;, M/m* M),
j>1
But
Homy, i (k/m*)b ;. M/m* M) = M/m*M

and this is Artinian, hence linearly compact. This in turn implies that the final product
above is also linearly compact. The claimnow follows since limy FHom (L, M Jmk M)
is a closed subspace of the product

[ | Homy e ((k/m* )b, M /m*M).
i=1
Now we consider what happens when L is not necessarily Hausdorff. In this case,
Nakayama’s Lemma implies that for any f € Fom (L, M) we have

f( N ka> —0.
k=1
Hence such an f factors through the quotient
Lo=L/[\m'L,
k=1
so we might as well replace L by this Hausdorff quotient. Then we have
FHomy (L, M) = FHomy (Lo, M). o
We can apply this to prove the following.
Corollary 1.3. Suppose further that A is a topological k-algebra with respect to the
m-adic topology inherited from k and that L and M are topological A-modules. Then

Homa(L, M) C FHomy(L, M) is a closed k-submodule. Hence Foma(L, M) is
linearly compact.

Proof. Again we first consider the case where L is Hausdorff. The two continuous
action maps

A Q@ Hom (L, M) — FHomy(L, M)
given by

a® fr—af, a®fr— fla(-))

are equalized on Foma (L, M), so this is a closed subset of #Hom (L, M). For L
not Hausdorff we see as above that Joma (L, M) = Fomu (Lo, M). O
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Note that if A is not necessarily Hausdorff, then setting

Ap=A/[mA

k=1

we have
Homa(L, M) = Homa,(Lo, M).

Proposition 1.4. Let (C*, §) be a cochain complex of linearly compact and Hausdorff
k-modules where for each n, the coboundary 8" : C" — C™*+1 is continuous. Then
for each n, H*(C*, 8) is linearly compact.

Proof. Since each C™ is linearly compact and Hausdorff, the submodules Im 8"~
and Ker 6" of C™ are both closed. Therefore

H"(C*, 8) = Ker 8"/ Im 8" !

is also linearly compact. O

2. Continuous I'-cohomology

In this section we discuss some technical issues related to our calculations of I'-co-
homology later in the paper. Continuous cohomology of profinite groups is described
in [35], [36]; for analogues appearing in topology see [7], [10]; our present theory is
modelled closely on the presentations in those references.

Let k be a commutative Noetherian ring and let m <1 k be a maximal ideal. We
topologize k with the m-adic topology. Let M be a topological left module over a
topological algebra (A, k). In practise, we will usually consider the m-adic topology
on M.

In the following we shall consider I'-cohomology of A with coefficients in M,
HI™*(Alk; M). In [31], [33], I"-cohomology is defined using a cochain complex
Homu (CT(Alk)s, M). Here CT (A[k), is the chain complex whose degree n-part is
the left A-module

CT(Alk), = @D Lie(s + 1)* @ K[Z41]® @ A%+,

s+r=n

where Lie(s + 1)* is the k-linear dual of the (s + 1)-st term of the Lie operad and
¥ ¢ denotes the symmetric group on £ letters. In particular, Lie(s + 1)* and k[X;11]
are finite-rank free k-modules. Topologising C" (A k), with the m-adic topology, we
can introduce the subcomplex

Homa(CT (Alk),, M) € Homa (CT (Alk)y, M)
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of continuous cochains whose cohomology #1'*(Alk; M) we call the continuous
["-cohomology of A with coefficients in M. Note that continuous cochains can be
expressed as the inverse limit

Homa(CT(A|K) 4, M) = lim Homy joea (CT (A /mFAk/mb) ., M/m* M)
if M is Hausdorftf.

Lemma 2.1. If (A, k) is a topological algebra as above whose completion A is

countably free on a topological basis as ak-module and if M is an A-module such
that M /m*M is Artinian and M is complete, then Hom (CT (A|k),, M) is linearly
compact in each degree n.

Proof. As M is complete,
Homa (CT(A[K),, M) = Homyu (CT (Alk),. lim M /M)
= 111£nHomA(cF(A|k>n, M/mkM). (2.1)

For any fixed k, the homomorphisms from C (A k), to the quotient M /mXM factor
through

CF(A/mkA|k/mk)n s @ Lie(s + 1)* ® k/mk[2s+l]®r ® (A/mkA)®(S+2)

s+r=n

= CU(A/mF ATk /m"),.

As we assumed that A is countably free on a topological basis, the quotient A Jmk Ais
free on a countable basis. Hence for any homomorphism f in Hom4 (CT (Alk),, M)
there is a j such that f factors over the finitely-generated free submodule C(j), <
CT(A/mk Alk/mk), spanned by the first j generators of CT (A /m* A[k/mk),. There-
fore

Homyu (CY (Alk),, M) = lim Homy (CT (A k), M /m*M)
= lim Hom +(C" (A /m* ATk /mk),,, M/m M)
= lim li](n Hom +(C(j)y, M/m*M)
T 7 k
= hlgnhinil:!M/m M.

Therefore Homa (C' (Alk),, M) is a limit of Artinian modules and thus linearly
compact. ]
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Notice that the above inclusion of complexes induces a forgetful homomorphism
o: HT*(Ak; M) — HI™*(Alk; M). (2.2)
Recall thatif M is m-adically complete and Hausdorff, there is a short exact sequence

id—o

0> M — l_[M/mkM L ]‘[ M/mfM — 0, (2.3)
k k
where o is the shift-reduction map. From (2.1) and (2.3) we deduce a Milnor exact
sequence relating #1"* to ordinary I"-cohomology for complete coefficient modules.
For a similar result see [7].

Proposition 2.2. As above, let k be Noetheriafz\ with maximal ideal m. Let M be a
complete Hausdorff topological module over A which is finitely-generated over k.
Then for each n there is a short exact sequence

0— 1i]£anF”—1(A/m’<A|k/m"; M/mkM) —s #T"(Alk: M)

— ]iIEnHF”(A JokA |k /mk M /mEM) — 0.

This leads to some useful calculational results, versions of which have previously
appeared in [28], [29]. Notice that for any A-module M and k > 1, there is a natural
reduction homomorphism

HI'"(Alk; M) — HI™(Alk: M) —> HI"(A/mFAk/mE; M/mkM),  (2.4)
compatible with respect to different values of k. In turn there is a homomorphism

HIM(Alk; M) — HI™"(Alk; M) —> lim HI" (A/m*Ak/mk: M/m*M). (2.5)
The following result was inspired by [28, lemma 15.6].

Corollary 2.3. Let M be an A-module which is complete and Hausdorffwith respect
fo the m-adic topology and finitely-generated as a k-module. Let A be countably free
on a topological basis. Then the natural homomorphism p induces an isomorphism

HT*(Alk: M) = HT* (A]k: M).
In addition
1i]£anF”—1(A/m’<A|k/m’<; M/mkFM) =0
and the natural homomorphisms induce isomorphisms
HI*(Alk: M) = HI™*(A[k: M)
>~ #T*(Alk; M)
Ay liIEnHF”(A JokA |k /mk M /mEM).



700 A. Baker and B. Richter CMH

Proof. Using the naturality provided by (2.4) we obtain a diagram of short ex-
act sequences from the Milnor exact sequence of Proposition 2.2 into the one for
HF”(K |E; M). As the homomorphisms at either end are identities, the natural map
HT*(Alk; M) —> HI'*(A|k; M) is an isomorphism.

Under the assumptions, the cochain complex for I'-cohomology is linearly com-
pact in each degree, by Lemma 2.1. Hence by Proposition 1.4, I'-cohomology is also
linearly compact in each degree. Therefore

1i]£anF”—1<A/m’<|k/mk; M/mfM) = 0.
So in this case
HT* (Alk: M) = HI™ (Afk; M) = lilngF”(A/mkA|k/mk; M/mfM). O

Remark 2.4. Analogous ideas apply to Hochschild cohomology for which a contin-
uous version appears in [7].

The following result which will be used in Section 5.

Proposition 2.5. Let k be Noetherian with maximal ideal m and let k = limy k/m.
For any k-algebra A with the m-adic topology for which A is topologically free on a
countable basis there is a long exact sequence

. — HIM" Y(Alk; k/k) — HIM(Ak: k) — HIM(Alk: k)
s HIM(Ak: k/k) — HI™ P (Al k) —> - - .

Making use of the isomorphism HI‘”(Z@; Fk\) = HI'M(Alk; ﬁ), we also obtain an
analogous exact sequence for HI' (A |k; k).

Proof. The short exact sequence
0>k —k —> i(?/ k—0

of coefficients together with the last isomorphism from Proposition 2.3 yields this
long exact sequence. O

Finally, we record a result on the I'-(co)homology of formally étale algebras that
we will repeatedly use. We call an algebra formally étale if it is a colimit of étale
algebras.

Lemma 2.6. If (A, k) is a formally étale algebra then for any A-module M,

HI . (Ak; M) =0 = HT*(Ak; M).
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Proof. By [33, theorem 6.8 (3)], I"-homology and cohomology vanishes for étale
algebras. Also, I'-homology commutes with colimits. Hence if A = colim, A, with
A, étale, for any A-module M we have

HI,(Alk; M) = colimHT (A, |k; M) = 0.
F
The universal coefficient spectral sequence
E>" = Ext};"(HI'.(Alk; A), M) = HI'*(A|k; M)

has trivial E;-term, therefore HI'*(A|k; M) = 0. a

3. Rings of numerical polynomials

We need to describe some properties of rings of numerical polynomials which ap-
peared in a topological setting in [3], [12] and we follow these sources in our discus-
sion. As topological motivation, we remark that A can be identified with KUo CP™
and A® with KU KU and we will calculate the I'-cohomology of KU KU later. By
definition,

A={f(w) eQw]:foralln € Z, f(n) € Z},
AY = {f(w) € Qw,w™ '] :foralln € Z — {0}, f(n) € Z[1/n]}
are the rings of numerical and stably numerical polynomials (over Z). If x, y are

indeterminates, we can work in any of the rings A[x, y], A[x, y]or Q[w, w[x, y].
We will make use of the binomial coefficient functions

Cn(w)=<l:>= ww-—1...(w—n+1) € A CQw]

n!

which can be encoded in the generating function

(1+x)" = ep(w)x" € Alx] € QLw]lx].

n=0
Notice that this satisfies the formal identity
I+x)"A+ " =1+ &+y+xy)®. (3.1)

Thus we have

m-+n

cm(w)ep(w) = < )cm+n(w)+(terms of lower degree) form,n > 0. (3.2)
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Theorem 3.1 ([2], [12]).

(a) A is afree Z-module with a basis consisting of the c,(w) forn > 0.

(b) At is the localization AS = Alw™ ] and it is a free Z-module on a countable
basis.

Describing explicit Z-bases for A% is a non-trivial task, see [16], [23]. On the
other hand, the multiplicative structure of the Z-algebra A% is in some ways more
understandable. Our next result describes some generators for A,

Theorem 3.2 ([3], [12]).

(a) The Z-algebra A is generated by the elements c,, (w) with m > 1 subject to the
relations of (3.2).

(b) The Z-algebra, A* is generated by the elements w="' and cp, (w) with m > 1.
(c) We have
A®Q=Qw]l, A*®Q=Qw,w].

For the localizations of the rings A and A% at any prime p we have

Ay = {f(w) € Qw] : forallu € Zyy, f(u) € Ly}, (3.32)

Al = {f(w) € Qw] :forallu € Z,), fu) € L) (3.3b)

Theorem 3.3 ([2], [4, proposition 2.5], [12]).
(@) Ay is a free Z¢py-module with a basis consisting of the monomials in the
binomial coefficient functions

wcp(w) e p(w)? .. cpe(w),

wherery =0,1,...,p— 1L

(b) The Zpy-algebra A(p) is generated by the elements cpm(w) with m > 0 subject
fo relations of the form

Cpm(w)p — Cpm (w) = pdpi1(w),

m+1

where dy11(w) € A¢py has deg dy, 1 (w) = p™. In fact the monomials

wdy(w) da(w)” ... de(w)™,

where ri = 0,1, ..., p — 1, form a basis of Ay over Zpy and are subject to
multiplicative relations of the form
(W) — d(w) = pdj, ;1 (w),

where degd),  (w) = p"*1.
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(©) AZ‘D) is the localization Af;) = Aplw™' and it is a free Zyy-module on a
countable basis.
(d) The Zp)-algebra, Af;) is generated by the elements w and ey, (w) € Af;) for
m 2= 1 defined recursively by

wP™l —1 = pej(w), en(w)? — ep(w) = pepi1(w) form > 1.

Corollary 3.4. Let p be a prime.
(a) AsF,-algebras,

A/pA =Fplepn(w) :m 2 01/(cpm(w)? — cpm(w) :m = 0),
A pAY =Fplw, em(w) :m = 01/ (wP ™ — 1, ey (w)? — ey (w) :m > 1).

Hence these algebras are formally étale over IF ).
(b) Forn > 1, A/p"A and A%/ p" A® are formally étale over 7./ p™.

(c) The p-adic completions A, = lim, A/p"A and A5 = lim, A"/p"A™ are
Sformally étale over Zp.

(d) Apand Aj} are free topological Zy-modules on countable bases. Therefore they
are both compact and Hausdorff.

Proof. Parts (b) and hence (¢) can be proved by induction onn > 1 using the infinite-
dimensional Hensel lemma of [7, 3.9]. The case n = 1 is immediate from (a).
Suppose that we have found a sequence of elements so, 51, ..., 5, ... € A(p) satis-

fying
sh —sm =0 (mod p") form > 0.

Taking s/, = sy + (sh — s,) we find that

S:np - s;n = (sp + (S:; - Sm)>p — (8 + (Stﬁ — Sm))
n-l—l)

= s — (sm + (siy — sm)) (mod p
=0.
Hence for every n we can inductively produce such elements s, ,, € Ay for which
A/pnA = Z/pn[sn,m tm oz O]/(S;{m —Spm im = 0)

= ® Z/pn[sn,m]/(srf,m - Sn,m)-

m=0
Now passing to p-adic limits we obtain elements

spo= lim s,,, € Ap
n—oo
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for which

sE—sm=0.

In these cases we obtain for the module of Kihler differentials

1 _n_ ol
Qiapmayzpm = 0=, 7,

Part (d) is related to Mahler’s Theorem and a suitable exposition of this can be found
in [4]. o

There are two natural choices of augmentation for A, namely evaluation atO or 1,

er: A—Z; ey f(w)= f(0),
ex A —7Z; ey f(w)= f().

For our purposes, the latter augmentation will be used. Notice that there is a ring
automorphism
p:A— A of(w)=fw+1) 34

for which e1¢ = &, so these augmentations are not too dissimilar.

4. The ring of Z/(p — 1)-invariants in Ai;)

In this section, p always denotes an odd prime. The case of p = 2 is related to KO
and the work of Section 7.

Since polynomial functions Z (Xp) — Q are continuous with respect to the p-adic
topology they extend to continuous functions Z; — Qp; such functions which also

map Z(Xp) into Zp) give continuous functions Z, — Z,. Hence we canregard Ai;)

as a subring of Q,[w, w~!] which in turn can be viewed as a space of continuous
functions on the p-adic units Z,, . For p > 3 there is a splitting of topological groups

Zy ZZ/(p —1) x (14 pZp),

where Z/(p — 1) identifies with a subgroup generated by a primitive (p — 1)-st root
of unity ¢. There is also a bicontinuous isomorphism 1 + pZ, = Zj.
For an odd prime p, the group (¢) = Z/(p —1) acts continuously on Q,[w, w1
by
¢ fw) = fEw)
and it is immediate that this action sends elements of Af;) to continuous functions
Z, —> Zp. It then makes sense to ask for the subring of A?‘p) fixed by this ac-

tion, ZA&). We will relate this subring to the algebra of cooperations of the Adams
summand in Proposition 6.1.
Recall the elements e,, (w) of Theorem 3.3(d). We will write g, (w) for w™Le,, (w).
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Proposition 4.1. As a Z,-algebra, AS‘) is generated by the elements wP~! and
em(w) form > 1.

Proof. 1tis clear that
‘Qw, w1 = QP! w1y,
Also, by construction of the e, (w),
em(w) € ZAf;) < Qwr~! w=P=,

Consider the multiplicative idempotent

1 =
Eg: Qw,w™'l— Qw,w™'l;  Ef(w) = =1 DS w).
=1
Then we have
‘Al = EcAl).-
Each element f(w) € Q[w, w™!] has the form
fw) = fo?™) + w4+ w2y wPh,
where fi(x) € Q[x ], hence
Ecf(w) = fo(wP™h).

From this it follows that ZA? ) is generated as a Z,)-algebra by the stated elements.

O
Corollary 4.2. The following hold.
(a) AsFy-algebras,
AL /pCAL) =TFplw, en(w)im > 11/ (w? ™ =1, 2, (w)? —2p (w):m 2 1),

Hence this algebra is formally étale over I¥ .
(b) Forn > ASt /P (fAf;)) is formally étale over 7./ p".

(¢) The p-adic completion *Ay = limy, *A% [ p" (* A*) ) is formally étale over L.
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5. The I'-cohomology of numerical polynomials

Recall that Z/Z and Z,/Z, for any prime p are torsion-free divisible groups,
so they are both Q-vector spaces which have the same cardinality and (uncount-
able) dimensions; thus they are isomorphic. Similarly, we have Z/Z = Q/Q and
Lp/Lp) = Qp/Q.

In the following, we will always use the augmentations ex: A —> Z and
ex: A —> Z and their analogues for the p-localized versions. In calculating
the I"-cohomology of A, we would obtain the same result using ; because of the
existence of the automorphism ¢ of (3.4).

Theorem 5.1. Let R be an augmented commutative Z-algebra. Assume that, at each
prime p, the p-completion Ry is topologically free on a countable basis. Suppose
that for all primes p and k > 1, R/p* is a formally étale algebra over Z./ p*. Then
foralls >0,

HI¥(R|Z; Z) = HI* " (Rg|Q; Q).

Proof. For each natural number n, we may write
n = 1_[ pordp n
b4

where the product is taken over all primes p. The Chinese Remainder Theorem
provides splittings

Z/n =[]2/p"%", (5.12)
p
Z=[]z,. (5.1b)
p

Applying the Transitivity Sequence and using that R is étale over R, we obtain that
at each prime p N N
HI*(R(p)| Zpy; Z) £ HI'(R|Z; Z).

Therefore by Corollary 2.3 we have

HI™*(R|Z: Z) = [ [ HI*(R|Z: Zp) = [ [ HI* (R Zy: Zp).
r r

For the second isomorphism, using Corollary 2.3 and the linear compactness of
I"-cohomology provided by Proposition 1.4, we can express HI'*(R|Z; Z,) as the
inverse limit of the groups HI'*(R|Z; Z/p"). Here the coefficients Z/p" elimi-
nate the effect of all the p-divisible elements, therefore HI'*(R|Z; Z/p™) reduces to
HI'*(R,|Zy; Z/p™), where R, denotes the p-adic completion of R.
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Now foreach k > 1, the assumption that R/ pris formally étale over Z/ pFensures
that
HI™(R/p"1Z/p*: 2/ p*) = 0.

Therefore we obtain

HI*(Ry|Zp: Zp) = im HI™* (R/p*|Z/ p*: 2/ ") = 0

= lim' HI™(R/p"|Z/p": Z/ p").

For each n, Proposition 2.5 implies that

HI™" (R(p)|Zp); Zip) = HI" (R | Ziys Zp [ L),

HI™(R|Z; Z) = H["Y(R|Z; Z/Z,).
AS Zy /7 py and 7./ 7. are Q-vector spaces, for all n # 0 we obtain
HI™(R(p)|Zp): Zp/ZLpy) = HI™ (Ro|Q: Zp/Zp))
and similarly
HI"(R|Z: Z/Z) = HI"(Ro|Q: Z/7Z). O

Corollary 5.2. We have

7/7 ifn =1,

HIM(AM|Z: Z) = HI"(A|Z:; Z) = )
0 otherwise.
For each prime p,

Zp/Tepy ifn=1,

HIM™(AS | Z¢y: Z =HI'"(A 2Ly, Z =
A Zwy: Zip)) (A | Z(py: Zp)y) {0 I

Proof. Since A[w~!]is étale over A, both of the I"-cohomology groups
HIM*(A[w™']|A:Z) and HI™*(Ap[w'1|Ap): Z)
vanish. The Transitivity Theorem [33, 3.4] implies that there are isomorphisms

HI*(A|Z: Z) = HT M (A[w™]|Z: Z) = HT*(AY|Z: Z),
HI™(Ap) | Zp): Zipy) = HI* (A w ™ |Zp): Zp)) = HTAL 1 Zp): Zp)

hence it suffices to prove the result for A and Ay).
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Corollary 3.4 ensures that A/p* A and therefore Ay /p*A(p) as well is formally
étale over Z/ p* for all k > 1. Now Corollaries 3.4(d) and 1.3 together guarantee
that the cochains for I"-cohomology fulfil the linear compactness requirements of
Theorem 5.1. Thus we can apply this theorem and obtain the vanishing result for
I"-cohomology in dimensions different from one. =N

By [29, theorem 4.1] and the fact that Z,, /Z, and Z/Z are Q-vector spaces, we
have

HI™*(Ap)| Zpys Zp/ Zpy) = HT(A @ QIQ: Zp /L))
= HIMQw]|Q; Zp/Zp)) = Zp /Ly
and
HI*(A|Z; Q/Q) = HI'™ (A ® Q|Q; Z/Z) = HTHQ[w]|Q; Z/Z) = Z/Z.

Thus we obtain

Zy|Lyy ifn=1,
HIM™MAW Ly Zipy) =1 277
AwlZe); Zp) =1, otherwise,
and
Z)7 ifn =1,
HI'(A|Z; Z) = fh ;
0 otherwise,
as claimed. -

Remark 5.3. Notice, that for the calculations of I"'-cohomology above we used the
formal properties of I'-cohomology. As André—Quillen cohomology satisfies ana-
loguous properties, we can transfer the above results to obtain the following:

sty o o JQ ifn =0,

AQ, (A™|Z; Z)—AQn(A|Z,Z)—{O i 0,
neASt. _ n . o @/Q ifn=1,
AQ"(A™|Z; Z) = AQ"(AIZ; Z) = {O it £ 1,

The results from Section 4 allow us to calculate the I'-cohomology of fAf;) over
Zpy directly as was done above for A*'. Alternatively, we may use the fact that the
extension Af;) /¢ A?;) is étale since it has the form B/A, where B = A[¢]/(t?~1 —v)
foraunitv € A, where A is a Zp)-algebra. We cannow determine the I'-cohomology

of ¢ Af;) since the Transitivity Theorem of [33, 3.4] gives

Proposition 5.4. For an odd prime p,
HI* (¢ AL ) 1Zpy: Zipy) = HT* (AL 1 Zpy; L))
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6. Applications to E, structures on K -theory

Robinson [31] has developed an obstruction theory for E, structures on a homotopy
commutative ring spectrum E. Provided E satisfies the following form of the Kiinneth
and universal coefficient theorems for E, E

E*(E™) = Homg, (ELE®", E,),
then the obstructions lie in groups
HI™* " (E,E|Ey; Ex),
while the extensions are determined by classes in
HI™ 1 "™"(E.E|E,; Ey).

Here the bigrading (s, t) involves cohomological degree s and internal degree .
Moreover, the relevant values of n are for n > 3.

We want to apply this to the cases of complex KU -theory and the Adams summand
E(1) of KU ata prime p. Recall that

KU, =Z[t,17"], KU@), =Zplt, 7], E(Ds = Ziplu, u™'],
*

where 1t € KU, and u € E(1)y(p—1). Our next result implies that the relevant
conditions mentioned above are both satisfied for KU and E(1).

Proposition 6.1. There are isomorphisms of rings (in fact, of Hopf algebras)
KUoKU = A%, KU ()o KU = AT,
E(1)oE(1) = 5A§;).
Hence,
KU, KU & KU, A%, KU(p)* KU ) = KU(p)* ® A?;),
E(),E(1) Z E(1), @AY

Proof. The isomorphisms for KU and KU, can be found in [12, p. 392].
Consider E(1), E(1), the algebra of cooperations for E(1). Since E(1) is Landwe-
ber exact, we have
E()E(1) = E(1)4 ®pp, BP+BP ®pp, E(1).
>~ E(1)y[n. 2, ..., Vi, Vi ]/ (relations),
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where V| denotes the right unit r, applied to vy and the variables #; stem from BP, BP.
We also write w = vl_lVl. The relation v1 + pt1 — Vi = 0 in E(1),E(1) gives rise
to

1— o'V = —porln € E(1)oE(1),

hence on setting e; = v, 1t1 we have
w—1= pey.
Now we may inductively define

= — e,
em = V3 2 2 tm -

The higher relations

p_
vty —v] e+ php1 =0 (k=1)
can be used to prove the desired relations for the e,,. Taking the p-th power we have

— m—.“—
o = o7

Multiplying the relation

p "
Vil — V] Im = Plm+1
—wsimpe]

—p .
by v, , we obtain
_p _ P p" T -] —p"——p-1
em — V] Im = pv, a1
which is precisely
_p ) iy
€m — €m = Plm+1- o

Flat base-change leads to isomorphisms
HI™** (KU, KU | KUy; KU,) = HI'™"(AM|Z; Z) ® KU,
HI™ (KU () KU ()| KU )2 KU ),) = HUNAD) | Zp): Zip) @ KU ),
HI S (E()E(DE(Ds: E(1)s) ZH*C AL Zipy: L) © E(1)s.
With the help of Corollary 5.2 we can therefore deduce the following.

Theorem 6.2. For a prime p andn > 2,
HI'™2~"(KU+ KU | KUy; KUy) =0
= HI"™!'""(KU, KU | KU,: KU.,),
Hrn’z_n(KU(p)* KU p) IKU (p),: KU py,) =0
= Hrn’l_n(KU(p)* KU (p) IKU () ,: KU p),)>
HI™ > " (E(1),E(DE(1),: E(1)y) =0
= HI"™ '™ (E(1)LE(D)|E(1),: E(1),).
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Hence KU, KU (), and E(1) each have a unique Eo, structure.

Itis a rather old question whether the connective Adams summand, often denoted
by ¢, is an E spectrum. The E ring spectrum machinery developed in [26] yields
the following general result.

Theorem 6.3. For any E, ring spectrum E, the connective cover e —> E possesses
a model as an Es ring spectrum.

Proof. Proceeding as in [26, proposition VII.3.2], we first take the underlying zeroth
space Eg of the E« ring spectrum E, then build a prespectrum 7' (Eo) out of it using
a bar construction which consists of suspensions and the monad for the little convex
body (partial) operad. Finally we apply the spectrification functor (there called 2°°)
to T(Ep). By [26, proposition VII.3.2], this has the correct homotopy groups and is
an E ring spectrum. O

Applying this result, we obtain a canonical E, model for the connective cover
t— E(1).

Proposition 6.4. There is at least one E~ structure on the connective Adams sum-
mand £.

Remark 6.5. After p-completion, we obtain an E, structure on the p-completed
connective Adams summand ¢, In subsequent work we have shown that this E
structure coincides with the one constructed by McClure and Staffeldt in [27] using
algebraic K -theory.

7. E structures on KO

The case of KO can be treated by similar methods but involves somewhat more delicate
considerations because of the presence of 2-torsion in KO,. Recall that

KO, = Z[h, y, w, w1 1/Q2h, 3, hy, y* — 4w), (7.1)

where h € KO1, y € KO4 and w € KOg. We will also require the graded Q-vector
space V., = KO, QZ/Z.
We will prove the following algebraic result.

Theorem 7.1.

(a) For any prime p and k > 1, we have

HI* (KO, KO /p*|Z/p*; 7./ p*) = 0,
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and
HT*(KOg K0;|Zp; Zp) = HI'™*(KOo KO;|ZP; Zpy = 0.

(b) We have
Ve ifn=1,

HI™* (KO, KO | KOy; KO,) = .
0  otherwise.

Using this, the obstruction theory E structures and localization yield our result
on E structures for KO.

Theorem 7.2. KO and, for each prime p, KO and KO, all have unique E
structures.

To prove Theorem 7.1, we begin with a composite result distilled from [3] and
[1, p. 162].

Theorem 7.3.
(a) KO+ KO is a free KOy-module on countably many generators lying in KOg KO.
(b) The natural homomorphism

KOg KO —> KUgKU 5 A
is a split monomorphism whose image is

{f(w) € A% : f(—w) = f(w)} € A™.

(c) For each prime p and k > 1,
KOy KO / p* —> KUy KU /p* = A%/ p*
is a split monomorphism of Z./ p*-modules.
Consider the short exact sequence
0 — KOy —> KO, ®Z —> KO, ®L/Z — 0.

Since /Z\/Z is a Q-vector space and we have the splitting of (5.1b), we can reformulate
the above exact sequence to obtain that the sequence

0 — KO, —> HKO* ®Z, — Vi — 0, (7.2)
P
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is exact. Here V, is defined above and we have used the fact that each group
KO, is finitely-generated. The application of I'-cohomology of KO, KO to this se-
quence yields a long exact sequence which relates HI'** (KO, KO | KO,; KO,) to
HI™*(KO, KO | KOy; [ ], KO+ ®Zp) and HI'™* (KO, KO | KOy; V).

Now, for the part with coefficients in V, we have

HI™**(KO, KO | KO,: V,) = HI™™*(KO, KO ®Q| KO, ®Q: V,),

and
KO, ®Q = Qly, vy, KO,KO®Q =Qly,y ', z,z7.

By [29], as in Corollary 5.2 we find that

V, ifn=1,
HI™*(KO, KO | KO,: V) = | '+ "7 (1.3)
0  otherwise.

For a fixed algebra, the cochain complex for I'-cohomology commutes with limits
taken over the coefficient module, therefore I'-cohomology commutes with products
of coefficient modules and the splitting Z = [ | » Lp leads to

HI™* (KO, KO | KO,: KO, ®7) = [ [HI™*(KO, KO | KO,: KO, ®T.,).
P
P

For each prime p we obtain a short exact sequence,

0— 1i]£n1 HI*~1*(KO, KO | KO,: KO, | p*)
— HI™*(KO, KO | KO,: KO, ®Z.,)
— limHI"™*(KO, KO | KO.: KO, /p*) = 0.

When p > 2, we are reduced to considering
HI** (KO, KO | KO.; KO, [ p*) = HI'™*(KO, KO /p"| KO, / p*; KO, / "),

which can be determined by the methods of Section 4 using the subgroup {1} < Z,,
in place of the group of all (p — 1)-st roots of unity. The result is that

HI™*(KO, KO | KO, KO, /p*) = 0,

whence
HI'™*(KO4 KO | KO,; KO, ®Z)) = 0.

The case p = 2 requires a more intricate analysis. First we identify KOy KO 2,
and the quotients KOy KO /2F as rings of functions.
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Theorem 7.4.

(a) There is an isomorphism of rings

KOy KO@) = {f () € Q@lw, w1 : fZ{y) S Ly, f(~w) = fw)} € Af.

(b) For each k > 1, there is an isomorphism of rings
KOo KO /2% = Cont(1 + 8Z, Z,/2%),

where Cont(1 + 8Z,,7/2%) denotes the space of continuous maps from
14+8Zo € Z; < Zp withits 2-adic topology to 7./ 2K with the discrete topology.

(¢) There is an isomorphism of rings
KOq KO/Q\Q Cont(1 + 873, Zy),
the space of continuous maps from 1 + 87 to Zo.

(d) The algebras (KOo KO /2%, Z./2) and (KOo KO3, Z) are formally étale.

Proof. The methods of [4] apply here, and we leave verification of the details to the
reader.

The squaring map Z; —> Z; has image 1 + 8Z2, hence a polynomial f(w) €
A?tz) satisfying f (—w) = f(w) corresponds to a continuous function 14+-8Z, — Z,.

By compactness of the domain, Cont(1 + 8Z,, Z/2X) consists of locally constant
functions. If we express x € Z; in the form

x=x0+x12+x2% 4+ +x,2"+ -,
where x; = 0, 1, then the functions
§i: 1+ 8Zy —> Zp;  &i(x) =x;
are locally constant and give rise to Z/ 2k-algebra generators of Cont(1+ 87, Z/ 2 W

They also satisfy the relations

and the distinct monomials
EEN.ES (ri=0,1)

form a Z/2%-basis. This implies that the Z/2%-algebra Cont(1 + 8Z2, Z/2) is for-
mally étale. Similar considerations apply to the topological algebra KOy KO,. O
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Collecting together the results of the above discussion (in particular Theo-
rem 7.4(d)) we obtain the case p = 2 of Theorem 7.1(a). The proof of Theorem 7.1(b)
makes use of the long exact sequence resulting from (7.2) and (7.3).

We remark that rather than working modulo powers of 2, it is also possible to
consider powers of the maximal ideal (2, /, y) <1 KO, and then we obtain

Proposition 7.5. Fork > 1,
HI* (KO, KO /(2, h, W KO, /(2, h, »)); KO, /2, 1, )¥) = 0.
and

HIH (KO, KO 1,5y (KO g 1,y (KO )
= HI™* (KOs KO 1) (KO 1 3 (KO ) = 0.

8. E structures on the I,,-adic completion of E (n)

In this section we describe what we can prove about E«, structures on the /,-adic
completion of Johnson—Wilson spectrum E(n) for a prime p and n > 1.
The coefficient ring

E(n)* = Z(p)[vlv ey Uﬂ—ly U}’L? Un_l]
is Noetherian and contains the maximal ideal
I, =(p,v1,....vp1) < E(n)y.

Here the v; denote the images of the Araki generators of BP, and we sometimes
write vg = p. There is a commutative ring spectrum E(n\) for which the coefficient
ring Ezn\)* is the I,-adic completion of E(n),, i.e., its completion at [,,. It is known
from [13], [19] that E/’(n\) is the K (n)-localization of E(r). We also know from [7]
that for each prime p, l?(n\) possesses a unique A structure and the canonical map
1:{(;) — m/ln =~ K (n) to the n-th Morava K -theory is a map of A , ring spectra
for any of the A, structures on K (n) shown to exist in [30]. Actually these results
were only claimed for odd primes but the arguments also work for the prime 2.

Proposition 8.1. Possible obstructions for an E« structure on the completed John-
son—Wilson spectra E(n) live in the continuous I'-cohomology groups

HTHHE (), Em|E(n),: E(n),).
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Proof. For E(n) we have a continuous universal coefficient theorem, i.e., possible
obstructions live in the continuous E(n)-cohomology of (X,,)+ Xy, E™", where
X, 1s a filtration quotient of an E, operad as described in [31, section 5.1]. These

cohomology groups can be identified with the continuous B{(;)*—homomorphisms

from the corresponding If(?)—homology groups (compare [31, proposition 5.4] and
[7, §1]). This proves the claim. O

For each ¢ > 0, Proposition 2.2 yields a short exact sequence
0 — lim" HD*™M(E(n)y E(n)/ I E )/ 1 E(n)a/ 1)

— HTEHEM),Em)|En),: En),) (8.1)
— lim HI 4 (E(n) E(n)/IM E(n)4/I¥; E(n),/IF) — 0.

Theorem 8.2. The E(n)./1X-algebra E(n).E(n)/1F is formally étale. Hence the
T-cohomology of E(n),E(n)/IF over E(n)./IF is trivial,

HI**(E(n)s E(n)/IF| E(n), /1N E(n), /15 = 0.

Proof. First we show that the algebra E(n),.E(n)/ I,’f is formally étale. In the fol-
lowing we use the notation chosen in [7]. As in the proof of [7, lemma 3.4], we can
apply the infinite-dimensional Hensel lemma (see the proof of our Corollary 3.4) to
split E(n)«E(n)/1 ,’f into an infinite tensor product of E(n)./ I,’f—algebras,

Em),Em/IF =) E(n)*/l,’f[sj]/(unsf" o'y,
izl

We can write E(n),E(n)/ I,f as a colimit of finite tensor products,

E(n)+E(n)/IF = CO%iim@E(n)*/I,]f[Sj]/(vnSf” - u,f’Sj).
j=1

We claim that each algebra E(n),/IX[S;1/(v,S?" — v} S;) is étale over E(n),/IF.
Notice thatitis flat over E(n),/ I,f and is finitely-generated by S;. As the ground ring
E(n)./ I,ff is Noetherian, the only thing that remains to be shown is that the module

of Kihler differentials is trivial.
The Kihler differentials are generated by the symbol dS;, butin E(n).E(n)/ I,’f

. n j . .
we have the relation vnSf =vl's j. The residue class of the element v, € E(n)4 18
a unit in the ring E(n). /I, and thus we can deduce

ds; = vy sty = puy? 57" as;.
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Iteration of this relation ¢ times, where ¢ is an integer such that tn > k, implies that
dS; 1s zero, since in the quotient E (n),/ I,ff , P~ is zero.
Now by Lemma 2.6 I'-homology commutes with colimits, therefore

HI o (E(n) 2 E(n) /IK| En) /1F: E(n),/ ) = 0
= HI*H(E(n)o E(n)/IF E(n)o/ 15 E(n), /1),

This completes the proof of Theorem 8.2. o

Using (8.1) and the fact that the completion of E(n\) *E(;) is free on a countable
basis [9, theorem 1.1], [4], we obtain

Theorem 8.3. For p a prime and n > 1, the spectrum E(n) possesses a unique E
structure.

Using the ideas of Section 2, we can also deduce

Theorem 8.4. Forn > 1 and k > 1, we have

AQUE(m)E(m)/IF|E(n)+/IF: E(n),/IF) =0

= AQ*(E(m)+E(n)/I{ | E(n)+ /1) E(n)+/1Y).
AQ(E(n),En); |E(n),; E(n),) =0

= AQ*(E(n) E(n)], |E(n)y; E(n),).

Remark 8.5. Extending Theorem 8.3 to cover E(n) for n > 1 does not appear to be
straightforward. The following two problems arise.

+ There is the question of whether E (n), E(n) is afree E(n),-module whenn > 1.
If E(n) does not have a universal coefficient theorem, then the obstructions to
building an E structure on E(n) would live in E (n)-cohomology which might
not then be identifiable with I"-cohomology. In [11], the first author showed
that the cooperation algebra of the [,-localization of E(n), E(n)y,, is free over
E(n)4y,,soit does have a universal coefficient theorem and the above problem
is overcome.

» I"-cohomology of E(n),E(n) is non-trivial in positive degrees. Evenforn =2
there are polynomial generators in E(2), E(2) which lead to non-trivial classes
in I'-cohomology.

We aim to return to the existence of E structures on E(n) and E(n)y, in future
work.
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We end this section with some remarks on suitably completed versions of elliptic
cohomology. Here &2 denotes the level 1 version of elliptic cohomology of Landwe-
ber, Ravenel and Stong [24] and we focus on the supersingular completions of [6].
Our above techniques together with results from [8] yield the following.

Theorem 8.6. For each prime p > 3, the supersingular completions 8@6& Ep_1) and

S&Efor each maximal ideal P <1 (8€4)py containing (p, Ep_1), have unique Eo
structures.

An analogous result applies to the K (1)-localization of &¢ studied in [5] and
more recently by M. Hopkins.

9. An obstruction theory for the coherence of maps

For the following, we need to work in a good category of spectra with a symmetric
monoidal smash product, for example that of [17]. Where necessary, all ring spectra
will be assumed to be fibrant.

Let E and F be two E ring spectra over the E, operad 7 from [31, section 5.1]
andlet f: E — F be a map of commutative ring spectra, i.e., the map f commutes
with the multiplication maps p g and pr up to homotopy,

pro fAf=foup,

and similar coherence properties exist with respect to the homotopies for associativity
and commutativity on E and F'. The aim of the following discussion is to give criteria,
when the map f can be made into a map which is compatible with the 7 -algebra
structures on E and F up to homotopy. For A structures the analogous question
was addressed in [30].

From now on we will use the notation of [31]. The topological operad 7 is filtered
by subspaces V"7 (n) € 7 (n). Let g and 6 be the action maps of the operad T
on E and F.

Consider the sequence of topological spaces

VT (n) = V"7 (n) — VT (0)/V"T (n) UV (n),

where V"7 (n) is the part of 7 (n) which is determined by compositions in the
operad of elements coming from lower filtration degrees.

Theorem 9.1.
(a) IfHF”’Z‘”(F*ElF*; F,)y =0foralln > 3, then f can be turned into a map
satisfying
fobg~0pofA-Af:T(m)xy, EN' — F
e
m

for all m.
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(b) If in addition Homp (FLE, F,) = Homg, (E.E, F,), then it suffices to prove
that
HI"™2~™"(E,E|E,; F,) =0

foralln > 3.
The second condition is satisfied for instance if F is projective over E, then

F.E = F,®g, E+E can be used to reduce the module of F-linear morphisms to the
module of E,-linear morphisms.

Proof. Assume f satisfies the conditions up to filtration degree m. In order to extend
J coherently over the (m + 1)-st filtration step, we have to show that the condition
of the theorem suffices to force f to fulfil

fobp|V"H e gp V™o f AL A f VT (n) Xy, EN —> F.
N ———’

n

The map f o 6| V™*! corresponds to an element in FO(V"+1T (n) xy, EM).
Using the long exact cohomology sequence corresponding to the sequence of spaces

VT (1) U 3V™HLT (n) 2> VT () L v LT () /YT (0) U 9V LT (),
we find that the difference element
f o 9E|vm-|—1 _ QF o f/\n|vm+1

maps to zero under i*, thus it has to be in the image of j*. Consequently, if j* has
trivial codomain, then this difference has to be trivial as an element in F'-cohomology.
An argument showing that the corresponding class in

FOOV™ LT () /Y™ T (n) U aV™ 1T (n) xs, EMY)

has to be a cocycle in the complex for HI'* can be found in [31]. Therefore, if
HFm’z‘m(F*E|F*; F,) vanishes in all degrees m > 3, the potentially obstructing
difference maps f o 0 — O o f" have to be nullhomotopic. O

From the triviality of H['" when n > 1 for complex K -theory and its localization
at a prime p, we can deduce the following result.

Theorem 9.2. For eachk integer prime to p, the k-th Adams operation y*: KU ) —>
KU py can be refined to a coherent map with respect to the E structure given by the
operad action of T on KU ).
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Proof. The action of such an Adams operation ¢* on KUy, = Zy) is given by
multiplication by &", thus it induces a different KU (), KU (p)-module structure on
KU p),. This corresponds to taking £ = KU () = F and the map vk E — F,
then applying Theorem 9.1(b) and using the fact that the relevant I"-cohomology
groups vanish, this being a generalization of Theorem 6.2 which is proved in a similar
way (this result depends crucially on the vanishing of I'-cohomology for formally
étale extensions). O

Finally we have a result on the inclusion j: E(1) — KU(p) of the Adams
summand into p-local K -theory which is a map of ring spectra.

Proposition 9.3. j gives rise to a coherent map of E« spectra.

Proof. Using the Conner-Floyd isomorphism and the Landweber exactness of
E(1), the above argument can be adapted to prove that the relevant part of
HI™* (KU () (E(1))|KU (), : KU (py,) vanishes. o

Remark 9.4. With the aid of more machinery one can actually take the above ar-
guments to obtain the existence of strict maps of E ring spectra. Using a com-
parison result of Basterra and the second author [14, theorem 2.6], we can identify
I"-cohomology groups with the obstruction groups arising in the work of Goerss and
Hopkins [18]. Now the Goerss—Hopkins obstruction theory [18, §4] tells us that the
vanishing of the I"-cohomology groups HI'**(KU ), (E(1))|KU p),: KU (p),) and
HI'™*(KU (y (KU (3))IKU (y,.: KU p),) implies that the Adams operations and the
map j give rise to maps of E ring spectra.
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