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On the F-cohomology of rings of numerical polynomials and Eœ
structures on ^-theory

Andrew Baker and Birgit Richter*

Abstract. We investigate F-cohomology of some commutative cooperation algebras E^E
associated with certain periodic cohomology theories. For KU and £(1), the Adams summand at

a prune p, and for KO we show that F-cohomology vanishes above degree 1. As these cohomology

groups are the obstruction groups in the obstruction theory developed by Alan Robinson
we deduce that these spectra admit unique Eœ structures. As a consequence we obtain an Eœ
structure for the connective Adams summand. For the Johnson-Wilson spectrum E(n) with
n ^ 1 we establish the existence of a unique Eœ structure for its /„-adic completion.

Mathematics Subject Classification (2000). Primary 55P43, 55N15; Secondary 13D03.

Keywords. Structured ring spectra, F-cohomology, Ä'-theory, Johnson-Wilson spectra.

Introduction

In homotopy theory it is often not sufficient to have homotopy ring structures on
a spectrum in order to construct for instance homotopy fixed points under a group
action or quotient spectra. For this, it is necessary to have ring structures which are

not just given up to homotopy but where these homotopies fulfil certain coherence

conditions. We will prove the existence and uniqueness of certain Eœ structures, i. e.,

structures on spectra which encode a coherent homotopy commutative multiplication.
In [31], [32], Alan Robinson developed a purely algebraic obstruction theory for

£00 structures on homotopy associative and commutative ring spectra. The device

for deciding whether a spectrum possesses such a structure is a cohomology theory
for commutative algebras, F-cohomology. When applied to the cooperation algebra
E*E of a ring spectrum E, the vanishing of these cohomology groups implies the

existence of an £00 structure on E which extends the given homotopy ring structure.

*The authors would like to thank the Isaac Newton Institute, the Max-Planck-Institut fur Mathematik and the

Department of Mathematics in Bonn for providing stimulating environments in which this work was carried out
and also John Greenlees, Alain Jeanneret, Alan Robinson and Stefan Schwede for helpful comments.
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We will apply Robinson's obstruction theory to complex Ä"-theory KU, its

^-localization KU(P), its Adams summand E{\), with

1=0

and to real K -theory KO. Our main topological result is

Theorem. There are unique E^ structures on KU, theAdams summand E (1) and KO.

This process can then be refined to give £00 structures on the connective covers.
For the higher Johnson-Wilson spectra E(n) with n > 1 we will consider the /„-adic
completion.

The existence of £00 structures on KU and KO was already known: E^ structures

for the connective versions ku and ko were constructed in [26, Chapter VIII], and the

techniques of [17, VIII] lead to £00 models for KU and KO. Recently, Joachim [22]
has described such a structure for KO in the context of symmetric spectra. But as far
as we know the uniqueness of these structures has not previously been documented.
The existence and uniqueness for E{\) appears to be new. We also show that the

connective Adams summand £ at an odd prime p admits an Eœ structure; on the p-
completion £ Ç an E^ structure was earlier constructed by McClure and S taffeldt [27].
In subsequent work we have shown that the £00 structures on ku, ko, £ and £Ç are

unique.

By [18], [29] it is known that the Lubin-Tate spectra En have unique £00 structures.

In particular, E\ KLÇ has a unique £00 structure. The work of Hopkins
and Miller [28] and Goerss and Hopkins [18] establishes Aœ and £00 structures

on the Lubin-Tate spectra En and identified the homotopy type of the space of A^
(resp. £00) maps between any two of these spectra. With the help of these results
the homotopy action of the Morava-stabihzer group on En could be ngidified to an

action of Morava-stabilizer group on En by Aqo (resp. £00) maps.
The existence of unique £00 structures on KU^ and £(1)Ç follow directly from

the calculation of continuous F-cohomology. In [19, §1], Hovey and Strickland asked

whether the /„-adic completion of E(n), E(n), has £00 structures.

Theorem. For all n ^ I and all primes p, E{n) possesses a unique Eqo structure.

We give an elementary proof of this which relies on Robinson's obstruction theory

[31]; the result for En then follows using ideas of [34]. However, so far we
have not been able to extend this result to E{n) itself since the F-cohomology of
E(n)*E(n) appears to be very non-trivial in positive degrees for n > 1.
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Notation and tools. All otherwise unspecified tensor products are taken over Z or
a localization at a prime p, Z(p). We denote by Zp, Qp and Z the rings of /?-adic

integers, p-adic rationals and profinite integers respectively, while Q Z ® Q. For
an arbitrary unital commutative ring R we denote the rationalization of R by Rq.

In the body of this paper we will repeatedly use properties of F-cohomology. For
the reader's convenience we recall some of its crucial features here.

• Given a commutative k-algebra A, F-cohomology of A with coefficients in an

A-module M, HF*(A|k; M), is defined in [31] as the cohomology of the
derived A-homomorphisms from a certain chain complex of A-modules Cr A | k) *
to M.

• This way of defining F-cohomology ensures that each short exact sequence of
A-modules

0 -> M' —> M —> M" -> 0

leads to a long exact sequence of F-cohomology groups. It is also clear that in
good cases there is a universal coefficient spectral sequence

E*'* Ext*'*(HF*(A|k; A), M) =>• HF*(A|k; M).

Here HF*(A|k; A) denotes the homology of Cr(A|k)*.
• In [33, 6.8], it is shown that F-cohomology vanishes if A is étale over k, and

that F-cohomology satisfies Flat Base Change and has a Transitivity Sequence.

• Last but not least, if A is a k-algebra and Qçk, then the F-cohomology of A
with coefficients in M coincides withAndré-Quillen cohomology AQ* A | k; M) ;

for details see [33, 6.4].

Convenient and concise sources for the definitions of André-Quillen homology
and cohomology are [25], [36] where they are denoted D+( and D*(

The main techniques we use for the K -theoretic examples involve the passage
to a continuous version of F-cohomology which we introduce in Section 2, and a

description of the F -cohomology groups of the relevant cooperation algebras in terms
of F-cohomology groups of colimits of étale algebras at each prime (which turn out
to vanish) and F-cohomology groups of algebras which are rationally smooth and can
be calculated. At the technical heart of our arguments for the K -theoretic examples
is Theorem 5.1.

1. Linear compactness and cohomology

The results in this section and Section 2 will play a crucial rôle in our proof of
Corollary 5.2 when we calculate the F-cohomology of numerical polynomials and

more generally for the proof of Theorem 5.1, where Corollary 1.3 and Proposition 1.4
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will help us to identify certain F-cohomology groups of complete algebras with
inverse limits of F-cohomology groups of quotient algebras.

Let k be a commutative Noetherian ring and let m < k be a maximal ideal. We

topologize k with respect the m-adic topology where the open neighbourhoods of 0

are the ideals m^ < k for k > 0. In the following we will assume that k is Hausdorff
with respect to this m-adic topology, i.e., that

* 0. (1.1)

For each k > 0, m is a finitely-generated k-module, while m /m + is a finitely-
generated k/m-module which is therefore an Artinian k/m-module.

Now let A be a commutative unital k-algebra. The ideals m^A Am* < A also

generate a topology on A which is Hausdorff if

0. (1.2)

Then the unit homomorphism k —> A is automatically continuous and if A is

augmented over k then the augmentation is also continuous. Furthermore, (A, k) is

a topological algebra over the topological ring k. We say that (A, k) is Hausdorff if
both (1.1) and (1.2) hold.

If (A, k) is a Hausdorff topological algebra, then the m-adic completion of (A, k)
is (A^, k^), where

A^ lim A/mkA, k^ limk/m*\

We say that (A, k) is m-adically complete if A^ A and 1Ç k. When m is clear

from the context we will sometimes simplify notation by writing (A, k) (A^, IQ).
If (A, k) is augmented over k then (A^, k^) is augmented over k^.

Recall from [15], [21], [37] the property of a topological left module M over a

topological algebra (A, k) being linearly compact:

• If {xx + Nx}XeA is a collection of cosets of closed submodules Nx ç M such

that every finite collection of the cosets xx + Nx has non-trivial intersection,
then

Pi xx+nx 10.
XeA

We will make repeated use of the following vanishing result of [21, p. 57, théorème 7.1]
for the higher derived functors of the inverse limit for inverse systems of linearly compact

modules.
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Theorem 1.1. Let {M,- }iej be an inverse system of linearly compact A-modules and
continuous A-linear maps. Then for alls > 0 we have

lin/M} 0.
i

Recall that a topological k-module M is topologically free on a countable basis

{&?}?j>i if for each element x g M and k > 1, in M/rnkM considered as a k/mfe-

module, there is a unique (finite) expansion

with r; g k/m^ and where b; g M/rnkM is the residue class of b;. As a consequence,
x has a unique expansion as a limit sum

where t; --* 0 as i --* cxd; this means that for each k, there is an n^ such that for
i > «fe we have t\ g mfe. The linear topology on M has basic open neighbourhoods
of 0 of the form xnkM. Now the Noetherian condition on k implies that

mkM l^tibi : t\ g xnk, t\ -+ 0 as i -+ ooj. (1.3)

For two topological left i?-modules L and M over a commutative topological ring
R, we let

,KomR{L, M) ç HomÄ(L, M)

be the submodule of continuous R -module homomorphisms.

Proposition 1.2. Suppose that M is a finitely generated k-module which is complete
and Hausdorff with respect to the xn-adic topology. If L is a k-module which is

complete with respect to the rn-adic topology and topologically free on a countable
basis then Hom^{L, M) is a linearly compact k-module.

Proof. Assume first that L is Hausdorff with respect to the m-adic topology. Note
that

Momk(L, M) Momk(L, HmM/mkM) limMomk(L, M/mkM).
k k

If {bjjj^i is a topological basis for L, then using the Noetherian condition on k we
find that the basic neighbourhoods of 0 in L are the submodules rnkL ç L. From
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this we find that

,Homk(L, M/mkM) ,Homk/mk(L/mkL, M/mkM)

Homk/mk(L/xnkL, M/xnkM)

Yl Homk/mk((k/mk)bj, M/mkM).

But
Homk/mk((k/xnk)bj, M/xnkM) M/xnkM

and this is Artinian, hence linearly compact. This in turn implies that the final product
above is also linearly compact. The claimnow follows since lim^ Mom\{L, M/xnkM)
is a closed subspace of the product

Y\ Uomk/mk((k/mk)bj, M/mkM).

m
Now we consider what happens when L is not necessarily Hausdorff. In this case,

Nakayama's Lemma implies that for any / g Mom\{L, M) we have

Hence such an / factors through the quotient

Lo L/f]xnkL,

so we might as well replace L by this Hausdorff quotient. Then we have

J£omk(L,M) J£omk(L0,M).

We can apply this to prove the following.

Corollary 1.3. Suppose further that A is a topological k-algebra with respect to the

rn-adic topology inherited from k and that L and M are topological A-modules. Then

MoniA(L, M) ç Jfonik(L, M) is a closed k-submodule. Hence MoniA(L, M) is

linearly compact.

Proof. Again we first consider the case where L is Hausdorff. The two continuous
action maps

A ®k Mom\{L, M) —> J£omk(L, M)

given by

a®f\-^af, a®/^ f(a(-))
are equalized on Mom.A{L, M), so this is a closed subset of Mom\{L, M). For L
not Hausdorff we see as above that Horna (L, M) Horna (Lq, M).
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Note that if A is not necessarily Hausdorff, then setting

Ao A/ p| xnkA

we have

,KomA{L, M) J£omA()(Lo, M).

Proposition 1.4. Let (C*, S) be a cochain complex of linearly compact and Hausdorff
k-modules where for each n, the coboundary 8n : Cn —> Cn+1 is continuous. Then

for each n, H"(C*, <5) is linearly compact.

Proof. Since each Cn is linearly compact and Hausdorff, the submodules Imä""1
and Ker Sn of Cn are both closed. Therefore

H"(C*,«5) Ker Sn/ Im S11'1

is also linearly compact.

2. Continuous F-cohomology

In this section we discuss some technical issues related to our calculations of F-co-
homology later in the paper. Continuous cohomology of profinite groups is described
in [35], [36]; for analogues appearing in topology see [7], [10]; our present theory is

modelled closely on the presentations in those references.

Let k be a commutative Noetherian ring and let m < k be a maximal ideal. We

topologize k with the m-adic topology. Let M be a topological left module over a

topological algebra (A, k). In practise, we will usually consider the m-adic topology
on M.

In the following we shall consider F-cohomology of A with coefficients in M,
HF*(A|k; M). In [31], [33], F-cohomology is defined using a cochain complex
Honu(Cr(A|k)*, M). Here Cr(A|k)* is the chain complex whose degree n-part is

the left A-module

Cr(A|k)„=
s+r=n

where Lie(^ + 1)* is the k-linear dual of the (s + l)-st term of the Lie operad and

T,i denotes the symmetric group on £ letters. In particular, Lie(^ + 1)* and k[Sy+i]
are finite-rank free k-modules. Topologising Cr (A |k)+ with the m-adic topology, we
can introduce the subcomplex

KomA{Cv(A|k)*, M) ç HomA(Cr(A|k)*, M)
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of continuous cochains whose cohomology <%T*(A|k; M) we call the continuous

T-cohomology of A with coefficients in M. Note that continuous cochains can be

expressed as the inverse limit

MomA{Cv (A|k)*, M) limHomA/m*A(C1 (A/irrA|k/irr)*, M/vccM)
k

if M is Hausdorff.

Lemma 2.1. If (A, k) is a topological algebra as above whose completion A is

countably free on a topological basis as a k-module and if M is an A-module such

that M/rnkM is Artinian and M is complete, then HomA(Cr(A|k)„, M) is linearly
compact in each degree n.

Proof. As M is complete,

HomA(Cr(A|k)n, M) HomA(Cr(A|k)n, lim M/xnkM)
k

limHomA(Cr(A|k)„,M/m^M). (2.1)
k

For any fixed k, the homomorphisms from Cr(A|k)„ to the quotient M/xnkM factor
through

Cr(A/mkA\k/mk)n 0 Lie(s + 1)* ® k/m^[S,+i]®r ® (A/mkA)0(s+2)
s+r=n

Cr(A/xnkA\k/xnk)n.

As we assumed that A is countably free on a topological basis, the quotient A/rnkA is

free on a countable basis. Hence for any homomorphism / in HomA (Cr A |k)„, M)
there is a j such that / factors over the finitely-generated free submodule C(j)n ç
Cr (A/xnk A\k/xnk)n spanned by the first j generators of Cr (A/xnk A\k/xnk)n. Therefore

HomA(Cr(A|k)„, M) limHomA(Cr(A|k)„, M/xnkM)
k

limHomx(Cr(A/m^A|k/m^)„, M/xnkM)
k

limlimHomA(C(7)„, M/mkM)
k j

j

Therefore HomA(Cr(A|k)„, M) is a limit of Artinian modules and thus linearly
compact.
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Notice that the above inclusion of complexes induces a forgetful homomorphism

p: J*T*(A|k;M) -^ HF*(A|k; M). (2.2)

Recall that if M is m-adically complete and Hausdorff, there is a short exact sequence

0 -> M —>Y\ M/xnkM ^> Y\ M/xnkM -> 0, (2.3)
k k

where a is the shift-reduction map. From (2.1) and (2.3) we deduce a Milnor exact

sequence relating MY* to ordinary F-cohomology for complete coefficient modules.
For a similar result see [7].

Proposition 2.2. As above, let k be Noetherian with maximal ideal m. Let M be a

complete Hausdorff topological module over A which is finitely-generated over k.

Then for each n there is a short exact sequence

0 -> lim1Hrn-1(A/mkA|k/mk; M/mkM) —? J*T"(A|k; M)

—> limHF"(A/m^A|k/m^; M/xnkM) -> 0.

This leads to some useful calculational results, versions of which have previously
appeared in [28], [29]. Notice that for any A-module M and k > 1, there is a natural
reduction homomorphism

HF"(A|k; M) —? HF"(A|k; M) —? HF"(A/m^A|k/m^; M/mkM), (2.4)

compatible with respect to different values of k. In turn there is a homomorphism

HF"(A|î; M) —> HF"(A|k; M) —> limHF"(A/m^A|k/m^; M/xnkM). (2.5)
k

The following result was inspired by [28, lemma 15.6].

Corollary 2.3. Let M be an A-module which is complete and Hausdorff with respect
to the xn-adic topology and finitely-generated as a k-module. Let A be countably free
on a topological basis. Then the natural homomorphism p induces an isomorphism

J<T*(A|k; M) HF*(A|k; M).

In addition
lim1HF"-1(A/m^A|k/m^; M/xnkM) 0

k

and the natural homomorphisms induce isomorphisms

HF*(A|k; M) HF*(A|1k; M)

1; M)
^; M/mkM).
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Proof. Using the naturality provided by (2.4) we obtain a diagram of short exact

sequences from the Milnor exact sequence of Proposition 2.2 into the one for
HF"(A|k; M). As the homomorphisms at either end are identities, the natural map
Mr*(A\k; M) —> HF*(A|1k; M) is an isomorphism.

Under the assumptions, the cochain complex for F-cohomology is linearly compact

in each degree, by Lemma 2.1. Hence by Proposition 1.4, F -cohomology is also

linearly compact in each degree. Therefore

^; M/mkM) 0.

So in this case

J£F*(A|k; M) HF*(A|k; M) limHr"(A/mfeA|k/mfe; M/xnkM). D
k

Remark 2.4. Analogous ideas apply to Hochschild cohomology for which a continuous

version appears in [7].

The following result which will be used in Section 5.

Proposition 2.5. Let k be Noetherian with maximal ideal m and let k lim^ k/mfe.

For any k-algebra A with the rn-adic topology for which A is topologically free on a
countable basis there is a long exact sequence

> Hr^-^Alk; k/k) —? Hr"(A|k; k) -^ Hr"(A|k; k)

—> Hr"(A|k;î/k) —> Hr"+1(A|k; k) —> ¦¦¦

Making use of the isomorphism HF"(A|k; k) HF"(A|k; k), we also obtain an

analogous exact sequence for HF"(A|k; k).

Proof. The short exact sequence

0 -? k —>k —> k/k -> 0

of coefficients together with the last isomorphism from Proposition 2.3 yields this

long exact sequence.

Finally, we record a result on the F-(co)homology of formally étale algebras that

we will repeatedly use. We call an algebra formally étale if it is a colimit of étale

algebras.

Lemma 2.6. If(A,k) is a formally étale algebra then for any A-module M,

HF*(A|k; M) 0 HF*(A|k; M).



Vol. 80 (2005) F-cohomology of rings of numerical polynomials and Eœ structures 701

Proof. By [33, theorem 6.8 (3)], F-homology and cohomology vanishes for étale

algebras. Also, F-homology commutes with colimits. Hence if A colimr Ar with
Ar étale, for any A-module M we have

HF*(A|k; M) colimHF*(Ar|k; M) 0.
r

The universal coefficient spectral sequence

E2'* Ext^*(HF*(A|k; A), M) =>• HF*(A|k; M)

has trivial E2-term, therefore HF*(A|k; M) 0.

3. Rings of numerical polynomials

We need to describe some properties of rings of numerical polynomials which
appeared in a topological setting in [3], [12] and we follow these sources in our discussion.

As topological motivation, we remark that A can be identified with KUq CP00

and Ast with KUq KU and we will calculate the F-cohomology of KUq KU later. By
definition,

A {f(w) g Q[w] : for all n e Z, f{n) g Z},

Ast {f(vu) G Q[w, vu'1] : for all n g Z - {0}, f(n) G Z[l/n]}

are the rings of numerical and stably numerical polynomials (over Z). If x, y are

indeterminates, wecanworkinanyoffherings A[x, y], Ast[x, y]orQ[w;, w;"1]^, y].
We will make use of the binomial coefficient functions

w\ w(w - l)...(w -n + 1) ^~r
n\

which can be encoded in the generating function

(1 +x)w =^cn{w)xn G A[x] ç Q[w][x].

Notice that this satisfies the formal identity

(1 + x)w(l + y)w (1 + (x + y + xy))w. (3.1)

Thus we have

cm(w)cn(w) I Icm+n(w) + (terms of lower degree) form,n>0. (3.2)
\ m
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Theorem 3.1 ([2], [12]).

(a) A is a free Z-module with a basis consisting of the cn(w) for n > 0.

(b) Ast is the localization Ast A[w~1] and it is a free Z-module on a countable
basis.

Describing explicit Z-bases for Ast is a non-trivial task, see [16], [23]. On the

other hand, the multiplicative structure of the Z-algebra Ast is in some ways more
understandable. Our next result describes some generators for Ast.

Theorem 3.2 ([3], [12]).

(a) The Z-algebra A is generated by the elements cm (w) with m > 1 subject to the

relations of'(3.2).

(b) The Z-algebra, Ast is generated by the elements w~l and cm{w) with m > 1.

(c) We have

A®Q Q[w], Ast®Q Q[w, w"1].

For the localizations of the rings A and Ast at any prime p we have

A(p) {f(w) e Q[w] : for all u e Z{p), f(u) e Z{p)}, (3.3a)

A^ {f(w) € Q[w] : for all u e Z(xp), /(M) e Zq,,}. (3.3b)

Theorem 3.3 ([2], [4, proposition 2.5], [12]).

(a) A(p) w a/ree Z(p)-module with a basis consisting of the monomials in the

binomial coefficientfunctions

where r^ 0, 1, p — 1.

(b) 77ie Z(p)-algebra A(p) is generated by the elements cpm (w) with m > 0 subject
to relations of the form

Cpm (W)P - Cpm{w) p dm+ l (W),

where dm+\{w) e A(p) fta* deg<im+i(w;) pm+1. In fact the monomials

wr°d\{w)nd1{w)n...di{w)ri,

where r^ 0,1,..., p — 1, /orm a ôasw of A(p) over Z(p) and are subject to

multiplicative relations of the form

dm{w)p -dm{w) pd'm+l{w),

where <\ç.gd'm+l(w) pm+1.



Vol. 80 (2005) F-cohomology of rings of numerical polynomials and Eœ structures 703

(c) Af\ is the localization Af, A(p)[w~1] and it is a free Z^ymodule on a

countable basis.

(d) The Z(p)-algebra, A^ is generated by the elements w and em{w) e A^ for
m > 1 defined recursively by

wp~l - 1 pei(w), em{w)p - em{w) pem+i(w) form > 1.

Corollary 3.4. Let p be a prime.

(a) AsFp-algebras,

A/pA ¥p[cpm(w) : m > 0]/(cpm(w)p - cpm{w) : m > 0),

Ast/Mst Fp[w, em(w) : m > 0]/(w;/'-1 - 1, em(w)/' - em(w) : m > 1).

e algebras are formally étale over Fp.

(b) T^or « > 1, A/pnA and Ast/pnAst are formally étale over Z/pn.

(c) TÄe p-adic completions Ap lim„ A/pnA and Apl lim„ Ast/pnAst are
formally étale over Z,p.

(d) Ap andAp1 are free topological Zp -modules on countable bases. Therefore they

are both compact and Hausdorff.

Proof. Parts (b) and hence (c) can be proved by induction on n > 1 using the infinite-
dimensional Hensel lemma of [7, 3.9]. The case n 1 is immediate from (a).

Suppose that we have found a sequence of elements so,si,...,sk,... e A(p)
satisfying

Sm - sm 0 (mod //) for m > 0.

Taking ^ sm + (^ - sm) we find that

4^ ~ s'm (sm + (Sm ~ Sm))P ~ (sm + (sVm - Sm))

spm- (sm + (spm-sm)) (mod pn+l)

0.

Hence for every n we can inductively produce such elements sn%m e A(p) for which

A/p"A Z/pnb„,m : m > 0]/(<m - sn>m : m > 0)

Now passing to p-adic limits we obtain elements

sm lim sU)m g
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for which
sm sm — 0.

In these cases we obtain for the module of Kahler differentials

Çl(A/p"A)/Z/p" 0 ^Ap/Zp-

Part (d) is related to Mahler's Theorem and a suitable exposition of this can be found

in [4].

There are two natural choices of augmentation for A, namely evaluation at 0 or 1,

e+:A^Z; e+f(w) f(0),
ex:A^Z; sxf(w) /(I).

For our purposes, the latter augmentation will be used. Notice that there is a ring
automorphism

^:A^A; cpf(w) f(w + 1) (3.4)

for which e+q> ex, so these augmentations are not too dissimilar.

4. The ring of Z/(/? — 1)-invariants in A?*,

In this section, p always denotes an odd prime. The case of p 2 is related to KO
and the work of Section 7.

Since polynomial functions 7Ly,\ —> Q are continuous with respect to the p-adic

topology they extend to continuous functions Z* —> Qp ; such functions which also

map Z,x. into Z(p) give continuous functions 7LYV —> Z,p. Hence we can regard A?

as a subring of Qp[w, w~1] which in turn can be viewed as a space of continuous
functions on the p-adic units l/p For p > 3 there is a splitting of topological groups

Zyp =Z/Cp-1) x (l+pZp),
where Z/(p — 1) identifies with a subgroup generated by a primitive {p — l)-st root
of unity f. There is also a bicontinuous isomorphism 1 + p7Lp Zp.

For an odd prime/?, the group (Ç > "L/ip — 1) acts continuously on Qp[w, w~1]

by

and it is immediate that this action sends elements of A? to continuous functions

7LYV —> "Lp. It then makes sense to ask for the subring of Af -, fixed by this

action, çAf\. We will relate this subring to the algebra of cooperations of the Adams
summand in Proposition 6.1.

Recall the elements em (w) ofTheorem 3.3 (d). We will write em (w)forw~1em(w).
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Proposition 4.1. As a "L^yalgebra, ;Af -, is generated by the elements wp~1 and

em{w) for m > 1.

Proof. It is clear that

P-'r=l

Also, by construction of the em(w),

Consider the multiplicative idempotent

Et : Q[w, vu'1] —? Q[w, vu'1]; E>;f(w) —^ > ; /(f rw).

Then we have

Each element f(w) G Q[w, w~1] has the form

f{vo) fo{wp~ + wf\(wp~ + ¦¦¦ + ¦

where fk(x) G Q[x, x"1], hence

Mwp~l).

From this it follows that fA^ is generated as a TL^V) -algebra by the stated elements.
D

Corollary 4.2. The following hold.

(a) As¥p-algebras,

thfp)/'p(^fp)) =¥p[w,ëm(w):m > l]/^"1 -\,ëm(w)p-ëm(w):m>X).

Hence this algebra is formally étale over Fp.

(b) Forn > 1, l:Afp)/pn(l;Afp)) is formally étale overZ/pn.

(c) The p-adic completion ^Asp lim„çAf, /pn (ç Ast) (P) isformally étale over "Lp.
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5. The F-cohomology of numerical polynomials

Recall that Z/Z and ZpIZ^p) for any prime p are torsion-free divisible groups,
so they are both Q-vector spaces which have the same cardinality and (uncountable)

dimensions; thus they are isomorphic. Similarly, we have Z/Z Q/Q and

Zp/Z(p) Qp/Q.
In the following, we will always use the augmentations ex : A —> Z and

ex : Ast —> Z and their analogues for the /^-localized versions. In calculating
the F-cohomology of A, we would obtain the same result using e+ because of the

existence of the automorphism <p of (3.4).

Theorem 5.1. Let R be an augmented commutative Z-algebra. Assume that, at each

prime p, the p-completion Rp is topologically free on a countable basis. Suppose
that for all primes p and k > 1, R/pk is a formally étale algebra over Z/pk. Then

for all s > 0,

; Z) HI^-^qIQ; Q).

Proof. For each natural number n, we may write

where the product is taken over all primes p. The Chinese Remainder Theorem

provides splittings

Y\d (5.1a)

(5.1b)

Applying the Transitivity Sequence and using that R(p) is étale over R, we obtain that
at each prime p

Ur*(Rip)\Zip);Z) =Ur*(R\Z;Z).
Therefore by Corollary 2.3 we have

J~[r*(/?p|Zp; Zp).

For the second isomorphism, using Corollary 2.3 and the linear compactness of
F-cohomology provided by Proposition 1.4, we can express HF*(i?|Z; Zp) as the

inverse limit of the groups HF*(i?|Z; Z/pn). Here the coefficients Z/pn eliminate

the effect of all the /^-divisible elements, therefore HF*(i?|Z; Z/pn) reduces to

HT*(Rp\Zp; Z/pn), where Rp denotes the /?-adic completion of R.
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Now for each k > 1, the assumption that R/pk is formally étale over Z/pk ensures
that

nr*(R/pk\z/pk;Z/pk) =o.

Therefore we obtain

H.r*(Rp\Zp; Zp) limUr*(R/pk\Z/pk; Z/pk) 0
k

lim1 BT*(R/pk\Z/pk; Z/pk).

For each n, Proposition 2.5 implies that

UYn(R(p)\Z(p);Z(p)) UYn-l(R(p)\Z(p);Zp/Z(p)),

HTn{R\Z; Z) BTn-1(R\Z; Z/Z).

As Zp/Z(p) and Z/Z are Q-vector spaces, for all n ^ 0 we obtain

UYn(R{p)\Z{py,Zp/Z{p)) Urn(RQ\Q; ZpIZ{p))

and similarly

Hr"(/?|Z; Z/Z) Hr"(i?Q|Q; Z/Z).

Corollary 5.2. W

Hr"(Ast|Z;Z) =Hr"(A|Z;Z)
10 otherwise.

For each prime p,

/ Since A[w~l] is étale over A, both of the F-cohomology groups

Hr*(A[w~1]|A;Z) and Hr*(A(p)[u;~1]|A(p); Z)

vanish. The Transitivity Theorem [33, 3.4] implies that there are isomorphisms

Hr*(A|Z; Z) Hr*(A[u;-1]|Z; Z) Hr*(Ast|Z; Z),

Hr*(A(p)|Z(p); Z(p)) ttY*(A(p)[w-l}\Z(p);Z(p)) Ur*(Afp)\Zipy,Zip)),

hence it suffices to prove the result for A and A(p).
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Corollary 3.4 ensures that A/pkA and therefore A(p)/pkA(p) as well is formally
étale over "L/pk for all k > 1. Now Corollaries 3.4(d) and 1.3 together guarantee
that the cochains for F-cohomology fulfil the linear compactness requirements of
Theorem 5.1. Thus we can apply this theorem and obtain the vanishing result for
F-cohomology in dimensions different from one.

By [29, theorem 4.1] and the fact that Zp/Z(p) and Z/Z are Q-vector spaces, we
have

Hr*(A(p)|Z(p);Zp/Z(p)) HF*(A<

HF*(Q[

and

HF*(A|Z; Q/Q) HF*(A ® Q|Q; Z/Z) HF*(Q[u;]|(Q>; Z/Z) Z/Z.

Thus we obtain
[•7/ fj. \r „ i

); Z(p))
0 otherwise,

and

0 otherwise,

as claimed.

Remark 5.3. Notice, that for the calculations of F-cohomology above we used the

formal properties of F-cohomology. As André-Quillen cohomology satisfies ana-

loguous properties, we can transfer the above results to obtain the following:

AQ„(Ast|Z; Z) AQ„(A|Z; Z) \® *" °'
[0 if«^0,

AQ"(Ast|Z; Z) AQ"(A|Z; Z)
J Q/Q lf w !'
[0 if « ^ 1.

The results from Section 4 allow us to calculate the F-cohomology ofç A?, over

Z(p) directly as was done above for Ast. Alternatively, we may use the fact that the

extension Af - /^ A? - is étale since it has the form B/A, where B A[t]/(tp~l — v)
for a unit v e A, where A is a Z(p) -algebra. We can now determine the F -cohomology
ofç Af ¦ since the Transitivity Theorem of [33, 3.4] gives

Proposition 5.4. For an odd prime p,

HI A^\£i(py, u-j{p)) — HI (A^|Z(p); Z(p)).
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6. Applications to E^ structures on AT-theory

Robinson [31] has developed an obstruction theory for E^ structures on a homotopy
commutative ring spectrum E. Provided E satisfies the following form of the Künneth
and universal coefficient theorems for E*E

then the obstructions lie in groups

while the extensions are determined by classes in

Here the bigrading (s,t) involves cohomological degree s and internal degree t.
Moreover, the relevant values of n are for n > 3.

We want to apply this to the cases of complex KU-theory and the Adams summand

E(\) of KU(p) at a prime p. Recall that

where t e KU2 and u e E(Y)2{p-\). Our next result implies that the relevant
conditions mentioned above are both satisfied for KU and E(\).

Proposition 6.1. There are isomorphisms of rings (in fact, ofHopf algebras)

KUo KU Ast, KU(P)O KU(P) Afp),

Hence,

KU* KU KU* ®Ast, KU(p) + KU(p) KU(p)if® Afp),

Proof. The isomorphisms for KU and KU(P) can be found in [12, p. 392].
Consider E 1 * E 1 the algebra ofcooperations for E 1 Since E 1 is Landwe-

ber exact, we have

£(1)* ®BP.t BP

[?i, t2,
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where V\ denotes the right unit r\r applied to v\ and the variables t; stem from BP* BP.
We

to
We also write w v1 lV\. The relation v\ + pt\ — V\ 0 in E(1)*E(1) gives rise

1 - ufVi -pv^ix e E(1)OE(1),

hence on setting e\ v^lt\ we have

w — 1 pe\.

Now we may inductively define

- _ -Pm-1 p-\

vltPk-vftk

The higher relations

can be used to prove the desired relations for the em. Taking the p-th power we have

Multiplying the relation

-p -p'n p n

by v1
p p we obtain

-p

which is precisely

V p"'
V\tm -V1 tm= ptm+\

_p pm_pm_ m-l j _ m j

em - em pëm+1 ¦

Flat base-change leads to isomorphisms

* KU | KU*; KU*) Hr*(Ast|Z; Z) ® KU*,

h) HF*(Afp)\Z{p); Z{p)) ® KU{ph,

With the help of Corollary 5.2 we can therefore deduce the following.

Theorem 6.2. .For a prime p and n > 2,

2
; 2sT[/*) 0

\KU{ph;KU{p)J 0

0



Vol. 80 (2005) F-cohomology of rings of numerical polynomials and Eœ structures 711

Hence KU, KU(P), and E(\) each have a unique Eœ structure.

It is a rather old question whether the connective Adams summand, often denoted

by £, is an £00 spectrum. The £00 ring spectrum machinery developed in [26] yields
the following general result.

Theorem 6.3. For any Earing spectrum E, the connective cover e —> E possesses
a model as an Eœ ring spectrum.

Proof. Proceeding as in [26, proposition VII.3.2], we first take the underlying zeroth

space Eq of the £00 ring spectrum E, then build a prespectrum T{Eq) out of it using
a bar construction which consists of suspensions and the monad for the little convex
body (partial) operad. Finally we apply the spectrification functor (there called Q00)

to T{Eq). By [26, proposition VII.3.2], this has the correct homotopy groups and is

an Eœ ring spectrum.

Applying this result, we obtain a canonical £00 model for the connective cover

Proposition 6.4. There is at least one E^ structure on the connective Adams
summand I.

Remark 6.5. After p-completion, we obtain an E^ structure on the /^-completed
connective Adams summand {Ç. In subsequent work we have shown that this £00

structure coincides with the one constructed by McClure and Staffelet in [27] using
algebraic K-theory.

7. i?oo structures on KO

The case of KO can be treated by similar methods but involves somewhat more delicate
considerations because of the presence of 2-torsion in KO*. Recall that

KO* Z[h, y, w, w-l]/{2h, h3, hy, y2 - Aw), (7.1)

where h g KO\, y g KO'4 and w e KO%. We will also require the graded Q-vector

space V* KO* ®Z/Z.
We will prove the following algebraic result.

Theorem 7.1.

(a) For any prime p and k^l,we have

Hr*(KO0KO/pk\Z/pk; Z/pk) 0,
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and

ÇpZp) ur*(KO0KGÇ\Zp; Zp) 0.

(b) We have

KO | KO*;
V*

10 otherwise.

Using this, the obstruction theory £00 structures and localization yield our result

on Eœ structures for KO.

Theorem 7.2. KO and, for each prime p, KO(P) and KCÇ all have unique £00

structures.

To prove Theorem 7.1, we begin with a composite result distilled from [3] and

[l.p.162].

Theorem 7.3.

(a) KO* KO is a free KO*-module on countably many generators lying in KOo KO.

(b) The natural homomorphism

KOo KO —? KUo KU ^ Ast

is a split monomorphism whose image is

{/(«;) € Ast : /(-«,) /(«;)} ç Ast.

(c) For each prime p and k > 1,

KOo KO /pk —> KUo KU /pk Ast/pk

is a split monomorphism ofL/pk-modules.

Consider the short exact sequence

0 -> KO* —> KO* ®Z —> KO* ®Z/Z -> 0.

Since Z/Z is a Q-vector space and we have the splitting of (5. lb), we can reformulate
the above exact sequence to obtain that the sequence

0 -> KO* —> W KO* ®ZP —>V*->Q, (7.2)
p
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is exact. Here V* is defined above and we have used the fact that each group
KOn is finitely-generated. The application of F-cohomology of KO* KO to this

sequence yields a long exact sequence which relates Hr*-*(ÄÖ+ KO \ KO*; KO*) to
Hr*<*(KO* KO I KO*; \\p KO* &LP) and Ur**(KO* KO \ KO*; V*).

Now, for the part with coefficients in V* we have

HF** (KO* KO \ KO*; V*) 9ÉHr*'*(KO*KO®Q\KO*®Q; V*),

and

KO* ®Q Q[y, y'1], KO*KO®Q Q[y, y~\z, z"1].

By [29], as in Corollary 5.2 we find that

Urn'*(KO*KO\KO*;V*) \V* lfw 1'
(7.3)

10 otherwise.

For a fixed algebra, the cochain complex for F-cohomology commutes with limits
taken over the coefficient module, therefore F-cohomology commutes with products
of coefficient modules and the splitting Z \\p 7LV leads to

HT*'*(KO* KO | KO*; KO* ®Z) ]~[ HT*'*(KO* KO \ KO*; KO* ®ZP).
v

For each prime p we obtain a short exact sequence,

0 -> lim1 Hr*-11*^^* KO | KO*; KO* //)k

-^ ur*<*(KO* KO I KO*; KO* ®%v)

—> UmHr*1*^^* KO | KO*; KO* /pk) -> 0.
k

When p > 2, we are reduced to considering

Hr*>*(KO* KO | KO*; KO* //) HF** (KO* KO /pk\ KO* //; KO* //),
which can be determined by the methods of Section 4 using the subgroup {± 1} < l/p
in place of the group of all {p — l)-st roots of unity. The result is that

Hr*>*(KO* KO | KO*; KO* //) 0,

whence
KO | KO*; KO* ®Z„) 0.

The case p 2 requires a more intricate analysis. First we identify
and the quotients KOo KO /2k as rings of functions.
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Theorem 7.4.

(a) There is an isomorphism of rings

KO0KOi2) U(w) e Q[w, w-1] : /Z(x2) ç Z(2)) f(-w) f(w)} ç Af2).

(b) For each k > 1, f/iere w an isomorphism of rings

KOo KO /2k Cont(l + 8Z2, Z/2*),

where Cont(l + 8Z2,Z/2fe) denotes the space of continuous maps from
1 + 8Z2 ç Z2X ç Z2 with its 2-adic topology to Z/2k with the discrete topology.

(c) There is an isomorphism of rings

KOo KOÇ= Cont(l + 8Z2, Z2),

f/ie space of continuous maps from 1 + 8Z2 ro Z2.

(d) The algebras (KOo KO /2k, Z/2k) and (KOo KOÇ, la) are formally étale.

Proof. The methods of [4] apply here, and we leave verification of the details to the

reader.

The squaring map Z^ —y ^2 nas image 1 + 8Z2, hence a polynomial f{w)&
A%, satisfying f(—w) f(w) corresponds to acontinuous function I+8Z2 —> Z2.

By compactness of the domain, Cont(l + 8Z2, Z/2fe) consists of locally constant
functions. If we express x g Z2 in the form

x XQ + x\2 + X222 + ¦ ¦ ¦ + xn2n + ¦ ¦ ¦

where x, 0, 1, then the functions

are locally constant and give rise to Z/2^-algebra generators of Cont( 1 + 8Z2,

They also satisfy the relations

and the distinct monomials

form a Z/2^-basis. This implies that the Z/2^-algebra Cont(l + 8Z2, Z/2fe) is

formally étale. Similar considerations apply to the topological algebra KOo KOÇ.
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Collecting together the results of the above discussion (in particular Theorem

7.4(d)) we obtain the case/? 2ofTheorem7.1(a). The proof of Theorem 7. l(b)
makes use of the long exact sequence resulting from (7.2) and (7.3).

We remark that rather than working modulo powers of 2, it is also possible to
consider powers of the maximal ideal (2, h, y) < KO* and then we obtain

Proposition 7.5. For k > 1,

ur*(KO* KO /(2, h, y)k\ KO* /(2, h, y)k; KO* /(2, h, y)k) 0.

and

0.

8. i?oo structures on the /„-adic completion of E(n)

In this section we describe what we can prove about £00 structures on the /„-adic
completion of Johnson-Wilson spectrum E(n) for a prime p and n > 1.

The coefficient ring

E{n)* Z(p)[vi, vn-i, vn, u"1]

is Noetherian and contains the maximal ideal

h (P,v\, ..,u„_i) < E(n)*.

Here the u, denote the images of the Araki generators of BP* and we sometimes

write vq p. There is a commutative ring spectrum E(n) for which the coefficient

ring £(«)* is the /„-adic completion of E{n)*, i.e., its completion at /„. It is known

from [13], [19] that E(n) is the K(n)-localization of E(n). We also know from [7]

that for each prime p, E{n) possesses a unique A^ structure and the canonical map

E{n) —> E{n)/In ~ K{n) tothen-thMorava^T-theoryisamapof A00 ring spectra
for any of the Aœ structures on K(n) shown to exist in [30]. Actually these results

were only claimed for odd primes but the arguments also work for the prime 2.

Proposition 8.1. Possible obstructions for an £00 structure on the completed
Johnson-Wilson spectra E(n) live in the continuous T-cohomology groups
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Proof. For Ein) we have a continuous universal coefficient theorem, i.e., possible
obstructions live in the continuous £(n)-cohomology of (Xm)+ xSm EAm, where
Xm is a filtration quotient of an Eœ operad as described in [31, section 5.1]. These

cohomology groups can be identified with the continuous EXn^-homomorphisms

from the corresponding £'(n)-homology groups (compare [31, proposition 5.4] and

[7, §1]). This proves the claim.

For each £ > 0, Proposition 2.2 yields a short exact sequence

0 -> lim1 ïir'-^iEin^EW/IïlEin)*/^; Ein)*/!kn)
k

(8.1)

(n)*/IÏ; Ein)*/lk) -> 0.
k

Theorem 8.2. The Ein)*/Ik-algebra Ein)*Ein)/Ik is formally étale. Hence the

V-cohomology of Ein)*Ein)/lk over Ein)*/lk is trivial,

UY^iEin)*Ein)/lk\Ein)*/lk; E(n)JIkn) 0.

Proof. First we show that the algebra E(n)*E(n)/Ik is formally étale. In the

following we use the notation chosen in [7]. As in the proof of [7, lemma 3.4], we can

apply the infinite-dimensional Hensel lemma (see the proof of our Corollary 3.4) to

split E(n)*E(n)/Ik into an infinite tensor product of E(n)*/Ik-algebras,

E(n),E(n)/Ik (g) E(n)JIk[Sj]/(vnsf - v? Sj).

We can write Ein)*Ein)/l^ as a colimit of finite tensor products,

m

Ein)*Ein)/!kn colim(g) £(«)*//*[Sj]/(vnsf - v? Sj).
3=1

We claim that each algebra Ein)*/I^[Sj]/(vnS. — u„ Sj) is étale over Ein)*/I^.
Notice that it is flat over Ein)*/lk and is finitely-generated by Sj. As the ground ring
Ein)*/Ik is Noefherian, the only thing that remains to be shown is that the module
of Kahler differentials is trivial.

The Kahler differentials are generated by the symbol dSj, but in Ein)*Ein)/lk
we have the relation vnS ¦ u„ Sj. The residue class of the element vn e Ein)* is

a unit in the ring Ein)*/ln and thus we can deduce

jo 1-p1' -,, cP"\ n l-pJcP°~ljcdSj vn d(Sj p vn Sj dSj.
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Iteration of this relation t times, where t is an integer such that tn > k, implies that

dSj is zero, since in the quotient E(n),/Ik, pk is zero.

Now by Lemma 2.6 F-homology commutes with colimits, therefore

0

I^ E{n)Jlkn).

This completes the proof of Theorem 8.2.

Using (8.1) and the fact that the completion of E(n),E(n) is free on a countable
basis [9, theorem 1.1], [4], we obtain

Theorem 8.3. For p a prime and n > 1, the spectrum E{n) possesses a unique Eqo

structure.

Using the ideas of Section 2, we can also deduce

Theorem 8.4. For n > 1 and k > 1, we have

kk Ik) 0

AQ*(E(n)*E(n)/I%\E{n)^lkn; £(«)?//*),

*E(nJîn\E(n)*; E(n)*) 0

AQ*(E(n),E(n)2\E(n),; Ein),).

Remark 8.5. Extending Theorem 8.3 to cover E{n) for n > 1 does not appear to be

straightforward. The following two problems arise.

• There is the question of whether E(n)*E(n) is a free Ein), -module when n > 1.

If E(n) does not have a universal coefficient theorem, then the obstructions to

building an £00 structure on E(n) would live in £'(n)-cohomology which might
not then be identifiable with F-cohomology. In [11], the first author showed
that the cooperation algebra of the /„-localization of E{n), E{n)In, is free over
E(n),In, so it does have a universal coefficient theorem and the above problem
is overcome.

• F-cohomology of E(n),E(n) is non-trivial in positive degrees. Even for n 2

there are polynomial generators in E{2),E{2) which lead to non-trivial classes

in F-cohomology.

We aim to return to the existence of £00 structures on E{n) and E{n)in in future
work.
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We end this section with some remarks on suitably completed versions of elliptic
cohomology. Here 811 denotes the level 1 version of elliptic cohomology of Landwe-
ber, Ravenel and Stong [24] and we focus on the supersingular completions of [6].
Our above techniques together with results from [8] yield the following.

Theorem 8.6. For each prime p > 3, the supersingular completions 8KT E -, and

811^for each maximal ideal P < (8ll*)(P) containing (p, Ep-\), have unique E^
structures.

An analogous result applies to the ^T(l)-localization of 8U studied in [5] and

more recently by M. Hopkins.

9. An obstruction theory for the coherence of maps

For the following, we need to work in a good category of spectra with a symmetric
monoidal smash product, for example that of [17]. Where necessary, all ring spectra
will be assumed to be fibrant.

Let E and F be two £oo ring spectra over the £00 operad T from [31, section 5.1]
and let / : E —> F be a map of commutative ring spectra, i. e., the map / commutes
with the multiplication maps he and [if up to homotopy,

MF ° f A/ ~ f o/J.E,

and similar coherence properties exist with respect to the homotopies for associativity
and commutativity on E and F. The aim of the following discussion is to give criteria,
when the map / can be made into a map which is compatible with the T -algebra
structures on E and F up to homotopy. For A 00 structures the analogous question
was addressed in [30].

From now on we will use the notation of [31 ]. The topological operad T is filtered

by subspaces Vm7~(n) ç T(n). Let 9E and 6F be the action maps of the operad T
on E and F.

Consider the sequence of topological spaces

Vm7» <-> Vm+lT{n) —> Vm+lT{n)/VmT{n) U dVm+lT{n),

where 9Vm+17"(n) is the part of T(n) which is determined by compositions in the

operad of elements coming from lower filtration degrees.

Theorem 9.1.

(a) //Hr"1'2-"^^.?;; F*) 0 for all n > 3, then f can be turned into a map
satisfying

fo6E~eFo f A ¦ ¦ ¦ A / :T(m)K Em EAm —? F

m

for all m.
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(b) If in addition Honif+(F+£, F*) Honi£+(£+£, F*), then it suffices to prove
that

Hr"'2"" (£*£!£*;/=;) =0

for all n > 3.

The second condition is satisfied for instance if F is projective over is, then

F*E F* ®£+ is*is can be used to reduce the module of F*-linear morphisms to the

module of E*-linear morphisms.

Proof. Assume / satisfies the conditions up to filtration degree m. In order to extend

/ coherently over the (m + l)-st filtration step, we have to show that the condition
of the theorem suffices to force / to fulfil

/o6»Ë|Vm+1 ~<9f|Vm+1 of a... A/: Vm+17"(«) xE„ EAn —> F.

The map / o <9Ë|Vm+1 corresponds to an element in F°(Vm+1T(n) xE„ EAn).

Using the long exact cohomology sequence corresponding to the sequence of spaces

Vm7» U 9Vm+17» -U Vm+17» -4 Vm+17»/Vm7» U 9Vm+17»,

we find that the difference element

f oeE\vm+1 -eF o/An|vm+1

maps to zero under i*, thus it has to be in the image of j*. Consequently, if j* has

trivial codomain, then this difference has to be trivial as an element in F -cohomology.
An argument showing that the corresponding class in

F°{Vm+lT{n)/VmT{n) U dVm+lT{n) xE„ EAn)

has to be a cocycle in the complex for HP* can be found in [31]. Therefore, if
jjpm,2 m(FJfE\F*; F*) vanishes in all degrees m > 3, the potentially obstructing
difference maps / oQE —QF o fAn have to be nullhomotopic.

From the triviality of HP" when n > 1 for complex Ä"-theory and its localization
at a prime p, we can deduce the following result.

Theorem 9.2. For each k integer prime to p, the k-th Adams operation i/k: KU(P) —>
KU(p) can be refined to a coherent map with respect to the E^ structure given by the

operad action ofT on KU(P).
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Proof. The action of such an Adams operation \jrk on KU(p)2n %(P) is given by
multiplication by kn, thus it induces a different KU (p) ^ KU (p) -module structure on

KU(p)jf. This corresponds to taking E KU(P) F and the map fk : E —> F,
then applying Theorem 9.1(b) and using the fact that the relevant F-cohomology

groups vanish, this being a generalization of Theorem 6.2 which is proved in a similar

way (this result depends crucially on the vanishing of F-cohomology for formally
étale extensions).

Finally we have a result on the inclusion j : E(\) —> KU(P) of the Adams
summand into p-local K -theory which is a map of ring spectra.

Proposition 9.3. j gives rise to a coherent map of Eœ spectra.

Proof. Using the Conner-Floyd isomorphism and the Landweber exactness of
E{\), the above argument can be adapted to prove that the relevant part of
nr*'*(KUipU(E(iy)\KUipU; KUipU) vanishes.

Remark 9.4. With the aid of more machinery one can actually take the above

arguments to obtain the existence of strict maps of £00 ring spectra. Using a

comparison result of Basterra and the second author [14, theorem 2.6], we can identify
F-cohomology groups with the obstruction groups arising in the work of Goerss and

Hopkins [18]. Now the Goerss-Hopkins obstruction theory [18, §4] tells us that the

vanishing of the F-cohomology groups HF*-*(KU\p)^{E{\))\KU\p)+; KU(P)J and

HY*>*(KU(p)^{KU(P))\KU(p)^ KU^-p)^) implies that the Adams operations and the

map j give rise to maps of £00 ring spectra.
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